51
|
Ye D, Zhou W, Tester DJ, Ackerman MJ. Discovery and characterization of a monogenetic insult, caveolin-3-V37L, that precipitated oligo-proteomic perturbations governing repolarization reserve. Int J Cardiol 2020; 319:71-77. [PMID: 32387251 DOI: 10.1016/j.ijcard.2020.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Caveolin-3 (Cav-3) is an essential scaffolding protein for caveolae formation in cardiomyocytes and targets multiple long QT syndrome (LQTS)-associated ion channels. Mutations in CAV3 have caused an LQT3-like accentuation in late sodium current, INa (Nav1.5). Here, we characterize a novel CAV3-V37L variant and determine whether it is the substrate for the patient's LQTS. METHODS The proband was a 39-year-old female with drug-induced, sudden cardiac arrest (SCA) with profound QT prolongation (QTc > 600 ms). Genetic testing revealed a rare CAV3-V37L variant of uncertain significance (VUS). Whole-cell patch clamp technique was used to measure IKs, IKr, INa, and ICa, L currents co-expressed with either CAV3-WT or CAV3-V37L in TSA201 cells and to measure the action potential duration (APD) in control human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) overexpressed with CAV3-WT or CAV3-V37L. RESULTS CAV3-V37L did not affect Nav1.5 late current. Instead, CAV3-V37L resulted in 1) ICa, L with slower inactivation, a 1.5 fold increase in peak ICa, L current density and a 1.1 fold increase in ICa, L persistent current, 2) dramatically reduced IKs peak current density by 74.9%, 3) significantly reduced IKr peak current density by 31.1%, and 4) significantly prolonged the APD in hiPSC-CMs. CONCLUSIONS These functional validation assays enabled the promotion of CAV3-V37L from VUS status to a likely pathogenic variant. Although Nav1.5 was spared, this monogenetic insult precipitated an oligo-proteomic impact with a concomitant gain-of-function of ICa, L and loss-of-function of both IKs and IKr culminating in a marked prolongation of the cardiomyocyte's action potential duration.
Collapse
Affiliation(s)
- Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
52
|
Campuzano O, Sarquella-Brugada G, Fernandez-Falgueras A, Coll M, Iglesias A, Ferrer-Costa C, Cesar S, Arbelo E, García-Álvarez A, Jordà P, Toro R, Tiron de Llano C, Grassi S, Oliva A, Brugada J, Brugada R. Reanalysis and reclassification of rare genetic variants associated with inherited arrhythmogenic syndromes. EBioMedicine 2020; 54:102732. [PMID: 32268277 PMCID: PMC7136601 DOI: 10.1016/j.ebiom.2020.102732] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background Accurate interpretation of rare genetic variants is a challenge for clinical translation. Updates in recommendations for rare variant classification require the reanalysis and reclassification. We aim to perform an exhaustive re-analysis of rare variants associated with inherited arrhythmogenic syndromes, which were classified ten years ago, to determine whether their classification aligns with current standards and research findings. Methods In 2010, the rare variants identified through genetic analysis were classified following recommendations available at that time. Nowadays, the same variants have been reclassified following current American College of Medical Genetics and Genomics recommendations. Findings Our cohort included 104 cases diagnosed with inherited arrhythmogenic syndromes and 17 post-mortem cases in which inherited arrhythmogenic syndromes was cause of death. 71.87% of variants change their classification. While 65.62% of variants were classified as likely pathogenic in 2010, after reanalysis, only 17.96% remain as likely pathogenic. In 2010, 18.75% of variants were classified as uncertain role but nowadays 60.15% of variants are classified of unknown significance. Interpretation Reclassification occurred in more than 70% of rare variants associated with inherited arrhythmogenic syndromes. Our results support the periodical reclassification and personalized clinical translation of rare variants to improve diagnosis and adjust treatment. Funding Obra Social "La Caixa Foundation" (ID 100010434, LCF/PR/GN16/50290001 and LCF/PR/GN19/50320002), Fondo Investigacion Sanitaria (FIS PI16/01203 and FIS, PI17/01690), Sociedad Española de Cardiología, and “Fundacio Privada Daniel Bravo Andreu”.
Collapse
Affiliation(s)
- Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17190 Salt (Girona), Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Biochemistry and Molecular Genetics Department, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain.
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Anna Fernandez-Falgueras
- Cardiovascular Genetics Center, University of Girona-IDIBGI, C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17190 Salt (Girona), Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mónica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17190 Salt (Girona), Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17190 Salt (Girona), Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carles Ferrer-Costa
- Cardiovascular Genetics Center, University of Girona-IDIBGI, C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17190 Salt (Girona), Spain
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Ana García-Álvarez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Paloma Jordà
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Rocío Toro
- Medicine Department, School of Medicine, Cadiz, Spain
| | | | - Simone Grassi
- Section Legal Medicine, Institute of Public Health, Catholic University, Rome, Italy
| | - Antonio Oliva
- Section Legal Medicine, Institute of Public Health, Catholic University, Rome, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17190 Salt (Girona), Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Cardiology Service, Hospital Josep Trueta, University of Girona, Girona, Spain.
| |
Collapse
|
53
|
Yeh VM, Bergner EM, Bruce MA, Kripalani S, Mitrani VB, Ogunsola TA, Wilkins CH, Griffith DM. Can Precision Medicine Actually Help People Like Me? African American and Hispanic Perspectives on the Benefits and Barriers of Precision Medicine. Ethn Dis 2020; 30:149-158. [PMID: 32269456 DOI: 10.18865/ed.30.s1.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective To better understand African American and Hispanic perspectives on the potential benefits of precision medicine, along with the potential barriers that may prevent precision medicine from being equally beneficial to all. We also sought to identify if there were differences between African American and Hispanic perspectives. Design Six semi-structured focus groups were conducted between May 2017 and February 2018 to identify benefits and barriers to precision medicine. Three groups occurred in Nashville, TN with African American participants and three groups occurred in Miami, FL with Hispanic participants. Setting At community-based and university sites convenient to community partners and participants. Participants A total of 55 individuals participated (27 in Nashville, 28 in Miami). The majority of participants were women (76.5%) and the mean age of participants was 56.2 years old. Results Both African Americans and Hispanics believed precision medicine has the potential to improve medicine and health outcomes by individualizing care and decreasing medical uncertainty. However, both groups were concerned that inadequacies in health care institutions and socioeconomic barriers would prevent their communities from receiving the full benefits of precision medicine. African Americans were also concerned that the genetic and non-genetic personal information revealed through precision medicine would make African Americans further vulnerable to provider racism and discrimination in and outside of health care. Conclusions While these groups believed precision medicine might yield benefits for health outcomes, they are also skeptical about whether African Americans and Hispanics would actually benefit from precision medicine given current structural limitations and disparities in health care access and quality.
Collapse
Affiliation(s)
- Vivian M Yeh
- Center for Clinical Quality and Implementation Research, Vanderbilt University Medical Center, Nashville, TN
| | - Erin M Bergner
- Center for Research on Men's Health, Vanderbilt University, Nashville, TN
| | - Marino A Bruce
- Center for Research on Men's Health, Vanderbilt University, Nashville, TN.,Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN
| | - Sunil Kripalani
- Center for Clinical Quality and Implementation Research, Vanderbilt University Medical Center, Nashville, TN.,Division of General Internal Medicine and Public Health, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Victoria B Mitrani
- University of Miami, School of Nursing and Health Studies, Coral Gables, FL
| | | | - Consuelo H Wilkins
- Department of Internal Medicine, Meharry Medical College, Nashville, TN.,Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN.,Division of Geriatrics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Derek M Griffith
- Center for Research on Men's Health, Vanderbilt University, Nashville, TN.,Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN
| |
Collapse
|
54
|
Clift K, Macklin S, Halverson C, McCormick JB, Abu Dabrh AM, Hines S. Patients' views on variants of uncertain significance across indications. J Community Genet 2020; 11:139-145. [PMID: 31432391 PMCID: PMC7062975 DOI: 10.1007/s12687-019-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
As genomic sequencing expands into more areas of patient care, an increasing number of patients learn of the variants of uncertain significance (VUSs) that they carry. Understanding the potential psychosocial consequences of the disclosure of a VUS can help inform pre- and post-test counseling discussions. Medical uncertainty in general elicits a variety of responses from patients, particularly in the growing field of medical genetics and genomics. It is important to consider patients' responses to the ambiguous nature of VUSs across different indications and situational contexts. Genetic counselors and other providers ordering genetic testing should be prepared for the possibility of their patients' misinterpretation of such results. Pre-test counseling should include a discussion of the possibility of VUSs and what it would mean for the patient's care and its potential psychosocial impacts. When a VUS is found, post-test counseling should include additional education and a discussion of the variant's implications and medical management recommendations based on the results. These discussions may help temper subjective interpretations, unrealistic views, and decisional regret.
Collapse
Affiliation(s)
- Kristin Clift
- Mayo Clinic Center for Individualized Medicine, Jacksonville, FL, USA.
| | - Sarah Macklin
- Mayo Clinic Department of Clinical Genomics, Jacksonville, FL, USA
| | - Colin Halverson
- Center for Bioethics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
55
|
van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells 2020; 38:174-186. [PMID: 31664757 PMCID: PMC7027796 DOI: 10.1002/stem.3110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Research on mechanisms underlying monogenic cardiac diseases such as primary arrhythmias and cardiomyopathies has until recently been hampered by inherent limitations of heterologous cell systems, where mutant genes are expressed in noncardiac cells, and physiological differences between humans and experimental animals. Human-induced pluripotent stem cells (hiPSCs) have proven to be a game changer by providing new opportunities for studying the disease in the specific cell type affected, namely the cardiomyocyte. hiPSCs are particularly valuable because not only can they be differentiated into unlimited numbers of these cells, but they also genetically match the individual from whom they were derived. The decade following their discovery showed the potential of hiPSCs for advancing our understanding of cardiovascular diseases, with key pathophysiological features of the patient being reflected in their corresponding hiPSC-derived cardiomyocytes (the past). Now, recent advances in genome editing for repairing or introducing genetic mutations efficiently have enabled the disease etiology and pathogenesis of a particular genotype to be investigated (the present). Finally, we are beginning to witness the promise of hiPSC in personalized therapies for individual patients, as well as their application in identifying genetic variants responsible for or modifying the disease phenotype (the future). In this review, we discuss how hiPSCs could contribute to improving the diagnosis, prognosis, and treatment of an individual with a suspected genetic cardiac disease, thereby developing better risk stratification and clinical management strategies for these potentially lethal but treatable disorders.
Collapse
Affiliation(s)
- Lettine van den Brink
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Catarina Grandela
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Richard P. Davis
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| |
Collapse
|
56
|
Waddell-Smith KE, Skinner JR, Bos JM. Pre-Test Probability and Genes and Variants of Uncertain Significance in Familial Long QT Syndrome. Heart Lung Circ 2020; 29:512-519. [PMID: 32044265 DOI: 10.1016/j.hlc.2019.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
The genetics underlying familial long QT syndrome (LQTS) are among the best characterised of all of the inherited heart conditions. Cohort and registry studies have demonstrated important genotype-phenotype correlations that are now essential in guiding clinical practice of patients with the most common three genotypes; KCNQ1 (LQT type 1), KCNH2 (LQT type 2) and SCN5A (LQT type 3). However, the growing number of genes-now more than 16-is confusing, and there is much doubt as to whether many actually cause LQTS at all. Furthermore, changes in sequencing techniques, evolving variant classification criteria and new scientific discoveries make all genes and variants subject to a continuous process of re-classification. This review discusses the nature of variant adjudication, the important concept of pre-test probability in interpreting a genetic result and how the nomenclature of LQTS is shifting in response to this new knowledge. It further discusses the role of deep phenotyping, the inclusion of evaluation of family members in interpreting a genetic test result, or even deciding if genetic testing should occur at all, and the role of specialist multidisciplinary teams to translate this continuously evolving knowledge into the best clinical advice, in partnership with referring cardiologists.
Collapse
Affiliation(s)
- Kathryn E Waddell-Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia.
| | - Jonathan R Skinner
- Green Lane Paediatric and Congenital Cardiac Service, Starship Children's Hospital, Auckland, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - J Martijn Bos
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
57
|
Bennett JS, Bernhardt M, McBride KL, Reshmi SC, Zmuda E, Kertesz NJ, Garg V, Fitzgerald-Butt S, Kamp AN. Reclassification of Variants of Uncertain Significance in Children with Inherited Arrhythmia Syndromes is Predicted by Clinical Factors. Pediatr Cardiol 2019; 40:1679-1687. [PMID: 31535183 DOI: 10.1007/s00246-019-02203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing is important to augment clinical diagnosis and inform management of inherited arrhythmias syndromes (IAS), but variants of uncertain significance (VUS) are common and remain a challenge in clinical practice. In 2015, American College of Medical Genetics (ACMG) published updated guidelines for interpretation of genetic results. Despite increasing understanding of human genomic variation, there are no guidelines for reinterpretation of prior genetic test results. Patients at a single tertiary children's hospital with genetic testing for an IAS that demonstrated a VUS were re-evaluated using 2015 ACMG guidelines, clinical information, and publically available databases. Search of the electronic medical record identified 116 patients with genetic testing results available, and 24/116 (21%) harbored a VUS for an IAS. 23 unique VUS were evaluated from 12 genes. Over half of the VUS (12/23 (52%)) were reclassified using 2015 criteria, and 8 (35%) changed to pathogenic and 4 (17%) to benign. Relative risk of reclassification of VUS to a pathogenic variant in a patient with confirmed clinical diagnosis was 4.1 (95% CI 1.23-15.4). Reclassification was not associated with initial testing year. These data demonstrate 52% of VUS in children with IAS are reclassified with application of 2015 ACMG guidelines. Strength of phenotyping is associated with eventual pathogenic classification of genetic variants and periodic re-evaluation of VUS identified on genetic testing for IAS is warranted.
Collapse
Affiliation(s)
- Jeffrey S Bennett
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Madison Bernhardt
- Department of Medical Genetics, St. Luke's Mountain States Tumor Institute, Boise, ID, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,The Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shalini C Reshmi
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Erik Zmuda
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Naomi J Kertesz
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Vidu Garg
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.,The Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara Fitzgerald-Butt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anna N Kamp
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA. .,The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
58
|
Chavali NV, Kryshtal DO, Parikh SS, Wang L, Glazer AM, Blackwell DJ, Kroncke BM, Shoemaker MB, Knollmann BC. Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm 2019; 16:1686-1695. [PMID: 31004778 PMCID: PMC6935564 DOI: 10.1016/j.hrthm.2019.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Commercial genetic testing for long QT syndrome (LQTS) has rapidly expanded, but the inability to accurately predict whether a rare variant is pathogenic has limited its clinical benefit. Novel missense variants are routinely reported as variant of unknown significance (VUS) and cannot be used to screen family members at risk for sudden cardiac death. Better approaches to determine the pathogenicity of VUS are needed. OBJECTIVE The purpose of this study was to rapidly determine the pathogenicity of a CACNA1C variant reported by commercial genetic testing as a VUS using a patient-independent human induced pluripotent stem cell (hiPSC) model. METHODS Using CRISPR/Cas9 genome editing, CACNA1C-p.N639T was introduced into a previously established hiPSC from an unrelated healthy volunteer, thereby generating a patient-independent hiPSC model. Three independent heterozygous N639T hiPSC lines were generated and differentiated into cardiomyocytes (CM). Electrophysiological properties of N639T hiPSC-CM were compared to those of isogenic and population control hiPSC-CM by measuring the extracellular field potential (EFP) of 96-well hiPSC-CM monolayers and by patch clamp. RESULTS Significant EFP prolongation was observed only in optically stimulated but not in spontaneously beating N639T hiPSC-CM. Patch-clamp studies revealed that N639T prolonged the ventricular action potential by slowing voltage-dependent inactivation of CaV1.2 currents. Heterologous expression studies confirmed the effect of N639T on CaV1.2 inactivation. CONCLUSION The patient-independent hiPSC model enabled rapid generation of functional data to support reclassification of a CACNA1C VUS to likely pathogenic, thereby establishing a novel LQTS type 8 mutation. Furthermore, our results indicate the importance of controlling beating rates to evaluate the functional significance of LQTS VUS in high-throughput hiPSC-CM assays.
Collapse
Affiliation(s)
- Nikhil V Chavali
- Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Dmytro O Kryshtal
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Shan S Parikh
- Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Lili Wang
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Moore Benjamin Shoemaker
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee
| | - Bjorn C Knollmann
- Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, Tennessee.
| |
Collapse
|
59
|
Mattivi CL, Ye D, Tester DJ, Clemens DJ, Zhou W, Giudicessi JR, Ackerman MJ. Utilization of the genome aggregation database, in silico tools, and heterologous expression patch-clamp studies to identify and demote previously published type 2 long QT syndrome: Causative variants from pathogenic to likely benign. Heart Rhythm 2019; 17:315-323. [PMID: 31493592 DOI: 10.1016/j.hrthm.2019.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 10/26/2022]
Abstract
BACKGROUND Loss-of-function variants in the KCNH2-encoded Kv11.1 potassium channel cause long QT syndrome (LQTS) type 2 (LQT2). Presently, hundreds of KCNH2 missense variants (MVs) have been published as "disease-causative." However, an estimated 10% of rare published LQTS MVs may be "false positives." OBJECTIVE The purpose of this study was to determine which published KCNH2 MVs are likely false positives and warrant demotion to "likely benign" status. METHODS A list of 337 LQT2-associated MVs from 6 large compendia was compiled. MV frequency within the Genome Aggregation Database (gnomAD) (n = 141,352 individuals) was assessed, and MVs were analyzed with 8 in silico tools. Variants with minor allele frequency (MAF) >7*10E-6, the calculated maximum credible frequency of LQT2, and predicted "benign" by all tools were demoted to "likely benign." Ultra-rare variants (n = 8) absent in gnomAD but predicted "benign" by all tools were considered as potential false positives and were characterized functionally using whole-cell patch clamp. RESULTS Overall, 14 of 337 published KCNH2 MVs (4%) were observed at MAF >7*10E-6, whereas 252 of 337 (75%) were absent in gnomAD. Among the latter, 8 variants (I96V, G187S, A203T, P241L, H254Q, G314S, P935S, P963T) were predicted benign by 8 tools and lacked characterization. Patch clamp showed no functional perturbation for these 8 MVs. CONCLUSION This study offers compelling evidence for the demotion of 22 of 337 KCNH2 variants (6.5%) in the literature. Meticulous "pruning" of compendia using exome/genome databases, in silico tools, and in vitro functional studies must be conducted not only for putatively pathogenic LQTS MVs but for the entire field of genetic heart disease.
Collapse
Affiliation(s)
- Connor L Mattivi
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota
| | - Daniel J Clemens
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
60
|
Nightingale BM, Hovick SR, Brock P, Callahan E, Jordan E, Roggenbuck J, Sturm AC, Morales A. Hypertrophic cardiomyopathy genetic test reports: A qualitative study of patient understanding of uninformative genetic test results. J Genet Couns 2019; 28:1087-1097. [DOI: 10.1002/jgc4.1159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Pamela Brock
- Division of Human Genetics The Ohio State University Columbus Ohio
| | - Emily Callahan
- Division of Human Genetics The Ohio State University Columbus Ohio
| | - Elizabeth Jordan
- Division of Human Genetics The Ohio State University Columbus Ohio
| | | | - Amy C. Sturm
- Genomic Medicine Institute Geisinger Health, Weis Center for Research Danville Pennsylvania
| | - Ana Morales
- Division of Human Genetics The Ohio State University Columbus Ohio
| |
Collapse
|
61
|
Ackerman MJ, Giudicessi JR. Findings of Uncertain Significance and a Family History of Sudden Death. J Am Coll Cardiol 2019; 74:771-773. [DOI: 10.1016/j.jacc.2019.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
|
62
|
Gray B, Ackerman MJ, Semsarian C, Behr ER. Evaluation After Sudden Death in the Young. Circ Arrhythm Electrophysiol 2019; 12:e007453. [DOI: 10.1161/circep.119.007453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sudden cardiac death is defined as a death occurring usually within an hour of onset of symptoms, arising from an underlying cardiac disease. Sudden cardiac death is a complication of a number of cardiovascular diseases and is often unexpected. In individuals aged <35 years, unexplained sudden cardiac death is the most common presentation. A significant proportion of sudden cardiac death in the young (≤35 years) events may be precipitated by underlying inherited cardiac conditions, including both heritable cardiomyopathies and inherited arrhythmia syndromes (also known as cardiac channelopathies). Tragically, sudden death may be the first manifestation of the disease in a family and, therefore, clinical and genetic evaluation of surviving family members forms a key role in diagnosing the underlying inherited cardiac condition in the family. This is particularly relevant when considering that most inherited cardiac conditions are inherited in an autosomal dominant manner meaning that surviving family members have a 50% chance of inheriting the same disease substrate. This review will outline the underlying causes of sudden cardiac death in the young and outline our universal approach to familial evaluation following a young person’s sudden death.
Collapse
Affiliation(s)
- Belinda Gray
- Cardiology Clinical Academic Group, St. George’s University of London (B.G., E.R.B.)
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., E.R.B.)
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute (B.G., C.S.)
- Faculty of Health and Medical Sciences, University of Sydney, NSW, Australia (B.G., C.S.)
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.J.A.)
- Department of Cardiology, Royal Prince Alfred Hospital, NSW, Australia (M.J.A.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute (B.G., C.S.)
- Faculty of Health and Medical Sciences, University of Sydney, NSW, Australia (B.G., C.S.)
| | - Elijah R. Behr
- Cardiology Clinical Academic Group, St. George’s University of London (B.G., E.R.B.)
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., E.R.B.)
| |
Collapse
|
63
|
Tester DJ, Wong LCH, Chanana P, Jaye A, Evans JM, FitzPatrick DR, Evans MJ, Fleming P, Jeffrey I, Cohen MC, Tfelt-Hansen J, Simpson MA, Behr ER, Ackerman MJ. Cardiac Genetic Predisposition in Sudden Infant Death Syndrome. J Am Coll Cardiol 2019; 71:1217-1227. [PMID: 29544605 DOI: 10.1016/j.jacc.2018.01.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is a leading cause of postneonatal mortality. Genetic heart diseases (GHDs) underlie some cases of SIDS. OBJECTIVES This study aimed to determine the spectrum and prevalence of GHD-associated mutations as a potential monogenic basis for SIDS. METHODS A cohort of 419 unrelated SIDS cases (257 male; average age 2.7 ± 1.9 months) underwent whole exome sequencing and a targeted analysis of 90 GHD-susceptibility genes. The yield of "potentially informative," ultra-rare variants (minor allele frequency <0.00005) in GHD-associated genes was assessed. RESULTS Overall, 53 of 419 (12.6%) SIDS cases had ≥1 "potentially informative," GHD-associated variant. The yield was 14.9% (21 of 141) for mixed-European ancestry cases and 11.5% (32 of 278) for European ancestry SIDS cases. Infants older than 4 months were more likely to host a "potentially informative" GHD-associated variant. There was significant overrepresentation of ultra-rare nonsynonymous variants in European SIDS cases (18 of 278 [6.5%]) versus European control subjects (30 of 973 [3.1%]; p = 0.013) when combining all 4 major cardiac channelopathy genes (KCNQ1, KCNH2, SCN5A, and RYR2). According to the American College of Medical Genetics guidelines, only 18 of 419 (4.3%) SIDS cases hosted a "pathogenic" or "likely pathogenic" variant. CONCLUSIONS Less than 15% of more than 400 SIDS cases had a "potentially informative" variant in a GHD-susceptibility gene, predominantly in the 4- to 12-month age group. Only 4.3% of cases possessed immediately clinically actionable variants. Consistent with previous studies, ultra-rare, nonsynonymous variants within the major cardiac channelopathy-associated genes were overrepresented in SIDS cases in infants of European ethnicity. These findings have major implications for the investigation of SIDS cases and families.
Collapse
Affiliation(s)
- David J Tester
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Leonie C H Wong
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom; Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, United Kingdom
| | - Pritha Chanana
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Amie Jaye
- Medical and Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom
| | - Jared M Evans
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | | | | | - Peter Fleming
- Centre for Child and Adolescent Health, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Iona Jeffrey
- Department of Cellular Pathology, St George's, University of London, London, United Kingdom; Department of Cellular Pathology', St. George's University Hospitals' NHS Foundation Trust, London, United Kingdom
| | - Marta C Cohen
- Histopathology Department, Sheffield Children's Hospital, Sheffield, United Kingdom; Honorary Senior Lecturer, University of Sheffield, Sheffield, United Kingdom
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Simpson
- Medical and Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom
| | - Elijah R Behr
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom; Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, United Kingdom.
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
64
|
Giudicessi JR. Machine Learning and Rare Variant Adjudication in Type 1 Long QT Syndrome. ACTA ACUST UNITED AC 2019; 10:CIRCGENETICS.117.001944. [PMID: 29021308 DOI: 10.1161/circgenetics.117.001944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- John R Giudicessi
- From the Departments of Cardiovascular Medicine and Internal Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN.
| |
Collapse
|
65
|
Ahmad F, McNally EM, Ackerman MJ, Baty LC, Day SM, Kullo IJ, Madueme PC, Maron MS, Martinez MW, Salberg L, Taylor MR, Wilcox JE. Establishment of Specialized Clinical Cardiovascular Genetics Programs: Recognizing the Need and Meeting Standards: A Scientific Statement From the American Heart Association. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e000054. [DOI: 10.1161/hcg.0000000000000054] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular genetics is a rapidly evolving subspecialty within cardiovascular medicine, and its growth is attributed to advances in genome sequencing and genetic testing and the expanding understanding of the genetic basis of multiple cardiac conditions, including arrhythmias (channelopathies), heart failure (cardiomyopathies), lipid disorders, cardiac complications of neuromuscular conditions, and vascular disease, including aortopathies. There have also been great advances in clinical diagnostic methods, as well as in therapies to ameliorate symptoms, slow progression of disease, and mitigate the risk of adverse outcomes. Emerging challenges include interpretation of genetic test results and the evaluation, counseling, and management of genetically at-risk family members who have inherited pathogenic variants but do not yet manifest disease. With these advances and challenges, there is a need for specialized programs combining both cardiovascular medicine and genetics expertise. The integration of clinical cardiovascular findings, including those obtained from physical examination, imaging, and functional assessment, with genetic information allows for improved diagnosis, prognostication, and cascade family testing to identify and to manage risk, and in some cases to provide genotype-specific therapy. This emerging subspecialty may ultimately require a new cardiovascular subspecialist, the genetic cardiologist, equipped with these combined skills, to permit interpretation of genetic variation within the context of phenotype and to extend the utility of genetic testing. This scientific statement outlines current best practices for delivering cardiovascular genetic evaluation and care in both the pediatric and the adult settings, with a focus on team member expertise and conditions that most benefit from genetic evaluation.
Collapse
|
66
|
Kapplinger JD, Pundi KN, Larson NB, Callis TE, Tester DJ, Bikker H, Wilde AAM, Ackerman MJ. Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001424. [PMID: 29453246 DOI: 10.1161/circgen.116.001424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. METHODS Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. RESULTS A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. CONCLUSIONS Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation.
Collapse
Affiliation(s)
- Jamie D Kapplinger
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Krishna N Pundi
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nicholas B Larson
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Thomas E Callis
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - David J Tester
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hennie Bikker
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arthur A M Wilde
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Michael J Ackerman
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
67
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
68
|
Ghani M, Nfonsam L, Pranckeviciene E, Daoud H, Potter R, Chisholm C, Harper PE, Schaffer A, Little L, Sinclair-Bourque E, McGowan-Jordan J, Smith A, Bronicki L, Jarinova O. Adopting High-Resolution Allele Frequencies Substantially Expedites Variant Interpretation in Genetic Diagnostic Laboratories. J Mol Diagn 2019; 21:602-611. [PMID: 31028938 DOI: 10.1016/j.jmoldx.2019.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 11/15/2022] Open
Abstract
A cohort of 1242 individuals tested in a clinical diagnostic laboratory was used to test whether the filtering allele frequencies (FAFs)-based framework, recently recommended for MHY7-associated cardiomyopathy, is extendable to 45 cardiomyopathy genes. Statistical analysis revealed a threshold of 0.00164% for the extreme outlier allele frequencies (AFs), based on the Genome Aggregation Database (exome fraction) total AFs of 138 unique pathogenic and likely pathogenic variants; 135 of them (97.8%) had AFs of <0.004%, the recommended threshold to apply moderate pathogenicity evidence for MYH7-associated cardiomyopathy. Of the 460 cases reported with only variant(s) of unknown clinical significance (VUCSs), 97 (21%) solely had VUCSs with FAFs >0.03%, frequencies above which were estimated herein as strong evidence against pathogenicity. Interestingly, 74.5% (172/231) of the unique VUCSs with FAFs >0.03% had Genome Aggregation Database maximum allele frequencies across all populations AFs >0.1%, deemed herein as stand-alone evidence against pathogenicity. Accordingly, using an FAF threshold of >0.1%, compared with AF >1%, led us to issue considerably more (25.9% versus 41.3%) negative patient reports. Also, 82.7% (N = 629) of the unique classified benign or likely benign variants with AFs <1% had FAFs >0.1%, reinforcing the use of this filtering strategy. Together, these data demonstrate that implementing FAF thresholds may considerably decrease the amount of variant interpretations and significantly reduce the cost of genetic testing for clinical genetic laboratories, without compromising the accuracy of genetic diagnostic services.
Collapse
Affiliation(s)
- Mahdi Ghani
- Department of Genetics, CHEO, Ottawa, Ontario, Canada.
| | | | - Erinija Pranckeviciene
- Department of Genetics, CHEO, Ottawa, Ontario, Canada; Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Hussein Daoud
- Department of Genetics, CHEO, Ottawa, Ontario, Canada
| | - Ryan Potter
- Department of Genetics, CHEO, Ottawa, Ontario, Canada
| | | | | | | | | | | | - Jean McGowan-Jordan
- Department of Genetics, CHEO, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Amanda Smith
- Department of Genetics, CHEO, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucas Bronicki
- Department of Genetics, CHEO, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Olga Jarinova
- Department of Genetics, CHEO, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
69
|
Morales A, Hershberger RE. Variants of Uncertain Significance: Should We Revisit How They Are Evaluated and Disclosed? CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002169. [PMID: 29848615 DOI: 10.1161/circgen.118.002169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ray E Hershberger
- Divisions of Human Genetics (A.M., R.E.H.).,Cardiovascular Medicine (R.E.H.) Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
70
|
Hancox JC, Whittaker DG, Zhang H, Stuart AG. Learning from studying very rare cardiac conditions: the example of short QT syndrome. JOURNAL OF CONGENITAL CARDIOLOGY 2019. [DOI: 10.1186/s40949-019-0024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
71
|
Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing. Circulation 2019; 137:619-630. [PMID: 29431662 DOI: 10.1161/circulationaha.117.030142] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acquired and congenital forms of long QT syndrome represent 2 distinct but clinically and genetically intertwined disorders of cardiac repolarization characterized by the shared final common pathway of QT interval prolongation and risk of potentially life-threatening arrhythmias. Over the past 2 decades, our understanding of the spectrum of genetic variation that (1) perturbs the function of cardiac ion channel macromolecular complexes and intracellular calcium-handling proteins, (2) underlies acquired/congenital long QT syndrome susceptibility, and (3) serves as a determinant of QT interval duration in the general population has grown exponentially. In turn, these molecular insights led to the development and increased utilization of clinically impactful genetic testing for congenital long QT syndrome. However, the widespread adoption and potential misinterpretation of the 2015 American College of Medical Genetics and Genomics variant classification and reporting guidelines may have contributed unintentionally to the reduced reporting of common genetic variants, with compelling epidemiological and functional evidence to support a potentially proarrhythmic role in patients with congenital and acquired long QT syndrome. As a result, some genetic testing reports may fail to convey the full extent of a patient's genetic susceptibility for a potentially life-threatening arrhythmia to the ordering healthcare professional. In this white paper, we examine the current classification and reporting (or lack thereof) of potentially proarrhythmic common genetic variants and investigate potential mechanisms to facilitate the reporting of these genetic variants without increasing the risk of diagnostic miscues.
Collapse
Affiliation(s)
- John R Giudicessi
- Departments of Cardiovascular Medicine and Internal Medicine, Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN (J.R.G)
| | - Dan M Roden
- Departments of Biomedical Informatics, Medicine, and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.M.R.)
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands (A.A.M.W.)
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.J.A.)
| |
Collapse
|
72
|
Abstract
Genetic testing has an increasingly important role in the diagnosis and management of cardiac disorders, where it confirms the diagnosis, aids prognostication and risk stratification and guides treatment. A genetic diagnosis in the proband also enables clarification of the risk for family members by cascade testing. Genetics in cardiac disorders is complex where epigenetic and environmental factors might come into interplay. Incomplete penetrance and variable expressivity is also common. Genetic results in cardiac conditions are mostly probabilistic and should be interpreted with all available clinical information. With this complexity in cardiac genetics, testing is only indicated in patients with a strong suspicion of an inheritable cardiac disorder after a full clinical evaluation. In this review we discuss the genetics underlying the major cardiomyopathies and channelopathies, and the practical aspects of diagnosing these conditions in the laboratory.
Collapse
|
73
|
Tsai GJ, Garrett LT, Makhnoon S, Bowen DJ, Burke W, Shirts BH. Patient goals, motivations, and attitudes in a patient-driven variant reclassification study. J Genet Couns 2018; 28:558-569. [PMID: 31163102 DOI: 10.1002/jgc4.1052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/12/2018] [Accepted: 07/27/2018] [Indexed: 01/12/2023]
Abstract
Family studies to reclassify clinically ascertained variants of uncertain significance (VUS) can impact risk assessment, medical management, and psychological outcomes for patients and their families. There are limited avenues for patients and their families to actively participate in VUS reclassification, and access to family studies at most commercial laboratories is restricted by multiple factors. To explore patient attitudes about participation in family studies for VUS reclassification, we conducted semistructured pre- and post-participation telephone interviews with 38 participants in a family-based VUS reclassification study that utilized a patient-driven approach for family ascertainment and recruitment. Participants had VUS from multigene panel testing performed at multiple clinical laboratories for cancer or other disease risk. Inductive thematic analysis of transcribed interviews highlighted four major themes: (a) Participants' study goals were driven by the desire to resolve uncertainty related to the VUS, (b) Participants had mixed reactions to the VUS reclassification outcomes of the study, (c) Personal, public, and familial knowledge increased through study participation and (d) Participants used study participation to actively cope with the uncertainty of a VUS. As personalized genomic medicine becomes more prevalent, clinicians, clinical laboratories, and researchers could consider creating more opportunities for active partnership with patients and families, who are motivated to contribute data to familial VUS studies.
Collapse
Affiliation(s)
- Ginger J Tsai
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | | | - Sukh Makhnoon
- Institute of Public Health Genomics, University of Washington, Seattle, Washington
| | - Deborah J Bowen
- Department of Bioethics and Humanities, University of Washington, Seattle, Washington
| | - Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, Washington
| | - Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
74
|
Stutzman MJ, Ye D, Tester DJ, Giudicessi JR, Ackerman MJ. Is variant pathogenicity in the eye of the beholder? A case of unexplained sudden cardiac arrest highlights the potentially dangerous role of historical rare variant compendia in SCN5A rare variant adjudication. HeartRhythm Case Rep 2018; 5:163-168. [PMID: 30891416 PMCID: PMC6404365 DOI: 10.1016/j.hrcr.2018.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Marissa J Stutzman
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - John R Giudicessi
- Clinician-Investigator Training Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
75
|
Walsh MA, Turner C, Timothy KW, Seller N, Hares DL, James AF, Hancox JC, Uzun O, Boyce D, Stuart AG, Brennan P, Sarton C, McGuire K, Newbury-Ecob RA, Mcleod K. A multicentre study of patients with Timothy syndrome. Europace 2018; 20:377-385. [PMID: 28371864 DOI: 10.1093/europace/euw433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
Aims Timothy syndrome (TS) is an extremely rare multisystem disorder characterized by marked QT prolongation, syndactyly, seizures, behavioural abnormalities, immunodeficiency, and hypoglycaemia. The aim of this study was to categorize the phenotypes and examine the outcomes of patients with TS. Methods and results All patients diagnosed with TS in the United Kingdom over a 24-year period were reviewed. Fifteen centres in the British Congenital Arrhythmia Group network were contacted to partake in the study. Six patients with TS were identified over a 24-year period (4 boys and 2 girls). Five out of the six patients were confirmed to have a CACNA1C mutation (p.Gly406Arg) and the other patient was diagnosed clinically. Early presentation with heart block, due to QT prolongation was frequently seen. Four are still alive, two of these have a pacemaker and two have undergone defibrillator implantation. Five out of six patients have had a documented cardiac arrest with three occurring under general anaesthesia. Two patients suffered a cardiac arrest while in hospital and resuscitation was unsuccessful, despite immediate access to a defibrillator. Surviving patients seem to have mild developmental delay and learning difficulties. Conclusion Timothy syndrome is a rare disorder with a high attrition rate if undiagnosed. Perioperative cardiac arrests are common and not always amenable to resuscitation. Longer-term survival is possible, however, patients invariably require pacemaker or defibrillator implantation.
Collapse
Affiliation(s)
- Mark A Walsh
- Bristol Royal Hospital for Children, University Hospital Bristol, Bristol, UK.,Bristol Heart Institute, University Hospital Bristol, Bristol, UK
| | - Christian Turner
- Department of Congenital Cardiology, Freeman Hospital, Newcastle upon Tyne, UK.,Children's Hospital at Westmead, Sydney, Australia
| | | | - Neil Seller
- Department of Congenital Cardiology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Dominic L Hares
- Department of Cardiology, The Yorkshire Heart Centre, Leeds General Infirmary, Leeds, UK
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience Cardiovascular Research Laboratories, University of Bristol, Bristol, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience Cardiovascular Research Laboratories, University of Bristol, Bristol, UK
| | - Orhan Uzun
- Department of Cardiology, University Hospital Wales, Cardiff, UK
| | - Dean Boyce
- Department of Plastic Surgery, University Hospital Wales, Cardiff, UK
| | - Alan G Stuart
- Bristol Royal Hospital for Children, University Hospital Bristol, Bristol, UK.,Bristol Heart Institute, University Hospital Bristol, Bristol, UK
| | - Paul Brennan
- Department of Clinical Genetics, Freeman Hospital, Newcastle upon Tyne, UK
| | - Caroline Sarton
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, Oxford, UK
| | - Karen McGuire
- Oxford Medical Genetics Laboratories, Cardiac Service, Oxford University Hospitals NHS Trust, The Churchill Hospital, Oxford, UK
| | | | - Karen Mcleod
- Department of Cardiology, Royal Hospital for Sick Children, Glasgow, UK
| |
Collapse
|
76
|
Abstract
Dear Editor Next generation sequencing (NGS) has changed the way we approach the diagnosis, prognosis and treatment of genetic disorders. It gave us base pair (bp) precision, multi-gene approach that can be executed in a timely and cost-effective manner. Despite some minor technical issues in NGS, it comes with great advantages. However, the clinical, and especially, genetic counseling profession will need to rise to the challenge to face some of the new issues, dilemmas and problems this new technology is bringing to the table. Some of the counseling guidelines predate the NGS era and will urgently need to be brought up to par with the technology.
Collapse
|
77
|
Gray B, Behr ER. New Insights Into the Genetic Basis of Inherited Arrhythmia Syndromes. ACTA ACUST UNITED AC 2018; 9:569-577. [PMID: 27998945 DOI: 10.1161/circgenetics.116.001571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Belinda Gray
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Elijah R Behr
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.).
| |
Collapse
|
78
|
Garg P, Oikonomopoulos A, Chen H, Li Y, Lam CK, Sallam K, Perez M, Lux RL, Sanguinetti MC, Wu JC. Genome Editing of Induced Pluripotent Stem Cells to Decipher Cardiac Channelopathy Variant. J Am Coll Cardiol 2018; 72:62-75. [PMID: 29957233 PMCID: PMC6050025 DOI: 10.1016/j.jacc.2018.04.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The long QT syndrome (LQTS) is an arrhythmogenic disorder of QT interval prolongation that predisposes patients to life-threatening ventricular arrhythmias such as Torsades de pointes and sudden cardiac death. Clinical genetic testing has emerged as the standard of care to identify genetic variants in patients suspected of having LQTS. However, these results are often confounded by the discovery of variants of uncertain significance (VUS), for which there is insufficient evidence of pathogenicity. OBJECTIVES The purpose of this study was to demonstrate that genome editing of patient-specific induced pluripotent stem cells (iPSCs) can be a valuable approach to delineate the pathogenicity of VUS in cardiac channelopathy. METHODS Peripheral blood mononuclear cells were isolated from a carrier with a novel missense variant (T983I) in the KCNH2 (LQT2) gene and an unrelated healthy control subject. iPSCs were generated using an integration-free Sendai virus and differentiated to iPSC-derived cardiomyocytes (CMs). RESULTS Whole-cell patch clamp recordings revealed significant prolongation of the action potential duration (APD) and reduced rapidly activating delayed rectifier K+ current (IKr) density in VUS iPSC-CMs compared with healthy control iPSC-CMs. ICA-105574, a potent IKr activator, enhanced IKr magnitude and restored normal action potential duration in VUS iPSC-CMs. Notably, VUS iPSC-CMs exhibited greater propensity to proarrhythmia than healthy control cells in response to high-risk torsadogenic drugs (dofetilide, ibutilide, and azimilide), suggesting a compromised repolarization reserve. Finally, the selective correction of the causal variant in iPSC-CMs using CRISPR/Cas9 gene editing (isogenic control) normalized the aberrant cellular phenotype, whereas the introduction of the homozygous variant in healthy control cells recapitulated hallmark features of the LQTS disorder. CONCLUSIONS The results suggest that the KCNH2T983I VUS may be classified as potentially pathogenic.
Collapse
Affiliation(s)
- Priyanka Garg
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Haodong Chen
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Yingxin Li
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Chi Keung Lam
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Karim Sallam
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Marco Perez
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California; Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Robert L Lux
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Joseph C Wu
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California.
| |
Collapse
|
79
|
Hulot JS, Vermersch E, Jouve C. CRISPRed Cardiomyocytes to Decrypt Variants of Uncertain Significance. J Am Coll Cardiol 2018; 72:76-78. [PMID: 29957234 DOI: 10.1016/j.jacc.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 10/28/2022]
Affiliation(s)
| | - Eva Vermersch
- INSERM, UMR_S 970, Paris Cardiovascular Research Center (PARCC), Paris, France
| | - Charlène Jouve
- INSERM, UMR_S 970, Paris Cardiovascular Research Center (PARCC), Paris, France
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW As rapid genetic testing has become increasingly accessible in a timely fashion, more genetic mutations are identified in inherited conditions such as cardiomyopathies. Understanding when to consider genetic testing is an important part of the management of patients whose presentations vary from decompensated heart failure to sudden cardiac death. RECENT FINDINGS We describe the benefits of genetic testing for risk stratification of family members, prognostication of probands, and identification of novel disease-causing mutations and examine the possible role of genetic predisposition in seemingly acquired cardiomyopathies such as peripartum and anthracycline-induced cardiomyopathy. SUMMARY Genetic screening for the recognition of family members who have inherited a cardiomyopathy is important, and testing may identify patients at higher risk of sudden death. However, genetic testing does have its limitations, such as the identification of variants of unknown significance that often complicate the clinical picture.
Collapse
|
81
|
Li B, Mendenhall JL, Kroncke BM, Taylor KC, Huang H, Smith DK, Vanoye CG, Blume JD, George AL, Sanders CR, Meiler J. Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001754. [PMID: 29021305 DOI: 10.1161/circgenetics.117.001754] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND An emerging standard-of-care for long-QT syndrome uses clinical genetic testing to identify genetic variants of the KCNQ1 potassium channel. However, interpreting results from genetic testing is confounded by the presence of variants of unknown significance for which there is inadequate evidence of pathogenicity. METHODS AND RESULTS In this study, we curated from the literature a high-quality set of 107 functionally characterized KCNQ1 variants. Based on this data set, we completed a detailed quantitative analysis on the sequence conservation patterns of subdomains of KCNQ1 and the distribution of pathogenic variants therein. We found that conserved subdomains generally are critical for channel function and are enriched with dysfunctional variants. Using this experimentally validated data set, we trained a neural network, designated Q1VarPred, specifically for predicting the functional impact of KCNQ1 variants of unknown significance. The estimated predictive performance of Q1VarPred in terms of Matthew's correlation coefficient and area under the receiver operating characteristic curve were 0.581 and 0.884, respectively, superior to the performance of 8 previous methods tested in parallel. Q1VarPred is publicly available as a web server at http://meilerlab.org/q1varpred. CONCLUSIONS Although a plethora of tools are available for making pathogenicity predictions over a genome-wide scale, previous tools fail to perform in a robust manner when applied to KCNQ1. The contrasting and favorable results for Q1VarPred suggest a promising approach, where a machine-learning algorithm is tailored to a specific protein target and trained with a functionally validated data set to calibrate informatics tools.
Collapse
Affiliation(s)
- Bian Li
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Jeffrey L Mendenhall
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Brett M Kroncke
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Keenan C Taylor
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Hui Huang
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Derek K Smith
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Carlos G Vanoye
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Jeffrey D Blume
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Alfred L George
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Charles R Sanders
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.)
| | - Jens Meiler
- From the Department of Chemistry (B.L., J.L.M., J.M.), Center for Structural Biology (B.L., J.L.M., B.M.K., K.C.T., H.H., C.R.S., J.M.), Department of Biochemistry (B.M.K., H.H., C.R.S.), and Department of Biostatistics (D.K.S., J.D.B.), Vanderbilt University, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (B.M.K., C.R.S.); and Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., A.L.G.).
| |
Collapse
|
82
|
Shanks GW, Tester DJ, Nishtala S, Evans JM, Ackerman MJ. Genomic Triangulation and Coverage Analysis in Whole-Exome Sequencing-Based Molecular Autopsies. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001828. [PMID: 28986455 DOI: 10.1161/circgenetics.117.001828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND WEMA (Whole-Exome Molecular Autopsy) and surveillance of cardiac channelopathy and cardiomyopathy genes represents the latest molecular autopsy for sudden death in the young (SDY). To date, the majority of WEMA has been performed on the SDY case only. METHODS AND RESULTS We performed whole-exome sequencing and nucleotide-level coverage analysis on 28 SDY cases (18.4±7.8 years) and their parents to determine the inheritance patterns of ultrarare, nonsynonymous variants in 99 sudden death-susceptibility genes. Nonsynonymous variants were adjudicated using the American College of Medical Genetics guidelines. Overall, 17 sudden death-susceptibility gene variants were identified in 12 of 28 (43%) SDY cases. On the basis of the American College of Medical Genetics guidelines, 6 of 28 (21%) cases had a pathogenic or likely pathogenic nonsynonymous variant with 3 (50%) being de novo. Two nonsynonymous variants would not have been elevated to likely pathogenic status without knowing their de novo status. Whole-exome sequencing reached a read depth of 10× across 90% of nucleotides within sudden death-susceptibility genes in 100% of parental exomes from fresh blood draw, compared with only 82% of autopsy-sourced SDY exomes. CONCLUSIONS An SDY-parent, trio-based WEMA may be an effective way of elucidating a monogenic cause of death and bringing clarity to otherwise ambiguous variants. If other studies confirm this relatively high rate of SDY cases stemming from de novo mutations, then the WEMA should become even more cost-effective given that the decedent's first-degree relatives should only need minimal cardiological evaluation. In addition, autopsy-sourced DNA demonstrated strikingly lower whole-exome sequencing coverage than DNA from fresh blood draw.
Collapse
Affiliation(s)
- Garrett W Shanks
- From the Department of Molecular Pharmacology and Experimental Therapeutics (G.W.S., D.J.T., M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory (G.W.S., D.J.T., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences (G.W.S., D.J.T., M.J.A.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), Department of Biomedical Statistics and Informatics (S.N., J.M.E.), and Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- From the Department of Molecular Pharmacology and Experimental Therapeutics (G.W.S., D.J.T., M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory (G.W.S., D.J.T., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences (G.W.S., D.J.T., M.J.A.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), Department of Biomedical Statistics and Informatics (S.N., J.M.E.), and Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Sneha Nishtala
- From the Department of Molecular Pharmacology and Experimental Therapeutics (G.W.S., D.J.T., M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory (G.W.S., D.J.T., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences (G.W.S., D.J.T., M.J.A.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), Department of Biomedical Statistics and Informatics (S.N., J.M.E.), and Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Jared M Evans
- From the Department of Molecular Pharmacology and Experimental Therapeutics (G.W.S., D.J.T., M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory (G.W.S., D.J.T., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences (G.W.S., D.J.T., M.J.A.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), Department of Biomedical Statistics and Informatics (S.N., J.M.E.), and Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Department of Molecular Pharmacology and Experimental Therapeutics (G.W.S., D.J.T., M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory (G.W.S., D.J.T., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences (G.W.S., D.J.T., M.J.A.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), Department of Biomedical Statistics and Informatics (S.N., J.M.E.), and Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
83
|
Kapplinger JD, Tester DJ, Ackerman MJ. Response by Kapplinger et al to Letter Regarding Article, “Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation”. Circ Genom Precis Med 2018; 11:e002176. [DOI: 10.1161/circgen.118.002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jamie D. Kapplinger
- Mayo Clinic School of Medicine (J.D.K., M.J.A.)
- Medical Scientist Training Program (J.D.K.)
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.)
| | - David J. Tester
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.)
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., M.J.A.)
| | - Michael J. Ackerman
- Mayo Clinic School of Medicine (J.D.K., M.J.A.)
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.)
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., M.J.A.)
- Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
84
|
Gray B, Semsarian C. Editorial commentary: Will the real long QT genes please stand up. Trends Cardiovasc Med 2018; 28:465-466. [PMID: 29703509 DOI: 10.1016/j.tcm.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Belinda Gray
- St George's University of London, United Kingdom; Sydney Medical School, University of Sydney, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Australia
| | - Christopher Semsarian
- Sydney Medical School, University of Sydney, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Australia; Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
85
|
Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Heart Rhythm 2018; 15:1223-1230. [PMID: 29625280 DOI: 10.1016/j.hrthm.2018.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) genetic test reports commonly exclude potentially proarrhythmic common variants such as p.Asp85Asn-KCNE1. OBJECTIVE The purpose of this study was to determine whether a discernible phenotype is associated with p.Asp85Asn-KCNE1 and whether relatively common KCNE1 variants underlie transient QT prolongation pedigrees with negative commercial LQTS genetic tests. METHODS Retrospective review was used to compare demographics, symptomatology, and QT parameters of individuals with p.Asp85Asn-KCNE1 in the absence of other rare/ultra-rare variants in LQTS-susceptibility genes and those who underwent comprehensive LQTS genetic testing. RESULTS Compared to the Genome Aggregation Database, p.Asp85Asn-KCNE1 was more prevalent in individuals undergoing LQTS genetic testing (33/1248 [2.6%] vs 1552/126,652 [1.2%]; P = .0001). In 19 of 33 patients (58%), only p.Asp85Asn-KCNE1 was observed. These patients were predominantly female (90% vs 62%; P = .01) and were less likely to experience syncope (0% vs 34%; P = .0007), receive β-blockers (53% vs 85%; P = .001), or require an implantable cardioverter-defibrillator (5.3% vs 33%; P = .01). However, they exhibited a similar degree of QT prolongation (QTc 460 ms vs 467 ms; P = NS). Whole exome sequencing of 2 commercially genotype-negative pedigrees revealed that p.Asp85Asn-KCNE1 and p.Arg36His-KCNE1 traced with a transient QT prolongation phenotype. Functional characterization of p.Arg36His-KCNE1 demonstrated loss of function, with a 47% reduction in peak IKs current density in the heterozygous state. CONCLUSION We provide further evidence that relatively common variants in KCNE1 may result in a mild QT phenotype designated as "LQT5-Lite" to distinguish such potentially proarrhythmic common variants (ie, functional risk alleles) from rare pathogenic variants that truly confer monogenic disease susceptibility, albeit with incomplete penetrance.
Collapse
|
86
|
Perioperative management of patients with congenital or acquired disorders of the QT interval. Br J Anaesth 2018; 120:629-644. [DOI: 10.1016/j.bja.2017.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/16/2017] [Accepted: 01/14/2018] [Indexed: 12/19/2022] Open
|
87
|
|
88
|
Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc Med 2018; 28:453-464. [PMID: 29661707 DOI: 10.1016/j.tcm.2018.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing.
Collapse
Affiliation(s)
- John R Giudicessi
- Department of Cardiovascular Medicine (Cardiovascular Diseases Fellowship and Clinician-Investigator Training Programs), Mayo Clinic, Rochester, MN, United States
| | - Arthur A M Wilde
- Department of Medicine (Division of Cardiology), Columbia University Irving Medical Center, New York, NY, United States; Department of Clinical & Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
89
|
Huang H, Kuenze G, Smith JA, Taylor KC, Duran AM, Hadziselimovic A, Meiler J, Vanoye CG, George AL, Sanders CR. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. SCIENCE ADVANCES 2018; 4:eaar2631. [PMID: 29532034 PMCID: PMC5842040 DOI: 10.1126/sciadv.aar2631] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/02/2018] [Indexed: 05/21/2023]
Abstract
Mutations that induce loss of function (LOF) or dysfunction of the human KCNQ1 channel are responsible for susceptibility to a life-threatening heart rhythm disorder, the congenital long QT syndrome (LQTS). Hundreds of KCNQ1 mutations have been identified, but the molecular mechanisms responsible for impaired function are poorly understood. We investigated the impact of 51 KCNQ1 variants with mutations located within the voltage sensor domain (VSD), with an emphasis on elucidating effects on cell surface expression, protein folding, and structure. For each variant, the efficiency of trafficking to the plasma membrane, the impact of proteasome inhibition, and protein stability were assayed. The results of these experiments combined with channel functional data provided the basis for classifying each mutation into one of six mechanistic categories, highlighting heterogeneity in the mechanisms resulting in channel dysfunction or LOF. More than half of the KCNQ1 LOF mutations examined were seen to destabilize the structure of the VSD, generally accompanied by mistrafficking and degradation by the proteasome, an observation that underscores the growing appreciation that mutation-induced destabilization of membrane proteins may be a common human disease mechanism. Finally, we observed that five of the folding-defective LQTS mutant sites are located in the VSD S0 helix, where they interact with a number of other LOF mutation sites in other segments of the VSD. These observations reveal a critical role for the S0 helix as a central scaffold to help organize and stabilize the KCNQ1 VSD and, most likely, the corresponding domain of many other ion channels.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jarrod A. Smith
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Keenan C. Taylor
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Amanda M. Duran
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| | - Arina Hadziselimovic
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
90
|
Zentner D, Thompson T, Taylor J, Bogwitz M, Trainer A, Vohra J, Winship I, James PA. A rapid scoring tool to assess mutation probability in patients with inherited cardiac disorders. Eur J Med Genet 2018; 61:61-67. [DOI: 10.1016/j.ejmg.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/29/2017] [Indexed: 02/01/2023]
|
91
|
Mellor G, Laksman ZWM, Tadros R, Roberts JD, Gerull B, Simpson CS, Klein GJ, Champagne J, Talajic M, Gardner M, Steinberg C, Arbour L, Birnie DH, Angaran P, Leather R, Sanatani S, Chauhan VS, Seifer C, Healey JS, Krahn AD. Genetic Testing in the Evaluation of Unexplained Cardiac Arrest: From the CASPER (Cardiac Arrest Survivors With Preserved Ejection Fraction Registry). ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001686. [PMID: 28600387 DOI: 10.1161/circgenetics.116.001686] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unexplained cardiac arrest may be because of an inherited arrhythmia syndrome. The role of genetic testing in cardiac arrest survivors without a definite clinical phenotype is unclear. METHODS AND RESULTS The CASPER (Cardiac Arrest Survivors with Preserved Ejection Fraction Registry) is a large registry of cardiac arrest survivors where initial assessment reveals normal coronary arteries, left ventricular function, and resting ECG. Of 375 cardiac arrest survivors in CASPER from 2006 to 2015, 174 underwent genetic testing. Patients were classified as phenotype-positive (n=72) or phenotype-negative (n=102). Genetic testing was performed at treating physicians' discretion in line with contemporary guidelines and availability. All genetic variants identified from original laboratory reports were reassessed by the investigators in line with modern criteria. Pathogenic variants were identified in 29 (17%) patients (60% channelopathy-associated and 40% cardiomyopathy-associated genes) and 70 variants of unknown significance were identified in 32 (18%) patients. Prior syncope (odds ratio, 4.0; 95% confidence interval, 1.6-9.7) and a family history of sudden death (odds ratio, 3.2; 95% confidence interval, 1.1-9.4) were independently associated with the presence of a pathogenic variant. In phenotype-negative patients, broad multiphenotype genetic testing led to higher yields (21% versus 8%; P=0.04) but was associated with more variants of unknown significance (55% versus 5%; P<0.01). CONCLUSIONS Genetic testing identifies a pathogenic variant in a significant proportion of unexplained cardiac arrest survivors. Prior syncope and family history of sudden death are predictors of a positive genetic test. Both arrhythmia and cardiomyopathy genes are implicated. Broad, multiphenotype testing revealed the highest frequency of pathogenic variants in phenotype-negative patients. CLINICAL TRIAL REGISTRATION https://www.clinicaltrials.gov. Unique Identifier: NCT00292032.
Collapse
|
92
|
|
93
|
Paquin A, Ye D, Tester DJ, Kapplinger JD, Zimmermann MT, Ackerman MJ. Even pore-localizing missense variants at highly conserved sites in KCNQ1-encoded K v7.1 channels may have wild-type function and not cause type 1 long QT syndrome: Do not rely solely on the genetic test company's interpretation. HeartRhythm Case Rep 2017; 4:37-44. [PMID: 29876285 PMCID: PMC5988472 DOI: 10.1016/j.hrcr.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ashley Paquin
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
- Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - David J. Tester
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
- Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Jamie D. Kapplinger
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Michael J. Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
- Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
- Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
- Address reprint requests and correspondence: Dr Michael J. Ackerman, Mayo Clinic Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, 200 First St SW, Rochester, MN 55905.
| |
Collapse
|
94
|
Clemens DJ, Lentino AR, Kapplinger JD, Ye D, Zhou W, Tester DJ, Ackerman MJ. Using the genome aggregation database, computational pathogenicity prediction tools, and patch clamp heterologous expression studies to demote previously published long QT syndrome type 1 mutations from pathogenic to benign. Heart Rhythm 2017; 15:555-561. [PMID: 29197658 DOI: 10.1016/j.hrthm.2017.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mutations in the KCNQ1-encoded Kv7.1 potassium channel cause long QT syndrome (LQTS) type 1 (LQT1). It has been suggested that ∼10%-20% of rare LQTS case-derived variants in the literature may have been published erroneously as LQT1-causative mutations and may be "false positives." OBJECTIVE The purpose of this study was to determine which previously published KCNQ1 case variants are likely false positives. METHODS A list of all published, case-derived KCNQ1 missense variants (MVs) was compiled. The occurrence of each MV within the Genome Aggregation Database (gnomAD) was assessed. Eight in silico tools were used to predict each variant's pathogenicity. Case-derived variants that were either (1) too frequently found in gnomAD or (2) absent in gnomAD but predicted to be pathogenic by ≤2 tools were considered potential false positives. Three of these variants were characterized functionally using whole-cell patch clamp technique. RESULTS Overall, there were 244 KCNQ1 case-derived MVs. Of these, 29 (12%) were seen in ≥10 individuals in gnomAD and are demotable. However, 157 of 244 MVs (64%) were absent in gnomAD. Of these, 7 (4%) were predicted to be pathogenic by ≤2 tools, 3 of which we characterized functionally. There was no significant difference in current density between heterozygous KCNQ1-F127L, -P477L, or -L619M variant-containing channels compared to KCNQ1-WT. CONCLUSION This study offers preliminary evidence for the demotion of 32 (13%) previously published LQT1 MVs. Of these, 29 were demoted because of their frequent sighting in gnomAD. Additionally, in silico analysis and in vitro functional studies have facilitated the demotion of 3 ultra-rare MVs (F127L, P477L, L619M).
Collapse
Affiliation(s)
- Daniel J Clemens
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Anne R Lentino
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Jamie D Kapplinger
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota; Department of Pediatrics, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
95
|
Baudhuin LM, Leduc C, Train LJ, Avula R, Kluge ML, Kotzer KE, Lin PT, Ackerman MJ, Maleszewski JJ. Technical Advances for the Clinical Genomic Evaluation of Sudden Cardiac Death. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001844. [DOI: 10.1161/circgenetics.117.001844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 01/27/2023]
Abstract
Background—
Postmortem genetic testing for heritable cardiovascular (CV) disorders is often lacking because ideal specimens (ie, whole blood) are not retained routinely at autopsy. Formalin-fixed paraffin-embedded tissue (FFPET) is ubiquitously collected at autopsy, but DNA quality hampers its use with traditional sequencing methods. Targeted next-generation sequencing may offer the ability to circumvent such limitations, but a method has not been previously described. The primary aim of this study was to develop and evaluate the use of FFPET for heritable CV disorders via next-generation sequencing.
Methods and Results—
Nineteen FFPET (heart) and blood (whole blood or dried blood spot) specimens underwent targeted next-generation sequencing using a custom panel of 101 CV-associated genes. Nucleic acid yield and quality metrics were evaluated in relation to FFPET specimen age (6 months to 15 years; n=14) and specimen type (FFPET versus whole blood and dried blood spot; n=12). Four FFPET cases with a clinical phenotype of heritable CV disorder were analyzed. Accuracy and precision were 100% concordant between all sample types, with read depths >100× for most regions tested. Lower read depth, as low as 40×, was occasionally observed with FFPET and dried blood spot. High-quality DNA was obtained from FFPET samples as old as 15 years. Genomic analysis of FFPET from the 4 phenotype-positive/genotype unknown cases all revealed putative disease-causing variants.
Conclusions—
Similar performance characteristics were observed for next-generation sequencing of FFPET, whole blood, and dried blood spot in the evaluation of inherited CV disorders. Although blood is preferable for genetic analyses, this study offers an alternative when only FFPET is available.
Collapse
Affiliation(s)
- Linnea M. Baudhuin
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Charles Leduc
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Laura J. Train
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Rajeswari Avula
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Michelle L. Kluge
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Katrina E. Kotzer
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Peter T. Lin
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J. Ackerman
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| | - Joseph J. Maleszewski
- From the Department of Laboratory Medicine and Pathology (L.M.B., C.L., L.J.T., R.A., M.L.K., K.E.K., P.T.L., J.J.M.), Department of Cardiovascular Diseases (M.J.A., J.J.M.), Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
96
|
Roston TM, Dewar L, Franciosi S, Hathaway J, Bartels K, Cunningham T, Gibbs KA, Sheps S, Laksman ZWM, Sanatani S, Krahn AD. The accessibility and utilization of genetic testing for inherited heart rhythm disorders: a Canadian cross-sectional survey study. J Community Genet 2017; 9:257-262. [PMID: 29170972 DOI: 10.1007/s12687-017-0348-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
The genetic basis of many sudden death-related conditions has been elucidated. These include inherited arrhythmias and arrhythmogenic cardiomyopathies, termed inherited heart rhythm disorders (IHRD). Advising on and interpreting genetic testing is challenging for the general cardiologist. This has led to the development of interdisciplinary clinics for IHRD in varying stages of establishment in Canada. We sought the viewpoints and patterns of practice of Canadian IHRD experts, and assessed their ability to access genetic testing for IHRD using a national cross-sectional survey. Of 56 participants, most were physicians (68%) or genetic counselors (19%). Despite working collaboratively, most genetic counselors (59%) were either not satisfied or only somewhat satisfied with their relationships with physicians. Ninety percent of participants were involved in offering genetic evaluation, including 80% who felt that testing was usually/always accessible. Most offered genetic testing to confirm clinical diagnosis and/or direct family screening. Post-mortem genetic analysis was sought by 69% of respondents; however, a lack of retained tissue and/or poor tissue preparation hindered this process. Family screening was usually recommended in the setting of a pathogenic/likely pathogenic variant. The most commonly perceived barrier to genetic testing was cost to the healthcare system. More than a quarter of patients waited ≥ 6 months for funding. An ability to engage at-risk relatives was rated as limited/poor by 34% of participants. Despite the establishment of several interdisciplinary clinics, timely access to affordable testing, supported by strong team communication, continues to be a barrier to genetic testing in Canada.
Collapse
Affiliation(s)
- Thomas M Roston
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada.,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.,University of Alberta, Edmonton, AB, Canada
| | - Laura Dewar
- Simon Fraser University, Burnaby, BC, Canada
| | - Sonia Franciosi
- Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | | | | | - Taylor Cunningham
- Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | - Karen A Gibbs
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada
| | - Sam Sheps
- University of British Columbia, Vancouver, BC, Canada
| | - Zachary W M Laksman
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada.,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada.,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.,Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | - Andrew D Krahn
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada. .,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada. .,Heart Rhythm Vancouver, 211-1033 Davie St, Vancouver, BC, V6E 1M7, Canada.
| |
Collapse
|
97
|
Rueda M, Wagner JL, Phillips TC, Topol SE, Muse ED, Lucas JR, Wagner GN, Topol EJ, Torkamani A. Molecular Autopsy for Sudden Death in the Young: Is Data Aggregation the Key? Front Cardiovasc Med 2017; 4:72. [PMID: 29181379 PMCID: PMC5694161 DOI: 10.3389/fcvm.2017.00072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
The Scripps molecular autopsy study seeks to incorporate genetic testing into the postmortem examination of cases of sudden death in the young (<45 years old). Here, we describe the results from the first 2 years of the study, which consisted of whole exome sequencing (WES) of a cohort of 50 cases predominantly from San Diego County. Apart from the individual description of cases, we analyzed the data at the cohort-level, which brought new perspectives on the genetic causes of sudden death. We investigated the advantages and disadvantages of using WES compared to a gene panel for cardiac disease (usually the first genetic test used by medical examiners). In an attempt to connect complex clinical phenotypes with genotypes, we classified samples by their genetic fingerprint. Finally, we studied the benefits of analyzing the mitochondrial DNA genome. In this regard, we found that half of the cases clinically diagnosed as sudden infant death syndrome had an increased ratio of heteroplasmic variants, and that the variants were also present in the mothers. We believe that community-based data aggregation and sharing will eventually lead to an improved classification of variants. Allele frequencies for the all cases can be accessed via our genomics browser at https://genomics.scripps.edu/browser.
Collapse
Affiliation(s)
- Manuel Rueda
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Jennifer L Wagner
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Tierney C Phillips
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Sarah E Topol
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Evan D Muse
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States.,Division of Cardiology, Scripps Clinic, La Jolla, CA, United States
| | - Jonathan R Lucas
- Medical Examiner Department, San Diego County, San Diego, CA, United States
| | - Glenn N Wagner
- Medical Examiner Department, San Diego County, San Diego, CA, United States
| | - Eric J Topol
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States.,Division of Cardiology, Scripps Clinic, La Jolla, CA, United States
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
98
|
Kaltman JR, Evans F, Fu YP. Re-evaluating pathogenicity of variants associated with the long QT syndrome. J Cardiovasc Electrophysiol 2017; 29:98-104. [PMID: 28988457 DOI: 10.1111/jce.13355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Genetic testing for congenital long QT syndrome (LQTS) has become common. Recent studies have shown that some variants labelled as pathogenic might be misclassified due to sparse case reports and relatively common allele frequencies (AF) in the general population. This study aims to evaluate the presence of LQTS-associated variants in the Genome Aggregation Database (gnomAD) population, and assess the functional impact of these variants. METHODS AND RESULTS Variants associated with LQTS from the Human Gene Mutation Database were extracted and matched to the gnomAD to evaluate population-based AF. We used MetaSVM to predict the function of LQTS variants. Allele distribution by protein topology in KCNQ1, KCNH2, and SCN5A was compared between gnomAD (n = 123,136) and a cohort of LQTS patients aggregated from eight published studies (n = 2,683). Among the 1,415 LQTS-associated single nucleotide variants in 30 genes, 347 (25%) are present in gnomAD; 24% of the 347 variants were predicted as functionally tolerated compared with 4% of variants not present in gnomAD (P < 0.001). Of the 347 pathogenic variants in gnomAD, seven (2%) had an AF of ≥ 0.001 and 65 (19%) variants had an AF of ≥ 0.0001. In KCNQ1, KCNH2, and SCN5A, allele distribution by protein functional region was significantly different with gnomAD alleles appearing less frequently in highly pathogenic domains than case alleles. CONCLUSION A significant number of LQTS variants have insufficient evidence for pathogenicity and relatively common AF in the general population. Caution should be used when ascribing pathogenicity to these variants.
Collapse
Affiliation(s)
- Jonathan R Kaltman
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Frank Evans
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Yi-Ping Fu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
99
|
Warring SK, Anderson HN, Bos JM, Ackerman MJ. Inaccurate diagnosis of Brugada syndrome in a healthy woman based on SCN5A mutation classification. HeartRhythm Case Rep 2017; 3:450-454. [PMID: 29062695 PMCID: PMC5643853 DOI: 10.1016/j.hrcr.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Heather N. Anderson
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
| | - J. Martijn Bos
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Ackerman
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases/Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota
- Address reprint requests and correspondence: Dr Michael J. Ackerman, Mayo Clinic Windland Smith Rice Sudden Death Genomics Laboratory, Guggenheim 501, Mayo Clinic, 200 First St SW, Rochester, MN 55905.Mayo Clinic Windland Smith Rice Sudden Death Genomics LaboratoryGuggenheim 501, Mayo Clinic, 200 First St SWRochesterMN55905
| |
Collapse
|
100
|
Boldt LH, Parwani AS, Heinzel FR. Commercially Available Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Another Piece in Our Tool Box, but Not a Swiss Army Knife Yet. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001913. [PMID: 29021307 DOI: 10.1161/circgenetics.117.001913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Leif-Hendrik Boldt
- From the Department of Cardiology, Charité - Universitätsmedizin Berlin, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (L.H.B., F.R.H.).
| | - Abdul S Parwani
- From the Department of Cardiology, Charité - Universitätsmedizin Berlin, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (L.H.B., F.R.H.)
| | - Frank R Heinzel
- From the Department of Cardiology, Charité - Universitätsmedizin Berlin, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (L.H.B., F.R.H.)
| |
Collapse
|