51
|
Oxidative Stress in Cancer Cell Metabolism. Antioxidants (Basel) 2021; 10:antiox10050642. [PMID: 33922139 PMCID: PMC8143540 DOI: 10.3390/antiox10050642] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts. In this review, we aim to provide an overview of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways could be manipulated during the treatment of cancer.
Collapse
|
52
|
Flores-Mejía R, Fragoso-Vázquez MJ, Pérez-Blas LG, Parra-Barrera A, Hernández-Castro SS, Estrada-Pérez AR, Rodrígues J, Lara-Padilla E, Ortiz-Morales A, Correa-Basurto J. Chemical characterization (LC-MS-ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021; 11:8210. [PMID: 33859258 PMCID: PMC8050087 DOI: 10.1038/s41598-021-87560-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Generation 4 of polyamidoamine dendrimer (G4-PAMAM) has several biological effects due to its tridimensional globular structure, repetitive branched amides, tertiary amines, and amino-terminal subunit groups liked to a common core. G4-PAMAM is cytotoxic due to its positive charges. However, its cytotoxicity could increase in cancer cells due to the excessive intracellular negative charges in these cells. Furthermore, this work reports G4-PAMAM chemical structural characterization using UHPLC-QTOF-MS/MS (LC-MS) by electrospray ionization to measure its population according to its positive charges. Additionally, the antiproliferative effects and intracellular localization were explored in the HMC-1 and K-562 cell lines by confocal microscopy. The LC-MS results show that G4-PAMAM generated multivalent mass spectrum values, and its protonated terminal amino groups produced numerous positive charges, which allowed us to determine its exact mass despite having a high molecular weight. Additionally, G4-PAMAM showed antiproliferative activity in the HMC-1 tumor cell line after 24 h (IC50 = 16.97 µM), 48 h (IC50 = 7.02 µM) and 72 h (IC50 = 5.98 µM) and in the K-562 cell line after 24 h (IC50 = 15.14 µM), 48 h (IC50 = 14.18 µM) and 72 h (IC50 = 9.91 µM). Finally, our results showed that the G4-PAMAM dendrimers were located in the cytoplasm and nucleus in both tumor cell lines studied.
Collapse
Affiliation(s)
- R Flores-Mejía
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - M J Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - L G Pérez-Blas
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - A Parra-Barrera
- Laboratorio de Medicina Regenerativa y Estudios del Cancer, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - S S Hernández-Castro
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico
| | - A R Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico
| | - J Rodrígues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - E Lara-Padilla
- Laboratorio de Bioquímica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - A Ortiz-Morales
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - J Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico.
| |
Collapse
|
53
|
Tuy K, Rickenbacker L, Hjelmeland AB. Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol 2021; 44:101953. [PMID: 34052208 PMCID: PMC8212140 DOI: 10.1016/j.redox.2021.101953] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Controlling reactive oxygen species (ROS) at sustainable levels can drive multiple facets of tumor biology, including within the cancer stem cell (CSC) population. Tight regulation of ROS is one key component in CSCs that drives disease recurrence, cell signaling, and therapeutic resistance. While ROS are well-appreciated to need oxygen and are a product of oxidative phosphorylation, there are also important roles for ROS under hypoxia. As hypoxia promotes and sustains major stemness pathways, further consideration of ROS impacts on CSCs in the tumor microenvironment is important. Furthermore, glycolytic shifts that occur in cancer and may be promoted by hypoxia are associated with multiple mechanisms to mitigate oxidative stress. This altered metabolism provides survival advantages that sustain malignant features, such as proliferation and self-renewal, while producing the necessary antioxidants that reduce damage from oxidative stress. Finally, disease recurrence is believed to be attributed to therapy resistant CSCs which can be quiescent and have changes in redox status. Effective DNA damage response pathways and/or a slow-cycling state can protect CSCs from the genomic catastrophe induced by irradiation and genotoxic agents. This review will explore the delicate, yet complex, relationship between ROS and its pleiotropic role in modulating the CSC.
Collapse
Affiliation(s)
- Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Rickenbacker
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
54
|
Shriwas P, Roberts D, Li Y, Wang L, Qian Y, Bergmeier S, Hines J, Adhicary S, Nielsen C, Chen X. A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism. Cancer Metab 2021; 9:14. [PMID: 33771231 PMCID: PMC8004435 DOI: 10.1186/s40170-021-00248-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cancer cells drastically increase the uptake of glucose and glucose metabolism by overexpressing class I glucose transporters (GLUT1-4) to meet their energy and biomass synthesis needs and are very sensitive and vulnerable to glucose deprivation. Although targeting glucose uptake via GLUTs has been an attractive anticancer strategy, the relative anticancer efficacy of multi-GLUT targeting or single GLUT targeting is unclear. Here, we report DRB18, a synthetic small molecule, is a potent anticancer compound whose pan-class I GLUT inhibition is superior to single GLUT targeting. METHODS Glucose uptake and MTT/resazurin assays were used to measure DRB18's inhibitory activities of glucose transport and cell viability/proliferation in human lung cancer and other cancer cell lines. Four HEK293 cell lines expressing GLUT1-4 individually were used to determine the IC50 values of DRB18's inhibitory activity of glucose transport. Docking studies were performed to investigate the potential direct interaction of DRB18 with GLUT1-4. Metabolomics analysis was performed to identify metabolite changes in A549 lung cancer cells treated with DRB18. DRB18 was used to treat A549 tumor-bearing nude mice. The GLUT1 gene was knocked out to determine how the KO of the gene affected tumor growth. RESULTS DRB18 reduced glucose uptake mediated via each of GLUT1-4 with different IC50s, which match with the docking glidescores with a correlation coefficient of 0.858. Metabolomics analysis revealed that DRB18 altered energy-related metabolism in A549 cells by changing the abundance of metabolites in glucose-related pathways in vitro and in vivo. DRB18 eventually led to G1/S phase arrest and increased oxidative stress and necrotic cell death. IP injection of DRB18 in A549 tumor-bearing nude mice at 10 mg/kg body weight thrice a week led to a significant reduction in the tumor volume compared with mock-treated tumors. In contrast, the knockout of the GLUT1 gene did not reduce tumor volume. CONCLUSIONS DRB18 is a potent pan-class I GLUT inhibitor in vitro and in vivo in cancer cells. Mechanistically, it is likely to bind the outward open conformation of GLUT1-4, reducing tumor growth through inhibiting GLUT1-4-mediated glucose transport and metabolisms. Pan-class I GLUT inhibition is a better strategy than single GLUT targeting for inhibiting tumor growth.
Collapse
Affiliation(s)
- Pratik Shriwas
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Dennis Roberts
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Yunsheng Li
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Liyi Wang
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Jennifer Hines
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Corinne Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA. .,Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA. .,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. .,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA. .,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA. .,Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 43701, USA.
| |
Collapse
|
55
|
Dai X, Jiang W, Ma L, Sun J, Yan X, Qian J, Wang Y, Shi Y, Ni S, Yao N. A metabolism-related gene signature for predicting the prognosis and therapeutic responses in patients with hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:500. [PMID: 33850897 PMCID: PMC8039687 DOI: 10.21037/atm-21-927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) often has an insidious onset and rapid progression. Often, when the disease is first diagnosed, the opportune time for surgical intervention has already lapsed. In addition, the effects of systemic treatment is relatively unsatisfactory. Metabolic reprogramming is one of the hallmarks of cancer. This study aimed to identify a set of genes related to metabolism to construct a predictive model for the prognosis of HCC. Methods The transcriptomic and clinical data of 352 HCC patients were obtained from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset and divided into a training cohort (n=212) and a testing cohort (n=140) at a ratio of 6:4. Univariate Cox regression analysis and the LASSO Cox regression model were used to identify 5 genes to establish a risk score for predicting the prognosis of HCC patients. Subsequently, the molecular characteristics of the model were assessed and the ability of the model to predict the tumor immune microenvironment and patient response to immunotherapy and chemotherapy was also examined. Results The risk score model was constructed based on the five genes, methyltransferase-like protein 6 (METTL6), RNA polymerase III subunit G (POLR3G), phosphoribosyl pyrophosphate amidotransferase (PPAT), SET Domain Bifurcated 2 (SETDB2), and suppressor of variegation 3-9 homolog 2 (SUV39H2). The Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) curves demonstrated that high-risk patients had a poorer overall survival (OS) compared to low-risk patients. he nomogram score had a better predictive ability compared to the common factors. Our results finally showed that high-risk cases were associated with cell proliferation and cell cycle related gene sets, high tumor protein P53 (TP53) mutation rate, suppressive immunity and increased sensitivity to cisplatin, gemcitabine and docetaxel. Meanwhile, low-risk cases were associated with cell cycle and immune response related pathways, low TP53 mutation rate, active immunity and more benefit from immunotherapy. Conclusions This study provided novel insights into the role of metabolism-related genes in HCC, and demonstrated that our model could be a promising prognostic biomarker for distinguishing the molecular and immune characteristics and inferring the potential response to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Jiang
- Department of Neurology, the Second People's Hospital of Wuxi, Wuxi, China
| | - Liang Ma
- Department of Chemotherapy, First People's Hospital of Yancheng, Yancheng, China
| | - Jie Sun
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shujie Ni
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
56
|
Rogachev AD, Alemasov NA, Ivanisenko VA, Ivanisenko NV, Gaisler EV, Oleshko OS, Cheresiz SV, Mishinov SV, Stupak VV, Pokrovsky AG. Correlation of Metabolic Profiles of Plasma and Cerebrospinal Fluid of High-Grade Glioma Patients. Metabolites 2021; 11:metabo11030133. [PMID: 33669010 PMCID: PMC7996604 DOI: 10.3390/metabo11030133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/17/2023] Open
Abstract
This work compares the metabolic profiles of plasma and the cerebrospinal fluid (CSF) of the patients with high-grade (III and IV) gliomas and the conditionally healthy controls using the wide-range targeted screening of low molecular metabolites by HPLC-MS/MS. The obtained data were analyzed using robust linear regression with Huber’s M-estimates, and a number of metabolites with correlated content in plasma and CSF was identified. The statistical analysis shows a significant correlation of metabolite content in plasma and CSF samples for the majority of metabolites. Several metabolites were shown to have high correlation in the control samples, but not in the glioma patients. This can be due to the specific metabolic processes in the glioma patients or to the damaged integrity of blood-brain barrier. The results of our study may be useful for the understanding of molecular mechanisms underlying the development of gliomas, as well as for the search of potential biomarkers for the minimally invasive diagnostic procedures of gliomas.
Collapse
Affiliation(s)
- Artem D. Rogachev
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia; (E.V.G.); (O.S.O.); (S.V.C.); (A.G.P.)
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-330-97-47
| | - Nikolay A. Alemasov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, acad. Lavrentiev ave., 10, 630090 Novosibirsk, Russia; (N.A.A.); (V.A.I.); (N.V.I.)
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, acad. Lavrentiev ave., 10, 630090 Novosibirsk, Russia; (N.A.A.); (V.A.I.); (N.V.I.)
| | - Nikita V. Ivanisenko
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, acad. Lavrentiev ave., 10, 630090 Novosibirsk, Russia; (N.A.A.); (V.A.I.); (N.V.I.)
| | - Evgeniy V. Gaisler
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia; (E.V.G.); (O.S.O.); (S.V.C.); (A.G.P.)
| | - Olga S. Oleshko
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia; (E.V.G.); (O.S.O.); (S.V.C.); (A.G.P.)
| | - Sergey V. Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia; (E.V.G.); (O.S.O.); (S.V.C.); (A.G.P.)
| | - Sergey V. Mishinov
- FSBI “Novosibirsk Research Institute of Traumatology and Orthopedics Named after Ya. L. Tsiviyan”, Frunze str., 17, 630091 Novosibirsk, Russia; (S.V.M.); (V.V.S.)
| | - Vyacheslav V. Stupak
- FSBI “Novosibirsk Research Institute of Traumatology and Orthopedics Named after Ya. L. Tsiviyan”, Frunze str., 17, 630091 Novosibirsk, Russia; (S.V.M.); (V.V.S.)
| | - Andrey G. Pokrovsky
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia; (E.V.G.); (O.S.O.); (S.V.C.); (A.G.P.)
| |
Collapse
|
57
|
Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H. Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. J Cell Mol Med 2021; 25:3963-3975. [PMID: 33621408 PMCID: PMC8051714 DOI: 10.1111/jcmm.16349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Abnormal lipid metabolism is the sign of tumour cells. Previous researches have revealed that the lipolytic pathway may contribute to the progression of colorectal cancer (CRC). However, adipose triglyceride lipase (ATGL) role in CRC cells remains unclear. Here, we find that elevated ATGL positively correlates with CRC clinical stages and negatively associates with overall survival. Overexpression of ATGL significantly promotes CRC cell proliferation, while knockdown of ATGL inhibits the proliferation and promotes the apoptosis of CRC cells in vitro. Moreover, in vivo experiments, ATGL promotes the growth of CRC cells. Mechanistically, ATGL enhances the carcinogenic function of CRC cells via promoting sphingolipid metabolism and CoA biosynthesis pathway‐related gene levels by degrading triglycerides, which provides adequate nutrition for the progression of CRC. Our researches clarify for the first time that ATGL is a novel oncogene in CRC and may provide an important prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wentao Li
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Laiming Mo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaotuan Deng
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weijia Lin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Caiqi Ma
- Reproductive Medical Center, Guangzhou Women and Children's Medical Center of Sun Yat-sen University, Guangzhou, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chuanghua Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
58
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
59
|
Balanophorin B inhibited glycolysis with the involvement of HIF-1α. Life Sci 2020; 267:118910. [PMID: 33359671 DOI: 10.1016/j.lfs.2020.118910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cancer cells exhibit a metabolic change called aerobic glycolysis compared with normal cells. Balanophorin B is a terpenoid ingredient reported from the genus Balanophora. In this research, we studied the effect of balanophorin B on glycolysis of HepG2 cells and Huh-7 cells under hypoxia. MAIN METHODS The Warburg effect was monitored by assessing glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Key enzymes in the glycolytic pathway and HIF-1α protein expression and degradation were analyzed by real-time PCR and western blotting. The anti-cancer effect of balanophorin B in vivo was also investigated. KEY FINDINGS Balanophorin B inhibited the proliferation, glucose uptake, and ECAR in both HepG2 cells and Huh-7 cells. In addition, balanophorin B inhibited the protein level of HIF-1α and its downstream targets LDHA and HKII under hypoxia, whereas HIF-1α mRNA level did not change after balanophorin B treatment. The HIF-1α plasmid reversed the inhibition of balanophorin B on glycolysis, and the proteasome inhibitor MG132 attenuated the effect of balanophorin B on HIF-1α protein expression, suggesting that balanophorin B might post-transcriptionally affect HIF-1α. Moreover, balanophorin B increased the expression of VHL and PHD2. HIF-1α siRNA also greatly attenuated the inhibitory effect of balanophorin B on HepG2 cells glucose uptake. Balanophorin B significantly inhibited tumor growth in vivo, without causing obvious toxicity to mice. SIGNIFICANCE These data suggest that balanophorin B inhibits glycolysis probably via an HIF-1α-dependent pathway, and the ubiquitin-proteasome pathway was greatly involved in the induction of balanophorin B on HIF-1α degradation.
Collapse
|
60
|
De Castro F, Vergaro V, Benedetti M, Baldassarre F, Del Coco L, Dell'Anna MM, Mastrorilli P, Fanizzi FP, Ciccarella G. Visible Light-Activated Water-Soluble Platicur Nanocolloids: Photocytotoxicity and Metabolomics Studies in Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:6836-6851. [PMID: 35019346 DOI: 10.1021/acsabm.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based drug delivery systems for cancer therapy offer a great promising opportunity as they specifically target cancer cells, also increasing the bioavailability of anticancer drugs characterized by low water solubility. Platicur, [Pt(cur) (NH3)2](NO3), is a cis-diamine-platinum(II) complex linked to curcumin. In this work, an ultrasonication method, coupled with layer by layer technology, allows us to obtain highly aqueous stable Platicur nanocolloids of about 100 nm. The visible light-activated Platicur nanocolloids showed an increased drug release and antitumor activity on HeLa cells, with respect to Platicur nanocolloids in darkness. This occurrence could give very interesting insight into selective activation of the nanodelivered Pt(II) complex and possible side-effect lowering. For the first time, the metabolic effects of Platicur nanocolloid photoactivation, in the HeLa cell line, have been investigated using an NMR-based metabolomics approach coupled with statistical multivariate data analysis. The reported results highlight specific metabolic differences between photoactivated and non-photoactivated Platicur NC-treated HeLa cancer cells.
Collapse
Affiliation(s)
- Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | | | | | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
61
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:E2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
62
|
Chevalier RL. Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD. KIDNEY360 2020; 1:863-879. [PMID: 35372951 PMCID: PMC8815749 DOI: 10.34067/kid.0002012020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 05/24/2023]
Abstract
There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.
Collapse
|
63
|
Ilimaquinone Induces the Apoptotic Cell Death of Cancer Cells by Reducing Pyruvate Dehydrogenase Kinase 1 Activity. Int J Mol Sci 2020; 21:ijms21176021. [PMID: 32825675 PMCID: PMC7504051 DOI: 10.3390/ijms21176021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity.
Collapse
|
64
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
65
|
Zhu J, Li P, Zhou YG, Ye J. Altered Energy Metabolism During Early Optic Nerve Crush Injury: Implications of Warburg-Like Aerobic Glycolysis in Facilitating Retinal Ganglion Cell Survival. Neurosci Bull 2020; 36:761-777. [PMID: 32277382 PMCID: PMC7340706 DOI: 10.1007/s12264-020-00490-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Neurons, especially axons, are metabolically demanding and energetically vulnerable during injury. However, the exact energy budget alterations that occur early after axon injury and the effects of these changes on neuronal survival remain unknown. Using a classic mouse model of optic nerve-crush injury, we found that traumatized optic nerves and retinas harbor the potential to mobilize two primary energetic machineries, glycolysis and oxidative phosphorylation, to satisfy the robustly increased adenosine triphosphate (ATP) demand. Further exploration of metabolic activation showed that mitochondrial oxidative phosphorylation was amplified over other pathways, which may lead to decreased retinal ganglion cell (RGC) survival despite its supplement to ATP production. Gene set enrichment analysis of a microarray (GSE32309) identified significant activation of oxidative phosphorylation in injured retinas from wild-type mice compared to those from mice with deletion of phosphatase and tensin homolog (PTEN), while PTEN-/- mice had more robust RGC survival. Therefore, we speculated that the oxidation-favoring metabolic pattern after optic nerve-crush injury could be adverse for RGC survival. After redirecting metabolic flux toward glycolysis (magnifying the Warburg effect) using the drug meclizine, we successfully increased RGC survival. Thus, we provide novel insights into a potential bioenergetics-based strategy for neuroprotection.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Ophthalmology, Army Medical Center of the People's Liberation Army (PLA), Army Medical University, Chongqing, 400042, China
| | - Ping Li
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Army Medical Center of the PLA, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Army Medical Center of the PLA, Army Medical University, Chongqing, 400042, China.
| | - Jian Ye
- Department of Ophthalmology, Army Medical Center of the People's Liberation Army (PLA), Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
66
|
Abad E, Samino S, Yanes O, Potesil D, Zdrahal Z, Lyakhovich A. Activation of glycogenolysis and glycolysis in breast cancer stem cell models. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165886. [PMID: 32592934 DOI: 10.1016/j.bbadis.2020.165886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/06/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - David Potesil
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035 Barcelona, Spain..
| |
Collapse
|
67
|
Tang C, Li S, Zhang K, Li J, Han Y, Zhan T, Zhao Q, Guo X, Zhang J. Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox Biol 2020; 36:101519. [PMID: 32531544 PMCID: PMC7287308 DOI: 10.1016/j.redox.2020.101519] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) intake disequilibrium is associated with many human diseases (e.g., Keshan disease and type 2 diabetes). To understand the mechanism of Se deficiency-induced hepatic pathogenesis, a pure line pig model was established by feeding a diet with either 0.07 mg/kg Se or 0.3 mg/kg Se for 16 weeks. The hepatic metabolome, lipidome, global proteome, and whole transcriptome were analyzed. Se deficiency causes a redox imbalance via regulation of selenoproteins at both the mRNA and protein level, and blocks the glutathione anti-oxidant system along with enhanced glutathione synthesis and catabolism. The Warburg effect was observed by enhanced activation of the glycolysis and phosphate pentose pathways. The tricarboxylic acid cycle was dysfunctional since the preliminary metabolites decreased and shifted from using glycolysis origin substrates to a glutamine catabolism-preferred metabolic mode. The reprogrammed central carbon metabolism induced widely restrained lipid synthesis. In addition, a Se deficiency initiated inflammation by activating the NF-κB pathway through multiple mechanisms. These results identified the potential metabolic vulnerability of the liver in response to a Se deficiency-induced redox imbalance and possible therapeutic or intervention targets.
Collapse
Affiliation(s)
- Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tengfei Zhan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
68
|
Abstract
Nearly 100 years ago, Otto Warburg undertook a study of tumor metabolism, and discovered increased lactate caused by increased glycolysis in cancer cells. His experiments were conducted in the presence of excess oxygen, but today tumor tissue is known to be a hypoxic environment. However, an increase of glycolysis and lactate production is still a valid observation. Numerous abnormalities and mutations of metabolic enzymes have been found in many cancers. For example, pyruvate kinase M2 has been associated with many cancers and is a major contributor to directing glycolysis into fermentation, forming lactate. Increases in several enzymes, including glucose 6-phosphate dehydrogenase, pyruvate kinase M2, Rad6, or deficiency of other enzymes such as succinate dehydrogenase, all may contribute directly or indirectly to increases in lactate associated with the Warburg effect. In addition, the increased lactate and acid-base changes are modified further by monocarboxylate transporters and carbonic anhydrase, which contribute to alkalinizing tumor cells while acidifying the tumor extracellular environment. This acidification leads to cancer spread. Fully understanding the mechanisms underlying the Warburg effect should provide new approaches to cancer treatment.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Research Division, Joslin Diabetes Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA.
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA; Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
69
|
Mansour MA, Ibrahim WM, Salama MM, Salama AF. Dual inhibition of glycolysis and autophagy as a therapeutic strategy in the treatment of Ehrlich ascites carcinoma. J Biochem Mol Toxicol 2020; 34:e22498. [PMID: 32198814 DOI: 10.1002/jbt.22498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023]
Abstract
Cancer cells have extra biosynthetic demands to sustain cell growth and redox homeostasis. Glycolysis and autophagy are crucial to fuel and recycle these biosynthetic demands. This plasticity of cancer cell metabolism participates in therapy resistances. The current study was designed to assess the therapeutic efficacy of dual targeting of glycolysis and autophagy in cancer. Using 3-bromopyruvate (3-BP; antiglycolytic inhibitor) and hydroxychloroquine (HCQ; autophagy inhibitor), we demonstrate their antitumor activity in Ehrlich ascites carcinoma (EAC)-bearing mice. A combination of 3-BP and HCQ significantly decreases tumor ascitic volume and cell count as compared with the EAC group and individual treatment groups. The enhanced antitumor activity is accompanied by hexokinase inactivation, inhibition of cellular protective autophagy, elevated antioxidant activity, and reduced oxidative stress levels. Together, these results suggest targeting both pathways in cancer as an effective therapeutic strategy. Further studies are required to validate this strategy in different cancer models and preclinical trials.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.,Life Sciences Building 85, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Wafaa M Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Mona M Salama
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afrah F Salama
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
70
|
Gaál Z, Csernoch L. Impact of Sirtuin Enzymes on the Altered Metabolic Phenotype of Malignantly Transformed Cells. Front Oncol 2020; 10:45. [PMID: 32117717 PMCID: PMC7033489 DOI: 10.3389/fonc.2020.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuins compose a unique collection of histone deacetylase enzymes that have a wide variety of enzymatic activities and regulate diverse cell functions such as cellular metabolism, longevity and energy homeostasis, mitochondrial function, and biogenesis. Impaired sirtuin functions or alterations of their expression levels may result in several pathological conditions and contribute to the altered metabolic phenotype of malignantly transformed cells in a significant manner. In the twenty-first century, principles of personalized anticancer treatment need to involve not only the evaluation of changes of the genetic material, but also the mapping of epigenetic and metabolic alterations, to both of which the contribution of sirtuin enzymes is fundamental. Since sirtuins are central players in the maintenance of cellular energy and metabolic homeostasis, they are key elements in the development of metabolic transformation of cancer cells referred to as the Warburg effect. Although its most well-known features are enhanced glycolysis and excessive lactate production, Warburg effect has several aspects involving both carbohydrate, lipid, and amino acid metabolism, among which different tumor types have different preferences. Therefore, energy supply of cancer cells can be impaired by a growing number of antimetabolite agents, for which appropriate vectors are strongly needed. However, data are controversial about their tumor suppressor or oncogenic properties, the biological effects of sirtuin enzymes strongly depend on the tissue microenvironment (TME) in which they are expressed. Immune cells are regarded as key players of TME. Sirtuins regulate the survival, activation, metabolism, and mitochondrial function of these cells, therefore, they are not only single elements, but key regulators of the network that determines anticancer immunity. Altered metabolism of tumor cells induces changes in the gene expression pattern of cells in TME, due to altered concentrations of metabolite cofactors of epigenetic modifiers including sirtuins. In summary, epigenetic and metabolic alterations in malignant diseases are influenced by sirtuins in a significant manner, and should be treated in a personalized approach. Since they often develop in early stages of cancer, broad examination of these alterations is required at time of the diagnosis in order to provide a personalized combination of distinct therapeutic agents.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Institute-Clinic of Pediatrics, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
71
|
Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci 2020; 21:ijms21031102. [PMID: 32046099 PMCID: PMC7037308 DOI: 10.3390/ijms21031102] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Here, we focus on the role of MAPK pathways in modulating drug sensitivity and resistance in cancer. We briefly discuss new findings in the extracellular signaling-regulated kinase (ERK) pathway, but mainly focus on the mechanisms how stress activated MAPK pathways, such as p38 MAPK and the Jun N-terminal kinases (JNK), impact the response of cancer cells to chemotherapies and targeted therapies. In this context, we also discuss the role of metabolic and epigenetic aberrations and new therapeutic opportunities arising from these changes.
Collapse
|
72
|
Gao H, Liang D, Li C, Xu G, Jiang M, Li H, Yin J, Song Y. 2-Deoxy-Rh2: A novel ginsenoside derivative, as dual-targeting anti-cancer agent via regulating apoptosis and glycolysis. Biomed Pharmacother 2020; 124:109891. [PMID: 31991384 DOI: 10.1016/j.biopha.2020.109891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
20(S)-Rh2 is a ginsenoside isolated from Panax ginseng, which exhibits anti-cancer activities on various human cancer cells. A novel 20(S)-Rh2 derivative, 2-Deoxy-Rh2 was synthesized and hybridized with protopanaxadiol and 2-deoxy-glucose in an attempt to enhance the anticancer activity. Through screening the antitumor effect against various cell lines by MTT assay, 2-Deoxy-Rh2 especially resulted in a concentration-dependent and time-dependent inhibition of viability in MCF-7 human breast cancer cells. Multiple methods were used to explore the cellular and molecular mechanisms of 2-Deoxy-Rh2 as a potent anti-cancer agent. In MCF-7 cells, 2-Deoxy-Rh2 triggered apoptosis, stimulated ROS production and disrupted normal mitochondrial membrane potential. Meantime, 2-Deoxy-Rh2 eff ;ectively suppressed the glucose uptake capabilities and intracellular ATP production. The cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were significantly decreased in response to 2-Deoxy-Rh2, which were carried out to assess the overall glycolytic flux and mitochondrial respiration. Docking studies and molecular dynamics simulations were performed to verify the binding mode of 2-DG and 2-Deoxy-Rh2 with hexokinase II, with results showing that 2-Deoxy-Rh2 could easily fit into the similar active site of 2-DG, finally binding to hexokinase II to suppress glycolysis. Taken together, the results suggest that 2-Deoxy-Rh2 exhibited remarkable anticancer activity based on regulating mitochondrial apoptosis pathway, dampening glycolysis and inhibiting mitochondrial respiration, which support development of 2-Deoxy-Rh2 as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China; School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Di Liang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Chenchen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Mengnan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Heng Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Jianyuan Yin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
73
|
Tran Q, Lee H, Kim C, Kong G, Gong N, Kwon SH, Park J, Kim SH, Park J. Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8105735. [PMID: 32802877 PMCID: PMC7426758 DOI: 10.1155/2020/8105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
It is widely acknowledged that cancer cell energy metabolism relies mainly on anaerobic glycolysis; this phenomenon is described as the Warburg effect. However, whether the Warburg effect is caused by genetic dysregulation in cancer or is the cause of cancer remains unknown. The exact reasons and physiology of this abnormal metabolism are unclear; therefore, many researchers have attempted to reduce malignant cell growth in tumors in preclinical and clinical studies. Anticancer strategies based on the Warburg effect have involved the use of drug compounds and dietary changes. We recently reviewed applications of the Warburg effect to understand the benefits of this unusual cancer-related metabolism. In the current article, we summarize diet strategies for cancer treatment based on the Warburg effect.
Collapse
Affiliation(s)
- Quangdon Tran
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyunji Lee
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeyeong Kim
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gyeyeong Kong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Nayoung Gong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- 3College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisoo Park
- 4Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon 34520, Republic of Korea
| | - Seon-Hwan Kim
- 5Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jongsun Park
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
74
|
Huang T, Zhou X, Mao X, Yu C, Zhang Z, Yang J, Zhang Y, Su T, Chen C, Cao Y, Wei H, Wu Z. Lactate-fueled oxidative metabolism drives DNA methyltransferase 1-mediated transcriptional co-activator with PDZ binding domain protein activation. Cancer Sci 2019; 111:186-199. [PMID: 31746077 PMCID: PMC6942427 DOI: 10.1111/cas.14246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Activity of transcriptional co‐activator with PDZ binding domain (TAZ) protein is strongly implicated in the pathogenesis of human cancer and is influenced by tumor metabolism. High levels of lactate concentration in the tumor microenvironment as a result of metabolic reprogramming are inversely correlated with patient overall survival. Herein, we investigated the role of lactate in the regulation of the activity of TAZ and showed that glycolysis‐derived lactate efficiently increased TAZ expression and activity in lung cancer cells. We showed that the reactive oxygen species (ROS) generated by lactate‐fueled oxidative phosphorylation (OXPHOS) in mitochondria activated AKT and thereby inhibited glycogen synthase kinase 3 beta/beta‐transducin repeat‐containing proteins (GSK‐3β/β‐TrCP)‐mediated ubiquitination and degradation of DNA methyltransferase 1 (DNMT1). Upregulation of DNMT1 by lactate caused hypermethylation of TAZ negative regulator of the LATS2 gene promoter, leading to TAZ activation. Moreover, TAZ binds to the promoter of DNMT1 and is necessary for DNMT1 transcription. Our study showed a molecular mechanism of DNMT1 in linking tumor metabolic reprogramming to the Hippo‐TAZ pathway and functional significance of the DNMT1‐TAZ feedback loop in the migratory and invasive potential of lung cancer cells.
Collapse
Affiliation(s)
- Tao Huang
- School of Clinical Medicine, Wannan Medical College, Wuhu, China.,Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Xinglu Zhou
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Laboratory Medicine, Wannan Medical College, Wuhu, China
| | - Xike Mao
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Anesthesiology, Wannan Medical College, Wuhu, China
| | - Chenxi Yu
- School of Clinical Medicine, Wannan Medical College, Wuhu, China.,Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Zhijian Zhang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Jianke Yang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Tianyu Su
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Chenchen Chen
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yuxiang Cao
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,School of Laboratory Medicine, Wannan Medical College, Wuhu, China
| | - Huijun Wei
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
75
|
Riera Leal A, Ortiz-Lazareno PC, Jave-Suárez LF, Ramírez De Arellano A, Aguilar-Lemarroy A, Ortiz-García YM, Barrón-Gallardo CA, Solís-Martínez R, Luquin De Anda S, Muñoz-Valle JF, Pereira-Suárez AL. 17β‑estradiol‑induced mitochondrial dysfunction and Warburg effect in cervical cancer cells allow cell survival under metabolic stress. Int J Oncol 2019; 56:33-46. [PMID: 31746421 PMCID: PMC6910176 DOI: 10.3892/ijo.2019.4912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria from different types of cancer show bioenergetics and dysfunction that favor cell proliferation. The mechanistic understanding of estrogen in cervical cancer is poorly understood. Therefore, the objective of this study was to determine how 17β-estradiol (E2) affects mitochondrial function and the Warburg effect in SiHa, HeLa and C33A cervical cancer cells. Mitochondrial compromise was evaluated measuring changes in the membrane permeability by immunofluorescence, calcium concentration, redox status, iron and ferritin reserves. Glucose consumption and lactic acid assays were used to detect the metabolic activity. Results were confirmed at molecular level by analysis of the differential gene expression using RNA sequencing. E2 modified the mitochondrial permeability and produced an alteration in the calcium signaling pathway. In HeLa and SiHa, there was a significant decrease in nitric oxide levels and lipid peroxidation, and an increase in glucose consumption and lactic acid levels when stimulated with E2. Intracellular iron or ferritin reserves were not affected by the E2 treatment. Genes differentially modulated by E2 were involved in the mitochondrial electron transport chain, oxidative phosphorylation system, glycolysis, pentose phosphate pathway and the regulation of metabolic signaling pathways. Herein, we provide evidence for a primary effect of estrogen on mitochondrial function and the Warburg effect, favoring the metabolic adaptation of the cervical cancer cell lines and their survival.
Collapse
Affiliation(s)
- Annie Riera Leal
- Laboratory of Immunology, Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Pablo César Ortiz-Lazareno
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Adrián Ramírez De Arellano
- Research Institute in Biomedical Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Yveth Marlene Ortiz-García
- Laboratory of Immunology, Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Carlos Alfredo Barrón-Gallardo
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Raúl Solís-Martínez
- Diagnostic Laboratory, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Sonia Luquin De Anda
- Department of Neurosciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - José Francisco Muñoz-Valle
- Research Institute in Biomedical Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Laura Pereira-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
76
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
77
|
Cao Y, Wang X, Li Y, Evers M, Zhang H, Chen X. Extracellular and macropinocytosis internalized ATP work together to induce epithelial-mesenchymal transition and other early metastatic activities in lung cancer. Cancer Cell Int 2019; 19:254. [PMID: 31582910 PMCID: PMC6771108 DOI: 10.1186/s12935-019-0973-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Background Extracellular ATP (eATP) was shown to induce epithelial-mesenchymal transition (EMT), a very important early process in metastasis, in cancer cells via purinergic receptor signaling. However, the exact induction mechanisms are far from fully known. We previously described that eATP is internalized by cancer cells in vitro and in vivo by macropinocytosis in human non-small cell lung cancer A549 and other cancer cells, drastically elevates intracellular ATP levels, enhances cell proliferation and resistance to anticancer drugs. In this study, we tested the hypothesis that eATP and macropinocytosis-internalized eATP also induces EMT and other early steps of metastasis. Methods Floating cells, fencing, and transwell assays were used to show that ATP induces cell detachment, new colony formation, migration and invasion in human A549 and other lung cancer cells. Western blots were used to detect ATP-induced changes in EMT-related proteins; Confocal microscopy was used to demonstrate ATP-induced metastasis-related cell morphological changes. Inhibitors and siRNA knockdowns were used to determine P2X7's involvement in the ATP-induced EMT. CRISPR-Cas9 knockout of the SNX5 gene was used to identify macropinocytosis' roles in EMT and cancer cell growth both in vitro and in vivo. Student t-test and one-way ANOVA were used to determine statistical significance, P < 0.05 was considered significant. Results eATP potently induces expression of matrix metallopeptidases (MMPs), and detachment, EMT, migration, and invasion of lung cancer cells. The induction was independent of TGF-β and semi-independent of P2X7 activation. eATP performs these functions not only extracellularly, but also intracellularly after being macropinocytically internalized to further enhance P2X7-mediated EMT, filopodia formation and other early steps of metastasis. The knockout of macropinocytosis-associated SNX5 gene significantly reduces macropinocytosis, slows down tumor growth, and changes tumor morphology in nude mice. Conclusions Collectively, these results show that eATP's functions in these processes not only from outside of cancer cells but also inside after being macropinocytotically internalized. These findings shed light on eATP's initiator and effector roles in almost every step in early metastasis, which calls for rethinking and rebalancing energy equations of intracellular biochemical reactions and the Warburg effect, and identifies eATP and macropinocytosis as novel targets for potentially slowing down EMT and preventing metastasis.
Collapse
Affiliation(s)
- Yanyang Cao
- 1Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,2Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701 USA.,3The Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Xuan Wang
- 1Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,2Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701 USA.,3The Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Yunsheng Li
- 3The Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Maria Evers
- 1Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,4Honors Tutorial College, Ohio University, Athens, OH 45701 USA
| | - Haiyun Zhang
- 1Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,2Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701 USA.,3The Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Xiaozhuo Chen
- 1Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,2Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701 USA.,3The Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA.,5Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 USA.,6Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
78
|
Zhan W, Liao X, Li L, Chen Z, Tian T, Yu L, Chen Z. In vitro mitochondrial-targeted antioxidant peptide induces apoptosis in cancer cells. Onco Targets Ther 2019; 12:7297-7306. [PMID: 31686844 PMCID: PMC6738130 DOI: 10.2147/ott.s207640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Reactive oxygen species (ROS) are major contributors to cancer and involved in numerous tumor proliferation signaling pathways. Mitochondria are the major ROS-producing organelles, and ROS are produced from the synthesis of adenosine triphosphate and cell metabolism. Methods A novel mitochondria-targeted peptide, namely KRSH, was synthesized and characterized. KRSH consists of four amino acids; lysine and arginine contain positively charged groups that help KRSH target the mitochondria, while tyrosine and cysteine neutralize excessive endogenous ROS, thereby inhibiting tumorigenesis. Results The results indicated that KRSH is specifically inhibiting the growth of HeLa and MCF-7 cancer cell lines. However, MCF10A cells can resist the effects of KRSH even in a relative higher concentration. The dichloro-dihydro-fluorescein diacetate and MitoSOXTM Red assay suggested that KRSH drastically decreased the level of ROS in cancer cells. The mitochondrial depolarization assay indicated that treatment with KRSH at a dose of 50 nM may decrease the mitochondrial membrane potential leading to apoptosis of HeLa and MCF-7 cells. Conclusion In other studies, investigating rat liver mitochondria, the uptake of KRSH may reach 80% compared with that for mitoquinone. Therefore, KRSH was designed as a superior peptide antioxidant and a mitochondria-targeting anticancer agent.
Collapse
Affiliation(s)
- Wei Zhan
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Xin Liao
- Department of Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Lianghe Li
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Zhongsheng Chen
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Tian Tian
- Department of Pathophysiology, Basic Medical College, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang 550004, People's Republic of China
| | - Zupeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, People's Republic of China
| |
Collapse
|
79
|
Yang LN, Ning ZY, Wang L, Yan X, Meng ZQ. HSF2 regulates aerobic glycolysis by suppression of FBP1 in hepatocellular carcinoma. Am J Cancer Res 2019; 9:1607-1621. [PMID: 31497345 PMCID: PMC6726997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023] Open
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. Recent years have witnessed the progress in uncovering the importance of HSFs in cancer cell oncogenesis, progression and metastasis. However, their roles in hepatocellular carcinoma (HCC) proliferation and the underlying mechanism have seldom been discussed. The present study aims to uncover the two important HSFs members HSF1 and HSF2 in hepatocellular carcinoma (HCC). By using the Cancer Genome Atlas (TCGA) dataset analysis, we investigated the prognosis value of HSF1 and HSF2 in HCC and identified HSF2 as a prediction factor of overall survival of HCC. In vitro cell line studies demonstrated that silencing HSF2 expression could decrease the proliferation in HCC cells. In depth mechanism analysis demonstrated that HSF2 promoted cell proliferation via positive regulation of aerobic glycolysis, and HSF2 interacted with euchromatic histone lysine methyltransferase 2 (EHMT2) to epigenetically silence fructose-bisphosphatase 1 (FBP1), which is a tumor suppressor and negative regulator of aerobic glycolysis in HCC. HSF2 expression indicated unfavorable prognosis of HCC patients and it could regulate aerobic glycolysis by suppression of FBP1 to support uncontrolled proliferation of HCC cells.
Collapse
Affiliation(s)
- Li-Na Yang
- Cancer Institute, Fudan University Shanghai Cancer CenterShanghai, China
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
| | - Zhou-Yu Ning
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Lai Wang
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Xia Yan
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Zhi-Qiang Meng
- Deparment of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
80
|
MYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7346492. [PMID: 31341534 PMCID: PMC6614970 DOI: 10.1155/2019/7346492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
Chemoresistance is due to multiple factors including the induction of a metabolic adaptation of tumor cells. In fact, in these cells, stress conditions induced by therapies stimulate a metabolic reprogramming which involves the strengthening of various pathways such as glycolysis, glutaminolysis and the pentose phosphate pathway. This metabolic reprogramming is the result of a complex network of mechanisms that, through the activation of oncogenes (i.e., MYC, HIF1, and PI3K) or the downregulation of tumor suppressors (i.e., TP53), induces an increased expression of glucose and/or glutamine transporters and of glycolytic enzymes. Therefore, in order to overcome chemoresistance, it is necessary to develop combined therapies which are able to selectively and simultaneously act on the multiple molecular targets responsible for this adaptation. This review is focused on highlighting the role of MYC in modulating the epigenetic redox changes which are crucial in the acquisition of therapy resistance.
Collapse
|
81
|
Abstract
Cancer is the second leading cause of death in the US. Current major treatments for cancer management include surgery, cytotoxic chemotherapy, targeted therapy, radiation therapy, endocrine therapy and immunotherapy. Despite the endeavors and achievements made in treating cancers during the past decades, resistance to classical chemotherapeutic agents and/or novel targeted drugs continues to be a major problem in cancer therapies. Drug resistance, either existing before treatment (intrinsic) or generated after therapy (acquired), is responsible for most relapses of cancer, one of the major causes of death of the disease. Heterogeneity among patients and tumors, and the versatility of cancer to circumvent therapies make drug resistance more challenging to deal with. Better understanding the mechanisms of drug resistance is required to provide guidance to future cancer treatment and achieve better outcomes. In this review, intrinsic and acquired resistance will be discussed. In addition, new discoveries in mechanisms of drug resistance will be reviewed. Particularly, we will highlight roles of ATP in drug resistance by discussing recent findings of exceptionally high levels of intratumoral extracellular ATP as well as intracellular ATP internalized from extracellular environment. The complexity of drug resistance development suggests that combinational and personalized therapies, which should take ATP into consideration, might provide better strategies and improved efficacy for fighting drug resistance in cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Haiyun Zhang
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
82
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
83
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|
84
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
85
|
Kashyap D, Tuli HS, Sak K, Garg VK, Goel N, Punia S, Chaudhary A. Role of Reactive Oxygen Species in Cancer Progression. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00171-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
86
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
87
|
Wu QQ, Zheng B, Weng GB, Yang HM, Ren Y, Weng XJ, Zhang SW, Zhu WZ. Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer. J Cell Biochem 2019; 120:10215-10227. [PMID: 30637800 DOI: 10.1002/jcb.28306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Prostate cancer is the second highest caused by cancer-related death among males. microRNAs (miRs) have been reported to participate in carcinogenesis, yet their roles in prostate cancer are rarely studied or investigated. Therefore, the present study attempted to explore the effect of miR-137 in prostate cancer via regulating NADPH oxidase 4 (NOX4). Initially, microarray analysis was performed to obtain prostate cancer-related differentially expressed genes and miRs that regulated NOX4, followed by detecting the expression of miR-137 and NOX4 and its target relationship. Moreover, PC-3 cells were transfected with small interfering RNA (siNOX4) and miR-137 mimic for exploring the effect of miR-137 on glycolysis, cell proliferation, and apoptosis in prostate cancer by evaluating lactate production, glucose uptake, adenosine triphosphate (ATP) production, viability rate, and expression of cleaved caspases 3, 8, and 9, cytochrome c, cleaved poly ADP ribose polymerase (PARP), Bax, and Bcl-2. miR-137 was vital to prostate cancer progression via regulating NOX4. Besides, miR-137 expressed poorly while NOX4 expressed highly in prostate cancer. NOX4 was the target gene of miR-137. Additionally, overexpression of miR-137 and silencing of NOX4 were observed to decrease NOX4 and Bcl-2 protein expression, but increase cleaved caspases 3, 8, and 9, cytochrome c, cleaved-PARP, and Bax protein expression. Furthermore, miR-137 overexpression and NOX4 silencing contributed to decreased lactate production, glucose uptake, ATP production, and cell proliferation, but increased apoptosis rate. Collectively, the present study showed that miR-137 repressed glycolysis in prostate cancer through knockdown of NOX4, which might be a potential theoretical target for prostate cancer treatment.
Collapse
Affiliation(s)
- Qi-Quan Wu
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Bin Zheng
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Guo-Bin Weng
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Hou-Meng Yang
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Yu Ren
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Xi-Jun Weng
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Shu-Wei Zhang
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| | - Wei-Zhi Zhu
- Department of Urology Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, People's Republic of China
| |
Collapse
|
88
|
Zhu Y, Dong M, Yang J, Zhang J. Evaluation of Iodine-125 Interstitial Brachytherapy Using Micro-Positron Emission Tomography/Computed Tomography with 18F-Fluorodeoxyglucose in Hepatocellular Carcinoma HepG2 Xenografts. Med Sci Monit 2019; 25:371-380. [PMID: 30636171 PMCID: PMC6339452 DOI: 10.12659/msm.912590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Iodine-125 interstitial brachytherapy (125I-IBT) is a promising treatment option for unresectable hepatocellular carcinoma (HCC). This study evaluated the usefulness of micro-positron emission tomography/computed tomography (micro-PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) in assessing response to 125I-IBT in HCC HepG2 xenograft. MATERIAL AND METHODS Twelve mice with bilateral HepG2 xenografts were divided into 3 equal groups implanted with iodine-125 seeds into the left xenografts with a dose of 30, 50, and 80 Gy, respectively, and the right xenografts were used as internal controls. Before and 28 days after treatment, the 18F-FDG micro-PET/CT was performed. The ratios of left to right xenografts of tumor volume (RTV), maximum standardized uptake value (RSUVmax), mean optical density of caspase-3 expression (RMODcaspase-3), and apoptosis index (RAI) were compared. RESULTS The RTV means of the 50 and 80 Gy groups were significantly lower than in the 30 Gy group after treatment (P<0.01) and the RTV means after treatment were lower than baseline in the 50 and 80 Gy groups (P<0.05). The RSUVmax mean after treatment was lower than baseline in the 80 Gy group (P<0.05). The RMODCaspase-3 and RAI means of the 80 Gy group were higher than in the 30 Gy group (P<0.05). The RSUVmax was correlated negatively to RMODcaspase-3 (r=-0.624, P<0.05) and RAI (r=-0.651, P<0.05). CONCLUSIONS This study suggest that 125I-IBT inhibits tumor growth via upregulating caspase-3 expression and prompting apoptosis in HCC HepG2 xenografts. The 18F-FDG micro-PET/CT may be a useful functional imaging modality to assess early response to 125I-IBT in HCC HepG2 xenograft.
Collapse
Affiliation(s)
- Yangjun Zhu
- Department of Ultrasonography, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Mengjie Dong
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
89
|
A Rise in ATP, ROS, and Mitochondrial Content upon Glucose Withdrawal Correlates with a Dysregulated Mitochondria Turnover Mediated by the Activation of the Protein Deacetylase SIRT1. Cells 2018; 8:cells8010011. [PMID: 30591661 PMCID: PMC6356350 DOI: 10.3390/cells8010011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022] Open
Abstract
Glucose withdrawal has been used as a model for the study of homeostatic defense mechanisms, especially for how cells cope with a shortage of nutrient supply by enhancing catabolism. However, detailed cellular responses to glucose withdrawal have been poorly studied, and are controversial. In this study, we determined how glucose withdrawal affects mitochondrial activity, and the quantity and the role of SIRT1 in these changes. The results of our study indicate a substantial increase in ATP production from mitochondria, through an elevation of mitochondrial biogenesis, mediated by SIRT1 activation that is driven by increased NAD⁺/NADH ratio. Moreover, mitochondria persisted in the cells as elongated forms, and apparently evaded mitophagic removal. This led to a steady increase in mitochondria content and the reactive oxygen species (ROS) generated from them, indicating failure in ATP and ROS homeostasis, due to a misbalance in SIRT1-mediated mitochondria turnover in conditions of glucose withdrawal. Our results suggest that SIRT1 activation alone cannot properly manage energy homeostasis under certain metabolic crisis conditions.
Collapse
|
90
|
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol 2018; 8:622. [PMID: 30631755 PMCID: PMC6315198 DOI: 10.3389/fonc.2018.00622] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have a unique energy metabolism for sustaining rapid proliferation. The preference for anaerobic glycolysis under normal oxygen conditions is a unique trait of cancer metabolism and is designated as the Warburg effect. Enhanced glycolysis also supports the generation of nucleotides, amino acids, lipids, and folic acid as the building blocks for cancer cell division. Nicotinamide adenine dinucleotide (NAD) is a co-enzyme that mediates redox reactions in a number of metabolic pathways, including glycolysis. Increased NAD levels enhance glycolysis and fuel cancer cells. In fact, nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis in mammalian cells, is frequently amplified in several cancer cells. In addition, Nampt-specific inhibitors significantly deplete NAD levels and subsequently suppress cancer cell proliferation through inhibition of energy production pathways, such as glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. NAD also serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD gylycohydrolase (CD38 and CD157); thus, NAD regulates DNA repair, gene expression, and stress response through these enzymes. Thus, NAD metabolism is implicated in cancer pathogenesis beyond energy metabolism and considered a promising therapeutic target for cancer treatment. In this review, we present recent findings with respect to NAD metabolism and cancer pathogenesis. We also discuss the current and future perspectives regarding the therapeutics that target NAD metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
91
|
Figarola JL, Singhal J, Singhal S, Kusari J, Riggs A. Bioenergetic modulation with the mitochondria uncouplers SR4 and niclosamide prevents proliferation and growth of treatment-naïve and vemurafenib-resistant melanomas. Oncotarget 2018; 9:36945-36965. [PMID: 30651927 PMCID: PMC6319337 DOI: 10.18632/oncotarget.26421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
BRAF mutations are detected in >50% of all melanomas. These mutations impair the LKB1-AMPK signaling, an important metabolic pathway associated with cell growth, proliferation and survival. Melanoma patients with BRAF mutations are usually treated with BRAF inhibitors such as vemurafenib, but responses are short-lived as drug resistant tumors metabolically switch to mitochondrial oxidative phosphorylation (OXPHOS) to escape metabolic stress-induced BRAF inhibition. Additionally, a large subset of melanoma utilizes OXPHOS in their metabolism, which can confer de novo resistance to BRAF inhibitors. Therefore, uncoupling of OXPHOS to perturb energy homeostasis and to indirectly stimulate AMPK could be a novel treatment for melanoma and to overcome intrinsic and acquired resistance to BRAF inhibitors. Here, we investigated the effects of SR4 and niclosamide, two small molecule mitochondria uncouplers, on the growth and proliferation of treatment-naïve and vemurafenib-resistant melanomas in vitro and in vivo. SR4 and niclosamide inhibited melanoma proliferation irrespective of BRAF/NRAS status. Melanomas with greater OXPHOS phenotype (higher OCR/ECAR), with LKB1 mutation, or with acquired resistance to vemurafenib displayed greater sensitivity to both uncouplers. More importantly, SR4 and niclosamide inhibited tumor growth in both treatment-naïve and vemurafenib-resistant xenograft mice models. Mechanistic studies indicate both uncouplers induced energetic stress, modulated the AMPK-mTOR pathway, and promoted apoptosis without affecting MEK-ERK MAPK signaling. These results suggest that uncouplers such as SR4 and niclosamide may be useful as first line treatment against melanoma regardless of BRAF/NRAS status, and as an adjuvant therapy for patients failing MAPK inhibitors.
Collapse
Affiliation(s)
- James L. Figarola
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sharad Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotirmoy Kusari
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arthur Riggs
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
92
|
Wallace TC, Bultman S, D'Adamo C, Daniel CR, Debelius J, Ho E, Eliassen H, Lemanne D, Mukherjee P, Seyfried TN, Tian Q, Vahdat LT. Personalized Nutrition in Disrupting Cancer - Proceedings From the 2017 American College of Nutrition Annual Meeting. J Am Coll Nutr 2018; 38:1-14. [PMID: 30511901 DOI: 10.1080/07315724.2018.1500499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is a major public health problem and is the second leading cause of death in the United States and worldwide; nearly one in six deaths are attributable to cancer. Approximately 20% of all cancers diagnosed in the United States are attributable to unhealthy diet, excessive alcohol consumption, physical inactivity, and body fatness. Individual cancers are distinct disease states that are multifactorial in their causation, making them exceedingly cumbersome to study from a nutrition standpoint. Genetic influences are a major piece of the puzzle and personalized nutrition is likely to be most effective in disrupting cancer during all stages. Increasing evidence shows that after a cancer diagnosis, continuing standard dietary recommendations may not be appropriate. This is because powerful dietary interventions such as short-term fasting and carbohydrate restriction can disrupt tumor metabolism, synergizing with standard therapies such as radiation and drug therapy to improve efficacy and ultimately, cancer survival. The importance of identifying dietary interventions cannot be overstated, and the American College of Nutrition's commitment to advancing knowledge and research is evidenced by dedication of the 2017 ACN Annual Meeting to "Disrupting Cancer: The Role of Personalized Nutrition" and this resulting proceedings manuscript, which summarizes the meeting's findings.
Collapse
Affiliation(s)
- Taylor C Wallace
- a Department of Nutrition and Food Studies , George Mason University , Fairfax, VA , USA.,b Think Healthy Group, Inc , Washington, DC , USA
| | - Scott Bultman
- c Department of Genetics, University of North Carolina School of Medicine
| | - Chris D'Adamo
- d Departments of Family and Community Medicine and Epidemiology and Public Health , Center for Integrative Medicine, University of Maryland School of Medicine
| | - Carrie R Daniel
- e Department of Epidemiology, Division of Cancer Prevention and Population Sciences , The University of Texas MD Anderson Cancer Center
| | - Justine Debelius
- f Department of Medical Epidemiology and Biostatistics , Karolinska Institute , Stockholm , Sweden
| | - Emily Ho
- g Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University
| | - Heather Eliassen
- h Channing Division of Network Medicine , Brigham and Women's Hospital and Harvard Medical School.,i Harvard T.H. Chan School of Public Health
| | - Dawn Lemanne
- j Department of Medicine , University of Arizona , Tucson.,k National Institute of Integrative Medicine , Melbourne , Australia.,l Oregon Integrative Oncology , Ashland , Oregon
| | | | | | - Qiang Tian
- n Institute for Systems Biology, P4 Medicine Institute
| | | |
Collapse
|
93
|
Mushroom Body Specific Transcriptome Analysis Reveals Dynamic Regulation of Learning and Memory Genes After Acquisition of Long-Term Courtship Memory in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:3433-3446. [PMID: 30158319 PMCID: PMC6222587 DOI: 10.1534/g3.118.200560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The formation and recall of long-term memory (LTM) requires neuron activity-induced gene expression. Transcriptome analysis has been used to identify genes that have altered expression after memory acquisition, however, we still have an incomplete picture of the transcriptional changes that are required for LTM formation. The complex spatial and temporal dynamics of memory formation creates significant challenges in defining memory-relevant gene expression changes. The Drosophila mushroom body (MB) is a signaling hub in the insect brain that integrates sensory information to form memories across several different experimental memory paradigms. Here, we performed transcriptome analysis in the MB at two time points after the acquisition of LTM: 1 hr and 24 hr. The MB transcriptome was compared to biologically paired whole head (WH) transcriptomes. In both, we identified more transcript level changes at 1 hr after memory acquisition (WH = 322, MB = 302) than at 24 hr (WH = 23, MB = 20). WH samples showed downregulation of developmental genes and upregulation of sensory response genes. In contrast, MB samples showed vastly different changes in transcripts involved in biological processes that are specifically related to LTM. MB-downregulated genes were highly enriched for metabolic function. MB-upregulated genes were highly enriched for known learning and memory processes, including calcium-mediated neurotransmitter release and cAMP signaling. The neuron activity inducible genes Hr38 and sr were also specifically induced in the MB. These results highlight the importance of sampling time and cell type in capturing biologically relevant transcript level changes involved in learning and memory. Our data suggests that MB cells transiently upregulate known memory-related pathways after memory acquisition and provides a critical frame of reference for further investigation into the role of MB-specific gene regulation in memory.
Collapse
|
94
|
An Apoptotic and Endosymbiotic Explanation of the Warburg and the Inverse Warburg Hypotheses. Int J Mol Sci 2018; 19:ijms19103100. [PMID: 30308966 PMCID: PMC6213112 DOI: 10.3390/ijms19103100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Otto Warburg, a Nobel prize winner, observed that cancer cells typically “switch” from aerobic to anaerobic respiration. He hypothesized that mitochondrial damage induces neoplastic transformation. In contrast, pathological aging is observed mainly in neuron cells in neurodegenerative diseases. Oxidative respiration is particularly active in neurons. There is inverse comorbidity between cancer and neurodegenerative diseases. This led to the creation of the “inverse Warburg hypothesis”, according to which excessive mitochondrial activity induces pathological aging. The findings of our studies suggest that both the Warburg effect and the “inverse Warburg hypothesis” can be elucidated by the activation or suppression of apoptosis through oxidative respiration. The key outcome of our phylogenetic studies was the discovery that apoptosis and apoptosis-like cell death evolved due to an evolutionary “arms race” conducted between “prey” protomitochondrion and “predator” primitive eukaryotes. The ancestral protomitochondrial machinery produces and releases toxic mitochondrial proteins. Extant apoptotic factors evolved from these toxins. Our experiments indicate that the mitochondrial machinery is directly involved in adaptation to aerobic conditions. Additionally, our hypothesis is supported by the fact that different apoptotic factors are directly involved in respiration.
Collapse
|
95
|
Park SJ, Smith CP, Wilbur RR, Cain CP, Kallu SR, Valasapalli S, Sahoo A, Guda MR, Tsung AJ, Velpula KK. An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications. Am J Cancer Res 2018; 8:1967-1976. [PMID: 30416849 PMCID: PMC6220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023] Open
Abstract
Monocarboxylate transporters (MCTs) represent a diverse group of transmembrane proteins encoded by the SLC16 gene family found ubiquitously across mammalian species. Two members of this family, MCT1 and MCT4, have been linked to key roles in the metabolic activity of tissues through the proton-coupled transport of monocarboxylates, most notably L-lactate, ketone bodies, and pyruvate. This review aims to provide an overview of MCT1 and MCT4, followed by the implications of their expression in a multitude of cancers and in glioblastoma (GBM) specifically. Further, the possible mechanisms underlying these effects will be discussed. Given the relationships between MCT1 and MCT4 and cancer, they offer a unique opportunity for novel treatment strategies. We aim to explore current therapies focused on MCT1 and MCT4 and propose future studies to better understand their role in GBM to optimize future treatment regimens.
Collapse
Affiliation(s)
- Simon J Park
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Chase P Smith
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Ryan R Wilbur
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Charles P Cain
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Sankeerth R Kallu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Srijan Valasapalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Arpit Sahoo
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| |
Collapse
|
96
|
Lomelino CL, Andring JT, McKenna R. Crystallography and Its Impact on Carbonic Anhydrase Research. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9419521. [PMID: 30302289 PMCID: PMC6158936 DOI: 10.1155/2018/9419521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
X-ray and neutron crystallography are powerful techniques utilized to study the structures of biomolecules. Visualization of enzymes in complex with substrate/product and the capture of intermediate states can be related to activity to facilitate understanding of the catalytic mechanism. Subsequent analysis of small molecule binding within the enzyme active site provides insight into mechanisms of inhibition, supporting the design of novel inhibitors using a structure-guided approach. The first X-ray crystal structures were determined for small, ubiquitous enzymes such as carbonic anhydrase (CA). CAs are a family of zinc metalloenzymes that catalyze the hydration of CO2, producing HCO3 - and a proton. The CA structure and ping-pong mechanism have been extensively studied and are well understood. Though the function of CA plays an important role in a variety of physiological functions, CA has also been associated with diseases such as glaucoma, edema, epilepsy, obesity, and cancer and is therefore recognized as a drug target. In this review, a brief history of crystallography and its impact on CA research is discussed.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| |
Collapse
|
97
|
Chai F, Li Y, Liu K, Li Q, Sun H. Caveolin enhances hepatocellular carcinoma cell metabolism, migration, and invasion in vitro via a hexokinase 2‐dependent mechanism. J Cell Physiol 2018; 234:1937-1946. [PMID: 30144070 DOI: 10.1002/jcp.27074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fang Chai
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Yan Li
- Department of General Surgery The Fourth Affiliated Hospital of China Medical University Shenyang China
| | - Keyi Liu
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Qiang Li
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Hongzhi Sun
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| |
Collapse
|
98
|
Zhang J, Zhu Y, Dong M, Yang J, Weng W, Teng L. Iodine-125 interstitial brachytherapy reduces tumor growth via Warburg effect inhibition in non-small cell lung cancer A549 ×enografts. Oncol Lett 2018; 16:5969-5977. [PMID: 30344747 PMCID: PMC6176348 DOI: 10.3892/ol.2018.9346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
Iodine-125 interstitial brachytherapy (125I-IBT) is an alternative and effective treatment option for unresectable non-small cell lung cancer (NSCLC), and the Warburg effect is a determinant of tumor growth. The present study aimed to explore the influence of 125I-IBT on tumor growth and the Warburg effect, and the potential mechanisms underlying NSCLC progression. Mice with A549 cell xenografts were evenly divided into a control group without 125I-IBT, and three treatment groups receiving 125I-IBT with 20, 40 and 60 Gy. Tumor volume (TV), maximum standardized uptake value (SUVmax) determined by 18F-fluorodeoxyglucose (18F-FDG) micro-positron emission tomography/computed tomography and mean optical density (MOD) of mammalian target of rapamycin (mTOR), c-Myc, hypoxia inducible factor-1α (HIF-1α) and glucose transporter 1 (GLUT1) staining were compared among groups. Tumor inhibition rate (TIR), 18F-FDG uptake attenuation rate (FUAR) and expression suppression rate (ESR) were also calculated on day 14 and 28. The results demonstrated that the mean TV in the 60 and 40 Gy groups was smaller compared with the control TVs since days 14 and 16, respectively. The mean SUVmax value of the 60 Gy group at day 14, and all treatment group SUVmax values at day 28 were lower compared with the controls. In addition, the MOD of mTOR and GLUT1 was lower in the 60 Gy group, compared with the other groups, and c-Myc and HIF-1α values were lower in the 40 and 60 Gy groups, compared with the control and 20 Gy group (P<0.05). SUVmax positively correlated to TV (day 14, r=0.711; day 28, r=0.586) and the MOD of c-Myc and GLUT1 (r=0.621 and 0.546, respectively; P<0.01). Furthermore, dose dependent increases were observed for TIR, FUAR and ESR. In conclusion, 125I-IBT reduced tumor growth by inhibiting the Warburg effect, which may have resulted from downregulation of mTOR, c-Myc, HIF-1α and GLUT1 expression, particularly c-Myc and GLUT1, in NSCLC A549 ×enografts.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yangjun Zhu
- Department of Ultrasonography, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Mengjie Dong
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wanwen Weng
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
99
|
de Bari L, Atlante A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming. Cell Mol Life Sci 2018; 75:2763-2776. [PMID: 29728715 PMCID: PMC11105303 DOI: 10.1007/s00018-018-2831-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
Glucose avidity, high glycolysis and L-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and L-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that L-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities. Nevertheless, the known ability of mitochondria to take up and oxidize L-lactate has remained ignored by cancer research. Beginning with a brief overview of the metabolic changes occurring in cancer, we review the present knowledge of L-lactate formation, transport, and intracellular oxidation and underline the possible role of L-lactate metabolism as energetic, signaling and anabolic support for cancer cell proliferation. These unexplored aspects of cancer biochemistry might be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Lidia de Bari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)-CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Anna Atlante
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)-CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
100
|
Cressman ENK, Guo C, Karbasian N. Image-guided chemistry altering biology: An in vivo study of thermoembolization. PLoS One 2018; 13:e0200471. [PMID: 30011300 PMCID: PMC6047785 DOI: 10.1371/journal.pone.0200471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/27/2018] [Indexed: 01/20/2023] Open
Abstract
RATIONALE Advances in image-guided drug delivery for liver cancer have shown a significant survival benefit. However, incomplete treatment is common and residual disease is often found in explanted liver specimens. In addition, the need to treat a malignancy from multiple mechanisms at the same time for optimal outcomes is becoming more widely appreciated. To address this, we hypothesized that an exothermic chemical reaction could be performed in situ. Such a strategy could in principle combine several angles of attack, including ischemia, hyperthermia, acidic protein denaturation, and metabolic modulation of the local environment. METHODS The University of Texas MD Anderson Cancer Center Institutional Animal Care and Use Committee approved this study. Outbred swine (25-35 kg, 5 control and 5 experimental) were treated under general anesthesia. Embolization was performed with coaxial microcatheter technique in a segmental hepatic arterial branch using either ethiodized oil as control or with thermoembolic solutionBlood samples were obtained before, immediately after, and the day following the procedure just before CT scans and euthanasia. Livers were explanted and samples were obtained for histologic analysis. RESULTS All animals survived the procedure and laboratory values of the control and experimental groups remained within normal limits. The control group had a diffuse or cloudy pattern of attenuation on follow-up CT scan the day after, consistent with gradual antegrade sinusoidal transit of the embolic material. The experimental group had clearly defined vascular casts with some degree of peripheral involvement. At histology, the control group samples had the appearance of normal liver, whereas the experimental group had coagulative necrosis in small pale, punctate areas extending several hundred microns away from the treated vessels and a brisk inflammatory response just outside the margins. CONCLUSION In situ chemistry via thermoembolization shows early promise as a fundamentally new tactic for image-guided therapy of solid tumors.
Collapse
Affiliation(s)
- Erik N. K. Cressman
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| | - Chunxiao Guo
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Niloofar Karbasian
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|