51
|
Li Q, Hu F, Zhu B, Ni F, Yao Z. Insights into ulvan lyase: review of source, biochemical characteristics, structure and catalytic mechanism. Crit Rev Biotechnol 2020; 40:432-441. [PMID: 32050804 DOI: 10.1080/07388551.2020.1723486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ulvan, a kind of polyanionic heteropolysaccharide consisting of 3-sulfated rhamnose, uronic acids (iduronic acid and glucuronic acid) and xylose, has been widely applied in food and cosmetic industries. In addition, ulvan can be converted into fermentable monosaccharides through the cascade system of carbohydrate-active enzymes. Ulvan lyases can degrade ulvan into ulvan oligosaccharides, which is the first step in the fully degradation of ulvan. Various ulvan lyases have been cloned and characterized from marine bacteria and grouped into five polysaccharide lyase (PL) families, namely: PL24, PL25, PL28, PL37 and PL40 families. The elucidation of the biochemical characterization, action pattern and catalytic mechanism of ulvan lyase would definitely enhance our understanding of the deep utilization of marine bioresource and marine carbon cycling. In this review, we summarized the recent progresses about the source and biochemical characteristics of ulvan lyase. Additionally, the structural characteristics and catalytic mechanisms have been introduced in detail. This comprehensive information should be helpful regarding the application of ulvan lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
52
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
53
|
Bernal-Chávez SA, Alcalá-Alcalá S, Cerecedo D, Ganem-Rondero A. Platelet lysate-loaded PLGA nanoparticles in a thermo-responsive hydrogel intended for the treatment of wounds. Eur J Pharm Sci 2020; 146:105231. [PMID: 32007518 DOI: 10.1016/j.ejps.2020.105231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
A thermo-responsive hydrogel of Pluronic F-127, containing PLGA nanoparticles loaded with a platelet lysate for wound treatment, was prepared. A high rate of incorporation of the lysate (about 80%) in the nanoparticles was achieved by the double emulsion-solvent evaporation method. The nanoparticles were characterized by measuring their size (about 318 nm), polydispersity index (0.29) and Z potential (-17.6), as well as by infrared and calorimetric techniques, and determining their stability as a function of time. It was found through measures of transepidermal water loss that the hydrogel containing the nanoparticles was capable of providing a semi-occlusive environment, necessary for the recovery of a wound. The inclusion of lysate in nanoparticles and this in turn in the hydrogel allowed a gradual release, which would avoid contact of the total dose with the biological medium. Studies with fibroblasts and in vivo in mice showed that the hydrogel containing nanoparticles with platelet lysate promoted faster tissue regeneration than the lysate in its free form, so this system is presented as a good alternative for the treatment of wounds.
Collapse
Affiliation(s)
- Sergio Alberto Bernal-Chávez
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México 54740, México
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Sección de Estudios de Posgrado, Instituto Politécnico Nacional, Ciudad de México, México
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México 54740, México.
| |
Collapse
|
54
|
Study of 1D and 2D Carbon Nanomaterial in Alginate Films. NANOMATERIALS 2020; 10:nano10020206. [PMID: 31991605 PMCID: PMC7074849 DOI: 10.3390/nano10020206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Alginate-based materials hold great promise in bioengineering applications such as skin wound healing and scaffolds for tissue engineering. Nevertheless, cell adhesion of mammalian cells on these hydrophilic materials is very poor. In cases such as polycaprolactone, poly(hydroxy-3-butyrate-co-3-valerate) and gelatin, the incorporation of hydrophobic carbon nanofibers (CNFs) and hydrophilic graphene oxide (GO) has shown significant improvement of cell adhesion and proliferation. The incorporation of these carbon nanomaterials (CNMs) into alginate films can enhance their mechanical performance, wettability, water diffusion and antibacterial properties. Herein, we report the effect of adding these CNMs into alginate films on cell adhesion for the first time. Thus, the results of this study showed that these nanocomposites are non-cytotoxic in human keratinocyte HaCaT cells. Nevertheless, contrary to what has been reported for other polymers, cell adhesion on these advanced alginate-based composites was not improved. Therefore, both types of composite films possess similar biological behavior, in terms of cell adhesion and non-cytotoxicity, and enhanced physical and antibacterial properties in comparison to neat alginate for potential biomedical and bioengineering applications.
Collapse
|
55
|
Hosseini Salekdeh SS, Daemi H, Zare-Gachi M, Rajabi S, Bazgir F, Aghdami N, Nourbakhsh MS, Baharvand H. Assessment of the Efficacy of Tributylammonium Alginate Surface-Modified Polyurethane as an Antibacterial Elastomeric Wound Dressing for both Noninfected and Infected Full-Thickness Wounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3393-3406. [PMID: 31874022 DOI: 10.1021/acsami.9b18437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Risk factors of nonhealing wounds include persistent bacterial infections and rapid onset of dehydration; therefore, wound dressings should be used to accelerate the healing process by helping to disinfect the wound bed and provide moisture. Herein, we introduce a transparent tributylammonium alginate surface-modified cationic polyurethane (CPU) wound dressing, which is appropriate for full-thickness wounds. We studied the physicochemical properties of the dressing using Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and scanning electron microscopy, energy-dispersive X-ray, and thermomechanical analyses. The surface-modified polyurethane demonstrated improved hydrophilicity and tensile Young's modulus that approximated natural skin, which was in the range of 1.5-3 MPa. Cell viability and in vitro wound closure, assessed by MTS and the scratch assay, confirmed that the dressing was cytocompatible and possessed fibroblast migratory-promoting activity. The surface-modified CPU had up to 100% antibacterial activity against Staphylococcus aureus and Escherichia coli as Gram-positive and Gram-negative bacteria, respectively. In vivo assessments of both noninfected and infected wounds revealed that the surface-modified CPU dressing resulted in a faster healing rate because it reduced the persistent inflammatory phase, enhanced collagen deposition, and improved the formation of mature blood vessels when compared with CPU and commercial Tegaderm wound dressing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohammad Sadegh Nourbakhsh
- Biomaterial Group, Faculty of New Sciences and Technologies , Semnan University , 35131-19111 Semnan , Iran
| | - Hossein Baharvand
- Department of Developmental Biology , University of Science and Culture , 13145-871 Tehran , Iran
| |
Collapse
|
56
|
Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d'Ayala G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr Polym 2020; 233:115839. [PMID: 32059889 DOI: 10.1016/j.carbpol.2020.115839] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Wound healing can lead to complex clinical problems, hence finding an efficient approach to enhance the healing process is necessary. An ideal wound dressing should treat wounds at reasonable costs, with minimal inconveniences for the patient. Chitosan is one of the most investigated biopolymers for wound healing applications due to its biocompatibility, biodegradability, non-toxicity, and antimicrobial activity. Moreover, chitosan and its derivative have attracted numerous attentions because of the accelerating wound healing, and easy processability into different forms (gels, foams, membranes, and beads). All these properties make chitosan-based materials particularly versatile and promising for wound dressings. Besides, secondary natural metabolites could potentially act like the antimicrobial and anti-inflammatory agents and accelerate the healing process. This review collected almost all studies regarding natural compounds applications in wound healing by focusing on the chitosan-based bioactive wound dressing systems. An accurate analysis of different chitosan formulations and the influence of bioactive compounds on their wound healing properties are reported.
Collapse
Affiliation(s)
- Arash Moeini
- Department of Chemical Sciences, Universityof Naples "Federico II", Italy.
| | - Parisa Pedram
- Department of Chemical, Materialsand Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Italy
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials, National Research Council, Italy
| | | |
Collapse
|
57
|
Zargarzadeh M, Amaral AJR, Custódio CA, Mano JF. Biomedical applications of laminarin. Carbohydr Polym 2019; 232:115774. [PMID: 31952585 DOI: 10.1016/j.carbpol.2019.115774] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
The ocean is par excellence a fertile territory of biodiversity on our planet. Marine-derived polysaccharides have been applied as functional materials in biomedicine due to their attractive bioactive properties, safety, high availability and low-cost production. Laminarin (or laminaran), a low molecular weight β-glucan storage polysaccharide present in brown algae, can be (bio-) chemically modified to enhance its biological activity and employed in cancer therapies, drug/gene delivery, tissue engineering, antioxidant and anti-inflammatory functions. This review provides a brief overview on laminarin characteristics, modification strategies and highlights its pivotal biomedical applications.
Collapse
Affiliation(s)
- Mehrzad Zargarzadeh
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adérito J R Amaral
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Catarina A Custódio
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
58
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
59
|
Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol 2019; 138:854-865. [PMID: 31351963 DOI: 10.1016/j.ijbiomac.2019.07.155] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Skin wound dressings are commonly used to stimulate and enhance skin tissue repair. Even if wounds seem easy to repair for clinicians and to replicate in an in vitro set-up for scientists, chronic wounds remain currently an open challenge in skin tissue engineering for patients with complementary diseases. The seemingly simple process of skin healing hides a heterogenous sequence of events, specific timing, and high level of organization and coordination among the involved cell types. Taken together, all these aspects make wound healing a unique process, but we are not yet able to completely repair the chronic wounds or to reproduce them in vitro with high fidelity. This review highlights the main characteristics and properties of a natural polymer, which is widely used as biomaterial, namely collagen and of its denatured form, gelatin. Available wound dressings based on collagen/gelatin and proposed variants loaded with bioactive compounds derived from plants are presented. Applications of these composite biomaterials are discussed with emphasis on skin wound healing. A perspective on current issues is given in the light of future research. The emerging technologies support the development of innovative dressings based exclusively on natural constituents, either polymeric or bioactive compounds.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
60
|
Chen X, Yue Z, Winberg PC, Dinoro JN, Hayes P, Beirne S, Wallace GG. Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater Sci 2019; 7:3497-3509. [PMID: 31290861 DOI: 10.1039/c9bm00480g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An array of biological properties is demonstrated in the category of extracts broadly known as ulvans, including antibacterial, anti-inflammatory and anti-coagulant activities. However, the development of this category in biomedical applications is limited due to high structural variability across species and a lack of consistent and scalable sources. In addition, the modification and formulation of these molecules is still in its infancy with regard to progressing to product development. Here, a sulfated and rhamnose-rich, xylorhamno-uronic acid (XRU) extract from the cell wall of a controlled source of cultivated Australian ulvacean macroalgae resembles mammalian connective glycosaminoglycans. It is therefore a strong candidate for applications in wound healing and tissue regeneration. This study targets the development of polysaccharide modification for fabrication of 3D scaffolds for skin cell (fibroblast) culture. The XRU extract is methacrylated and UV-crosslinked to produce hydrogels with tuneable mechanical properties. The hydrogels demonstrate high cell viability and support cell proliferation over 14 days, which are far more functional than comparable alginate gels. Importantly, an XRU-based bioink is developed for extrusion printing 3D constructs both with and without cell encapsulation. These results highlight the close to product potential of this rhamnose-rich XRU extract as a promising biomaterial toward wound healing. Future studies should be focused on in-depth in vitro characterizations to examine the role of the material in dermal extracellular matrix (ECM) secretion of 3D printed structures, and in vivo characterizations to assess its capacity in supporting wound healing.
Collapse
Affiliation(s)
- Xifang Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Pia C Winberg
- Venus Shell Systems Pty Ltd, Mundamia, NSW 2540, Australia and School of Medicine, Science, Medicine & Health, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jeremy N Dinoro
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Patricia Hayes
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
61
|
Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int 2019; 2019:1286054. [PMID: 31354835 PMCID: PMC6636521 DOI: 10.1155/2019/1286054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Skin tissue engineering has attained several clinical milestones making remarkable progress over the past decades. Skin is inhabited by a plethora of cells spatiotemporally arranged in a 3-dimensional (3D) matrix, creating a complex microenvironment of cell-matrix interactions. This complexity makes it difficult to mimic the native skin structure using conventional tissue engineering approaches. With the advent of newer fabrication strategies, the field is evolving rapidly. However, there is still a long way before an artificial skin substitute can fully mimic the functions and anatomical hierarchy of native human skin. The current focus of skin tissue engineers is primarily to develop a 3D construct that maintains the functionality of cultured cells in a guided manner over a period of time. While several natural and synthetic biopolymers have been translated, only partial clinical success is attained so far. Key challenges include the hierarchical complexity of skin anatomy; compositional mismatch in terms of material properties (stiffness, roughness, wettability) and degradation rate; biological complications like varied cell numbers, cell types, matrix gradients in each layer, varied immune responses, and varied methods of fabrication. In addition, with newer biomaterials being adopted for fabricating patient-specific skin substitutes, issues related to escalating processing costs, scalability, and stability of the constructs under in vivo conditions have raised some concerns. This review provides an overview of the field of skin regenerative medicine, existing clinical therapies, and limitations of the current techniques. We have further elaborated on the upcoming tissue engineering strategies that may serve as promising alternatives for generating functional skin substitutes, the pros and cons associated with each technique, and scope of their translational potential in the treatment of chronic skin ailments.
Collapse
Affiliation(s)
- Amtoj Kaur
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
62
|
|
63
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell–microenvironment interactions, and solving the great issues of regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing
- Tsinghua University
- Beijing 100084
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|
64
|
Sellimi S, Maalej H, Rekik DM, Benslima A, Ksouda G, Hamdi M, Sahnoun Z, Li S, Nasri M, Hajji M. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int J Biol Macromol 2018; 119:633-644. [PMID: 30063934 DOI: 10.1016/j.ijbiomac.2018.07.171] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022]
Abstract
Laminaran, a polysaccharide extracted from marine algae, exhibits attractive properties being non-toxic, hydrophilic and biodegradable. The aim of this study was to investigate the effectiveness of a cream based on the brown seaweed Cystoseira barbata laminaran (CBL) for healing full thickness wounds induced on rats. The antibacterial activity of CBL was evaluated against Gram positive and Gram negative bacteria and the antioxidant properties were assessed using five different assays. To highlight the healing effectiveness of CBL-based cream, the response to treatment was assessed by macroscopic, histologic and biochemical parameters and was compared to controls. CBL, recovered (7.27%) by ultrafiltration (1-10 kDa) and predominantly consisted of (1 → 3)-linked β-d-glucopyranose residues with a small level of (1 → 6)-glycosidic bonds, showed noticeable antioxidant and antibacterial properties. The cream containing CBL as an active ingredient exerted a promoting healing effect. The wound contraction reached 98.57 ± 1.31% after thirteen days of treatment. The derma in CBL treated group is properly arranged and revealed an improved collagen deposition and an increased fibroblast and vascular densities compared with the control groups. Overall, these results established, for the first time, a scientific in vivo evidence of the efficiency of CBL as a wound healing agent of interest in modern medicine.
Collapse
Affiliation(s)
- Sabrine Sellimi
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia.
| | - Hana Maalej
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia
| | - Dorsaf Moalla Rekik
- Laboratoire de Pharmacologie, Faculté de Médecine Sfax, Avenue Majida Boulila, 3028 Sfax, Tunisia
| | - Abdelkarim Benslima
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia
| | - Ghada Ksouda
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia
| | - Marwa Hamdi
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia
| | - Zouheir Sahnoun
- Laboratoire de Pharmacologie, Faculté de Médecine Sfax, Avenue Majida Boulila, 3028 Sfax, Tunisia
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier Cedex 5, France
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia
| | - Mohamed Hajji
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1171, Sfax 3000, Tunisia
| |
Collapse
|
65
|
Farzamfar S, Salehi M, Ehterami A, Naseri-Nosar M, Vaez A, Zarnani AH, Sahrapeyma H, Shokri MR, Aleahmad M. Promotion of excisional wound repair by a menstrual blood-derived stem cell-seeded decellularized human amniotic membrane. Biomed Eng Lett 2018; 8:393-398. [PMID: 30603224 DOI: 10.1007/s13534-018-0084-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/19/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
This is the first study demonstrating the efficacy of menstrual blood-derived stem cell (MenSC) transplantation via decellularized human amniotic membrane (DAM), for the promotion of skin excisional wound repair. The DAM was seeded with MenSCs at the density of 3 × 104 cells/cm2 and implanted onto a rat's 1.50 × 1.50 cm2 full-thickness excisional wound defect. The results of wound closure and histopathological examinations demonstrated that the MenSC-seeded DAM could significantly improve the wound healing compared with DAM-treatment. All in all, our data indicated that the MenSCs can be a potential source for cell-based therapies to regenerate skin injuries.
Collapse
Affiliation(s)
- Saeed Farzamfar
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- 2Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,3Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- 2Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Naseri-Nosar
- 3Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hassan Zarnani
- 4Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,5Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamed Sahrapeyma
- 6Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Shokri
- 7Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aleahmad
- 4Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Alencar-Silva T, Braga MC, Santana GOS, Saldanha-Araujo F, Pogue R, Dias SC, Franco OL, Carvalho JL. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv 2018; 36:2019-2031. [PMID: 30118811 DOI: 10.1016/j.biotechadv.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides (AMPs) are mostly endogenous, cationic, amphipathic polypeptides, produced by many natural sources. Recently, many biological functions beyond antimicrobial activity have been attributed to AMPs, and some of these have attracted the attention of the cosmetics industry. AMPs have revealed antioxidant, self-renewal and pro-collagen effects, which are desirable in anti-aging cosmetics. Additionally, AMPs may also be customized to act on specific cellular targets. Here, we review the recent literature that highlights the many possibilities presented by AMPs, focusing on the relevance and impact that this potentially novel class of active cosmetic ingredients might have in the near future, creating new market outlooks for the cosmetic industry with these molecules as a viable alternative to conventional cosmetics.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Mariana Carolina Braga
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gustavo Oliveira Silva Santana
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Robert Pogue
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Simoni Campos Dias
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Universidade de Brasília, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasília/DF, 70910-900, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
67
|
Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 2018; 115:165-175. [DOI: 10.1016/j.ijbiomac.2018.04.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
|
68
|
Kogelenberg SV, Yue Z, Dinoro JN, Baker CS, Wallace GG. Three-Dimensional Printing and Cell Therapy for Wound Repair. Adv Wound Care (New Rochelle) 2018; 7:145-155. [PMID: 29755850 DOI: 10.1089/wound.2017.0752] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/29/2017] [Indexed: 12/16/2022] Open
Abstract
Significance: Skin tissue damage is a major challenge and a burden on healthcare systems, from burns and other trauma to diabetes and vascular disease. Although the biological complexities are relatively well understood, appropriate repair mechanisms are scarce. Three-dimensional bioprinting is a layer-based approach to regenerative medicine, whereby cells and cell-based materials can be dispensed in fine spatial arrangements to mimic native tissue. Recent Advances: Various bioprinting techniques have been employed in wound repair-based skin tissue engineering, from laser-induced forward transfer to extrusion-based methods, and with the investigation of the benefits and shortcomings of each, with emphasis on biological compatibility and cell proliferation, migration, and vitality. Critical issues: Development of appropriate biological inks and the vascularization of newly developed tissues remain a challenge within the field of skin tissue engineering. Future Directions: Progress within bioprinting requires close interactions between material scientists, tissue engineers, and clinicians. Microvascularization, integration of multiple cell types, and skin appendages will be essential for creation of complex skin tissue constructs.
Collapse
Affiliation(s)
- Sylvia van Kogelenberg
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
- Department of Orthopaedics, University of Utrecht, Utrecht, The Netherlands
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| | - Jeremy N. Dinoro
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| | - Christopher S. Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Melbourne, Australia
- Department of Medicine (Dermatology), University of Melbourne, Melbourne, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| |
Collapse
|
69
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
70
|
Ranjbar R, Yousefi A. Effects of Aloe Vera and Chitosan Nanoparticle Thin-Film Membranes on Wound Healing in Full Thickness Infected Wounds with Methicillin Resistant Staphylococcus Aureus. Bull Emerg Trauma 2018; 6:8-15. [PMID: 29379804 DOI: 10.29252/beat-060102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective To assess effect of Aleo vera with chitosan nanoparticle biofilm on wound healing in full thickness infected wounds with antibiotic resistant gram positive bacteria. Method Thirty rats were randomized into five groups of six rats each. Group I: Animals with uninfected wounds treated with 0.9% saline solution. Group II: Animals with infected wounds treated with saline. Group III: Animals with infected wounds were dressed with chitosan nanoparticle thin-film membranes. Group IV: Animals with infected wounds were treated topically with Aloe vera and Group V: Animals with infected wounds were treated topically with Aloe vera and dressed with chitosan nanoparticle thin-film membranes. Wound size was measured on 6, 9, 12, 15, 18 and 21days after surgery. Results Microbiology, reduction in wound area and hydroxyproline contents indicated that there was significant difference (p<0.05) between group V and other groups. Quantitative histological studies and mean rank of the qualitative studies demonstrated that there was significant difference (p<0.05) between group V and other groups. Conclusion The Aloe vera with chitosan nanoparticle thin-film membranes had a reproducible wound healing potential and hereby justified its use in practice.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yousefi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
71
|
Wang B, Liu D, Wang C, Wang Q, Zhang H, Liu G, He Q, Zhang L. Tentacle extract from the jellyfish Cyanea capillata increases proliferation and migration of human umbilical vein endothelial cells through the ERK1/2 signaling pathway. PLoS One 2017; 12:e0189920. [PMID: 29261770 PMCID: PMC5738079 DOI: 10.1371/journal.pone.0189920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions.
Collapse
Affiliation(s)
- Beilei Wang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Dan Liu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chao Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qianqian Wang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hui Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Guoyan Liu
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qian He
- Department of Gynecology, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Liming Zhang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
72
|
Raghavankutty M, Jose GM, Sulaiman M, Kurup GM. Evaluating the biocompatibility of marine-derived chitosan–collagen polymeric blends for biomedical applications. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517747892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The capability of biomaterials such as chitosan and collagen to support cell growth and proliferation makes them promising candidates in biomedical applications. Chitosan and collagen from marine world have already been proved to be better alternatives to those from terrestrial world. In the current study, chitosan and collagen were isolated from shrimp shell and fish skin, respectively. The polymers were characterized by ultraviolet-visible spectra analysis, Fourier transform infrared-attenuated total reflectance analysis, CHN analysis, and sodium dodedcyl sulfate polyacrylamide gel electrophoresis analysis. Interpenetrating blends of these polymers were synthesized in the form of films in two different ratios. Glutaraldehyde was used as an additional cross-linker to provide more stability to the blends. The polymeric blends were also characterized by Fourier transform infrared-attenuated total reflectance, scanning electron microscopy analysis, and swelling studies. The biocompatibility evaluation included hemocompatibility and cytocompatibility studies. Fourier transform infrared-attenuated total reflectance analysis of films confirmed the presence of characteristic functional groups and molecular interactions of the two polymers in the two blends. Homogenous blending of the two biopolymers in both film compositions was confirmed by the smooth surface images in scanning electron microscopy analysis. The swelling study revealed that both the films can effectively transfer water across it, hence nutrients and waste materials. During hemocompatibility evaluations, no red blood cell aggregation was observed and both the films adsorbed plasma proteins, predominantly albumin, when they made contact with blood. Although one of the films showed slightly higher hemolysis, the value was within the acceptable range. More than 90% viability obtained in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay shows the non-toxic nature of the two films. No sign of morphological changes to L929 cells was seen when they were in direct contact with both films. Live/dead assay using acridine orange/ethidium bromide cocktail showed that the films have not induced apoptosis to the L929 cells, which further asserts their biocompatible nature.
Collapse
Affiliation(s)
| | - Geena Mariya Jose
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - Mohsin Sulaiman
- Department of Aridland Agriculture, Faculty of Food and Agriculture, United Arab Emirates University, Al-Ain, UAE
| | | |
Collapse
|
73
|
Marine-derived bioactive compounds for value-added applications in bio- and non-bio sectors. JOURNAL OF CLEANER PRODUCTION 2017. [DOI: 10.1016/j.jclepro.2017.05.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
74
|
Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater 2017; 4:325-334. [PMID: 29026647 PMCID: PMC5633688 DOI: 10.1093/rb/rbx025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023] Open
Abstract
Treatment of acute and chronic wounds is one of the primary challenges faced by doctors. Bioderived materials have significant potential clinical value in tissue injury treatment and defect reconstruction. Various strategies, including drug loading, addition of metallic element(s), cross-linking and combining two or more distinct types of materials with complementary features, have been used to synthesize more suitable materials for wound healing. In this review, we describe the recent developments made in the processing of bioderived materials employed for cutaneous wound healing, including newly developed materials such as keratin and soy protein. The focus was on the key properties of the bioderived materials that have shown great promise in improving wound healing, restoration and reconstruction. With their good biocompatibility, nontoxic catabolites, microinflammation characteristics, as well as their ability to induce tissue regeneration and reparation, the bioderived materials have great potential for skin tissue repair.
Collapse
Affiliation(s)
- Lin-Cui Da
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
75
|
Liu X, Liu H, Qu X, Lei M, Zhang C, Hong H, Payne GF, Liu C. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:146. [PMID: 28823088 DOI: 10.1007/s10856-017-5956-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Wound dressings play important roles in the management of wounds, and calcium cross-linked alginate (Ca2+-Alg) is a commonly used hydrogel that is adapted for wound treatment. However, conventional methods for fabricating Ca2+-Alg hydrogels can be tedious and difficult to control because of the rapid Ca2+-induced gelation of alginate. In this study, An electrodeposition method was used to rapidly and controllably fabricate Ca2+-Alg films for wound treatment. Several measures of film growth (e.g., thickness and mass) are shown to linearly correlate to the imposed charge transfer at the electrode. Similarly, this charge transfer was also observed to control important physicochemical wound healing properties such as water uptake and retention capacity. Furthermore, a wound healing animal test was performed to evaluate the performance of this electro-fabricated calcium alginate film for wound treatment. This in vivo study demonstrated that wounds dressed with an electro-fabricated Ca2+-Alg film closed faster than that of untreated wounds. Further, the new dermis tissue that formed was composed of reorganized and stratified epithelial layer, with fully developed connective tissue, hair follicle, sebaceous glands as well as aligned collagen. Therefore, our study indicates that this electrofabrication method for the rapid and controlled preparation of alginate film could provide exciting opportunities for wound treatment. More broadly, this study demonstrates the potential of electrochemistry for the fabrication of high performance polymeric materials. Here we report a rapid and controllable fabrication of free-standing alginate films by coupling anodic electrodeposition with subsequent peeling of deposited materials for wound dressing.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuchu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research and Fischell Department of Bioengineering, 5115 Plant Sciences Building, College Park, MD, 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
76
|
Rakhshaei R, Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:456-464. [DOI: 10.1016/j.msec.2016.12.097] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
|
77
|
Liu J, Lu F, Chen H, Bao R, Li Z, Lu B, Yu K, Dai F, Wu D, Lan G. Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma. RSC Adv 2017. [DOI: 10.1039/c6ra27021b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cocoons of the silkwormBombyx moriare widely used as biofunctional materials.
Collapse
Affiliation(s)
- Jiawei Liu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Fei Lu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - HongLei Chen
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing
- Chongqing 400715
- China
| | - Zhiquan Li
- The Ninth People's Hospital of Chongqing
- Chongqing 400715
- China
| | - Bitao Lu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Kun Yu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Fangying Dai
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Dayang Wu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|
78
|
Cai SJ, Li CW, Weihs D, Wang GJ. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:987-996. [PMID: 29230255 PMCID: PMC5717718 DOI: 10.1080/14686996.2017.1406287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The aim of this study was to develop a porous chitosan scaffold with long-acting drug release as an artificial dressing to promote skin wound healing. The dressing was fabricated by pre-freezing at different temperatures (-20 and -80 °C) for different periods of time, followed by freeze-drying to form porous chitosan scaffolds with different pore sizes. The chitosan scaffolds were then used to investigate the effect of the controlled release of fibroblast growth factor-basic (bFGF) and transforming growth factor-β1 (TGFβ1) on mouse fibroblast cells (L929) and bovine carotid endothelial cells (BEC). The biocompatibility of the prepared chitosan scaffold was confirmed with WST-1 proliferation and viability assay, which demonstrated that the material is suitable for cell growth. The results of this study show that the pore sizes of the porous scaffolds prepared by freeze-drying can change depending on the pre-freezing temperature and time via the formation of ice crystals. In this study, the scaffolds with the largest pore size were found to be 153 ± 32 μm and scaffolds with the smallest pores to be 34 ± 9 μm. Through cell culture analysis, it was found that the concentration that increased proliferation of L929 cells for bFGF was 0.005 to 0.1 ng/mL, and the concentration for TGFβ1 was 0.005 to 1 ng/mL. The cell culture of the chitosan scaffold and growth factors shows that 3.75 ng of bFGF in scaffolds with pore sizes of 153 ± 32 μm can promote L929 cell proliferation, while 400 pg of TGFβ1 in scaffolds with pore size of 34 ± 9 μm can enhance the proliferation of L929 cells, but also inhibit BEC proliferation. It is proposed that the prepared chitosan scaffolds can form a multi-drug (bFGF and TGFβ1) release dressing that has the ability to control wound healing via regulating the proliferation of different cell types.
Collapse
Affiliation(s)
- Shu-Jyun Cai
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Ching-Wen Li
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
- Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
- Corresponding authors:
| |
Collapse
|
79
|
Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2016; 18:1-26. [PMID: 27966916 DOI: 10.1021/acs.biomac.6b01619] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| |
Collapse
|
80
|
A Possible Wound Dressing Material from Marine Food Waste. Int J Artif Organs 2016; 39:509-517. [DOI: 10.5301/ijao.5000531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Purpose Bluefin Trevally (Caranx melampygus) fish is mainly used for fillet production, the bones of which are discarded as a major solid waste in the fish food processing industry. In the present study, novel collagen films were prepared using the bones of Bluefin Trevally (BT). The study investigates the potential of using this collagen film as a wound dressing material. Methods The prepared collagen films (CFs) were characterized for their physicochemical properties using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), tensile strength, elongation at break, etc. In vitro studies using human keratinocyte cell line (HaCaT) also proved the biocompatibility of CF. The CFs were used as wound dressing material on the experimental wounds of rats and the healing pattern was evaluated using planimetric and histopathological studies. Results CF prepared from the bones of BT possessed better mechanical properties. The in vitro studies demonstrated its biocompatible nature. Acceleration of wound healing in CF-treated rats was evident in the in vivo studies. Conclusions The study has devised a process for using fish waste in the preparation of a value-added product like wound dressing material. The CF with the required strength, biocompatibility and wound healing properties may be tried as a wound dressing material in large animals after obtaining the necessary approval.
Collapse
|
81
|
Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M. First isolation of polysaccharidic ulvans from the cell walls of freshwater algae. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
83
|
Libio IC, Demori R, Ferrão MF, Lionzo MI, da Silveira NP. Films based on neutralized chitosan citrate as innovative composition for cosmetic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:115-124. [DOI: 10.1016/j.msec.2016.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
|
84
|
Knoblauch J, Tepler Drobnitch S, Peters WS, Knoblauch M. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? PLANT, CELL & ENVIRONMENT 2016; 39:1727-36. [PMID: 26991892 DOI: 10.1111/pce.12736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps.
Collapse
Affiliation(s)
- Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Sarah Tepler Drobnitch
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
85
|
|
86
|
Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 2016; 85:327-34. [DOI: 10.1016/j.ijbiomac.2015.12.076] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
|
87
|
Fabrication of Hyaluronan-Poly(vinylphosphonic acid)-Chitosan Hydrogel for Wound Healing Application. INT J POLYM SCI 2016. [DOI: 10.1155/2016/6723716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new hydrogel made of hyaluronan, poly(vinylphosphonic acid), and chitosan (HA/PVPA/CS hydrogel) was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally,in vivostudy was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity againstE. coli.Finally,in vivostudy indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.
Collapse
|
88
|
Chandika P, Ko SC, Oh GW, Heo SY, Nguyen VT, Jeon YJ, Lee B, Jang CH, Kim G, Park WS, Chang W, Choi IW, Jung WK. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int J Biol Macromol 2015; 81:504-13. [DOI: 10.1016/j.ijbiomac.2015.08.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
|