51
|
Damarla M, Johnston LF, Liu G, Gao L, Wang L, Varela L, Kolb TM, Kim BS, Damico RL, Hassoun PM. XOR inhibition with febuxostat accelerates pulmonary endothelial barrier recovery and improves survival in lipopolysaccharide-induced murine sepsis. Physiol Rep 2017; 5:e13377. [PMID: 28801519 PMCID: PMC5555900 DOI: 10.14814/phy2.13377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a leading cause of death among patients in the intensive care unit, resulting from multi-organ failure. Activity of xanthine oxidoreductase (XOR), a reactive oxygen species (ROS) producing enzyme, is known to be elevated in nonsurvivors of sepsis compared to survivors. We have previously demonstrated that XOR is critical for ventilator-induced lung injury. Using febuxostat, a novel nonpurine inhibitor of XOR, we sought to determine the role of XOR inhibition in a murine model of sepsis-induced lung injury and mortality. C57BL/6J mice were subjected to intravenous (IV) lipopolysaccharide (LPS) for various time points, and lungs were harvested for analyses. Subsets of mice were treated with febuxostat, pre or post LPS exposure, or vehicle. Separate groups of mice were followed up for mortality after LPS exposure. After 24 hr of IV LPS, mice exhibited an increase in XOR activity in lung tissue and a significant increase in pulmonary endothelial barrier disruption. Pretreatment of animals with febuxostat before exposure to LPS, or treatment 4 h after LPS, resulted in complete abrogation of XOR activity. Inhibition of XOR with febuxostat did not prevent LPS-induced pulmonary vascular permeability at 24 h, however, it accelerated recovery of the pulmonary endothelial barrier integrity in response to LPS exposure. Furthermore, treatment with febuxostat resulted in significant reduction in mortality. Inhibition of XOR with febuxostat accelerates recovery of the pulmonary endothelial barrier and prevents LPS-induced mortality, whether given before or after exposure to LPS.
Collapse
Affiliation(s)
- Mahendra Damarla
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura F Johnston
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gigi Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Li Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lan Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lidenys Varela
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd M Kolb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo S Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rachel L Damico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul M Hassoun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
52
|
Kumar R, Joshi G, Kler H, Kalra S, Kaur M, Arya R. Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Med Res Rev 2017; 38:1073-1125. [DOI: 10.1002/med.21457] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Harveen Kler
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Sourav Kalra
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
- Centre for Human Genetics and Molecular Medicine
| | - Manpreet Kaur
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Ramandeep Arya
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| |
Collapse
|
53
|
Lytvyn Y, Har R, Locke A, Lai V, Fong D, Advani A, Perkins BA, Cherney DZI. Renal and Vascular Effects of Uric Acid Lowering in Normouricemic Patients With Uncomplicated Type 1 Diabetes. Diabetes 2017; 66:1939-1949. [PMID: 28408434 DOI: 10.2337/db17-0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 11/13/2022]
Abstract
Higher plasma uric acid (PUA) levels are associated with lower glomerular filtration rate (GFR) and higher blood pressure (BP) in patients with type 1 diabetes (T1D). Our aim was to determine the impact of PUA lowering on renal and vascular function in patients with uncomplicated T1D. T1D patients (n = 49) were studied under euglycemic and hyperglycemic conditions at baseline and after PUA lowering with febuxostat (FBX) for 8 weeks. Healthy control subjects were studied under normoglycemic conditions (n = 24). PUA, GFR (inulin), effective renal plasma flow (para-aminohippurate), BP, and hemodynamic responses to an infusion of angiotensin II (assessment of intrarenal renin-angiotensin-aldosterone system [RAAS]) were measured before and after FBX treatment. Arterial stiffness, flow-mediated dilation (FMD), nitroglycerin-mediated dilation (GMD), urinary nitric oxide (NO), and inflammatory markers were measured before and after FBX treatment. Gomez equations were used to estimate arteriolar afferent resistance, efferent resistance (RE), and glomerular hydrostatic pressure (PGLO). FBX had a modest systolic BP-lowering effect in T1D patients (112 ± 10 to 109 ± 9 mmHg, P = 0.049) without impacting arterial stiffness, FMD, GMD, or NO. FBX enhanced the filtration fraction response to hyperglycemia in T1D patients through larger increases in RE, PGLO, and interleukin-18 but without impacting the RAAS. FBX lowered systolic BP and modulated the renal RE responses to hyperglycemia but without impacting the RAAS or NO levels, suggesting that PUA may augment other hemodynamic or inflammatory mechanisms that control the renal response to hyperglycemia at the efferent arteriole. Ongoing outcome trials will determine cardiorenal outcomes of PUA lowering in patients with T1D.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ronnie Har
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Amy Locke
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Vesta Lai
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Derek Fong
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
54
|
Bove M, Cicero AFG, Veronesi M, Borghi C. An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia. Vasc Health Risk Manag 2017; 13:23-28. [PMID: 28223818 PMCID: PMC5308472 DOI: 10.2147/vhrm.s115080] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several studies suggest that chronic hyperuricemia, the main precursor of gout, is involved in the pathogenesis of different systemic disorders that affect cardiovascular and renal systems, such as hypertension, obesity, hypercholesterolemia, atherosclerosis, metabolic syndrome, chronic heart failure, and chronic kidney disease. Recent epidemiological evidence has shown an increasing trend in the prevalence of hyperuricemia and gout in the Western world: a number of population-based studies estimate a prevalence of up to 21% for hyperuricemia and 1%–4% for gout. As such, early detection and careful management of this pathological condition is required, starting from lifestyle changes (mainly based on a diet low in red meat, sugars, and alcoholic beverages, with increased intake of vegetables, water, and vitamin C sources), adding specific drugs to lead serum uric acid (SUA) levels under the target value of 7 mg/dL. In particular, nonselective and selective XO inhibitors (allopurinol, oxypurinol, febuxostat) reduce SUA levels and the overproduction of reactive oxygen species, mainly related to XO overactivity that often causes inflammatory damage to the vascular endothelium. The effect of lowering SUA levels via XO inhibition includes an attenuation of oxidative stress and related endothelial dysfunction that largely contribute to the pathophysiology of metabolic syndrome and cardiovascular diseases. Therefore, the inhibition of XO overactivation seems to be an excellent therapeutic option to limit the harmful effects of excess UA and reactive oxygen species. In conclusion, rapid diagnosis and correct therapy for hyperuricemia may also improve the prevention and/or treatment of serious and multifactorial diseases. The available evidence supports the importance of promoting new experimental clinical trials to confirm the emerging antioxidant role of XO inhibitors, which could effectively contribute to cardiovascular and chronic kidney disease prevention.
Collapse
Affiliation(s)
- Marilisa Bove
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Maddalena Veronesi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
55
|
Li Y, Chen F, Deng L, Lin K, Shi X, Zhaoliang S, Wang Y. Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction. Thromb Res 2017; 149:17-24. [DOI: 10.1016/j.thromres.2016.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 11/05/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
56
|
Electrophilic Nitro-Fatty Acids: Nitric Oxide and Nitrite-Derived Metabolic and Inflammatory Signaling Mediators. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
57
|
Ojha R, Singh J, Ojha A, Singh H, Sharma S, Nepali K. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin Ther Pat 2016; 27:311-345. [DOI: 10.1080/13543776.2017.1261111] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ritu Ojha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Jagjeet Singh
- Department of Pharmacy, Rayat-Bahara group of Institutes, Hoshiarpur, India
| | - Anu Ojha
- Department of Pharmacy, DIT University, Dehradun, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kunal Nepali
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| |
Collapse
|
58
|
Effective uric acid-lowering treatment for hypertensive patients with hyperuricemia. Hypertens Res 2016; 40:259-263. [DOI: 10.1038/hr.2016.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
|
59
|
Bando Y, Toyama H, Kanehara H, Hisada A, Okafuji K, Toya D, Tanaka N. Chronic hyperglycemia may attenuate the serum-uric-acid-lowering effect of low-dose febuxostat in Japanese patients with type 2 diabetes mellitus. Diabetol Int 2016; 7:308-313. [DOI: 10.1007/s13340-015-0251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
|
60
|
Desideri G, Gentile R, Antonosante A, Benedetti E, Grassi D, Cristiano L, Manocchio A, Selli S, Ippoliti R, Ferri C, Borghi C, Giordano A, Cimini A. Uric Acid Amplifies Aβ Amyloid Effects Involved in the Cognitive Dysfunction/Dementia: Evidences From an Experimental Model In Vitro. J Cell Physiol 2016; 232:1069-1078. [PMID: 27474828 DOI: 10.1002/jcp.25509] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022]
Abstract
There is still a considerable debate concerning whether uric acid is neuroprotective or neurotoxic agent. To clarify this topic, we tested the effects of uric acid on neuronal cells biology by using differentiated SHSY5Y neuroblastoma cells incubated with amyloid β to reproduce an in vitro model of Alzheimer's disease. The incubation of cells with uric acid at the dose of 40 µM or higher significantly reduced cell viability and potentiated the proapoptotic effect of amyloid β. Finally, uric acid enhanced the generation of 4-hydroxynonenal and the expression of PPARβ/δ promoted by amyloid β, indicating a prooxidant effects. In conclusion, uric acid could exert a detrimental influence on neuronal biology being this influence further potentiated by the concomitant exposure to neurotoxic stimuli. This effect is evident for uric acid concentrations close to those achievable in cerebrospinal fluid in presence of mild hyperuricemia thus suggesting a potential role of uric acid in pathophysiology of cognitive dysfunction. These effects are influenced by the concentrations of uric acid and by the presence of favoring conditions that commonly occur in neurodegenerative disorders and well as in the aging brain, including increased oxidative stress and exposure to amyloid β. J. Cell. Physiol. 232: 1069-1078, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Roberta Gentile
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Grassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonello Manocchio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Selli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Borghi
- Department of Internal Medicine Unit, Aging and Kidney Disease, University of Bologna, Bologna, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| |
Collapse
|
61
|
Komers R, Xu B, Schneider J, Oyama TT. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 2016; 173:2573-88. [PMID: 27238746 DOI: 10.1111/bph.13527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevated serum uric acid (UA) is a risk factor for the development of kidney disease. Inhibitors of xanthine oxidase (XOi), an enzyme involved in UA synthesis, have protective effects at early stages of experimental diabetic nephropathy (DN). However, long-term effects of XOi in models of DN remain to be determined. EXPERIMENTAL APPROACH The development of albuminuria, renal structure and molecular markers of DN were studied in type 2 diabetic Zucker obese (ZO) rats treated for 18 weeks with the XOi febuxostat and compared with vehicle-treated ZO rats, ZO rats treated with enalapril or a combination of both agents, and lean Zucker rats without metabolic defects. RESULTS Febuxostat normalized serum UA and attenuated the development of albuminuria, renal structural changes, with no significant effects on BP, metabolic control or systemic markers of oxidative stress (OS). Most of these actions were comparable with those of enalapril. Combination treatment induced marked decreases in BP and was more effective in ameliorating structural changes, expression of profibrotic genes and systemic OS than either monotherapy. Febuxostat attenuated renal protein expression of TGF-ß, CTGF, collagen 4, mesenchymal markers (FSP1 and vimentin) and a tissue marker of OS nitrotyrosine. Moreover, febuxostat attenuated TGF-ß- and S100B-induced increased expression of fibrogenic molecules in renal tubular cells in vitro in UA-free media in an Akt kinase-dependent manner. CONCLUSIONS AND IMPLICATIONS Febuxostat is protective and enhances the actions of enalapril in experimental DN. Multiple mechanisms might be involved, such as a reduction of UA, renal OS and inhibition of profibrotic signalling.
Collapse
Affiliation(s)
- Radko Komers
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Bei Xu
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer Schneider
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Terry T Oyama
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
62
|
Tani S, Nagao K, Hirayama A. Effect of Febuxostat, a Xanthine Oxidase Inhibitor, on Cardiovascular Risk in Hyperuricemic Patients with Hypertension: A Prospective, Open-label, Pilot Study. Clin Drug Investig 2016; 35:823-31. [PMID: 26482071 DOI: 10.1007/s40261-015-0349-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE There is growing evidence of an association between high uric acid (UA) levels and cardiovascular disease (CVD). We hypothesized that febuxostat, a xanthine oxidase inhibitor, may be associated with suppressing the renin-angiotensin-aldosterone system (RAAS) and improving renal function in hyperurecemic patients with hypertension. METHODS We conducted a 6-month prospective study in which we randomized hypertensive hyperuricemic patients to either a febuxostat group (n = 30) or a control group (n = 30). The dose of febuxostat was adjusted to maintain the serum UA level at <6.0 mg/dL. RESULTS In the febuxostat group, the plasma renin activity (PRA), plasma aldosterone concentration (PAC), and serum UA level significantly decreased by 33 % (p = 0.0012), 14 % (p = 0.001), and 29 % (p < 0.0001), respectively. The estimated glomerular filtration rate (eGFR) significantly increased by 5.5 % (p = 0.001). Similar changes were not observed in the control group. Furthermore, a significant correlation was observed between the percent changes in the serum UA levels and the percent changes in the PRA (r = 0.277, p = 0.033), PAC (r = 0.310, p = 0.016), serum blood urea nitrogen levels (r = 0.434, p = 0.0005), serum creatinine levels (r = 0.413, p = 0.002), and eGFR (r = -0.474, p = 0.0001). CONCLUSIONS These results support the hypothesis that febuxostat might not only reduce serum UA levels but also suppress RAAS and improve renal function in hyperuricemic patients with hypertension, possibly leading to prevention of CVD.
Collapse
Affiliation(s)
- Shigemasa Tani
- Department of Health Planning Center, Nihon University Hospital, 1-6 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8309, Japan. .,Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Ken Nagao
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Hirayama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
63
|
Oyama JI, Tanaka A, Sato Y, Tomiyama H, Sata M, Ishizu T, Taguchi I, Kuroyanagi T, Teragawa H, Ishizaka N, Kanzaki Y, Ohishi M, Eguchi K, Higashi Y, Yamada H, Maemura K, Ako J, Bando YK, Ueda S, Inoue T, Murohara T, Node K. Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat: the PRIZE study. Cardiovasc Diabetol 2016; 15:87. [PMID: 27317093 PMCID: PMC4912773 DOI: 10.1186/s12933-016-0409-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Xanthine oxidase inhibitors are anti-hyperuricemic drugs that decrease serum uric acid levels by inhibiting its synthesis. Xanthine oxidase is also recognized as a pivotal enzyme in the production of oxidative stress. Excess oxidative stress induces endothelial dysfunction and inflammatory reactions in vascular systems, leading to atherosclerosis. Many experimental studies have suggested that xanthine oxidase inhibitors have anti-atherosclerotic effects by decreasing in vitro and in vivo oxidative stress. However, there is only limited evidence on the clinical implications of xanthine oxidase inhibitors on atherosclerotic cardiovascular disease in patients with hyperuricemia. We designed the PRIZE study to evaluate the effects of febuxostat on a surrogate marker of cardiovascular disease risk, ultrasonography-based intima-media thickness of the carotid artery in patients with hyperuricemia. METHODS The study is a multicenter, prospective, randomized, open-label and blinded-endpoint evaluation (PROBE) design. A total of 500 patients with asymptomatic hyperuricemia (uric acid >7.0 mg/dL) and carotid intima-media thickness ≥1.1 mm will be randomized centrally to receive either febuxostat (10-60 mg/day) or non-pharmacological treatment. Randomization is carried out using the dynamic allocation method stratified according to age (<65, ≥65 year), gender, presence or absence of diabetes mellitus, serum uric acid (<8.0, ≥8.0 mg/dL), and carotid intima-media thickness (<1.3, ≥1.3 mm). In addition to administering the study drug, we will also direct lifestyle modification in all participants, including advice on control of body weight, sleep, exercise and healthy diet. Carotid intima-media thickness will be evaluated using ultrasonography performed by skilled technicians at a central laboratory. Follow-up will be continued for 24 months. The primary endpoint is percentage change in mean intima-media thickness of the common carotid artery 24 months after baseline, measured by carotid ultrasound imaging. CONCLUSIONS PRIZE will be the first study to provide important data on the effects of febuxostat on atherosclerosis in patients with asymptomatic hyperuricemia. Trial Registration Unique trial Number, UMIN000012911 ( https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000015081&language=E ).
Collapse
Affiliation(s)
- Jun-ichi Oyama
- />Department of Cardiovascular Medicine, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501 Japan
| | - Atsushi Tanaka
- />Department of Cardiovascular Medicine, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501 Japan
| | - Yasunori Sato
- />Department of Clinical Research, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Masataka Sata
- />Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Ishizu
- />Department of Clinical Laboratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Taguchi
- />Department of Cardiology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Takanori Kuroyanagi
- />Department of Cardiology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Hiroki Teragawa
- />Department of Cardiovascular Medicine, Hiroshima General Hospital of West Japan Railway Company, Hiroshima, Japan
| | - Nobukazu Ishizaka
- />Internal Medicine (III), Department of Cardiology, Osaka Medical College, Takatsuki, Japan
| | - Yumiko Kanzaki
- />Internal Medicine (III), Department of Cardiology, Osaka Medical College, Takatsuki, Japan
| | - Mitsuru Ohishi
- />Department of Cardiovascular Medicine and Hypertension, Kagoshima University, Kagoshima, Japan
| | - Kazuo Eguchi
- />Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yukihito Higashi
- />Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotsugu Yamada
- />Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Maemura
- />Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Ako
- />Department of Cardiovascular Medicine, Kitasato University, Sagamihara, Japan
| | - Yasuko K. Bando
- />Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Ueda
- />Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus, Nishihara, Japan
| | - Teruo Inoue
- />Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Toyoaki Murohara
- />Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Node
- />Department of Cardiovascular Medicine, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501 Japan
| | - On behalf of the PRIZE Study Investigators
- />Department of Cardiovascular Medicine, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga, 849-8501 Japan
- />Department of Clinical Research, Chiba University Graduate School of Medicine, Chiba, Japan
- />Department of Cardiology, Tokyo Medical University, Tokyo, Japan
- />Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- />Department of Clinical Laboratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- />Department of Cardiology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
- />Department of Cardiovascular Medicine, Hiroshima General Hospital of West Japan Railway Company, Hiroshima, Japan
- />Internal Medicine (III), Department of Cardiology, Osaka Medical College, Takatsuki, Japan
- />Department of Cardiovascular Medicine and Hypertension, Kagoshima University, Kagoshima, Japan
- />Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
- />Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- />Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- />Department of Cardiovascular Medicine, Kitasato University, Sagamihara, Japan
- />Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- />Department of Clinical Pharmacology & Therapeutics, University of the Ryukyus, Nishihara, Japan
- />Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
64
|
Volterrani M, Iellamo F, Sposato B, Romeo F. Uric acid lowering therapy in cardiovascular diseases. Int J Cardiol 2016; 213:20-2. [DOI: 10.1016/j.ijcard.2015.08.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
|
65
|
Shirakura T, Nomura J, Matsui C, Kobayashi T, Tamura M, Masuzaki H. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:831-8. [PMID: 27198514 PMCID: PMC4939152 DOI: 10.1007/s00210-016-1239-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.
Collapse
Affiliation(s)
- Takashi Shirakura
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., 4-3-2, Asahigaoka, Hino, 191-852, Tokyo, Japan.
| | - Johji Nomura
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., 4-3-2, Asahigaoka, Hino, 191-852, Tokyo, Japan
| | - Chieko Matsui
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., 4-3-2, Asahigaoka, Hino, 191-852, Tokyo, Japan
| | - Tsunefumi Kobayashi
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., 4-3-2, Asahigaoka, Hino, 191-852, Tokyo, Japan
| | - Mizuho Tamura
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., 4-3-2, Asahigaoka, Hino, 191-852, Tokyo, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
66
|
Kojima S, Matsui K, Ogawa H, Jinnouchi H, Hiramitsu S, Hayashi T, Yokota N, Kawai N, Tokutake E, Uchiyama K, Sugawara M, Kakuda H, Wakasa Y, Mori H, Hisatome I, Waki M, Ohya Y, Kimura K, Saito Y. Rationale, design, and baseline characteristics of a study to evaluate the effect of febuxostat in preventing cerebral, cardiovascular, and renal events in patients with hyperuricemia. J Cardiol 2016; 69:169-175. [PMID: 27005768 DOI: 10.1016/j.jjcc.2016.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Since uric acid is associated with cardiovascular and renal disease, a treatment to maintain blood uric acid level may be required in patients with hyperuricemia. This study aims to evaluate preventive effects of febuxostat, a selective xanthine oxidase inhibitor, on cerebral, cardiovascular, and renal events in patients with hyperuricemia compared to conventional treatment. METHODS AND RESULTS This study is a prospective randomized open-label blinded endpoint study. Patient enrolment was started in November 2013 and was completed in October 2014. The patients will be followed for at least 3 years. The primary endpoint is a composite of cerebral, cardiovascular, and renal events, and all deaths including death due to cerebral, cardiovascular, and renal disease, new or recurring cerebrovascular disease, new or recurring non-fatal coronary artery disease, cardiac failure requiring hospitalization, arteriosclerotic disease requiring treatment, renal impairment, new atrial fibrillation, and all deaths other than cerebral or cardiovascular or renal disease. These events will be independently evaluated by the Event Assessment Committee under blinded information regarding the treatment group. The study was registered at ClinicalTrials.gov with the identifier NCT01984749.
Collapse
Affiliation(s)
| | | | - Hisao Ogawa
- National Cerebral and Cardiovascular Center, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | - Hisao Mori
- Yokohama Sotetsu bldg Clinic of Internal Medicine, Yokohama, Japan
| | - Ichiro Hisatome
- Graduate School of Medical Science, Tottori University, Yonago, Japan
| | | | - Yusuke Ohya
- Graduate School of Medicine, University of the Ryukyu, Nakagami, Japan
| | - Kazuo Kimura
- Yokohama City University Medical Center, Yokohama, Japan
| | | | | |
Collapse
|
67
|
Lin S, Zhang G, Liao Y, Gong D. The inhibitory kinetics and mechanism of dietary vitamins D3and B2on xanthine oxidase. Food Funct 2016; 7:2849-61. [DOI: 10.1039/c6fo00491a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary guidelines to promote health are usually based on the patterns’ prediction on disease risk of foods and nutrients.
Collapse
Affiliation(s)
- Suyun Lin
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Deming Gong
- School of Biological Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| |
Collapse
|
68
|
Lin S, Zhang G, Pan J, Gong D. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:463-72. [DOI: 10.1016/j.jphotobiol.2015.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
|
69
|
Interplay between oxidant species and energy metabolism. Redox Biol 2015; 8:28-42. [PMID: 26741399 PMCID: PMC4710798 DOI: 10.1016/j.redox.2015.11.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. Energy metabolism is both a source and target of oxidant species. Reactive oxygen species are formed in redox reactions in catabolic pathways. Sensitive targets of oxidant species regulate the flux of metabolic pathways. Metabolic pathways and antioxidant systems are regulated coordinately.
Collapse
|
70
|
Lin S, Zhang G, Liao Y, Pan J. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. Int J Biol Macromol 2015; 81:274-82. [DOI: 10.1016/j.ijbiomac.2015.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
|
71
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 959] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
72
|
Sezai A, Soma M, Nakata KI, Osaka S, Ishii Y, Yaoita H, Hata H, Shiono M. Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients with chronic kidney disease (NU-FLASH trial for CKD). J Cardiol 2015; 66:298-303. [DOI: 10.1016/j.jjcc.2014.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/10/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
|
73
|
Impact of anti-inflammatory therapies, xanthine oxidase inhibitors and other urate-lowering therapies on cardiovascular diseases in gout. Curr Opin Rheumatol 2015; 27:170-4. [PMID: 25594854 DOI: 10.1097/bor.0000000000000149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this study is to give an overview of recently published articles covering the impact of anti-inflammatory therapies, xanthine oxidase inhibitors and other urate-lowering therapies on cardiovascular diseases in gout. RECENT FINDINGS In patients with gout, long-term xanthine oxidase inhibition might reduce some cardiovascular comorbidities because of the dual effect of lowering serum uric acid levels and reducing free-radical production during uric acid formation. Among the anti-inflammatory therapies, colchicine has been shown to reduce some major cardiovascular events. SUMMARY Epidemiological and experimental studies have shown that hyperuricaemia and gout are independent risk factors for cardiovascular diseases. The mechanisms that link high serum uric acid levels and gout with cardiovascular diseases are multifactorial, implicating low-grade systemic inflammation and xanthine oxidase activity as well as the deleterious effect of hyperuricaemia itself.
Collapse
|
74
|
Kramkowski K, Leszczynska A, Przyborowski K, Kaminski T, Rykaczewska U, Sitek B, Zakrzewska A, Proniewski B, Smolenski RT, Chabielska E, Buczko W, Chlopicki S. Role of xanthine oxidoreductase in the anti-thrombotic effects of nitrite in ratsin vivo. Platelets 2015; 27:245-53. [DOI: 10.3109/09537104.2015.1083545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
75
|
Lin S, Zhang G, Liao Y, Pan J, Gong D. Dietary Flavonoids as Xanthine Oxidase Inhibitors: Structure-Affinity and Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7784-7794. [PMID: 26285120 DOI: 10.1021/acs.jafc.5b03386] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The flavonoid family has been reported to possess a high potential for inhibition of xanthine oxidase (XO). This study concerned the structural aspects of inhibitory activities and binding affinities of flavonoids as XO inhibitors. The result indicated that the hydrophobic interaction was important in the binding of flavonoids to XO, and the XO inhibitory ability increased generally with increasing affinities within the class of flavones and flavonols. The planar structure and the C2═C3 double bonds of flavonoids were advantageous for binding to XO and for XO inhibition. Both the hydroxylation on ring B and the substitution at C3 were unfavorable for XO inhibition more profoundly than their XO affinity. The methylation greatly reduced the inhibition (0.75-3.07 times) but hardly affected the affinity. The bulky sugar substitutions of flavonoids decreased the inhibition (1.69-1.99 times) and lowered the affinities (4.20-9.22 times) to different degrees depending on the conjunction site.
Collapse
Affiliation(s)
- Suyun Lin
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Deming Gong
- School of Biological Sciences, The University of Auckland , Auckland 1142, New Zealand
| |
Collapse
|
76
|
Konishi M, Pelgrim L, Tschirner A, Baumgarten A, von Haehling S, Palus S, Doehner W, Anker SD, Springer J. Febuxostat improves outcome in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle 2015; 6:174-80. [PMID: 26136193 PMCID: PMC4458083 DOI: 10.1002/jcsm.12017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Activity of xanthine oxidase is induced in cancer cachexia, and its inhibition by allopurinol or oxypurinol improves survival and reduces wasting in the Yoshida hepatoma cancer cachexia model. Here, we tested the effects of the second-generation xanthine oxidase inhibitor febuxostat compared with placebo in the same model as used previously by our group. METHODS Wistar rats (~200 g) were treated daily with febuxostat at 5 mg/kg/day or placebo via gavage for a maximum of 17 days. Weight change, quality of life, and body composition were analysed. After sacrifice, proteasome activity in the gastrocnemius muscle was measured. Muscle-specific proteins involved in metabolism were analysed by western blotting. RESULTS Treatment of the tumour-bearing rats with febuxostat led to a significantly improved survival compared with placebo (hazard ratio: 0.45, 95% confidence interval: 0.22-0.93, P = 0.03). Loss of body weight was reduced (-26.3 ± 12.4 g) compared with placebo (-50.2 ± 2.1 g, P < 0.01). Wasting of lean mass was attenuated (-12.7 ± 10.8 g) vs. placebo (-31.9 ± 2.1 g, P < 0.05). While we did not see an effect of febuxostat on proteasome activity at the end of the study, the pAkt/Akt ratio was improved by febuxostat (0.94 ± 0.09) vs. placebo (0.41 ± 0.05, P < 0.01), suggesting an increase in protein synthesis. CONCLUSIONS Febuxostat attenuated cachexia progression and improved survival of tumour-bearing rats.
Collapse
Affiliation(s)
- Masaaki Konishi
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Loes Pelgrim
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany.,Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anika Tschirner
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany
| | - Anna Baumgarten
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany
| | - Stephan von Haehling
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sandra Palus
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin, Charité Medical School, Berlin, Germany
| | - Stefan D Anker
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Jochen Springer
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
77
|
Kelley EE. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase. Arch Toxicol 2015; 89:1193-207. [PMID: 25995007 DOI: 10.1007/s00204-015-1523-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/27/2015] [Indexed: 01/04/2023]
Abstract
Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.
Collapse
Affiliation(s)
- Eric E Kelley
- Department of Anesthesiology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, W1357 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA,
| |
Collapse
|
78
|
Serum and aqueous xanthine oxidase levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation. Graefes Arch Clin Exp Ophthalmol 2015; 253:1161-7. [PMID: 25957764 DOI: 10.1007/s00417-015-3043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of this study was to determine serum and aqueous xanthine oxidase (XO) levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation (PEX). METHODS In this prospective study, serum, aqueous and anterior lens capsules were taken from 21 patients with PEX and 23 normal subjects who had undergone routine cataract surgery. Serum and aqueous XO levels were analyzed using the colorimetric method. mRNA expression of XO in anterior lens epithelial cells was evaluated using reverse transcription polymerase chain reaction analysis. RESULTS Serum XO levels (means ± standard deviations) were 207.0 ± 86.1 IU/mL and 240.6 ± 114.1 IU/mL in the normal and PEX groups, respectively (p = 0.310). Aqueous XO levels (means ± standard deviations) were 65.5 ± 54.3 IU/mL in the normal group and 130.5 ± 117.4 IU/mL in the PEX group (p = 0.028). There was a 2.9 fold decrease in mRNA expression in anterior lens epithelial cells of PEX, which is significantly lower than the normal group (p = 0.01). CONCLUSIONS Higher aqueous XO levels lacking associated different serum XO suggests higher oxidative stress in the aqueous. Higher aqueous XO levels in PEX with decreased mRNA expression in anterior lens epithelial cells indicate possible overexpression of XO in other structures related to the aqueous.
Collapse
|
79
|
Madigan MC, McEnaney RM, Shukla AJ, Hong G, Kelley EE, Tarpey MM, Gladwin M, Zuckerbraun BS, Tzeng E. Xanthine Oxidoreductase Function Contributes to Normal Wound Healing. Mol Med 2015; 21:313-22. [PMID: 25879627 DOI: 10.2119/molmed.2014.00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production.
Collapse
Affiliation(s)
- Michael C Madigan
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ryan M McEnaney
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ankur J Shukla
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Guiying Hong
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eric E Kelley
- Department of Anesthesia, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Margaret M Tarpey
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Anesthesia, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brian S Zuckerbraun
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Edith Tzeng
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
80
|
Whelton A, MacDonald PA, Chefo S, Gunawardhana L. Preservation of Renal Function during Gout Treatment with Febuxostat: A Quantitative Study. Postgrad Med 2015; 125:106-14. [DOI: 10.3810/pgm.2013.01.2626] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
81
|
Abstract
A bulk of evidence now exists that links gout with adverse cardiovascular (CV) outcomes. However, continuing doubt remains as to whether hyperuricemia can be truly considered an independent major CV risk factor. In fact, many gouty patients who develop major CV and renal events also possess several traditional CV risk factors, the presence of which can potentially confound any relationship between gout and adverse CV events. This paper reviews the available evidence to determine whether sufficient proof exists from biological, epidemiological and clinical trial studies to support a causal relationship between gout and major CV and renal events. This review is based on a PubMed/Embase database search for articles on hyperuricemia and its impact on cardiovascular and renal function.
Collapse
Affiliation(s)
- A Stack
- a a University Hospital Limerick, Graduate Entry Medical School, University of Limerick , Ireland
| | - A J Manolis
- b b Cardiology Dept , Asklepeion General Hospital , Athens , Greece
| | - E Ritz
- c c Department of Nephrology , Nierenzentrum , Heidelberg , Germany
| |
Collapse
|
82
|
Wu F, Szczepaniak WS, Shiva S, Liu H, Wang Y, Wang L, Wang Y, Kelley EE, Chen AF, Gladwin MT, McVerry BJ. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L987-97. [PMID: 25326583 DOI: 10.1152/ajplung.00063.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.
Collapse
Affiliation(s)
- Feng Wu
- University of Pittsburgh School of Medicine Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania
| | - William S Szczepaniak
- University of Pittsburgh School of Medicine Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania; University of Pittsburgh School of Medicine Department of Pharmacology, Pittsburgh, Pennsylvania
| | - Huanbo Liu
- University of Pittsburgh School of Medicine Department of Surgery, Pittsburgh, Pennsylvania
| | - Yinna Wang
- University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Ling Wang
- University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Ying Wang
- University of Pittsburgh School of Medicine Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania
| | - Eric E Kelley
- University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania; University of Pittsburgh School of Medicine Department of Anesthesiology, Pittsburgh, Pennsylvania
| | - Alex F Chen
- University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania; University of Pittsburgh School of Medicine Department of Surgery, Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- University of Pittsburgh School of Medicine Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania; University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Bryan J McVerry
- University of Pittsburgh School of Medicine Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania; University of Pittsburgh Vascular Medicine Institute, Pittsburgh, Pennsylvania;
| |
Collapse
|
83
|
Abstract
Epidemiological and experimental studies have shown that hyperuricaemia and gout are intricately linked with hypertension, metabolic syndrome, chronic kidney disease and cardiovascular disease. A number of studies suggest that hyperuricaemia and gout are independent risk factors for the development of these conditions and that these conditions account, in part, for the increased mortality rate of patients with gout. In this Review, we first discuss the links between hyperuricaemia, gout and these comorbidities, and present the mechanisms by which uric acid production and gout might favour the development of cardiovascular and renal diseases. We then emphasize the potential benefit of urate-lowering therapies on cardiovascular and renal outcomes in patients with hyperuricaemia. The mechanisms that link elevated serum uric acid levels and gout with these comorbidities seem to be multifactorial, implicating low-grade systemic inflammation and xanthine oxidase (XO) activity, as well as the deleterious effects of hyperuricaemia itself. Patients with asymptomatic hyperuricaemia should be treated by nonpharmacological means to lower their SUA levels. In patients with gout, long-term pharmacological inhibition of XO is a treatment strategy that might also reduce cardiovascular and renal comorbidities, because of its dual effect of lowering SUA levels as well as reducing free-radical production during uric acid formation.
Collapse
|
84
|
Akimoto T, Morishita Y, Ito C, Iimura O, Tsunematsu S, Watanabe Y, Kusano E, Nagata D. Febuxostat for hyperuricemia in patients with advanced chronic kidney disease. Drug Target Insights 2014; 8:39-43. [PMID: 25210423 PMCID: PMC4134003 DOI: 10.4137/dti.s16524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
Febuxostat is a nonpurine xanthine oxidase (XO) inhibitor, which recently received marketing approval. However, information regarding the experience with this agent among advanced chronic kidney disease (CKD) patients is limited. In the current study, we investigated the effects of oral febuxostat in patients with advanced CKD with asymptomatic hyperuricemia. We demonstrated, for the first time, that not only the serum levels of uric acid (UA) but also those of 8-hydroxydeoxyguanosine, an oxidative stress marker, were significantly reduced after six months of febuxostat treatment, with no adverse events. These results encouraged us to pursue further investigations regarding the clinical impact of lowering the serum UA levels with febuxostat in advanced CKD patients in terms of concomitantly reducing oxidative stress via the blockade of XO. More detailed studies with a larger number of subjects and assessments of the effects of multiple factors affecting hyperuricemia, such as age, sex, and dietary habits, would shed light on the therapeutic challenges of treating asymptomatic hyperuricemia in patients with various stages of CKD.
Collapse
Affiliation(s)
- Tetsu Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan. ; Green Town Clinic, Tochigi, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan. ; Kumakura Clinic, Tochigi, Japan. ; Yuki Clinic, Ibaraki, Japan
| | - Chiharu Ito
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan. ; Kumakura Clinic, Tochigi, Japan. ; Yuki Clinic, Ibaraki, Japan
| | | | | | - Yuko Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Eiji Kusano
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
85
|
De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 2014; 53:3679-88. [PMID: 24758136 PMCID: PMC4053070 DOI: 10.1021/bi500076r] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Indexed: 01/09/2023]
Abstract
Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal restoration of eNOS function and NO generation.
Collapse
Affiliation(s)
- Francesco De Pascali
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig Hemann
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kindra Samons
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chun-An Chen
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- The
Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jay L. Zweier
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
86
|
Nomura J, Busso N, Ives A, Matsui C, Tsujimoto S, Shirakura T, Tamura M, Kobayashi T, So A, Yamanaka Y. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep 2014; 4:4554. [PMID: 24686534 PMCID: PMC3971401 DOI: 10.1038/srep04554] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE(-/-) mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE(-/-) mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis.
Collapse
Affiliation(s)
- Johji Nomura
- 1] Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan [2] Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Annette Ives
- Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Chieko Matsui
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Syunsuke Tsujimoto
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Takashi Shirakura
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Mizuho Tamura
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Tsunefumi Kobayashi
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Alexander So
- Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Yoshihiro Yamanaka
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| |
Collapse
|
87
|
Weidert ER, Schoenborn SO, Cantu-Medellin N, Choughule KV, Jones JP, Kelley EE. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases. Nitric Oxide 2014; 37:41-5. [PMID: 24406683 DOI: 10.1016/j.niox.2013.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 01/10/2023]
Abstract
Sources of nitric oxide alternative to nitric oxide synthases are gaining significant traction as crucial mediators of vessel function under hypoxic inflammatory conditions. For example, capacity to catalyze the one electron reduction of nitrite (NO2-) to ·NO has been reported for hemoglobin, myoglobin and molybdopterin-containing enzymes including xanthine oxidoreductase (XOR) and aldehyde oxidase (AO). For XOR and AO, use of selective inhibition strategies is therefore crucial when attempting to assign relative contributions to nitrite-mediated ·NO formation in cells and tissue. To this end, XOR inhibition has been accomplished with application of classic pyrazolopyrimidine-based inhibitors allo/oxypurinol or the newly FDA-approved XOR-specific inhibitor, Uloric® (febuxostat). Likewise, raloxifene, an estrogen receptor antagonist, has been identified as a potent (Ki=1.0 nM) inhibitor of AO. Herein, we characterize the inhibition kinetics of raloxifene for XOR and describe the resultant effects on inhibiting XO-catalyzed ·NO formation. Exposure of purified XO to raloxifene (PBS, pH 7.4) resulted in a dose-dependent (12.5-100 μM) inhibition of xanthine oxidation to uric acid. Dixon plot analysis revealed a competitive inhibition process with a Ki=13 μM. This inhibitory process was more effective under acidic pH; similar to values encountered under hypoxic/inflammatory conditions. In addition, raloxifene also inhibited anoxic XO-catalyzed reduction of NO2- to NO (EC50=64 μM). In contrast to having no effect on XO-catalyzed uric acid production, the AO inhibitor menadione demonstrated potent inhibition of XO-catalyzed NO2- reduction (EC50=60 nM); somewhat similar to the XO-specific inhibitor, febuxostat (EC50=4 nM). Importantly, febuxostat was found to be a very poor inhibitor of human AO (EC50=613 μM) suggesting its usefulness for validating XO-dependent contributions to NO2- reduction in biological systems. Combined, these data indicate care should be taken when choosing inhibition strategies as well as inhibitor concentrations when assigning relative NO2- reductase activity of AO and XOR.
Collapse
Affiliation(s)
- E R Weidert
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States
| | - S O Schoenborn
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States
| | - N Cantu-Medellin
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States; University of Pittsburgh School of Medicine, Vascular Medicine Institute, United States
| | - K V Choughule
- Washington State University, Department of Chemistry, United States
| | - J P Jones
- Washington State University, Department of Chemistry, United States
| | - E E Kelley
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States; University of Pittsburgh School of Medicine, Vascular Medicine Institute, United States.
| |
Collapse
|
88
|
Kelley EE, Baust J, Bonacci G, Golin-Bisello F, Devlin JE, St Croix CM, Watkins SC, Gor S, Cantu-Medellin N, Weidert ER, Frisbee JC, Gladwin MT, Champion HC, Freeman BA, Khoo NKH. Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity. Cardiovasc Res 2014; 101:352-63. [PMID: 24385344 DOI: 10.1093/cvr/cvt341] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Obesity is a risk factor for diabetes and cardiovascular diseases, with the incidence of these disorders becoming epidemic. Pathogenic responses to obesity have been ascribed to adipose tissue (AT) dysfunction that promotes bioactive mediator secretion from visceral AT and the initiation of pro-inflammatory events that induce oxidative stress and tissue dysfunction. Current understanding supports that suppressing pro-inflammatory and oxidative events promotes improved metabolic and cardiovascular function. In this regard, electrophilic nitro-fatty acids display pleiotropic anti-inflammatory signalling actions. METHODS AND RESULTS It was hypothesized that high-fat diet (HFD)-induced inflammatory and metabolic responses, manifested by loss of glucose tolerance and vascular dysfunction, would be attenuated by systemic administration of nitrooctadecenoic acid (OA-NO2). Male C57BL/6j mice subjected to a HFD for 20 weeks displayed increased adiposity, fasting glucose, and insulin levels, which led to glucose intolerance and pulmonary hypertension, characterized by increased right ventricular (RV) end-systolic pressure (RVESP) and pulmonary vascular resistance (PVR). This was associated with increased lung xanthine oxidoreductase (XO) activity, macrophage infiltration, and enhanced expression of pro-inflammatory cytokines. Left ventricular (LV) end-diastolic pressure remained unaltered, indicating that the HFD produces pulmonary vascular remodelling, rather than LV dysfunction and pulmonary venous hypertension. Administration of OA-NO2 for the final 6.5 weeks of HFD improved glucose tolerance and significantly attenuated HFD-induced RVESP, PVR, RV hypertrophy, lung XO activity, oxidative stress, and pro-inflammatory pulmonary cytokine levels. CONCLUSIONS These observations support that the pleiotropic signalling actions of electrophilic fatty acids represent a therapeutic strategy for limiting the complex pathogenic responses instigated by obesity.
Collapse
Affiliation(s)
- Eric E Kelley
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Sakai Y, Otsuka T, Ohno D, Murasawa T, Sato N, Tsuruoka S. Febuxostat for treating allopurinol-resistant hyperuricemia in patients with chronic kidney disease. Ren Fail 2013; 36:225-31. [PMID: 24152124 DOI: 10.3109/0886022x.2013.844622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Availability of the novel xanthine oxidase inhibitor febuxostat, which has multiple excretion pathways, enables investigation of the significance of serum uric acid control on renal function in patients with chronic kidney disease (CKD). METHODS This was an exploratory, retrospective, observational study conducted at a single Japanese center. Serum uric acid concentrations and serum creatinine levels in the 6 months before and after the start of febuxostat treatment were collected for CKD patients switched from allopurinol after failing to achieve serum uric acid concentrations ≤6.0 mg/dL. RESULTS Evaluable data were available for 60 patients, 67% of whom had advanced CKD (eGFR <30 mL/min/1.73 m2). Mean dose of febuxostat was 15.9 (± 8) mg/day. Mean serum uric acid concentration decreased from 8.4 (±1.4) mg/dL at baseline to 6.2 (±1.2) mg/dL at 6 months; 47.5% of patients achieved a level ≤6.0 mg/dL. The change from baseline in eGFR was positive at all time points during febuxostat treatment and the increase of 2.3 (±5.6) mL/min/1.73 m2 at 6 months was significant (p = 0.0027). Whereas the eGFR slope was negative during allopurinol treatment, it became positive after the switch to febuxostat. The change in eGFR slope before and after febuxostat treatment was significant for all patients (p < 0.01), for male patients (p < 0.05), and for patients with a baseline eGFR of <15 mL/min/1.73 m2 (p < 0.05). CONCLUSIONS In patients with CKD, febuxostat reduces serum uric acid concentrations effectively and may suppress the progressive decline in renal function.
Collapse
Affiliation(s)
- Yukinao Sakai
- Division of Nephrology, Department of Internal Medicine, Nippon Medical School Musashikosugi Hospital , Kawasaki , Japan
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
91
|
Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS One 2013; 8:e75527. [PMID: 24086554 PMCID: PMC3783396 DOI: 10.1371/journal.pone.0075527] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Excess reactive oxygen species (ROS) formation can trigger various pathological conditions such as inflammation, in which xanthine oxidase (XO) is one major enzymatic source of ROS. Although XO has been reported to play essential roles in inflammatory conditions, the molecular mechanisms underlying the involvement of XO in inflammatory pathways remain unclear. Febuxostat, a selective and potent inhibitor of XO, effectively inhibits not only the generation of uric acid but also the formation of ROS. In this study, therefore, we examined the effects of febuxostat on lipopolysaccharide (LPS)-mediated inflammatory responses. Here we show that febuxostat suppresses LPS-induced MCP-1 production and mRNA expression via activating MAPK phosphatase-1 (MKP-1) which, in turn, leads to dephosphorylation and inactivation of JNK in macrophages. Moreover, these effects of febuxostat are mediated by inhibiting XO-mediated intracellular ROS production. Taken together, our data suggest that XO mediates LPS-induced phosphorylation of JNK through ROS production and MKP-1 inactivation, leading to MCP-1 production in macrophages. These studies may bring new insights into the novel role of XO in regulating inflammatory process through MAPK phosphatase, and demonstrate the potential use of XO inhibitor in modulating the inflammatory processes.
Collapse
|
92
|
As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout. Rheumatol Int 2013; 34:101-9. [PMID: 24026528 DOI: 10.1007/s00296-013-2857-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/30/2013] [Indexed: 01/19/2023]
Abstract
We prospectively evaluated whether an effective 12-month uric acid-lowering therapy (ULT) with the available xanthine oxidase (XO) inhibitors allopurinol and febuxostat in patients with chronic tophaceous gout has an impact on oxidative stress and/or vascular function. Patients with chronic tophaceous gout who did not receive active ULT were included. After clinical evaluation, serum uric acid levels (SUA) and markers of oxidative stress were measured, and carotid-femoral pulse wave velocity (cfPWV) was assessed. Patients were then treated with allopurinol (n = 9) or with febuxostat (n = 8) to target a SUA level ≤ 360 μmol/L. After 1 year treatment, the SUA levels, markers of oxidative stress and the cfPWV were measured again. Baseline characteristics of both groups showed no significant differences except a higher prevalence of moderate impairment of renal function (estimated glomerular filtration rate <60 ml/min) in the febuxostat group. Uric acid lowering with either inhibitors of XO resulted in almost equally effective reduction in SUA levels. The both treatment groups did not differ in their baseline cfPWV (allopurinol group: 14.1 ± 3.4 m/s, febuxostat group: 13.7 ± 2.7 m/s, p = 0.80). However, after 1 year of therapy, we observed a significant cfPWV increase in the allopurinol group (16.8 ± 4.3 m/s, p = 0.001 as compared to baseline), but not in the febuxostat patients (13.3 ± 2.3 m/s, p = 0.55). Both febuxostat and allopurinol effectively lower SUA levels in patients with severe gout. However, we observed that febuxostat also appeared to be beneficial in preventing further arterial stiffening. Since cardiovascular events are an important issue in treating patients with gout, this unexpected finding may have important implications and should be further investigated in randomized controlled trials.
Collapse
|
93
|
Blaker PA, Arenas-Hernandez M, Smith MA, Shobowale-Bakre EA, Fairbanks L, Irving PM, Sanderson JD, Marinaki AM. Mechanism of allopurinol induced TPMT inhibition. Biochem Pharmacol 2013; 86:539-47. [PMID: 23770457 DOI: 10.1016/j.bcp.2013.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022]
Abstract
Up to 1/5 of patients with wildtype thiopurine-S-methyltransferase (TPMT) activity prescribed azathioprine (AZA) or mercaptopurine (MP) demonstrate a skewed drug metabolism in which MP is preferentially methylated to yield methylmercaptopurine (MeMP). This is known as thiopurine hypermethylation and is associated with drug toxicity and treatment non-response. Co-prescription of allopurinol with low dose AZA/MP (25-33%) circumvents this phenotype and leads to a dramatic reduction in methylated metabolites; however, the biochemical mechanism remains unclear. Using intact and lysate red cell models we propose a novel pathway of allopurinol mediated TPMT inhibition, through the production of thioxanthine (TX, 2-hydroxymercaptopurine). In red blood cells pre-incubated with 250 μM MP for 2h prior to the addition of 250 μM TX or an equivalent volume of Earle's balanced salt solution, there was a significant reduction in the concentration of MeMP detected at 4h and 6h in cells exposed to TX (4 h, 1.68, p=0.0005, t-test). TX acts as a direct TPMT inhibitor with an apparent Ki of 0.329 mM. In addition we have confirmed that the mechanism is relevant to in vivo metabolism by demonstrating raised urinary TX levels in patients receiving combination therapy. We conclude that the formation of TX in patients receiving combination therapy with AZA/MP and allopurinol, likely explains the significant reduction of methylated metabolites due to direct TPMT inhibition.
Collapse
Affiliation(s)
- P A Blaker
- Department of Gastroenterology, Guy's and St Thomas' NHS Hospitals Foundation Trust, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biol 2013; 1:353-8. [PMID: 24024171 PMCID: PMC3757702 DOI: 10.1016/j.redox.2013.05.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 12/13/2022] Open
Abstract
Nearly 30 years have passed since the discovery of xanthine oxidoreductase (XOR) as a critical source of reactive species in ischemia/reperfusion injury. Since then, numerous inflammatory disease processes have been associated with elevated XOR activity and allied reactive species formation solidifying the ideology that enhancement of XOR activity equates to negative clinical outcomes. However, recent evidence may shatter this paradigm by describing a nitrate/nitrite reductase capacity for XOR whereby XOR may be considered a crucial source of beneficial (•)NO under ischemic/hypoxic/acidic conditions; settings similar to those that limit the functional capacity of nitric oxide synthase. Herein, we review XOR-catalyzed reactive species generation and identify key microenvironmental factors whose interplay impacts the identity of the reactive species (oxidants vs. (•)NO) produced. In doing so, we redefine existing dogma and shed new light on an enzyme that has weathered the evolutionary process not as gadfly but a crucial component in the maintenance of homeostasis.
Collapse
Key Words
- Free radicals
- GAGs, glycosaminoglycans
- H2O2, hydrogen peroxide
- Hypoxia
- I/R, ischemia/reperfusion
- Inflammation
- NOS, nitric oxide synthase
- Nitric oxide
- Nitrite
- O2•−, superoxide
- Oxygen tension
- ROS, reactive oxygen species
- XDH, xanthine dehydrogenase
- XO, xanthine oxidase
- XOR, xanthine oxidoreductase)
- Xanthine oxidoreductase
- •NO, nitric oxide
Collapse
|
95
|
Abstract
OBJECTIVES This article discusses the results of clinical and experimental studies that examine the association of hyperuricemia and gout with cardiovascular (CV) disease. METHODS Key papers for inclusion were identified by a PubMed search, and articles were selected for their relevance to the topic, according to the authors' judgment. RESULTS AND CONCLUSIONS Significant progress has been made in confirming an association, possibly causal, between hyperuricemia and CV outcomes. Xantine-oxidase (XO) inhibitors appear to be the most promising agents for prevention and treatment of CV consequences associated with hyperuricemia. Several small and medium sized studies have examined the effect of these agents on CV function in a variety of patient populations. Improvements in measures of endothelial function, oxidative stress, cardiac function, hemodynamics, and certain inflammatory indices have been demonstrated. Compounds for XO inhibition with more specific clinical effects and fewer side effects than allopurinol may be promising options to further explore the therapeutic potential in patients with CV disease. It is too early to make clinical recommendations with regard to the benefits of using XO inhibitor allopurinol or the novel febuxostat in patients with asymptomatic increased UA levels and high CV risk because only a small number of studies have shown that they may be beneficial in terms of CV outcomes. More studies are therefore needed to determine the potential of these drugs for reducing the risk of developing CV disease.
Collapse
Affiliation(s)
- E Agabiti-Rosei
- Division of Medicine and Surgery, Spedali Civili, Brescia, Italy
| | | |
Collapse
|
96
|
Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3. Mol Cell Biol 2013; 33:2047-55. [PMID: 23508103 DOI: 10.1128/mcb.01658-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a liver disorder that still demands improved treatment. Understanding the pathogenesis of NASH will help to develop novel approaches to prevent or treat this disease. In this study, we revealed a novel function of the aryl hydrocarbon receptor (AhR) in NASH. Transgenic or pharmacological activation of AhR heightened animal sensitivity to NASH induced by the methionine- and choline-deficient (MCD) diet, which was reasoned to be due to increased hepatic steatosis, production of reactive oxygen species (ROS), and lipid peroxidation. Mechanistically, the increased ROS production in AhR-activated mouse liver was likely a result of a lower superoxide dismutase 2 (SOD2) activity and compromised clearance of ROS. Activation of AhR induced tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiPARP) gene expression, depleted NAD(+), deactivated the mitochondrial sirtuin deacetylase 3 (Sirt3), increased SOD2 acetylation, and thereby decreased SOD2 activity. We also showed that Sirt3 ablation sensitized mice to NASH, whereas adenoviral overexpression of Sirt3 alleviated the NASH phenotype in AhR-transgenic mice. We conclude that activation of AhR sensitizes mice to NASH by facilitating both the "first hit" of steatosis and the "second hit" of oxidative stress. Our results suggest that the use of AhR antagonists might be a viable approach to prevent and treat NASH. Manipulation of the expression or activity of Sirt3 may also represent a novel approach to manage NASH.
Collapse
|
97
|
Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide 2013; 34:19-26. [PMID: 23454592 DOI: 10.1016/j.niox.2013.02.081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 01/13/2023]
Abstract
Numerous inflammatory disorders are associated with elevated levels of xanthine oxidoreductase (XOR) and allied enhancement of reactive species formation contributory to systemic pathology. Despite a long standing association between increased XOR activity and negative clinical outcomes, recent reports describe a paradigm shift where XOR mediates beneficial actions by catalyzing the reduction of NO2(-) to NO. While provocative, these observations contradict reports of improved outcomes in similar models upon XOR inhibition as well as reports revealing strict anoxia as a requisite for XOR-mediated NO formation. To garner a more clear understanding of conditions necessary for in vivo XOR-catalyzed NO production, this review critically analyzes the impact of O2 tension, pH, substrate concentrations, glycoaminoglycan docking and inhibition strategies on the nitrite reductase activity of XOR and reveals a hypoxic milieu where this process may be operative. As such, information herein serves to link recent reports in which XOR activity has been identified as mediating the beneficial outcomes resulting from nitrite supplementation to a microenvironmental setting where XOR can serve as substantial source of NO.
Collapse
Affiliation(s)
- Nadiezhda Cantu-Medellin
- University of Pittsburgh, Department of Anesthesiology and Vascular Medicine Institute, United States
| | | |
Collapse
|
98
|
Kim SM, Choi YW, Seok HY, Jeong KH, Lee SH, Lee TW, Ihm CG, Lim SJ, Moon JY. Reducing serum uric acid attenuates TGF-β1-induced profibrogenic progression in type 2 diabetic nephropathy. Nephron Clin Pract 2013; 121:e109-21. [PMID: 23307286 DOI: 10.1159/000343567] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/08/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pivotal role of transforming growth factor-β1 (TGF-β1)-induced tubulointerstitial fibrosis in the progression of chronic kidney disease is an active topic of research. Recent evidence indicates that hyperuricemia is associated with increased TGF-β1 and progressive tubulointerstitial injury. We examined the hypothesis that lowering serum uric acid attenuates TGF-β1-induced profibrogenic tubular change in type 2 diabetic nephropathy. METHODS KK-A(y)/Ta mice, an animal model of type 2 diabetes, were provided access to either regular drinking water or drinking water containing 10 mg/dl of allopurinol. Normal rat kidney epithelial cells were cultured and stimulated with 5 mM uric acid with or without allopurinol. RESULTS Type 2 diabetic mice that received allopurinol exhibited smaller increases in urinary albumin:creatinine ratio than diabetic control mice, as well as attenuated TGF-β1 and Smad pathway-induced profibrogenic tubular changes in diabetic kidneys. Allopurinol attenuated TGF-β1-induced Smad pathway activation in tubular cells. These findings were related to increases in E-cadherin, and decreases in vimentin and α-smooth muscle actin. Uric acid-induced upregulation of TGF-β1 depends on mitogen-activated protein kinase signaling. CONCLUSIONS This is the first study to demonstrate that reducing serum uric acid has preventive effects against to profibrogenic progression in type 2 diabetic kidney disease. These findings suggest that lowering serum uric acid may be an effective therapeutic intervention to prevent the progression of type 2 diabetic kidney disease.
Collapse
Affiliation(s)
- Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|