51
|
Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 25:73-85. [DOI: 10.1016/j.cbd.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
|
52
|
Sun L, Zhang YN, Qian JL, Kang K, Zhang XQ, Deng JD, Tang YP, Chen C, Hansen L, Xu T, Zhang QH, Zhang LW. Identification and Expression Patterns of Anoplophora chinensis (Forster) Chemosensory Receptor Genes from the Antennal Transcriptome. Front Physiol 2018; 9:90. [PMID: 29497384 PMCID: PMC5819563 DOI: 10.3389/fphys.2018.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/25/2022] Open
Abstract
The citrus long-horned beetle (CLB), Anoplophora chinensis (Forster) is a destructive native pest in China. Chemosensory receptors including odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs) function to interface the insect with its chemical environment. In the current study, we assembled the antennal transcriptome of A. chinensis by next-generation sequencing. We assembled 44,938 unigenes from 64,787,784 clean reads and annotated their putative gene functions based on gene ontology (GO) and Clusters of Orthologous Groups of proteins (COG). Overall, 74 putative receptor genes from chemosensory receptor gene families, including 53 ORs, 17 GRs, and 4 IRs were identified. Expression patterns of these receptors on the antennae, maxillary and labial palps, and remaining body segments of both male and female A. chinensis were performed using quantitative real time-PCR (RT-qPCR). The results revealed that 23 ORs, 6 GRs, and 1 IR showed male-biased expression profiles, suggesting that they may play a significant role in sensing female-produced sex pheromones; whereas 8 ORs, 5 GRs, and 1 IR showed female-biased expression profiles, indicating that these receptors may be involved in some female-specific behaviors such as oviposition site seeking. These results lay a solid foundation for deeply understanding CLB olfactory processing mechanisms. Moreover, by comparing our results with those from chemosensory receptor studies in other cerambycid species, several highly probable pheromone receptor candidates were highlighted, which may facilitate the identification of additional pheromone and/or host attractants in CLB.
Collapse
Affiliation(s)
- Long Sun
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Forest Diseases and Insect Pests Control and Quarantine Station of Chaohu City, Chaohu, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jun-Dan Deng
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan-Ping Tang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Cheng Chen
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Laura Hansen
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Tian Xu
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, United States
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
53
|
Interspecific Cross-Attraction between the South American Cerambycid Beetles Cotyclytus curvatus and Megacyllene acuta is Averted by Minor Pheromone Components. J Chem Ecol 2018; 44:268-275. [DOI: 10.1007/s10886-018-0933-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/15/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
|
54
|
Jia X, Zhang X, Liu H, Wang R, Zhang T. Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella. PLoS One 2018; 13:e0189889. [PMID: 29304134 PMCID: PMC5755773 DOI: 10.1371/journal.pone.0189889] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Olfaction plays an indispensable role in mediating insect behavior, such as locating host plants, mating partners, and avoidance of toxins and predators. Olfactory-related proteins are required for olfactory perception of insects. However, very few olfactory-related genes have been reported in Plodia interpunctella up to now. In the present study, we sequenced the antennae transcriptome of P. interpunctella using the next-generation sequencing technology, and identified 117 candidate olfactory-related genes, including 29 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), three sensory neuron membrane proteins (SNMPs), 47 odorant receptors (ORs), 14 ionotropic receptors (IRs) and nine gustatory receptors (GRs). Further analysis of qRT-PCR revealed that nine OBPs, three CSPs, two SNMPs, nine ORs and two GRs were specifically expressed in the male antennae, whereas eight OBPs, six CSPs, one SNMP, 16 ORs, two GRs and seven IRs significantly expressed in the female antennae. Taken together, our results provided useful information for further functional studies on insect genes related to recognition of pheromone and odorant, which might be meaningful targets for pest management.
Collapse
Affiliation(s)
- Xiaojian Jia
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, P. R. China
| | - Rongyan Wang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| |
Collapse
|
55
|
Li K, Wei H, Shu C, Zhang S, Cao Y, Luo C, Yin J. Identification and comparison of candidate odorant receptor genes in the olfactory and non-olfactory organs of Holotrichia oblita Faldermann by transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:1-11. [DOI: 10.1016/j.cbd.2017.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
|
56
|
Wang J, Hu P, Gao P, Tao J, Luo Y. Antennal transcriptome analysis and expression profiles of olfactory genes in Anoplophora chinensis. Sci Rep 2017; 7:15470. [PMID: 29133804 PMCID: PMC5684370 DOI: 10.1038/s41598-017-15425-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022] Open
Abstract
Olfaction in insects is essential for host identification, mating and oviposition, in which olfactory proteins are responsible for chemical signaling. Here, we determined the transcriptomes of male and female adult antennae of Anoplophora chinensis, the citrus longhorned beetle. Among 59,357 unigenes in the antennal assembly, we identified 46 odorant-binding proteins, 16 chemosensory proteins (CSPs), 44 odorant receptors, 19 gustatory receptors, 23 ionotropic receptors, and 3 sensory neuron membrane proteins. Among CSPs, AchiCSP10 was predominantly expressed in antennae (compared with legs or maxillary palps), at a significantly higher level in males than in females, suggesting that AchiCSP10 has a role in reception of female sex pheromones. Many highly expressed genes encoding CSPs are orthologue genes of A. chinensis and Anoplophora glabripennis. Notably, AchiPBP1 and AchiPBP2 showed 100% and 96% identity with AglaPBP1 and AglaPBP2 from A. glabripennis, with similar expression profiles in the two species; PBP2 was highly expressed in male antennae, whereas PBP1 was expressed in all three tissues in both males and females. These results provide a basis for further studies on the molecular chemoreception mechanisms of A. chinensis, and suggest novel targets for control of A. chinensis.
Collapse
Affiliation(s)
- Jingzhen Wang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Ping Hu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Peng Gao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jing Tao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China.
| | - Youqing Luo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China.
| |
Collapse
|
57
|
Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius. Sci Rep 2017; 7:11073. [PMID: 28894232 PMCID: PMC5593998 DOI: 10.1038/s41598-017-11456-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
The sweetpotato weevil, Cylas formicarius (Fabricius), is a serious pest of sweetpotato. Olfaction-based approaches, such as use of synthetic sex pheromones to monitor populations and the bait-and-kill method to eliminate males, have been applied successfully for population management of C. formicarius. However, the molecular basis of olfaction in C. formicarius remains unknown. In this study, we produced antennal transcriptomes from males and females of C. formicarius using high-throughput sequencing to identify gene families associated with odorant detection. A total of 54 odorant receptors (ORs), 11 gustatory receptors (GRs), 15 ionotropic receptors (IRs), 3 sensory neuron membrane proteins (SNMPs), 33 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSPs) were identified. Tissue-specific expression patterns revealed that all 54 ORs and 11 antennal IRs, one SNMP, and three OBPs were primarily expressed in antennae, suggesting their putative roles in olfaction. Sex-specific expression patterns of these antenna-predominant genes suggest that they have potential functions in sexual behaviors. This study provides a framework for understanding olfaction in coleopterans as well as future strategies for controlling the sweetpotato weevil pest.
Collapse
|
58
|
Zhang SF, Liu HH, Kong XB, Wang HB, Liu F, Zhang Z. Identification and Expression Profiling of Chemosensory Genes in Dendrolimus punctatus Walker. Front Physiol 2017; 8:471. [PMID: 28736530 PMCID: PMC5500615 DOI: 10.3389/fphys.2017.00471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Dendrolimus punctatus Walker is a serious pest affecting conifers in southern China. As extensive pesticide spraying is currently required to control D. punctatus, new control strategies are urgently needed. Chemosensory genes represent potential molecular targets for development of alternative pest control strategies, and the expression characteristics of these genes provide an indication of their function. To date, little information is available regarding chemosensory genes in D. punctatus or their expression profiles at different development stages and in various tissues. Here, we assembled and analyzed the transcriptomes of D. punctatus collected at different developmental stages and in a range of organs, using next-generation sequencing. A total of 171 putative chemosensory genes were identified, encoding 53 odorant binding proteins, 26 chemosensory proteins, 60 odorant receptors (OR), 12 gustatory receptors (GR), 18 ionotropic receptors (IR), and 2 sensory neuron membrane proteins (SNMPs). Expression analysis indicated that the antennae possess the largest number of highly expressed olfactory genes and that olfactory gene expression patterns in the eggs, larvae, and head were similar to one another, with each having moderate numbers of highly expressed olfactory genes. Fat body, ovary, midgut, and testis tissues also had similar olfactory gene expression patterns, including few highly expressed olfactory genes. Of particular note, we identified only two pheromone binding proteins and no pheromone receptors in D. punctatus, similar to our previous findings in Dendrolimus houi and Dendrolimus kikuchii, suggesting that insects of the Dendrolimus genus have different pheromone recognition characteristics to other Lepidopteran insects. Overall, this extensive expression profile analysis provides a clear map of D. punctatus chemosensory genes, and will facilitate functional studies and the development of new pest control methods in the future.
Collapse
Affiliation(s)
- Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Hui-Hui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Xiang-Bo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Hong-Bin Wang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| |
Collapse
|
59
|
Bin SY, Qu MQ, Li KM, Peng ZQ, Wu ZZ, Lin JT. Antennal and abdominal transcriptomes reveal chemosensory gene families in the coconut hispine beetle, Brontispa longissima. Sci Rep 2017; 7:2809. [PMID: 28584273 PMCID: PMC5459851 DOI: 10.1038/s41598-017-03263-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Antennal and abdominal transcriptomes of males and females of the coconut hispine beetle Brontispa longissima were sequenced to identify and compare the expression patterns of genes involved in odorant reception and detection. Representative proteins from the chemosensory gene families likely essential for insect olfaction were identified. These include 48 odorant receptors (ORs), 19 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs), 34 odorant binding proteins (OBPs) and 16 chemosensory proteins (CSPs). Phylogenetic analysis revealed the evolutionary relationship of these proteins with homologs from Coleopterans or other insects, and led to the identification of putative aggregation pheromone receptors in B. longissima. Comparative expression analysis performed by calculating FPKM values were also validated using quantitative real time-PCR (qPCR). The results revealed that all ORs and antennal IRs, two IR co-receptors (BlonIR8a and BlonIR25a) and one SNMP (BlonSNMP1a) were predominantly expressed in antennae when compared to abdomens, and approximately half of the OBPs (19) and CSPs (7) were enriched in antennae. These findings for the first time reveal the identification of key molecular components in B. longissima olfaction and provide a valuable resource for future functional analyses of olfaction, and identification of potential targets to control this quarantine pest.
Collapse
Affiliation(s)
- Shu-Ying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Meng-Qiu Qu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Ke-Ming Li
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, PR China.,Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zheng-Qiang Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zhong-Zhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Jin-Tian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|
60
|
Wu S, Huang Z, Rebeca CL, Zhu X, Guo Y, Lin Q, Hu X, Wang R, Liang G, Guan X, Zhang F. De novo characterization of the pine aphid Cinara pinitabulaeformis Zhang et Zhang transcriptome and analysis of genes relevant to pesticides. PLoS One 2017; 12:e0178496. [PMID: 28570707 PMCID: PMC5453536 DOI: 10.1371/journal.pone.0178496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
The pine aphid Cinara pinitabulaeformis Zhang et Zhang is the main pine pest in China, it causes pine needles to produce dense dew (honeydew) which can lead to sooty mold (black filamentous saprophytic ascomycetes). Although common chemical and physical strategies are used to prevent the disease caused by C. pinitabulaeformis Zhang et Zhang, new strategies based on biological and/or genetic approaches are promising to control and eradicate the disease. However, there is no information about genomics, proteomics or transcriptomics to allow the design of new control strategies for this pine aphid. We used next generation sequencing technology to sequence the transcriptome of C. pinitabulaeformis Zhang et Zhang and built a transcriptome database. We identified 80,259 unigenes assigned for Gene Ontology (GO) terms and information for a total of 11,609 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs). A total of 10,806 annotated unigenes were analyzed to identify the represented biological pathways, among them 8,845 unigenes matched with 228 KEGG pathways. In addition, our data describe propagative viruses, nutrition-related genes, detoxification related molecules, olfactory related receptors, stressed-related protein, putative insecticide resistance genes and possible insecticide targets. Moreover, this study provides valuable information about putative insecticide resistance related genes and for the design of new genetic/biological based strategies to manage and control C. pinitabulaeformis Zhang et Zhang populations.
Collapse
Affiliation(s)
- Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Zhicheng Huang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | | | - Xiaoli Zhu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xiong Guan
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| |
Collapse
|
61
|
Mitchell RF, Hall LP, Reagel PF, McKenna DD, Baker TC, Hildebrand JG. Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:99-109. [PMID: 28078425 DOI: 10.1007/s00359-016-1138-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/24/2023]
Abstract
The Asian longhorned beetle Anoplophora glabripennis (Motchulsky) is an exotic forest pest that has repeatedly invaded North America and Europe from Asia, and has the potential to kill millions of trees and cause billions of dollars in damage. Traps baited with an attractive mixture of volatile organic compounds from hosts have been of limited success in monitoring invasion sites. We propose that lures might be improved through studying the olfactory system of adult beetles, especially the gene family of odorant receptors (ORs) and the structure of the antennal lobes of the brain. Here, we report identification of 132 ORs in the genome of A. glabripennis (inclusive of one Orco gene and 11 pseudogenes), some of which are orthologous to known pheromone receptors of other cerambycid beetles. We also identified three ORs that are strongly biased toward expression in the female transcriptome, and a single OR strongly biased toward males. Three-dimensional reconstruction of the antennal lobes of adults suggested a male-specific macroglomerulus and several enlarged glomeruli in females. We predict that functional characterization of ORs and glomeruli will lead to identification of key odorants in the life history of A. glabripennis that may aid in monitoring and controlling future invasions.
Collapse
Affiliation(s)
- Robert F Mitchell
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biology, University of Wisconsin Oshkosh, 142 Halsey Science Center, 800 Algoma Blvd., Oshkosh, WI, 54901, USA.
| | - Loyal P Hall
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Thomas C Baker
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - John G Hildebrand
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
62
|
Evidence that Cerambycid Beetles Mimic Vespid Wasps in Odor as well as Appearance. J Chem Ecol 2016; 43:75-83. [PMID: 27995365 DOI: 10.1007/s10886-016-0800-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/20/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
We present evidence that cerambycid species that are supposed mimics of vespid wasps also mimic their model's odor by producing spiroacetals, common constituents of vespid alarm pheromones. Adults of the North American cerambycids Megacyllene caryae (Gahan) and Megacyllene robiniae (Forster) are conspicuously patterned yellow and black, and are believed to be mimics of aculeate Hymenoptera, such as species of Vespula and Polistes. Adult males of M. caryae produce an aggregation-sex pheromone, but both sexes produce a pungent odor when handled, which has been assumed to be a defensive response. Headspace aerations of agitated females of M. caryae contained 16 compounds with mass spectra characteristic of spiroacetals of eight distinct chemical structures, with the dominant compound being (7E,2E)-7-ethyl-2-methyl-1,6-dioxaspiro[4.5]decane. Headspace samples of agitated males of M. caryae contained five of the same components, with the same dominant compound. Females of M. robiniae produced six different spiroacetals, one of which was not produced by M. caryae, (2E,7E)-2-ethyl-7-methyl-1,6-dioxaspiro[4.5]decane, and five that were shared with M. caryae, including the dominant (2E,8E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. The latter compound is the sole spiroacetal produced by both males and females of a South American cerambycid species, Callisphyris apicicornis (Fairmaire & Germain), which is also thought to be a wasp mimic. Preliminary work also identified spiroacetals of similar or identical structure released by vespid wasps that co-occur with the Megacyllene species.
Collapse
|
63
|
Zhang B, Zhang W, Nie RE, Li WZ, Segraves KA, Yang XK, Xue HJ. Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:108-118. [PMID: 27836740 DOI: 10.1016/j.ibmb.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Divergence in chemosensory traits has been posited as an important component of chemosensory speciation in insects. In particular, chemosensory genes expressed in the peripheral sensory neurons are likely to influence insect behaviors such as preference for food, oviposition sites, and mates. Despite their key role in insect behavior and potentially speciation, the underlying genetic basis for divergence in chemosensory traits remains largely unexplored. One way to ascertain the role of chemosensory genes in speciation is to make comparisons of these genes across closely related species to detect the genetic signatures of divergence. Here, we used high throughput transcriptome analysis to compare chemosensory genes of the sister leaf beetles species Pyrrhalta maculicollis and P. aenescens, whose sexual isolation and host plant preference are mediated by divergent chemical signals. Although there was low overall divergence between transcriptome profiles, there were a number of genes that were differentially expressed between the species. Furthermore, we also detected two chemosensory genes under positive selection, one of which that was also differentially expressed between the species, suggesting a possible role for these genes in chemical-based premating reproductive isolation and host use. Combined with the available chemical and ecological work in this system, further studies of the divergent chemosensory genes presented here will provide insight into the process of chemosensory speciation among Pyrrhalta beetles.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-E Nie
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Zhu Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, United States; Archbold Biological Station, 123 Main Drive, Venus, FL 33960, United States.
| | - Xing-Ke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huai-Jun Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
64
|
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM, Ahn SJ, Arsala D, Benoit JB, Blackmon H, Bledsoe T, Bowsher JH, Busch A, Calla B, Chao H, Childers AK, Childers C, Clarke DJ, Cohen L, Demuth JP, Dinh H, Doddapaneni H, Dolan A, Duan JJ, Dugan S, Friedrich M, Glastad KM, Goodisman MAD, Haddad S, Han Y, Hughes DST, Ioannidis P, Johnston JS, Jones JW, Kuhn LA, Lance DR, Lee CY, Lee SL, Lin H, Lynch JA, Moczek AP, Murali SC, Muzny DM, Nelson DR, Palli SR, Panfilio KA, Pers D, Poelchau MF, Quan H, Qu J, Ray AM, Rinehart JP, Robertson HM, Roehrdanz R, Rosendale AJ, Shin S, Silva C, Torson AS, Jentzsch IMV, Werren JH, Worley KC, Yocum G, Zdobnov EM, Gibbs RA, Richards S. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol 2016; 17:227. [PMID: 27832824 PMCID: PMC5105290 DOI: 10.1186/s13059-016-1088-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. RESULTS The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. CONCLUSIONS Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
Collapse
Affiliation(s)
- Duane D. McKenna
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
- Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152 USA
| | - Erin D. Scully
- USDA, Agricultural Research Service, Center for Grain and Animal Health, Stored Product Insect and Engineering Research Unit, Manhattan, KS 66502 USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Scott M. Geib
- USDA, Agricultural Research Service, Daniel K Inouye US Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit, Hilo, HI 96720 USA
| | - Robert F. Mitchell
- Center for Insect Science and Department of Neuroscience, University of Arizona, Tucson, AZ 85721 USA
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901 USA
| | - Robert M. Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, Geneva, 1211 Switzerland
- The Massachusetts Institute of Technology and The Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Heath Blackmon
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019 USA
| | - Tiffany Bledsoe
- Center for Insect Science and Department of Neuroscience, University of Arizona, Tucson, AZ 85721 USA
| | - Julia H. Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - André Busch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Bernarda Calla
- USDA, Agricultural Research Service, Daniel K Inouye US Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit, Hilo, HI 96720 USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Anna K. Childers
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Christopher Childers
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Dave J. Clarke
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
| | - Lorna Cohen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jeffery P. Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019 USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Jian J. Duan
- USDA, Agricultural Research Service, Beneficial Insects Introduction Research, Newark, DE 19713 USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Karl M. Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | | | - Stephanie Haddad
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Daniel S. T. Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, Geneva, 1211 Switzerland
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843 USA
| | - Jeffery W. Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Leslie A. Kuhn
- Department of Biochemistry and Molecular Biology, Department of Computers Science and Engineering, and Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - David R. Lance
- USDA, Animal and Plant Health Inspection Service, Plant Pest and Quarantine, Center for Plant Health Science and Technology, Otis Laboratory, Buzzards Bay, MA 02542 USA
| | - Chien-Yueh Lee
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617 Taiwan
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Han Lin
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617 Taiwan
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, Blomington, IN 47405 USA
| | - Shwetha C. Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - David R. Nelson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Subba R. Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546 USA
| | - Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, 50674 Germany
| | - Dan Pers
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Monica F. Poelchau
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Honghu Quan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Ann M. Ray
- Department of Biology, Xavier University, Cincinnati, OH 45207 USA
| | - Joseph P. Rinehart
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Richard Roehrdanz
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Andrew J. Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
| | - Christian Silva
- Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Alex S. Torson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108 USA
| | | | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - George Yocum
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, Geneva, 1211 Switzerland
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
65
|
Hanks LM, Millar JG. Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications. J Chem Ecol 2016; 42:631-54. [PMID: 27501814 DOI: 10.1007/s10886-016-0733-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022]
Abstract
Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.
Collapse
Affiliation(s)
- Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jocelyn G Millar
- Departments of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
66
|
Zhang SF, Kong XB, Wang HB, Zhou G, Yu JX, Liu F, Zhang Z. Sensory and immune genes identification and analysis in a widely used parasitoid wasp Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). INSECT SCIENCE 2016; 23:417-429. [PMID: 26940718 DOI: 10.1111/1744-7917.12330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) is one of the preponderant egg parasitoids of Dendrolimus spp., which are important defoliators of coniferous forests. This parasitoid wasp has been widely released to control pine caterpillar and other lepidopteran pests, but its control efficiency needs to be improved. Sensory systems are crucial for T. dendrolimi to locate hosts, and immunity is probably involved after egg deposition in the host cavity; however, few reports have focused on the molecular mechanism of olfactory detection and survival of T. dendrolimi. It is necessary to identify these genes before further functional research is conducted. In this study, we assembled and analyzed the transcriptome of T. dendrolimi using next-generation sequencing technology. The sequencing and assembly resulted in 38 565 contigs with N50 of 3422 bp. Sequence comparison indicate that T. dendrolimi sequences are very similar to those of another parasitoid Nasonia vitripennis. Then the olfactory, vision, and immune-related gene families were identified, and phylogenetic analyses were performed with these genes from T. dendrolimi and other model insect species. Furthermore, phylogenetic tree with odorant binding proteins of T. dendrolimi and their host Dendrolimus was constructed to determine whether convergent evolution exists. These genes can be valid targets for further gene function research. The present study may help us to understand host location and survival mechanisms of T. dendrolimi and to use them more efficiently for pest control in the future.
Collapse
Affiliation(s)
- Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xiang-Bo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Hong-Bin Wang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Gang Zhou
- Hunan Academy of Forestry, Changsha, China
| | - Jin-Xiu Yu
- Hunan Academy of Forestry, Changsha, China
| | - Fu Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
67
|
Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri. PLoS One 2016; 11:e0155323. [PMID: 27171401 PMCID: PMC4865182 DOI: 10.1371/journal.pone.0155323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri.
Collapse
|
68
|
Ahmed T, Zhang T, Wang Z, He K, Bai S. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum. Sci Rep 2016; 6:24078. [PMID: 27090020 PMCID: PMC4835793 DOI: 10.1038/srep24078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022] Open
Abstract
Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid.
Collapse
Affiliation(s)
- Tofael Ahmed
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Bangladesh Sugarcrop Research Institute, Ishurdi-6620, Pabna, Bangladesh
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
69
|
Dong J, Song Y, Li W, Shi J, Wang Z. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome. PLoS One 2016; 11:e0147768. [PMID: 26812239 PMCID: PMC4727905 DOI: 10.1371/journal.pone.0147768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads.
Collapse
Affiliation(s)
- Junfeng Dong
- Forestry College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yueqin Song
- Forestry College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenliang Li
- Forestry College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jie Shi
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
70
|
Antony B, Soffan A, Jakše J, Abdelazim MM, Aldosari SA, Aldawood AS, Pain A. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 2016; 17:69. [PMID: 26800671 PMCID: PMC4722740 DOI: 10.1186/s12864-016-2362-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background The Red Palm Weevil (RPW) Rhynchophorus ferrugineus (Oliver) is one of the most damaging invasive insect species in the world. This weevil is highly specialized to thrive in adverse desert climates, and it causes major economic losses due to its effects on palm trees around the world. RPWs locate palm trees by means of plant volatile cues and use an aggregation pheromone to coordinate a mass-attack. Here we report on the high throughput sequencing of the RPW antennal transcriptome and present a description of the highly expressed chemosensory gene families. Results Deep sequencing and assembly of the RPW antennal transcriptome yielded 35,667 transcripts with an average length of 857 bp and identified a large number of highly expressed transcripts of odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors/co-receptors (ORs/Orcos), sensory neuron membrane proteins (SNMPs), gustatory receptors (GRs) and ionotropic receptors (IRs). In total, 38 OBPs, 12 CSPs, 76 ORs, 1 Orco, 6 SNMPs, 15 GRs and 10 IRs were annotated in the R. ferrugineus antennal transcriptome. A comparative transcriptome analysis with the bark beetle showed that 25 % of the blast hits were unique to R. ferrugineus, indicating a higher, more complete transcript coverage for R. ferrugineus. We categorized the RPW ORs into seven subfamilies of coleopteran ORs and predicted two new subfamilies of ORs. The OR protein sequences were compared with those of the flour beetle, the cerambycid beetle and the bark beetle, and we identified coleopteran-specific, highly conserved ORs as well as unique ORs that are putatively involved in RPW aggregation pheromone detection. We identified 26 Minus-C OBPs and 8 Plus-C OBPs and grouped R. ferrugineus OBPs into different OBP-subfamilies according to phylogeny, which indicated significant species-specific expansion and divergence in R. ferrugineus. We also identified a diverse family of CSP proteins, as well as a coleopteran-specific CSP lineage that diverged from Diptera and Lepidoptera. We identified several extremely diverged IR orthologues as well as highly conserved insect IR co-receptor orthologous transcripts in R. ferrugineus. Notably, GR orthologous transcripts for CO2-sensing and sweet tastants were identified in R. ferrugineus, and we found a great diversity of GRs within the coleopteran family. With respect to SNMP-1 and SNMP-2 orthologous transcripts, one SNMP-1 orthologue was found to be strikingly highly expressed in the R. ferrugineus antennal transcriptome. Conclusion Our study presents the first comprehensive catalogue of olfactory gene families involved in pheromone and general odorant detection in R. ferrugineus, which are potential novel targets for pest control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2362-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, Chair of Date Palm Research, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, Chair of Date Palm Research, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| | - Mahmoud M Abdelazim
- Department of Plant Protection, Chair of Date Palm Research, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, Chair of Date Palm Research, King Saud University, 11451, Riyadh, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
71
|
Wang Y, Chen Q, Zhao H, Ren B. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis. PLoS One 2016; 11:e0147144. [PMID: 26800515 PMCID: PMC4723088 DOI: 10.1371/journal.pone.0147144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7/9/10, AquaOR17/24/32 and AquaIR4 were highly expressed in the antenna of males, suggesting that these genes were related to sex-specific behaviors, and expression trends that were male specific were observed for most candidate olfactory genes, which supported the existence of a female-produced sex pheromone in A. quadriimpressum. All of these results could provide valuable information and guidance for future functional studies on these genes and provide better molecular knowledge regarding the olfactory system in A. quadriimpressum.
Collapse
Affiliation(s)
- Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- * E-mail:
| |
Collapse
|
72
|
Mitaka Y, Kobayashi K, Mikheyev A, Tin MMY, Watanabe Y, Matsuura K. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite. PLoS One 2016; 11:e0146125. [PMID: 26760975 PMCID: PMC4712011 DOI: 10.1371/journal.pone.0146125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.
Collapse
Affiliation(s)
- Yuki Mitaka
- Laboratory of Insect Ecology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606–8502, Japan
| | - Kazuya Kobayashi
- Laboratory of Insect Ecology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606–8502, Japan
| | - Alexander Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904–0495, Japan
| | - Mandy M. Y. Tin
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904–0495, Japan
| | - Yutaka Watanabe
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904–0495, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606–8502, Japan
| |
Collapse
|
73
|
Li XM, Zhu XY, Wang ZQ, Wang Y, He P, Chen G, Sun L, Deng DG, Zhang YN. Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genomics 2015; 16:1028. [PMID: 26626891 PMCID: PMC4667470 DOI: 10.1186/s12864-015-2236-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since chemosensory genes play key roles in insect behaviour, they can potentially be used as new targets for pest control. The cabbage beetle, Colaphellus bowringi, is a serious insect pest of cruciferous vegetables in China and other Asian countries. However, a systematic identification of the chemosensory genes expressed in the antennae has not been reported. RESULTS We assembled the antennal transcriptome of C. bowringi by using Illumina sequencing technology and identified 104 candidate chemosensory genes by analyzing transcriptomic data, which included transcripts encoding 26 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 43 odorant receptors (ORs), nine ionotropic receptors (IRs), and ten gustatory receptors (GRs). The data obtained are similar to those found in other coleopteran species, suggesting that our approach successfully identified the chemosensory genes of C. bowringi. The expression patterns of 43 OR genes, some of which were predominately found in the antenna or associated with sex-biased expression, were analyzed using quantitative real time RT-PCR (qPCR). CONCLUSIONS Our study revealed that a large number of chemosensory genes are expressed in C. bowringi. These candidate chemosensory genes and their expression profiles in various tissues provide further information on understanding their function in C. bowringi as well as other insects, and identifying potential targets to disrupt the odorant system in C. bowringi so that new methods for pest management can be developed.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yi Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
74
|
Álvarez G, Ammagarahalli B, Hall DR, Pajares JA, Gemeno C. Smoke, pheromone and kairomone olfactory receptor neurons in males and females of the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). JOURNAL OF INSECT PHYSIOLOGY 2015; 82:46-55. [PMID: 26296453 DOI: 10.1016/j.jinsphys.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
The response of antennal olfactory receptor neurons (ORNs) of Monochamus galloprovincialis to several odourants was tested using single sensillum electrophysiology. Behaviourally active pheromone, and kairomone (host and sympatric bark beetle pheromone) odours were tested alongside smoke compounds released by burnt wood that are potentially attractive to the insect. The antennae bore several types of sensilla. Two plate areas in the proximal and distal ends of each antennal segment were covered with basiconic sensilla that responded to the odour stimuli. Sensilla basiconica contained one or two cells of different spike amplitude. The 32 male and 38 female ORNs tested responded with excitations or inhibitions to the different plant odours. In general the response of male and female receptors was very similar so they were pooled to perform a cluster analysis on ORN responses. Six ORNs were clearly specialised for pheromone reception. Responses to kairomone and smoke odours were less specific than those of pheromone, but a group of 9 cells was clearly excited by smoke compounds (mainly eugenol and 4-methyl 2-methoxyphenol), a group of 8 cells was very responsive to α-pinene, β-pinene and cis-verbenol, and a group of 14 cells responded to a wider range of compounds. The rest of the cells (47%) were either non-responsive or slightly inhibited by smoke compounds. Dose-response curves were obtained for several compounds. Different compounds induced significantly different latencies and these appeared to be unrelated to their boiling point.
Collapse
Affiliation(s)
- Gonzalo Álvarez
- Sustainable Forest Management Research Institute, University of Valladolid-CIFOR-INIA, Av. Madrid 44, 34004 Palencia, Spain.
| | - Byrappa Ammagarahalli
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - David R Hall
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Juan A Pajares
- Sustainable Forest Management Research Institute, University of Valladolid-CIFOR-INIA, Av. Madrid 44, 34004 Palencia, Spain
| | - César Gemeno
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
75
|
Brand P, Ramírez SR, Leese F, Quezada-Euan JJG, Tollrian R, Eltz T. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol Biol 2015; 15:176. [PMID: 26314297 PMCID: PMC4552289 DOI: 10.1186/s12862-015-0451-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Background Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. Results We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Conclusions Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0451-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany. .,Department for Evolution and Ecology, Center for Population Biology, University of California Davis, One Shields Avenue, 95616, Davis, USA.
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California Davis, One Shields Avenue, 95616, Davis, USA.
| | - Florian Leese
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany. .,Present address: Faculty of Biology, Aquatic Ecosystems Research, University of Duisburg and Essen, Universitätsstrasse 5, D-45141, Essen, Germany.
| | | | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany.
| | - Thomas Eltz
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany.
| |
Collapse
|
76
|
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00053] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
77
|
Gu XC, Zhang YN, Kang K, Dong SL, Zhang LW. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB), Dendroctonus valens. PLoS One 2015; 10:e0125159. [PMID: 25938508 PMCID: PMC4418697 DOI: 10.1371/journal.pone.0125159] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. RESULTS We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. CONCLUSION The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction.
Collapse
Affiliation(s)
- Xiao-Cui Gu
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
78
|
Mitchell RF, Reagel PF, Wong JCH, Meier LR, Silva WD, Mongold-Diers J, Millar JG, Hanks LM. Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components. J Chem Ecol 2015; 41:431-40. [DOI: 10.1007/s10886-015-0571-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
79
|
Chemosensory gene families in adult antennae of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeidae: Rutelinae). PLoS One 2015; 10:e0121504. [PMID: 25856077 PMCID: PMC4391716 DOI: 10.1371/journal.pone.0121504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The metallic green beetle, Anomala corpulenta (Coleoptera: Scarabaeidae: Rutelinae), is a destructive pest in agriculture and horticulture throughout Asia, including China. Olfaction plays a crucial role in the survival and reproduction of A. corpulenta. As a non-model species, A. corpulenta is poorly understood, and information regarding the molecular mechanisms underlying olfaction in A. corpulenta and other scarab species is scant. METHODOLOGY/PRINCIPLE FINDINGS We assembled separate antennal transcriptome for male and female A. corpulenta using Illumina sequencing technology. The relative abundance of transcripts with gene ontology annotations, including those related to olfaction in males and females was highly similar. Transcripts encoding 15 putative odorant binding proteins, five chemosensory proteins, one sensory neuron membrane protein, 43 odorant receptors, eight gustatory receptors, and five ionotropic receptors were identified. The sequences of all of these chemosensory-related transcripts were confirmed using reverse transcription polymerase chain reaction (RT-PCR), and direct DNA sequencing. The expression patterns of 54 putative chemosensory genes were analyzed using quantitative real time RT-PCR (qRT-PCR). Antenna-specific expression was detected for many of these genes, suggesting that they may have important functions in semiochemical detection. CONCLUSIONS The identification of a large number of chemosensory proteins provides a major resource for the study of the molecular mechanism of odorant detection in A. corpulenta and its chemical ecology. The genes identified, especially those that were expressed at high levels in the antennae may represent novel molecular targets for the development of population control strategies based on the manipulation of chemoreception-driven behaviors.
Collapse
|
80
|
Leitch O, Papanicolaou A, Lennard C, Kirkbride KP, Anderson A. Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia. BMC Genomics 2015; 16:255. [PMID: 25880816 PMCID: PMC4392625 DOI: 10.1186/s12864-015-1466-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Blowflies have relevance in areas of forensic science, agriculture, and medicine, primarily due to the ability of their larvae to develop on flesh. While it is widely accepted that blowflies rely heavily on olfaction for identifying and locating hosts, there is limited research regarding the underlying molecular mechanisms. Using next generation sequencing (Illumina), this research examined the antennal transcriptome of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) to identify members of the major chemosensory gene families necessary for olfaction. RESULTS Representative proteins from all chemosensory gene families essential in insect olfaction were identified in the antennae of the blowfly C. stygia, including 50 odorant receptors, 22 ionotropic receptors, 21 gustatory receptors, 28 odorant binding proteins, 4 chemosensory proteins, and 3 sensory neuron membrane proteins. A total of 97 candidate cytochrome P450s and 39 esterases, some of which may act as odorant degrading enzymes, were also identified. Importantly, co-receptors necessary for the proper function of ligand-binding receptors were identified. Putative orthologues for the conserved antennal ionotropic receptors and candidate gustatory receptors for carbon dioxide detection were also amongst the identified proteins. CONCLUSIONS This research provides a comprehensive novel resource that will be fundamental for future studies regarding blowfly olfaction. Such information presents potential benefits to the forensic, pest control, and medical areas, and could assist in the understanding of insecticide resistance and targeted control through cross-species comparisons.
Collapse
Affiliation(s)
- Olivia Leitch
- National Centre for Forensic Studies, University of Canberra, Canberra, Australia. .,CSIRO Division of Ecosystem Sciences and Food Futures Flagship, Canberra, Australia.
| | - Alexie Papanicolaou
- CSIRO Land and Water Flagship, Canberra, Australia. .,Current Address: Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia.
| | - Chris Lennard
- National Centre for Forensic Studies, University of Canberra, Canberra, Australia. .,Current Address: School of Science and Health, University of Western Sydney, Penrith, Australia.
| | - K Paul Kirkbride
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Australia.
| | - Alisha Anderson
- CSIRO Division of Ecosystem Sciences and Food Futures Flagship, Canberra, Australia.
| |
Collapse
|
81
|
Liu S, Rao XJ, Li MY, Feng MF, He MZ, Li SG. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:44-51. [DOI: 10.1016/j.cbd.2015.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/25/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|
82
|
Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E. Advances in the identification and characterization of olfactory receptors in insects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:55-80. [PMID: 25623337 DOI: 10.1016/bs.pmbts.2014.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Olfactory receptors (ORs) are the key elements of the molecular machinery responsible for the detection of odors in insects. Since their initial discovery in Drosophila melanogaster at the beginning of the twenty-first century, insect ORs have been the focus of intense research, both for fundamental knowledge of sensory systems and for their potential as novel targets for the development of products that could impact harmful behaviors of crop pests and disease vectors. In recent years, studies on insect ORs have entered the genomic era, with an ever-increasing number of OR genes being characterized every year through the sequencing of genomes and transcriptomes. With the upcoming release of genomic sequences from hundreds of insect species, the insect OR family could very well become the largest multigene family known. This extremely rapid identification of ORs in many insects is driving the necessity for the development of high-throughput technologies that will allow the identification of ligands for this unprecedented number of receptors. Moreover, such technologies will also be important for the development of agonists or antagonists that could be used in the fight against pest insects.
Collapse
Affiliation(s)
- Nicolas Montagné
- Institute of Ecology & Environmental Sciences of Paris, UPMC-Sorbonne Universités, Paris, France
| | - Arthur de Fouchier
- Institute of Ecology & Environmental Sciences of Paris, INRA, Versailles, France
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | |
Collapse
|
83
|
Hughes DT, Wang G, Zwiebel LJ, Luetje CW. A determinant of odorant specificity is located at the extracellular loop 2-transmembrane domain 4 interface of an Anopheles gambiae odorant receptor subunit. Chem Senses 2014; 39:761-9. [PMID: 25270378 DOI: 10.1093/chemse/bju048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To explore the structural basis for odorant specificity in odorant receptors of the human malaria vector mosquito, Anopheles gambiae, odorant-binding subunits (Agam\Ors) expressed in Xenopus oocytes in combination with Agam\Orco (coreceptor subunit) were assayed by 2-electrode voltage clamp against 25 structurally related odorants. Agam\Or13 and Agam\Or15 display 82% amino acid identity and had similar, but somewhat distinct odorant response profiles. The ratio of acetophenone to 4-methylphenol responses was used in a mutation-based analysis of Agam\Or15, interchanging 37 disparate residues between Agam\Or15 and Agam\Or13. Eleven mutations caused significant changes in odorant responsiveness. Mutation of alanine 195 resulted in the largest shift in response ratio from Agam\Or15 toward Agam\Or13. Concentration-response analysis for a series of mutations of residue 195 revealed a large effect on acetophenone sensitivity, with EC50 values varying by >1800-fold and correlating with residue side chain length. Similar results were obtained for propiophenone and benzaldehyde. But, for other odorants, such as 4-methylphenol, 4-methylbenzaldehyde, and 4-methylpropiophenone, the effect of mutation was much smaller (EC50 values varied by ≤16-fold). These results show that alanine 195, putatively located at the second extracellular loop/fourth transmembrane domain interface, plays a critical role in determining the odorant response specificity of Agam\Or15.
Collapse
Affiliation(s)
- David T Hughes
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101, USA and Present address: University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Guirong Wang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA Present address: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100101, China
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101, USA and
| |
Collapse
|
84
|
Zhang S, Zhang Z, Wang H, Kong X. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:69-81. [PMID: 24998398 DOI: 10.1016/j.ibmb.2014.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/15/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were further separated into three groups according to their motifs, which will help future functional researches. Surprisingly, no pheromone receptor was identified in the two Dendrolimus species, which may indicate a special pheromone identification mechanism in Dendrolimus. Our work allows for further functional studies of pheromones and host volatile recognition genes, and give novel candidate targets for pest management.
Collapse
Affiliation(s)
- Sufang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China.
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China.
| | - Hongbin Wang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China
| |
Collapse
|
85
|
Engsontia P, Sangket U, Chotigeat W, Satasook C. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J Mol Evol 2014; 79:21-39. [PMID: 25038840 DOI: 10.1007/s00239-014-9633-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/06/2014] [Indexed: 12/22/2022]
Abstract
Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be in the extracellular and transmembrane regions of the newly duplicated genes, which might be associated with the evolution of the new pheromone receptors.
Collapse
Affiliation(s)
- Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand,
| | | | | | | |
Collapse
|
86
|
Bobkov Y, Corey E, Ache B. An inhibitor of Na(+)/Ca(2+) exchange blocks activation of insect olfactory receptors. Biochem Biophys Res Commun 2014; 450:1104-9. [PMID: 24996179 DOI: 10.1016/j.bbrc.2014.06.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023]
Abstract
Earlier we showed that the Na(+)/Ca(2+) exchanger inhibitor, KB-R7943, potently blocks the odor-evoked activity of lobster olfactory receptor neurons. Here we extend that finding to recombinant mosquito olfactory receptors stably expressed in HEK cells. Using whole-cell and outside-out patch clamping and calcium imaging, we demonstrate that KB-R7943 blocks both the odorant-gated current and the odorant-evoked calcium signal from two different OR complexes from the malaria vector mosquito, Anopheles gambiae, AgOr48+AgOrco and AgOr65+AgOrco. Both heteromeric and homomeric (Orco alone) OR complexes were susceptible to KB-R7943 blockade when activated by VUAA1, an agonist that targets the Orco channel subunit, suggesting the Orco subunit may be the target of the drug's action. KB-R7943 represents a valuable tool to further investigate the functional properties of arthropod olfactory receptors and raises the interesting specter that activation of these ionotropic receptors is directly or indirectly linked to a Na(+)/Ca(2+) exchanger, thereby providing a template for drug design potentially allowing improved control of insect pests and disease vectors.
Collapse
Affiliation(s)
- Y Bobkov
- Whitney Laboratory, Center for Smell and Taste, McKnight Brain Institute, United States.
| | - E Corey
- Whitney Laboratory, Center for Smell and Taste, McKnight Brain Institute, United States
| | - B Ache
- Whitney Laboratory, Center for Smell and Taste, McKnight Brain Institute, United States; Depts. of Biology and Neuroscience, Univ. of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
87
|
Andersson MN, Videvall E, Walden KKO, Harris MO, Robertson HM, Löfstedt C. Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae). BMC Genomics 2014; 15:501. [PMID: 24948464 PMCID: PMC4230025 DOI: 10.1186/1471-2164-15-501] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/13/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The chemical senses of insects mediate behaviors that are closely linked to survival and reproduction. The order Diptera contains two model organisms, the vinegar fly Drosophila melanogaster and the mosquito Anopheles gambiae, whose chemosensory genes have been extensively studied. Representing a third dipteran lineage with an interesting phylogenetic position, and being ecologically distinct by feeding on plants, the Hessian fly (Mayetiola destructor Say, Diptera: Cecidomyiidae) genome sequence has recently become available. Among plant-feeding insects, the Hessian fly is unusual in 'reprogramming' the plant to create a superior food and in being the target of plant resistance genes, a feature shared by plant pathogens. Chemoreception is essential for reproductive success, including detection of sex pheromone and plant-produced chemicals by males and females, respectively. RESULTS We identified genes encoding 122 odorant receptors (OR), 28 gustatory receptors (GR), 39 ionotropic receptors (IR), 32 odorant binding proteins, and 7 sensory neuron membrane proteins in the Hessian fly genome. We then mapped Illumina-sequenced transcriptome reads to the genome to explore gene expression in male and female antennae and terminal abdominal segments. Our results reveal that a large number of chemosensory genes have up-regulated expression in the antennae, and the expression is in many cases sex-specific. Sex-specific expression is particularly evident among the Or genes, consistent with the sex-divergent olfactory-mediated behaviors of the adults. In addition, the large number of Ors in the genome but the reduced set of Grs and divergent Irs suggest that the short-lived adults rely more on long-range olfaction than on short-range gustation. We also report up-regulated expression of some genes from all chemosensory gene families in the terminal segments of the abdomen, which play important roles in reproduction. CONCLUSIONS We show that a large number of the chemosensory genes in the Hessian fly genome have sex- and tissue-specific expression profiles. Our findings provide the first insights into the molecular basis of chemoreception in plant-feeding flies, representing an important advance toward a more complete understanding of olfaction in Diptera and its links to ecological specialization.
Collapse
Affiliation(s)
| | - Elin Videvall
- Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Kimberly KO Walden
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
88
|
Chen S, Luetje CW. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit. F1000Res 2014; 3:84. [PMID: 25075297 PMCID: PMC4097363 DOI: 10.12688/f1000research.3825.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 01/05/2023] Open
Abstract
Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control. Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry. Synthetic Orco directed agonists and antagonists have recently been identified. Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants. The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants. To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists. Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system. Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants. Tyramine had effects similar to those of tryptamine, but was less potent. Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae). Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| |
Collapse
|
89
|
Zhou SS, Sun Z, Ma W, Chen W, Wang MQ. De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 9:31-9. [PMID: 24440828 DOI: 10.1016/j.cbd.2013.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
Abstract
We sequenced the antenna transcriptome of the brown planthopper (BPH), Nilaparvata lugens (Stål), a global rice pest, and performed transcriptome analysis on BPH antenna. We obtained about 40million 90bp reads that were assembled into 75,874 unigenes with a mean size of 456bp. Among the antenna transcripts, 32,856 (43%) showed significant similarity (E-value <1e(-5)) to known proteins in the NCBI database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to classify functions of BPH antenna genes. We identified 10 odorant-binding proteins (OBPs), including 7 previously unidentified, and 11 chemosensory proteins (CSPs), including two new members. The expression profiles of 4 OBPs and 2 CSPs were determined by q-PCR for antenna, abdomen, leg and wing of insects of different age, gender, and mating status including two BPH adult wing-morphology types. NlugCSP10 and 4 OBPs appeared to be antenna-specific because they were highly and differentially expressed in male and female antennae. NlugCSP11 was expressed ubiquitously, with particularly high expression in wings. The transcript levels of several olfactory genes depended on adult wing form, age, gender, and mating status, although no clear expression patterns were determined.
Collapse
Affiliation(s)
- Shuang-Shuang Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ze Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wei Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
90
|
Gress JC, Robertson HM, Weaver DK, Dlakić M, Wanner KW. Odorant receptors of a primitive hymenopteran pest, the wheat stem sawfly. INSECT MOLECULAR BIOLOGY 2013; 22:659-667. [PMID: 23964849 DOI: 10.1111/imb.12053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The wheat stem sawfly, Cephus cinctus, is an herbivorous hymenopteran that feeds exclusively on members of the Graminae family. Synanthropically, it has become one of the most important insect pests of wheat grown in the northern Great Plains region of the USA and Canada. Insecticides are generally ineffective because of the wheat stem sawfly's extended adult flight period and its inaccessible larval stage, during which it feeds within the wheat stems, making it virtually intractable to most pest management strategies. While research towards integrated pest management strategies based on insect olfaction has proved promising, nothing is known about the molecular basis of olfaction in this important pest species. In this study we identified 28 unique odorant receptor (Or) transcripts from an antennal transcriptome. A phylogenetic analysis with the predicted Ors from the honey bee and jewel wasp genomes revealed at least four clades conserved amongst all three Hymenoptera species. Antennal expression levels were analysed using quantitative real-time PCR, and one male-biased and five female-biased Ors were identified. This study provides the basis for future functional analyses to identify behaviourally active odours that can be used to help develop olfactory-mediated pest management tools.
Collapse
Affiliation(s)
- J C Gress
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| | | | | | | | | |
Collapse
|
91
|
Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 2013; 14:198. [PMID: 23517120 PMCID: PMC3610139 DOI: 10.1186/1471-2164-14-198] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/13/2013] [Indexed: 12/05/2022] Open
Abstract
Background The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Results Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. Conclusions The protein families important for chemoreception have now been identified in three coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.
Collapse
Affiliation(s)
- Martin N Andersson
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
2,3-Hexanediols as sex attractants and a female-produced sex pheromone for cerambycid beetles in the prionine genus Tragosoma. J Chem Ecol 2012; 38:1151-8. [PMID: 22923142 DOI: 10.1007/s10886-012-0181-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Recent work suggests that closely related cerambycid species often share pheromone components, or even produce pheromone blends of identical composition. However, little is known of the pheromones of species in the subfamily Prioninae. During field bioassays in California, males of three species in the prionine genus Tragosoma were attracted to 2,3-hexanediols, common components of male-produced aggregation pheromones of beetles in the subfamily Cerambycinae. We report here that the female-produced sex pheromone of Tragosoma depsarium "sp. nov. Laplante" is (2R,3R)-2,3-hexanediol, and provide evidence from field bioassays and electroantennography that the female-produced pheromone of both Tragosoma pilosicorne Casey and T. depsarium "harrisi" LeConte may be (2S,3R)-2,3-hexanediol. Sexual dimorphism in the sculpting of the prothorax suggests that the pheromone glands are located in the prothorax of females. This is the second sex attractant pheromone structure identified from the subfamily Prioninae, and our results provide further evidence of pheromonal parsimony within the Cerambycidae, in this case extending across both subfamily and gender lines.
Collapse
|