51
|
Oral Films with Addition Mushroom (Agaricus bisporus) as a Source of Active Compounds. J Pharm Sci 2021; 111:1739-1748. [PMID: 34863975 DOI: 10.1016/j.xphs.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to develop oral films (OFs) based on agar-agar with the incorporation of mushroom powder (MP) as a source of phenolic compounds. To this end, three different OFs were produced using different concentrations of MP, containing sorbitol and agar-agar. The OFs were characterized based on visual assessment, mass, thickness, moisture content, folding endurance, surface pH, contact angle, and phenolic compound content, scanning electron microscopy, X-ray diffraction, and FTIR, as well as an assessment of their antioxidant capacity. In general, all the OFs showed film-forming capacity after the incorporation of MP, although their mass, thickness, moisture content, and folding endurance differed significantly. The surface pH value remained close to neutrality (∼6.7), regardless of MP concentration. The incorporation of MP increased the crystallinity of the OFs in comparison to that of the agar-based film, but all the OFs showed similar FTIR spectra. The oral films containing 2 g of MP showed antioxidant capacity by ABTS●+ and FRAP of 3.68±0.23 and 14.61±0.66 mMol ET/g OF, respectively, and total phenolic content of 3.55±0.27 µmol GAE/g OF. Thus, oral films offer an innovative source of delivery of active compounds, and their consumption does not cause oral mucosal irritation.
Collapse
|
52
|
Rukmanikrishnan B, Lee J. Montmorillonite clay and quaternary ammonium silane-reinforced pullulan/agar-based nanocomposites and their properties for packaging applications. Int J Biol Macromol 2021; 191:956-963. [PMID: 34571125 DOI: 10.1016/j.ijbiomac.2021.09.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/24/2021] [Accepted: 09/19/2021] [Indexed: 01/13/2023]
Abstract
Synergistic combinations of pullulan, agar, montmorillonite (MMT) clay, and quaternary ammonium silane (QAS)-based (Pullulan/agar/MMT clay/QAS) active nanocomposites were prepared by a simple, cost-effective method. The Pullulan/agar/MMT clay/QAS nanocomposites were studied via Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analyses. The concentration of MMT clay played a very important role in the properties of the nanocomposites. However, the transparency of the composite was not significantly affected by the addition of MMT clay. The ultraviolet (UV) transmittance of Pullulan/agar/MMT clay/QAS was in the range of 91.4-79.8 at 600 nm. The thermal and mechanical properties were significantly improved by the MMT clay. The tensile strength and elongation at break of the composites were in the range of 23.8-39.7 MPa and 37.2-26.9%, respectively. The long alkyl chain in QAS significantly improved the hydrophobic nature of the Pullulan/agar/MMT clay nanocomposites, impacting the contact angle (66.2-71.2°), water vapor permeability (3.17-2.20 × 10-9 g/m2 Pa·s), and swelling ratio (1837-836%). The combination of Pullulan/agar/MMT clay/QAS had a synergistic effect on the rheological properties. MMT clay and QAS significantly increased the viscosity, storage, and loss modulus of the hydrogel composites. With the addition of QAS, the Pullulan/agar/MMT clay nanocomposites showed good antimicrobial activity against gram-positive and gram-negative pathogens.
Collapse
Affiliation(s)
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, South Korea.
| |
Collapse
|
53
|
Disposable Food Packaging and Serving Materials-Trends and Biodegradability. Polymers (Basel) 2021; 13:polym13203606. [PMID: 34685364 PMCID: PMC8537343 DOI: 10.3390/polym13203606] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Food is an integral part of everyone’s life. Disposable food serving utensils and tableware are a very convenient solution, especially when the possibility of the use of traditional dishes and cutlery is limited (e.g., takeaway meals). As a result, a whole range of products is available on the market: plates, trays, spoons, forks, knives, cups, straws, and more. Both the form of the product (adapted to the distribution and sales system) as well as its ecological aspect (biodegradability and life cycle) should be of interest to producers and consumers, especially considering the clearly growing trend of “eco-awareness”. This is particularly important in the case of single-use products. The aim of the study was to present the current trends regarding disposable utensils intended for contact with food in the context of their biodegradability. This paper has summarized not only conventional polymers but also their modern alternatives gaining the attention of manufacturers and consumers of single-use products (SUPs).
Collapse
|
54
|
Synthesis of silver nanoparticles by plant extract, incorporated into alginate films and their characterizations. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01923-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
55
|
Zhang B, Liu Y, Wang H, Liu W, Cheong KL, Teng B. Characterization of seaweed polysaccharide-based bilayer films containing essential oils with antibacterial activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
56
|
Contessa CR, da Rosa GS, Moraes CC. New Active Packaging Based on Biopolymeric Mixture Added with Bacteriocin as Active Compound. Int J Mol Sci 2021; 22:ijms221910628. [PMID: 34638967 PMCID: PMC8508738 DOI: 10.3390/ijms221910628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to develop a chitosan/agar-agar bioplastic film incorporated with bacteriocin that presents active potential when used as food packaging. The formulation of the film solution was determined from an experimental design, through the optimization using the desirability function. After establishing the concentrations of the biopolymers and the plasticizer, the purified bacteriocin extract of Lactobacillus sakei was added, which acts as an antibacterial agent. The films were characterized through physical, chemical, mechanical, barrier, and microbiological analyses. The mechanical properties and water vapor permeability were not altered by the addition of the extract. The swelling property decreased with the addition of the extract and the solubility increased, however, the film remained intact when in contact with the food, thus allowing an efficient barrier. Visible light protection was improved by increased opacity and antibacterial capacity was effective. When used as Minas Frescal cream cheese packaging, it contributed to the increase of microbiological stability, showing a reduction of 2.62 log UFC/g, contributing a gradual release of the active compound into the food during the storage time. The film had an active capacity that could be used as a barrier to the food, allowing it to be safely packaged.
Collapse
|
57
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
58
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
59
|
Mironescu M, Lazea-Stoyanova A, Barbinta-Patrascu ME, Virchea LI, Rexhepi D, Mathe E, Georgescu C. Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. Polymers (Basel) 2021; 13:1190. [PMID: 33917150 PMCID: PMC8067845 DOI: 10.3390/polym13081190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
A critical overview of current approaches to the development of starch-containing packaging, integrating the principles of green chemistry (GC), green technology (GT) and green nanotechnology (GN) with those of green packaging (GP) to produce materials important for both us and the planet is given. First, as a relationship between GP and GC, the benefits of natural bioactive compounds are analyzed and the state-of-the-art is updated in terms of the starch packaging incorporating green chemicals that normally help us to maintain health, are environmentally friendly and are obtained via GC. Newer approaches are identified, such as the incorporation of vitamins or minerals into films and coatings. Second, the relationship between GP and GT is assessed by analyzing the influence on starch films of green physical treatments such as UV, electron beam or gamma irradiation, and plasma; emerging research areas are proposed, such as the use of cold atmospheric plasma for the production of films. Thirdly, the approaches on how GN can be used successfully to improve the mechanical properties and bioactivity of packaging are summarized; current trends are identified, such as a green synthesis of bionanocomposites containing phytosynthesized metal nanoparticles. Last but not least, bioinspiration ideas for the design of the future green packaging containing starch are presented.
Collapse
Affiliation(s)
- Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, 550012 Sibiu, Romania;
| | - Andrada Lazea-Stoyanova
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Ilfov, Romania
| | - Marcela Elisabeta Barbinta-Patrascu
- Department of Electricity, Faculty of Physics, Solid-State Physics and Biophysics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Bucharest-Magurele, Romania
| | - Lidia-Ioana Virchea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania;
| | - Diana Rexhepi
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (D.R.); (E.M.)
| | - Endre Mathe
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (D.R.); (E.M.)
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania
| | - Cecilia Georgescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, 550012 Sibiu, Romania;
| |
Collapse
|
60
|
de Oliveira Begali D, Ferreira LF, de Oliveira ACS, Borges SV, de Sena Neto AR, de Oliveira CR, Yoshida MI, Sarantopoulos CIGL. Effect of the incorporation of lignin microparticles on the properties of the thermoplastic starch/pectin blend obtained by extrusion. Int J Biol Macromol 2021; 180:262-271. [PMID: 33737182 DOI: 10.1016/j.ijbiomac.2021.03.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
The present study aimed to produce thermoplastic starch films with different concentrations of thermoplastic pectin and the addition of 4% lignin microparticles as a reinforcing and active agent. The pectin improved the modulus of elasticity, and decreased the elongation at break. In addition, it improved the UV light protection to 100% at 320 nm and 95.9% at 400 nm. The incorporation of lignin microparticles improved the thermal stability of the blends made with 25% and 50% thermoplastic pectin when compared to the pectin-free blends. The blend with 25% thermoplastic pectin led to an increase of 75.8% and 34% in elongation at break and deformation of the films, respectively. This blend also improved the UV light protection to 100% due to its dark brown color. Regarding the permeability properties, the films with 25% and 50% thermoplastic pectin showed lower oxygen permeability (48% and 65%) and an increase in the antioxidant activities from 2.7% to 71.08% and 4.1% to 79.28%, respectively. Thus, the polymer blend with 25% thermoplastic pectin with the incorporation of lignin microparticles proved to be a good alternative for use in foods sensitive to the effects of oxygen and UV light.
Collapse
Affiliation(s)
| | - Laura Fonseca Ferreira
- Food Science Department, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | | | - Soraia Vilela Borges
- Food Science Department, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | | | | | - Maria Irene Yoshida
- Department of Chemistry, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
61
|
Protein-Based Films and Coatings for Food Industry Applications. Polymers (Basel) 2021; 13:polym13050769. [PMID: 33801341 PMCID: PMC7958328 DOI: 10.3390/polym13050769] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.
Collapse
|
62
|
Zeeshan M, Dilshad MR, Islam A, Iqbal SS, Akram MS, Mehmood F, Gull N, Khan RU. Synergistic effect of silane cross-linker (APTEOS) on PVA/gelatin blend films for packaging applications. HIGH PERFORM POLYM 2021. [DOI: 10.1177/0954008321994659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this work is to fabricate hydrogel films which are biodegradable and also fit for packaging applications. The hydrogel films were prepared by the reaction of polyvinyl alcohol and gelatin with and without 3-aminopropyltriethoxysilane (APTEOS) cross-linker. The hydrogel films were then characterized by FTIR spectroscopy, degree of swelling, TGA, SEM analysis and mechanical testing. The FTIR spectra of the hydrogel films confirmed the presence of both polymers and hydrogen bonding between them. TGA analysis confirmed the increase in thermal stability with the increase of cross-linker amount. SEM analysis confirmed the increase in uniformity of structure with the increase of cross-linker amount. The increase in cross-linker amount resulted in decrease of degree of swelling and increase of tensile strength. The biodegradability of hydrogel films was evaluated by performing soil burial test and found to be decreased with the increase of cross-linker amount. In order to balance the tensile strength and biodegradability, the optimum amount of cross-linker was determined which resulted in the formation of the best performing film. Finally, our best performing film was compared with other hydrogel films reported in the literature. Hence, the hydrogel films cross-linked with APTEOS are biodegradable, having high tensile strength and suitable for packaging purpose.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Dilshad
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Sarfraz Akram
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | - Farhan Mehmood
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Nafisa Gull
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
63
|
Liu B, Wang J, Ji L, Bai T, Zhang Y, Liu D. Structure validation of oxidized poly (2-hydroxyethyl acrylate) with multiple aldehyde groups and its application for collagen modification. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201892. [PMID: 33972871 PMCID: PMC8074665 DOI: 10.1098/rsos.201892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The structural characteristic of oxidized poly (2-hydroxyethyl acrylate) (OP) was confirmed by high-performance liquid chromatography, gel permeation chromatography and hydroxylamine hydrochloride titration. The results demonstrated that OP prepared through 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidation of poly (2-hydroxyethyl acrylate) was featured by multiple aldehyde groups on its side chain, with no free formaldehyde produced during the oxidation process. The computational simulation for the electrophilic reactivity of OP molecule showed that the reactivity of the aldehyde groups in OP with the amino groups of collagen was comparable to that of glutaraldehyde. In this study, OP was chosen as a collagen modifier to investigate the modification effects on the secondary structure, aggregation behaviour and thermal stability of collagen. The covalent cross-linking occurred between the aldehyde groups of OP and the amino groups of collagen under alkaline condition. The covalent binding between OP and collagen was strengthened with the increasing reaction pH and OP dosage, and the triple helix of collagen was altered to some degree. Furthermore, OP promoted the intense aggregation of collagen and enhanced the thermal stability of collagen. This work provides guidance for preparing novel collagen modifier with multiple aldehyde groups.
Collapse
Affiliation(s)
- Baohua Liu
- College of Food and Biological Engineering, Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Jian Wang
- College of Food and Biological Engineering, Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lili Ji
- College of Food and Biological Engineering, Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ting Bai
- College of Food and Biological Engineering, Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Yin Zhang
- College of Food and Biological Engineering, Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Dayu Liu
- College of Food and Biological Engineering, Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|
64
|
Barikloo H, Ahmadi E, Ahmadi S. Evaluation of PE/POE/PA6 blends containing silica and clay toward nano composite packaging film. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00781-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
65
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
66
|
Gul K, Gan RY, Sun CX, Jiao G, Wu DT, Li HB, Kenaan A, Corke H, Fang YP. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit Rev Food Sci Nutr 2021; 62:3817-3832. [PMID: 33406881 DOI: 10.1080/10408398.2020.1870034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.
Collapse
Affiliation(s)
- Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cui-Xia Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Jiao
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, China Sichuan
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
67
|
Kianfar S, Keshtkar AR, Zarenezhad B. Graft polymerization of acrylonitrile onto cross-linked (alginate/polyvinyl alcohol) beads initiated by potassium persulfate: synthesis and artificial neural network modeling. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Nor Adilah A, Noranizan M, Jamilah B, Nur Hanani Z. Development of polyethylene films coated with gelatin and mango peel extract and the effect on the quality of margarine. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
69
|
Hachemaoui M, Mokhtar A, Mekki A, Zaoui F, Abdelkrim S, Hacini S, Boukoussa B. Composites beads based on Fe3O4@MCM-41 and calcium alginate for enhanced catalytic reduction of organic dyes. Int J Biol Macromol 2020; 164:468-479. [DOI: 10.1016/j.ijbiomac.2020.07.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
|
70
|
Liu L, Zhang J, Shi J, Huang X, Zou X, Zhang D, Zhai X, Yang Z, Li Z, Li Y. Preparation and comparison of two functional nanoparticle-based bilayers reinforced with a κ-carrageenan–anthocyanin complex. Int J Biol Macromol 2020; 165:758-766. [DOI: 10.1016/j.ijbiomac.2020.09.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
|
71
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
72
|
Rosenbloom RA, Zhao Y. Hydroxypropyl methylcellulose or soy protein isolate-based edible, water-soluble, and antioxidant films for safflower oil packaging. J Food Sci 2020; 86:129-139. [PMID: 33258162 DOI: 10.1111/1750-3841.15543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Edible, water-soluble, heat-sealable, and antioxidant films were developed from hydroxypropyl methylcellulose (HPMC) or soy protein isolate (SPI) and applied as safflower oil packaging. A 0.1 or 0.2% DL-α-tocopherol acetate (VE) and 0 or 0.25% oleic acid were added into film formulations to provide antioxidant and hydrophobic properties, respectively, using a 23 factorial design. Films were analyzed for appearance, microstructure, water and oil sensitivity, mechanical properties, and antioxidant functionality. Subsequently, a completely randomized design was implemented for incorporating 2, 4, or 6% cellulose nanocrystals (CNCs, w/w dry weight polymer) for improving film mechanical and barrier properties. HPMC-based films achieved full dissolution in water at <55 °C under 5 min, while SPI-based films disintegrated in water up to 90 °C. Oleic acid significantly increased (P < 0.05) heat sealability of SPI film from 78 to 143 N/m and elongation at break from 36% to 88%, but decreased tensile strength and heat sealability of HPMC films by 55% and 41%, respectively. As safflower oil packaging, after 60 days of storage at 35 °C, oil contained in SPI-based pouch had the lowest peroxide values, 8.1 ± 0.9 mEq/kg. Based on barrier, mechanical, and antioxidant capacity evaluations, HPMC film with 0.1% VE and SPI film with 0.25% oleic acid and 0.1% VE were incorporated with CNC. SPI/CNC films did not show observable trends, but HPMC/2% CNC film exhibited significantly improved mechanical and barrier properties, with oxygen permeability of 5.0 mL mm/m2 day kPa. The developed films are a promising packaging alternative to decrease plastic waste, extend shelf life of lipid-based foods, and increase consumer convenience. PRACTICAL APPLICATION: Individually packaged, single-use pouches of sauce or oil are common for seasoning instant and frozen foods, creating unnecessary plastic waste. Edible, water-soluble packaging with antioxidant functionality would reduce plastic waste, extend shelf life by preventing oxidation, and increase consumer convenience. The biopolymeric films and pouches developed in this study have unique properties from water solubility across a wide range of temperatures, resistance to oil, high oxygen barrier, and good heat sealability, providing a variety of potential applications for promoting sustainable food packaging.
Collapse
Affiliation(s)
- Rachel A Rosenbloom
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, Oregon, 97331, U.S.A
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
73
|
Abstract
Smart packaging is an emerging technology that has a great potential in solving conventional food packaging problems and in meeting the evolving packaged vegetables market needs. The advantages of using such a system lies in extending the shelf life of products, ensuring the safety and the compliance of these packages while reducing the food waste; hence, lessening the negative environmental impacts. Many new concepts were developed to serve this purpose, especially in the meat and fish industry with less focus on fruits and vegetables. However, making use of these evolving technologies in packaging of vegetables will yield in many positive outcomes. In this review, we discuss the new technologies and approaches used, or have the potential to be used, in smart packaging of vegetables. We describe the technical aspects and the commercial applications of the techniques used to monitor the quality and the freshness of vegetables. Factors affecting the freshness and the spoilage of vegetables are summarized. Then, some of the technologies used in smart packaging such as sensors, indicators, and data carriers that are integrated with sensors, to monitor and provide a dynamic output about the quality and safety of the packaged produce are discussed. Comparison between various intelligent systems is provided followed by a brief review of active packaging systems. Finally, challenges, legal aspects, and limitations facing this smart packaging industry are discussed together with outlook and future improvements.
Collapse
|
74
|
Cagnin C, Simões BM, Yamashita F, Andrello AC, Carvalho GM, Grossmann MVE. Hydrogels of starch/carboxymethyl cellulose crosslinked with sodium trimetaphosphate via reactive extrusion. J Appl Polym Sci 2020. [DOI: 10.1002/app.50194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Caroline Cagnin
- Department of Food Science Universidade Estadual de Londrina Londrina Brazil
| | | | - Fábio Yamashita
- Department of Food Science Universidade Estadual de Londrina Londrina Brazil
| | | | | | | |
Collapse
|
75
|
Sulfated polysaccharides and its commercial applications in food industries-A review. Journal of Food Science and Technology 2020; 58:2453-2466. [PMID: 34194082 DOI: 10.1007/s13197-020-04837-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Polysaccharides a large chain of simple sugars covalently linked by glycosidic bonds which are obtained from living organisms and microbes commercially used in food and pharmaceutical industries. Marine macroalgae or seaweed is an unexploited natural source of polysaccharides, which contains many variant phytonutrients whose cells are enriched with sulfated polysaccharides which have been progressively read these days for their potential value in food and pharmaceutical applications. This review aims the exploration of these polysaccharides in food applications, with a focus on its types and biological properties in the view of food application.
Collapse
|
76
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|
77
|
Istiqola A, Syafiuddin A. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arsi Istiqola
- Industrial Management of Service, Food and Nutrition IPB University (Bogor Agricultural University) Bogor Indonesia
| | - Achmad Syafiuddin
- Department of Public Health, Faculty of Health Universitas Nahdlatul Ulama Surabaya Surabaya Indonesia
| |
Collapse
|
78
|
Studies on the physicochemical properties, gelling behavior and drug release performance of agar/κ-carrageenan mixed hydrogels. Int J Biol Macromol 2020; 154:878-887. [DOI: 10.1016/j.ijbiomac.2020.03.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 11/23/2022]
|
79
|
Kasim NFA, W Idris WF, Abdullah AH, Yusoh K, Ismail Z. The preparation of graphene ink from the exfoliation of graphite in pullulan, chitosan and alginate for strain-sensitive paper. Int J Biol Macromol 2020; 153:1211-1219. [DOI: 10.1016/j.ijbiomac.2019.10.251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/12/2019] [Accepted: 10/27/2019] [Indexed: 10/25/2022]
|
80
|
Mostafavi FS, Zaeim D. Agar-based edible films for food packaging applications - A review. Int J Biol Macromol 2020; 159:1165-1176. [PMID: 32442572 DOI: 10.1016/j.ijbiomac.2020.05.123] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Agar is a biopolymer extracted from certain red algae. The continuous and transparent film made from agar gum is becoming a common and renewable alternative for plastic-based food packaging materials. However, plain agar film suffers from brittleness, high moisture permeability, and poor thermal stability. Considerable researches have been devoted to improving the properties of agar films to extend their applications. These include reinforcements by nanomaterials, blending with other biopolymers, and incorporating plasticizers, hydrophobic components, or antimicrobial agents into their structure. This article comprehensively reviews the functional properties and defects of edible films made from agar gum. Also, it describes various strategies and components used to make an agar film with desirable properties. Moreover, the applications of agar-based edible films with improved functionality for food packaging are discussed.
Collapse
Affiliation(s)
| | - Davood Zaeim
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
81
|
Gheorghita (Puscaselu) R, Amariei S, Norocel L, Gutt G. New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries. Foods 2020; 9:E562. [PMID: 32370262 PMCID: PMC7278805 DOI: 10.3390/foods9050562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Nowadays, biopolymer films have gained notoriety among the packaging materials. Some studies clearly test their effectiveness for certain periods of time, with applicability in the food industry. This research has been carried out in two directions. Firstly, the development and testing of the new edible material: general appearance, thickness, retraction ratio, color, transmittance, microstructure, roughness, and porosity, as well as mechanical and solubility tests. Secondly, testing of the packaged products-slices of cheese and prosciutto-in the new material and their maintenance at refrigeration conditions for 5 months; thus, the peroxide index, color, and water activity index were evaluated for the packaged products. The results emphasize that the packaging is a lipophilic one and does not allow wetting or any changes in the food moisture. The results indicate the stability of the parameters within three months and present the changes occurring within the fourth and fifth months. Microbiological tests indicated an initial microbial growth, both for cheese slices and ham slices. Time testing indicated a small increase in the total count number over the 5-month period: 23 cfu/g were found of fresh slices of prosciutto and 27 cfu/g in the case of the packaged ones; for slices of cheese, the total count of microorganisms indicated 7 cfu/g in the initial stage and 11 cfu/g after 5 months. The results indicate that the film did not facilitate the growth of the existing microorganisms, and highlight the need to purchase food from safe places, especially in the case of raw-dried products that have not undergone heat treatment, which may endanger the health of the consumer. The new material tested represents a promising substitute for commercial and unsustainable plastic packaging.
Collapse
Affiliation(s)
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.A.); (G.G.)
| | - Liliana Norocel
- Department of Human and Health Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.A.); (G.G.)
| |
Collapse
|
82
|
Olszewska MA, Gędas A, Simões M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res Int 2020; 134:109214. [PMID: 32517896 DOI: 10.1016/j.foodres.2020.109214] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
One of the common ways to prevent food spoilage throughout product's shelf life is by using artificial/synthetic preservatives. However, the growing negative perception of consumers over synthetic preservatives has encouraged the food industry to consider their natural alternatives. Plant extracts, increasingly recognized as consumer-friendly, represent a valuable source of active compounds, mostly polyphenols, with potent antimicrobial and antibiofilm activities. Hence, this article focuses mainly on the antimicrobial activity of plant-based polyphenol-rich extracts as well as on their potential use and limitations in the food industry. Some new trends such as antimicrobial food packaging combined with plant extracts and photodynamic inactivation (PDI) combined with a natural photosensitiser, curcumin, are discussed as well.
Collapse
Affiliation(s)
- Magdalena A Olszewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Astrid Gędas
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
83
|
Huang D, Zhang Z, Zheng Y, Quan Q, Wang W, Wang A. Synergistic effect of chitosan and halloysite nanotubes on improving agar film properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
84
|
A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. Int J Biol Macromol 2020; 148:49-55. [DOI: 10.1016/j.ijbiomac.2020.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 01/03/2023]
|
85
|
Klein M, Poverenov E. Natural biopolymer-based hydrogels for use in food and agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2337-2347. [PMID: 31960453 DOI: 10.1002/jsfa.10274] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Hydrogels are important materials that are of high scientific interest and with numerous applications. Natural polymer-based hydrogels are preferred to synthetic ones due to their safety, biocompatibility, and ecofriendly properties. They have been studied extensively and implemented in various fields, such as medicine, cosmetics, personal-care products, water purification, and more. This review focuses on the applications of nature-sourced polymer-based hydrogels in food and agriculture. Different types of biopolymers and crosslinking agents, and various methods for hydrogel formation are described. The physicomechanical properties and applied activities of the resulting materials are also comprehensively discussed. Biodegradable synthetic polymers are outside the scope of this review. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miri Klein
- The Institute of Postharvest and Food Science, Agro-Nanotechnology and Advanced Materials Center, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Elena Poverenov
- The Institute of Postharvest and Food Science, Agro-Nanotechnology and Advanced Materials Center, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
86
|
From waste/residual marine biomass to active biopolymer-based packaging film materials for food industry applications – a review. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Waste/residual marine biomass represents a vast and potentially underexplored source of biopolymers chitin/chitosan and alginate. Their isolation and potential application in the development and production of bio-based food packaging are gaining in attractiveness due to a recent increment in plastic pollution awareness. Accordingly, a review of the latest research work was given to cover the pathway from biomass sources to biopolymers isolation and application in the development of active (antimicrobial/antioxidant) film materials intended for food packaging. Screening of the novel eco-friendly isolation processes was followed by an extensive overview of the most recent publications covering the chitosan- and alginate-based films with incorporated active agents.
Collapse
|
87
|
The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. COATINGS 2020. [DOI: 10.3390/coatings10020166] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amount of plastics used globally today exceeds a million tonnes annually, with an alarming annual growth. The final result is that plastic packaging is thrown into the environment, and the problem of waste is increasing every year. A real alternative is the use bio-based polymer packaging materials. Research carried out in the laboratory context and products tested at the industrial level have confirmed the success of replacing plastic-based packaging with new, edible or completely biodegradable foils. Of the polysaccharides used to obtain edible materials, sodium alginate has the ability to form films with certain specific properties: resistance, gloss, flexibility, water solubility, low permeability to O2 and vapors, and tasteless or odorless. Initially used as coatings for perishable or cut fresh fruits and vegetables, these sodium alginate materials can be applied to a wide range of foods, especially in the meat industry. Used to cover meat products, sodium alginate films prevent mass loss and degradation of color and texture. The addition of essential oils prevents microbial contamination with Escherichia coli, Salmonella enterica, Listeria monocytogenes, or Botrytis cinerea. The obtained results promote the substitution of plastic packaging with natural materials based on biopolymers and, implicitly, of sodium alginate, with or without other natural additions. These natural materials have become the packaging of the future.
Collapse
|
88
|
The emerging role of metallic nanoparticles in food. Appl Microbiol Biotechnol 2020; 104:2373-2383. [PMID: 31989225 DOI: 10.1007/s00253-020-10372-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Nanotechnology is widely used in biomedical applications, engineering sciences, and food technology. The application of nanocompounds play a pivotal role in food protection, preservation, and increasing its shelf life. The changing lifestyle, use of pesticides, and biological and/or chemical contaminants present in food directly affect its quality. Metallic nanoparticles (MNPs) are useful to develop products with antimicrobial activity and with the potential to improve shelf life of food and food products. Due to the prevention of microbial growth, MNPs have attracted the attention of researchers. Biopolymers/polymers can be easily combined with different MNPs which act as a vehicle not only for one type of particles but also as a hybrid system that allows a combination of natural compounds with metallic nanocompounds. However, there is a need for risk evaluation to use nanoparticles in food packaging. In this review, we aim to discuss how MNPs incorporated into polymers/biopolymers matrices can be used for food preservation, considering the quality and safety, which are desirable in food technology.
Collapse
|
89
|
Makwana D, Castaño J, Somani RS, Bajaj HC. Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of antibacterial and mechanical properties for packaging applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
90
|
Qiao D, Tu W, Zhong L, Wang Z, Zhang B, Jiang F. Microstructure and Mechanical/Hydrophilic Features of Agar-Based Films Incorporated with Konjac Glucomannan. Polymers (Basel) 2019; 11:polym11121952. [PMID: 31783690 PMCID: PMC6960638 DOI: 10.3390/polym11121952] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023] Open
Abstract
Different characterization methods spanning length scales from molecular to micron scale were applied to inspect the microstructures and mechanical/hydrophilic features of agar/konjac glucomannan (KGM) films prepared under different drying temperatures (40 and 60 °C). Note that the lower preparation temperature (40 °C) could increase the strength and elongation of agar/KGM films at high KGM levels (18:82 wt/wt KGM-agar, or higher). This was related to the variations in the film multi-scale structures with the increment of KGM content: the reduced crystallinity, the increased perfection of nanoscale orders at some KGM amounts, and the negligibly-changed morphology and molecular chemical structure under 40 °C preparation temperature. These structural changes initially decreased the film tensile strength, and subsequently increased the film strength and elongation with increasing KGM content. Moreover, under the higher drying temperature (60 °C), the increased KGM content could concurrently reduce the strength and elongation for the films, associated with probable phase separations on nano and smaller scales. In addition, the increased KGM amount tended to make the film more hydrophilic, whereas the changes in the film structures did not dominantly affect the changing trend of hydrophilicity.
Collapse
Affiliation(s)
- Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China; (D.Q.); (W.T.); (Z.W.)
| | - Wenyao Tu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China; (D.Q.); (W.T.); (Z.W.)
| | - Lei Zhong
- Department of Chemical Engineering, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, Guangxi, China;
| | - Zhong Wang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China; (D.Q.); (W.T.); (Z.W.)
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence: (B.Z.); (F.J.)
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China; (D.Q.); (W.T.); (Z.W.)
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: (B.Z.); (F.J.)
| |
Collapse
|
91
|
Zhuang Y, Ruan S, Yao H, Sun Y. Physical Properties of Composite Films from Tilapia Skin Collagen with Pachyrhizus Starch and Rambutan Peel Phenolics. Mar Drugs 2019; 17:md17120662. [PMID: 31775217 PMCID: PMC6950419 DOI: 10.3390/md17120662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 11/23/2022] Open
Abstract
Different composite films composed of tilapia skin collagen (TSC) with Pachyrhizus starch (PS) or rambutan peel phenolics (RPP) were prepared, and the physical properties of these films were determined. The effects of PS and RPP on TSC films were investigated, and our results indicated that PS and RPP could improve the physical properties of TSC films. Opacity and film thickness showed an enhanced trend with increasing PS and RPP contents in TSC films, whereas solubility in water, elongation-at-break (EAB), and water vapor permeability (WVP) showed declining trends. TSC film with 10% PS and 0.5% RPP had the highest tensile strength, and the tensile strength dropped drastically when the content of PS and RPP increased. The light transmittances of the films could decrease with the incorporation of PS and RPP. Differential scanning calorimetry (DSC) demonstrated that the addition of PS and RPP improved the thermal stability of TSC films. In addition, X-ray diffraction indicated that the crystallinity of the films decreased and the amorphous structure of the films tended to become more complex with the addition of PS and RPP. As shown by fourier transform infrared spectroscopy (FTIR) analysis, PS and RPP can strongly interact with TSC, resulting in a modification of its structure. Scanning electron microscope (SEM) analysis showed that there was a good compatibility between TSC, PS, and RPP. The results indicated that TSC film incorporated with 10% PS and 0.5% RPP was an effective method for improve the physical properties of the film. TSC–PS–RPP composite films can be used not only in biomedical applications, but also as active food packaging materials.
Collapse
Affiliation(s)
| | | | | | - Yun Sun
- Correspondence: ; Tel.: +86-871-65920216; Fax: +86-871-65920216
| |
Collapse
|
92
|
Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
Radovanović N, Malagurski I, Lević S, Gordić M, Petrović J, Pavlović V, Mitrić M, Nešić A, Dimitrijević-Branković S. Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
94
|
Nasef SM, Khozemy EE, Kamoun EA, El-Gendi H. Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications. Int J Biol Macromol 2019; 137:878-885. [DOI: 10.1016/j.ijbiomac.2019.07.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
|
95
|
Puscaselu R, Gutt G, Amariei S. Rethinking the Future of Food Packaging: Biobased Edible Films for Powdered Food and Drinks. Molecules 2019; 24:E3136. [PMID: 31466392 PMCID: PMC6749578 DOI: 10.3390/molecules24173136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
In today's society, packaging is essential. Without this, the materials would be messy and ineffective. Despite the importance and key role of packaging, they are considered to be useless, as consumers see it as a waste of resources and an environmental threat. Biopolymer-based edible packaging is one of the most promising solutions to these problems. Thus, inulin, biopolymers such as agar and sodium alginate, and glycerol were used to develop a single use edible material for food packaging. These biofilms were obtained and tested for three months. For inulin-based films, the results highlight improvements not only in physical properties (homogeneity, well-defined margins, light sweet taste, good optical properties, high solubility capacity or, as in the case of some samples, complete solubilization), but also superior mechanical properties (samples with high inulin content into composition had high tensile strength and extremely high elongation values). Even after three months of developing, the values of mechanical properties indicate a strong material. The optimization establishes the composition necessary to obtain a strong and completely water-soluble material. This type of packaging represents a successful alternative for the future of food packaging: they are completely edible, biodegradable, compostable, obtained from renewable resources, and produce zero waste, at low cost.
Collapse
Affiliation(s)
- Roxana Puscaselu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania.
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania
| |
Collapse
|
96
|
Rukmanikrishnan B, Rajasekharan SK, Lee J, Lee J. Biocompatible agar/xanthan gum composite films: Thermal, mechanical, UV, and water barrier properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Jintae Lee
- Department of Chemical EngineeringYeungnam University Gyeongsan South Korea
| | - Jaewoong Lee
- Department of Fiber System EngineeringYeungnam University Gyeongsan South Korea
| |
Collapse
|
97
|
Lin W, Ni Y, Pang J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr Polym 2019; 222:114986. [PMID: 31320090 DOI: 10.1016/j.carbpol.2019.114986] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Here, inspired by the hydrophilic/hydrophobic theory, a novel konjac glucomannan/poly (methyl methacrylate)/chlorogenic acid (KGM/PMMA/CGA) food packaging film was successfully fabricated via microfluidic spinning technology (MST). The results of fourier transform infrared spectroscopy and x-ray diffraction confirmed the formation of hydrogen bonds in the films, which lead to the enhanced mechanical properties. Thermogravimetric analysis and differential scanning calorimetry showed excellent thermal stability of the films. Water vapor permeability (1.47 × 10-5 ± 0.11 g/(m⋅h⋅kPa)) and water contact angle (89.2°) measurement proved that the films were hydrophobic. The good swelling degree (85.18 ± 15.65%) indicated film's potentials in releasing CGA. More importantly, KGM played a key role in the antibacterial activities against Staphylococcus aureus (8.5 ± 3.5 mm) and Escherichia coli (6.5 ± 2.1 mm) by utilizing its hydrophilicity. Thus, our present work may provide a new idea for constructing active food packaging films with significant performances based on hydrophilic/hydrophobic strategy.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Ni
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
98
|
Biopolymer-Based Films Enriched with Stevia rebaudiana Used for the Development of Edible and Soluble Packaging. COATINGS 2019. [DOI: 10.3390/coatings9060360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Currently, there is an increasing concern toward the plastic pollution of the environment, in general, and of oceans, in particular, as a result of disposable packaging in the food industry. Thus, it is extremely necessary that we identify solutions for this problem. This study was aimed at identifying a viable alternative—biopolymer-based, edible, and renewable food packaging—and succeeded in doing so. For this work, 30 films with different characteristics and properties were obtained using agar and sodium alginate as film-forming materials and glycerol for plasticization. Tests were performed, such as physical properties, microstructure, mechanical properties, microbiological characteristics, and solubility assessment, showing that edible materials can be used to package powdered products and dehydrated vegetables, or to cover fruits and vegetables, cheese slices, and sausages. These materials come from renewable resources, are easily obtained, and can be immediately applied in the food industry, thus being a viable alternative to food packaging.
Collapse
|
99
|
Patil N, Netravali AN. Enhancing Strength of Wool Fiber Using a Soy Flour Sugar-Based "Green" Cross-linker. ACS OMEGA 2019; 4:5392-5401. [PMID: 31459705 PMCID: PMC6648322 DOI: 10.1021/acsomega.9b00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/07/2019] [Indexed: 05/12/2023]
Abstract
This study presents the preparation and use of a "green" cross-linker derived from a waste soy flour sugar (SFS) mixture to cross-link keratin in wool fibers to increase their tensile properties. Earlier studies of keratin cross-linking involved chemicals such as glyoxal and glutaraldehyde that are toxic to humans. In addition, their effectiveness in improving tensile properties has been significantly lower than obtained in this study using modified SFS. Characterization of SFS using 13C NMR revealed the presence of five sugars having different molecular lengths. Oxidation of SFS using sodium periodate resulted in multiple aldehyde groups, as confirmed by 1H NMR and attenuated total reflection Fourier-transform infrared (ATR-FTIR). The oxidized SFS (OSFS) when used to cross-link the amine groups from the wool keratin resulted in 36 and 56% increase in the tensile strength and Young's modulus of the fibers, respectively. These significant increases in strength and Young's modulus were a result of having multiple aldehyde groups on each sugar molecule as well as different molecular lengths of sugars, which favored cross-links of multiple lengths within the cortical cell matrix of wool fibers. The cross-linking between the aldehyde groups in OSFS and amine groups in wool fibers was confirmed using ATR-FTIR and from the color change resulting from the Maillard reaction as well as decrease in moisture absorption by the fibers. Stronger wool fibers can not only increase the efficiencies of wool fiber spinning and weaving and reduce yarn and fabric defects but can also allow spinning finer yarns from the same fibers. Oxidized sugars with optimum molecular lengths can be used to cross-link other biological proteins as well, replacing the currently used toxic cross-linkers.
Collapse
|
100
|
Huang T, Qian Y, Wei J, Zhou C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers (Basel) 2019; 11:E560. [PMID: 30960544 PMCID: PMC6473891 DOI: 10.3390/polym11030560] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
Food corruption and spoilage caused by food-borne pathogens and microorganisms is a serious problem. As a result, the demand for antibacterial drugs in food packaging is growing. In this review, biodegradable and non-biodegradable materials for food packaging are discussed based on their properties. Most importantly, antibacterial agents are essential to inhibit the growth of bacteria in food. To keep food fresh and prolong the shelf life, different kinds of antibacterial agents were used. The composition and application of natural antibacterial agents and synthetic antibacterial agents are discussed. Compared with natural antibacterial agents, synthetic antibacterial agents have the advantages of low cost and high activity, but their toxicity is usually higher than that of natural antibacterial agents. Finally, future development of antimicrobial food packaging is proposed. It is an urgent problem for researchers to design and synthesize antibacterial drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Tianqi Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Yusheng Qian
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jia Wei
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| | - Chuncai Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|