51
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
52
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
53
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
54
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
55
|
Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydr Polym 2023; 300:120213. [DOI: 10.1016/j.carbpol.2022.120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
|
56
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
57
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
58
|
Zhang X, Wei P, Yang Z, Liu Y, Yang K, Cheng Y, Yao H, Zhang Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2022; 15:pharmaceutics15010068. [PMID: 36678696 PMCID: PMC9864871 DOI: 10.3390/pharmaceutics15010068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Wound dressing is an important tool for wound management. Designing wound dressings by combining various novel materials and drugs to optimize the peri-wound environment and promote wound healing is a novel concept. Hydrogels feature good ductility, high water content, and favorable oxygen transport, which makes them become some of the most promising materials for wound dressings. In addition, nanomaterials exhibit superior biodegradability, biocompatibility, and colloidal stability in wound healing and can play a role in promoting healing through their nanoscale properties or as carriers of other drugs. By combining the advantages of both technologies, several outstanding and efficient wound dressings have been developed. In this paper, we classify nano-based hydrogel dressings into four categories: hydrogel dressings loaded with a nanoantibacterial drug; hydrogel dressings loaded with oxygen-delivering nanomedicines; hydrogel dressings loaded with nanonucleic acid drugs; and hydrogel dressings loaded with other nanodelivered drugs. The design ideas, advantages, and challenges of these nano-based hydrogel wound dressings are reviewed and analyzed. Finally, we envisaged possible future directions for wound dressings in the context of relevant scientific and technological advances, which we hope will inform further research in wound management.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Pengyu Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kairui Yang
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhao Cheng
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.C.); (H.Y.)
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Correspondence: (Y.C.); (H.Y.)
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
59
|
Liu Z, Wei W, Tremblay PL, Zhang T. Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces 2022; 220:112902. [DOI: 10.1016/j.colsurfb.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
60
|
Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures. Int J Pharm 2022; 629:122339. [DOI: 10.1016/j.ijpharm.2022.122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
61
|
Comparison of physical, mechanical and biological effects of leucocyte-PRF and advanced-PRF on polyacrylamide nanofiber wound dressings: In vitro and in vivo evaluations. BIOMATERIALS ADVANCES 2022; 141:213082. [PMID: 36067641 DOI: 10.1016/j.bioadv.2022.213082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022]
Abstract
Platelet-rich fibrin (PRF) is extracted from the blood without biochemical interference and, also, with the ability of a long-term release of growth factors that can stimulate tissue repair and regerenation. Here, leucocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF) were extracted and utilized for the creation of nanofibers containing polyacrylamide (PAAm), PAAm / L-PRF and PAAm / A-PRP through electrospinning processing technique. The effect of the type of PRF on the physical, mechanical and biological properties of the resultant nanofiberous wound dressings are thoroughly evaluated. The results presented in the current study reveals that the fiber diameter is grealtly reduced through the utilization of L-PRF. In addition, mechanical property is also positively affected by L-PRF and the degradation rate is found to be higher compared to A-PRF group. The L929 cells proliferation and adhesion, angiogenesis potential and wound healing ability was significantly higher in PAAm/A-PRF nanofibers compared to pure PAAm and PAAm/L-PRF nanofibers owed to the release of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). Overall, the utilization of L-PRF or A-PRF can improve the physical, mechanical and biological behavior of nanofiber making them an ideal candidate for wound dressings, with the emphasis on the skin tissue repair and regeneration applications.
Collapse
|
62
|
The esterified lentinan bilayer nanofibrous membrane for promoting wound healing. Carbohydr Polym 2022; 292:119698. [PMID: 35725184 DOI: 10.1016/j.carbpol.2022.119698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
Host reactions following implantation of biomaterials, especially the macrophages' responses could significantly affect the wound healing process. Therefore, it is meaningful to develop immunostimulatory active wound dressing to accelerate wound healing. In this study, lentinan (LNT) was esterified with different carboxylic acids, and the bilayer nanofibrous membrane (BilayerM) based on the esterified LNT was designed. BilayerM exhibited good water absorption, red blood cells (RBC), platelets, and fibronectin adhesion abilities. The ELISA results indicated that BilayerM stimulated macrophages to secrete pro-inflammatory and pro-regenerative cytokines. Moreover, cell migration results showed that BilayerM promoted the migration and proliferation of NIH3T3 and HUVECs. The wound healing efficacy studies demonstrated that BilayerM significantly accelerated the wound healing rate in a full-thickness skin defect model. Therefore, these results indicate that this bioactive dressing is a hopeful candidate for clinical treatment of cutaneous wounds.
Collapse
|
63
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
64
|
Ji M, Li J, Wang Y, Li F, Man J, Li J, Zhang C, Peng S, Wang S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr Polym 2022; 297:120058. [DOI: 10.1016/j.carbpol.2022.120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022]
|
65
|
Wang H, Wang X, Wu D. Recent Advances of Natural Polysaccharide-based Double-network Hydrogels for Tissue Repair. Chem Asian J 2022; 17:e202200659. [PMID: 35837995 DOI: 10.1002/asia.202200659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Natural polysaccharide hydrogels have been extensively explored for many years due to their outstanding biocompatibility and biodegradability, which are very promising candidates as artificial soft materials for biomedical applications. However, their inferior mechanical performances greatly limited their applications. Introduction of double-network (DN) structure has been well documented to be an efficient strategy for significant improvement of the mechanical property of hydrogels. Here, recent progress of natural polysaccharide-based DN hydrogels is reviewed from the perspective of fundamental concepts on both design rationale and preparation strategies to biomedical application in tissue repair. Retrospect of the DN-strengthened polysaccharide hydrogels can give a deep insight into the fundamental relationship of such bio-based hydrogels among structural design, mechanical properties and practical demands, thereby prompting their translation to clinical application prospects.
Collapse
Affiliation(s)
- Hufei Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Xing Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Decheng Wu
- Southern University of Science and Technology, Department of Biomedical Engineering, No. 1088 Xueyuan Avenue, 518055, Shenzhen, CHINA
| |
Collapse
|
66
|
He C, Yu B, Lv Y, Huang Y, Guo J, Li L, Chen M, Zheng Y, Liu M, Guo S, Shi X, Yang J. Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32799-32812. [PMID: 35839332 DOI: 10.1021/acsami.2c04323] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The surface structure and topography of biomaterials play a crucial role in directing cell behaviors and fates. Meanwhile, asymmetric dressings that mimic the natural skin structure have been identified as an effective strategy for enhancing wound healing. Inspired by the skin structure and the superhydrophobic structure of the lotus leaf, an asymmetric composite dressing was obtained by constructing an asymmetric structure and wettability surface modification on both sides of the sponge based on electrospinning. Among them, the collagen and quaternized chitosan sponge was fabricated by freeze-drying, followed by an aligned poly(ε-caprolactone) (PCL)/gelatin nanofiber hydrophilic inner layer and hierarchical micronanostructure PCL/polystyrene microsphere highly hydrophobic outer layer constructed on each side of the sponge. The proposed asymmetric composite dressing combines topological morphology with the material's properties to effectively prevent bacterial colonization/infection and promote wound healing by directing cellular behavior. In vitro experimental results confirmed that the aligned nanofiber inner layer effectively promotes cell adhesion, proliferation, directed cell growth, and migration. Meanwhile, the sponge has good water absorption and antibacterial properties, while the biomimetic hydrophobic outer layer exhibits strong mechanical properties and resistance to bacterial adhesion. In vivo results showed that the composite dressing can reduce inflammatory response, prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of severe burns. Thus, the proposed bionic asymmetric dressing is expected to be a promising candidate for severe burn wound healing.
Collapse
Affiliation(s)
- Chenhui He
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Bangrui Yu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yufeng Huang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiadong Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Liang Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Minghua Liu
- College of Environment and Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
67
|
Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1998-2050. [PMID: 35695023 DOI: 10.1080/09205063.2022.2088528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds. Some recent advances in biomaterials development for healing both chronic and acute wounds are extensively compiled here. In addition, various properties of biomaterials for wound-healing applications and how they affect their performance are reviewed. Based on the recent literature, trilayered constructs appear to be a convincing candidate for the healing of chronic wounds and complete skin regeneration because they mimic the full thickness of skin: epidermis, dermis, and the hypodermis. This type of scaffold provides a dense superficial layer, a bioactive middle layer, and a porous lower layer to aid the wound-healing process. The hydrophilicity of scaffolds aids cell attachment, cell proliferation, and protein adhesion. Other scaffold characteristics such as porosity, biodegradability, mechanical properties, and gas permeability help with cell accommodation, proliferation, migration, differentiation, and the release of bioactive factors.
Collapse
Affiliation(s)
| | - Damilola O Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | | | | | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA.,Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
| |
Collapse
|
68
|
Cheng Y, Wang J, Hu Z, Zhong S, Huang N, Zhao Y, Tao Y, Liang Y. Preparation of norfloxacin-grafted chitosan antimicrobial sponge and its application in wound repair. Int J Biol Macromol 2022; 210:243-251. [PMID: 35537584 DOI: 10.1016/j.ijbiomac.2022.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022]
Abstract
Trauma is one of the most common health issues in humans, and bacterial infection of the wound may result in many complications. In this paper, using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as a coupling agent, chitosan (CS) was grafted with norfloxacin (NF), an antibacterial agent, to prepare a CS-NF sponge by freezing-induced phase separation. The CS-NF sponge was characterized by ultra violet-visible spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. Its porosity and water absorption ratio were determined, the antimicrobial activity was evaluated by inhibition zone assay, and its wound repair effect was investigated in a full-thickness cutaneous excisional wound animal model. The results showed that NF was successfully grafted onto CS, and the obtained CS-NF sponge had both a high porosity and water absorption ratio. The CS-NF sponge displayed significant antimicrobial activities in the inhibition zone assay. In vivo the CS-NF sponge exhibited a strong wound healing effect, with a wound healing rate close to 100% by day 15. Therefore, the CS-NF sponge is a novel promising wound-healing dressing for clinical practice.
Collapse
Affiliation(s)
- Yu Cheng
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiyuan Wang
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhang Hu
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Na Huang
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuntao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yi Tao
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youling Liang
- Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
69
|
Xiong YH, Zhang L, Xiu Z, Yu B, Duan S, Xu FJ. Derma-like antibacterial polysaccharide gel dressings for wound care. Acta Biomater 2022; 148:119-132. [DOI: 10.1016/j.actbio.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023]
|
70
|
Yu M, Tang P, Tang Y, Wei C, Wang Z, Zhang H. Breathable, Moisturizing, Anti-Oxidation SSD-PG-PVA/KGM Fibrous Membranes for Accelerating Diabetic Wound Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2894-2901. [PMID: 35593099 DOI: 10.1021/acsabm.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetic wound tissue repair and regeneration is a multi-step process that includes cell proliferation and migration, gas and moisture management, and inflammatory responses. However, current wound dressing designs lack consideration of the wound microenvironment of diabetic patients, making diabetic wound tissue repair a challenge. Here, we report a wound dressing (SSD-PG-PVA/KGM) with a porous structure and anti-oxidant properties for promoting diabetic wound tissue repair. First, the porous structure created by electrospinning technology encourages cell proliferation and migration in the wound while also providing breathability and moisture retention. Second, adding natural polyphenols (PG) and saikosaponins (SSDs) to the wound reduced reactive oxygen species levels and oxide stress. In vitro cell experiments showed that SSD-PG-PVA/KGM had good biocompatibility. Due to the biocompatibility, anti-oxidation ability, breathability, and moisturizing, SSD-PG-PVA/KGM could effectively promote the repair of diabetic wound tissue (the wound closure rate was 95.6% at 14 days).
Collapse
Affiliation(s)
- Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Pengfei Tang
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, South Australia 5042, Australia
| | - Cheng Wei
- State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hongping Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.,State Key Laboratory of Environmentally Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
71
|
Liu X, Zhou S, Cai B, Wang Y, Deng D, Wang X. An injectable and self-healing hydrogel with antibacterial and angiogenic properties for diabetic wound healing. Biomater Sci 2022; 10:3480-3492. [PMID: 35593179 DOI: 10.1039/d2bm00224h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of diabetic wounds remains a global challenge. Compared with traditional wound dressings, there are higher requirements of antibacterial, anti-inflammatory and pro-angiogenic effects in diabetic wound dressings. Furthermore, it is desirable for dressings to self-adapt to wounds with different morphologies without extra processes and stably (suitable adhesive and self-healing abilities) provide a conducive environment for wound healing. Herein, we construct an injectable and self-healing hydrogel through the combination of chitosan (CS) and metal ions to efficiently improve infected and diabetic wound healing. Benefiting from the amino and hydroxy groups, the CS molecular chains are cross-linked with silver ions (Ag+) and copper ions (Cu2+) to promote the formation of the CS-Ag-Cu hydrogel, which releases Ag+ (an antibacterial agent) and Cu2+ (an angiogenic agent) over a prolonged period. Moreover, the hydrogel possesses appropriate adhesive ability, good water absorption ability, antibacterial capability and biocompatibility according to in vitro investigations. In vivo experimental results further prove that the CS-Ag-Cu hydrogel can dramatically accelerate tissue repair in a Staphylococcus aureus (S. aureus)-infected skin incision model in normal rats and diabetic wounds.
Collapse
Affiliation(s)
- Xuexia Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China. .,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China.,College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, P.R. China
| | - Sijie Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| | - Biying Cai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| | - Yanan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China.,Affiliated Eye Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Dan Deng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China. .,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China. .,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R. China
| |
Collapse
|
72
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
73
|
A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation. Adv Colloid Interface Sci 2022; 303:102635. [PMID: 35325601 DOI: 10.1016/j.cis.2022.102635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
Appropriate surface wettability of membranes and materials are of an extreme importance for targeting separation of mixtures/emulsions such as oil from water or conversely water from oil. The development of super-wettable membranes and materials surfaces have shown remarkable potential for recovering water from oil-water emulsion while offering maximum resistance to fouling. The availability of clean and potable water has been regarded as an important global challenge for coming human generations. Oil and gas industry is continuously producing immense quantities of waste stream regarded as produced water which contains oil dispersed in water along with other several components. Treating such immense quantities of oily wastewater is of utmost need for recovering precious water for possible reuse or safe disposal. Various technologies have been developed for targeting the separation of oil-water emulsions or mixtures to harness useful potable water and oil as products. Membrane-based separations or use of porous materials such as mesh have been explored in literature for separation of oil-water mixtures/emulsions. Given the unique features of special hydrophilicity, ease of tunability, control of molecular weight, abundant availability, and potential for commercial scale up, chitosan has been extensively used for modifying membranes/meshes or preparing composites with other materials for oil-water separations. This review has described in detail the synthesis, methods of modification and application of chitosan-based super-wettable membranes/meshes and porous materials for oil-water separation. The special wettability features including super-hydrophobicity/superoleophilicity, super-oleophobicity/super-hydrophilicity and super-hydrophilicity/underwater super-oleophobicity of various chitosan-based membranes and materials have been discussed in detail in the review. The strategies for enhancing or developing special wettability for target specific applications have also been discussed. Finally, the challenges, their respective importance have been identified along with a discussion on possible solutions to these challenges.
Collapse
|
74
|
Demina TS, Bikmulina PY, Birdibekova AV, Kuryanova AS, Frolova AA, Koteneva PI, Aksenova NA, Kosheleva NV, Khlebnikova TM, Akopova TA, Timashev PS. Modification of the Chemical Structure, Morphology, and Cytocompatibility of Chitosan Films via Low-Frequency Plasma Treatment. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382202003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J 2022; 19:1934-1954. [PMID: 35297170 DOI: 10.1111/iwj.13786] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022] Open
Abstract
Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.,Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| |
Collapse
|
76
|
Duan JZ, Yang Y, Wang H. Effects of Antibacterial Co-Cr-Mo-Cu Alloys on Osteoblast Proliferation, Differentiation, and the Inhibition of Apoptosis. Orthop Surg 2022; 14:758-768. [PMID: 35293695 PMCID: PMC9002069 DOI: 10.1111/os.13253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the effects of antibacterial Co‐Cr‐Mo‐Cu alloys with different Cu contents on osteoblast proliferation, differentiation, and the inhibition of apoptosis to optimize the selection of surgical implantation. Methods Microstructure, phase structure, and ion release were evaluated using X‐ray diffraction, scanning electron microscopy (SEM), and inductively coupled plasma (ICP) spectrometry. The effects on osteoblast proliferation, differentiation, and apoptosis were characterized by cell proliferation assay, alkaline phosphatase (ALP) activity assay, and western blotting, respectively. Results Compared to the original Co‐Cr‐Mo alloys, the released Cu ions from Co‐Cu alloys promoted osteoblast proliferation and differentiation and inhibited apoptosis. It can be noted that the optical density (OD490) and the ALP activity have increased to 1.237 and 1.053, respectively, in Co‐2Cu alloy (0.604 and 0.171 for original Co‐Cr‐Mo alloy). Meanwhile, these effects were evaluated through the upregulation of ROS levels and 4E‐binding protein 1 (4E‐BP1) expression and the downregulation of adenosine 5′‐monophosphate (AMP)‐activated protein kinase (AMPK) and p‐AMPK. Moreover, the antibacterial properties of the Co‐Cu alloys were also enhanced, as demonstrated by the strong antibacterial activity of Cu phases in Co‐Cu alloys incubated with Staphylococcus aureus, in which more than 99.8% of the bacteria has been killed. Conclusions The addition of Cu element in the Co‐Cr‐Mo alloys could induce OB proliferation and differentiation and inhibited OB apoptosis. Meanwhile, it can be recognized that the Co‐Cu alloys with 2wt% Cu exhibit the highest performance among all the samples, indicating that the effects of osteoblast differentiation and the inhibition of apoptosis are highly dependent on the adding of Cu elements. Co‐Cr‐Mo‐Cu alloys with an excellent antibacterial property could be used as a tool to improve osteogenic ability and antibacterial properties in orthopaedic implant operations.
Collapse
Affiliation(s)
- Jing-Zhu Duan
- Department of Orthopaedic, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Wang
- Department of Orthopaedic, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
77
|
Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers (Basel) 2022; 14:polym14051012. [PMID: 35267835 PMCID: PMC8912626 DOI: 10.3390/polym14051012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Wounds are a major health concern affecting the lives of millions of people. Some wounds may pass a threshold diameter to become unrecoverable by themselves. These wounds become chronic and may even lead to mortality. Recently, 3D printing technology, in association with biocompatible hydrogels, has emerged as a promising platform for developing smart wound dressings, overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items, such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ to produce the dressings desired. In this review, recent developments in hydrogel-based wound dressings made using 3D printing are covered. The most common biosensors integrated with 3D printed hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based hydrogels are recommended for future consideration.
Collapse
|
78
|
Mansouri M, Barzi SM, Zafari M, Chiani M, Chehrazi M, Nosrati H, Shams Nosrati MS, Nayyeri S, Khodaei M, Bonakdar S, Shafiei M. Electrosprayed cefazolin-loaded niosomes onto electrospun chitosan nanofibrous membrane for wound healing applications. J Biomed Mater Res B Appl Biomater 2022; 110:1814-1826. [PMID: 35195946 DOI: 10.1002/jbm.b.35039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
Chronic wounds are among the most therapeutically challenging conditions, which are commonly followed by bacterial infection. The ideal approach to treat such injuries are synergistic infection therapy and skin tissue regeneration. In the recent decades, nanotechnology has played a critical role in eradicating bacterial infections by introducing several carriers developed for drug delivery. Moreover, advances in tissue engineering have resulted in new drug delivery systems that can improve the skin regeneration rate and quality. In this study, cefazolin-loaded niosomes were electrosprayed onto chitosan membrane for wound healing applications. For this purpose, niosomes were obtained by the thin-film hydration method; electrospinning was then conducted to fabricate nanofibrous mats. In vitro characterization of the scaffold was performed to evaluate the physicochemical and biological properties. Finally, in vivo studies were carried out to evaluate the potential use of the membrane for skin regeneration. In vitro results indicated the antibacterial properties of the membrane against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) due to the gradual release of cefazolin from niosomes. The scaffolds also showed no cell toxicity. In vivo studies also confirmed the ability of the membrane to enhance skin regeneration by improving re-epithelialization, tissue remodeling, and angiogenesis. The current study could well show the promising role of the prepared scaffold for skin regeneration and bacterial infection elimination.
Collapse
Affiliation(s)
- Milad Mansouri
- Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Zafari
- Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran.,National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Chehrazi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sara Nayyeri
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
79
|
Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. Int J Biol Macromol 2022; 207:666-682. [PMID: 35218804 DOI: 10.1016/j.ijbiomac.2022.02.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Skin is the largest organ in the body which plays different roles in maintaining hemostasis. Although this tissue has a high healing potential, severe skin wounds cannot heal without external interventions. Among various treatment strategies, tissue-engineered wound dressings have gained significant attention. In this regard, tremendous progress has been made in the field of tissue engineering to develop constructs with higher healing activities. Material selection and optimization are key factors in development of such dressings. Among different candidates, dextran-based wound dressings have been extensively studied. Dextran is a branched biological macromolecule which is composed of anhydroglucose monomers. Due to its excellent biocompatibility, biodegradability, non-toxicity, modifiable functional groups, and proven clinical safety, dextran has found application in wound healing research. In the current review, applications, challenges, and future perspectives of dextran-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Analysis and Testing Center, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.
| | - Saman Jalili
- Department of Biomaterials Science and Technology, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
80
|
Guo X, Huang W, Tong J, Chen L, Shi X. One-step programmable electrofabrication of chitosan asymmetric hydrogels with 3D shape deformation. Carbohydr Polym 2022; 277:118888. [PMID: 34893290 DOI: 10.1016/j.carbpol.2021.118888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022]
Abstract
Programmable asymmetric hydrogels with tunable structure/shape or physical/chemical properties in response to external stimuli show particular significance in smart systems, but there is lack of simple, rapid, and cheap strategy to design such hydrogel systems. Herein, we report a one-step electrodeposition method to construct chitosan asymmetric hydrogels with tunable thickness and pore size that can be conveniently modulated by the process parameters. Our approach greatly simplifies the process of hydrogel preparation with complex shapes and asymmetric structure organization. The formation mechanism of asymmetric structure has been proposed, based on gelation behavior and entanglement of chitosan chains in the hydrogel-solution system under the electric field. By changing the shape of the electrodes, hydrogels with the morphology of strip, tube, flower, etc. can be obtained precisely and conveniently. They can perform programmable 2D to 3D smart dynamic deformation under pH and metal ions stimulation, indicating the broad application potential in soft robot and biosensor areas.
Collapse
Affiliation(s)
- Xiaojia Guo
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China; Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Weijuan Huang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Tong
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
81
|
Wei L, Tan J, Li L, Wang H, Liu S, Chen J, Weng Y, Liu T. Chitosan/Alginate Hydrogel Dressing Loaded FGF/VE-Cadherin to Accelerate Full-Thickness Skin Regeneration and More Normal Skin Repairs. Int J Mol Sci 2022; 23:ijms23031249. [PMID: 35163172 PMCID: PMC8835731 DOI: 10.3390/ijms23031249] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
The process of full-thickness skin regeneration is complex and has many parameters involved, which makes it difficult to use a single dressing to meet the various requirements of the complete regeneration at the same time. Therefore, developing hydrogel dressings with multifunction, including tunable rheological properties and aperture, hemostatic, antibacterial and super cytocompatibility, is a desirable candidate in wound healing. In this study, a series of complex hydrogels were developed via the hydrogen bond and covalent bond between chitosan (CS) and alginate (SA). These hydrogels exhibited suitable pore size and tunable rheological properties for cell adhesion. Chitosan endowed hemostatic, antibacterial properties and great cytocompatibility and thus solved two primary problems in the early stage of the wound healing process. Moreover, the sustained cytocompatibility of the hydrogels was further investigated after adding FGF and VE-cadherin via the co-culture of L929 and EC for 12 days. The confocal 3D fluorescent images showed that the cells were spherical and tended to form multicellular spheroids, which distributed in about 40-60 μm thick hydrogels. Furthermore, the hydrogel dressings significantly accelerate defected skin turn to normal skin with proper epithelial thickness and new blood vessels and hair follicles through the histological analysis of in vivo wound healing. The findings mentioned above demonstrated that the CS/SA hydrogels with growth factors have great potential as multifunctional hydrogel dressings for full-thickness skin regeneration incorporated with hemostatic, antibacterial, sustained cytocompatibility for 3D cell culture and normal skin repairing.
Collapse
Affiliation(s)
| | | | | | | | | | - Junying Chen
- Correspondence: ; Tel.: +86-028-87634148; Fax: +86-028-87600625
| | | | | |
Collapse
|
82
|
3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02899-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Zheng BD, Ye J, Yang YC, Huang YY, Xiao MT. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr Polym 2022; 275:118770. [PMID: 34742452 DOI: 10.1016/j.carbpol.2021.118770] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Because the wound is difficult to heal, repeated bacterial infection will lead to complex clinical problems. Therefore, it is necessary to find an effective method to strengthen the healing process and resist bacterial infection. Hydrogels have many advantages, such as injectability and self-healing under physiological conditions, so they have been widely studied in recent years. Hydrogels can keep the wound moist and promote the wound healing. In addition, the growth of bacteria can be obviously inhibited by hydrogels themself or by doping some antibacterial active substances. Based on this, herein, this review highlighted the preparation and properties of different polysaccharide-based injectable hydrogels, and discuss their biological applications in antibacterial therapy for wound healing in recent years.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yu-Cheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| |
Collapse
|
84
|
Alan S, Şalva E, Karakoyun B, Çakalağaoğlu F, Özbaş S, Akbuğa J. Investigation of therapeutic effects in the wound healing of chitosan/pGM-CSF complexes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
85
|
|
86
|
Asadi N, Mehdipour A, Ghorbani M, Mesgari-Abbasi M, Akbarzadeh A, Davaran S. A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing. Int J Biol Macromol 2021; 193:734-747. [PMID: 34717980 DOI: 10.1016/j.ijbiomac.2021.10.180] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
Due to their lack of multifunctionality, the majority of traditional wound dressings do not support all the clinical requirements. Bilayer wound dressings with multifunctional properties can be attractive for effective skin regeneration. In the present study, we designed a multifunctional bilayer scaffold containing Chitosan-Polycaprolactone (PC) nanofiber and tannic acid (TA) reinforced methacrylate gelatin (GM)/alginate (Al) hydrogel (GM/Al/TA). PC nanofibers were coated with GM/Al/TA hydrogel to obtain a bilayer nanocomposite scaffold (Bi-TA). The GM/Al/TA hydrogel layer of Bi-TA showed antibacterial, free radical scavenging, and biocompatibility properties. Also, PC nanofiber acted as a barrier for preventing bacterial invasion and moisture loss of the hydrogel layer. The wound healing performance of the Bi-TA scaffold was investigated via a full-thickness wound model. In addition, the histopathological and immunohistochemical (IHC) stainings of transforming growth factor-β1(TGF-β1) and tumor necrosis factor-α (TNF-α) were assessed. The results indicated an enhanced wound closure rate, effective collagen deposition, quick re-epithelialization, more skin appendages, and replacement of defect area with normal skin tissue by Bi-TA scaffold compared to other groups. Additionally, the regulation of TGF-β1 and TNF-α was observed by Bi-TA dressing. Overall, the Bi-TA with appropriate structural and multifunctional properties can be an excellent candidate for developing effective dressings for wound healing applications.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
87
|
Oviedo M, Montoya Y, Agudelo W, García-García A, Bustamante J. Effect of Molecular Weight and Nanoarchitecture of Chitosan and Polycaprolactone Electrospun Membranes on Physicochemical and Hemocompatible Properties for Possible Wound Dressing. Polymers (Basel) 2021; 13:4320. [PMID: 34960871 PMCID: PMC8703617 DOI: 10.3390/polym13244320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering has focused on the development of biomaterials that emulate the native extracellular matrix. Therefore, the purpose of this research was oriented to the development of nanofibrillar bilayer membranes composed of polycaprolactone with low and medium molecular weight chitosan, evaluating their physicochemical and biological properties. Two-bilayer membranes were developed by an electrospinning technique considering the effect of chitosan molecular weight and parameter changes in the technique. Subsequently, the membranes were evaluated by scanning electron microscopy, Fourier transform spectroscopy, stress tests, permeability, contact angle, hemolysis evaluation, and an MTT test. From the results, it was found that changes in the electrospinning parameters and the molecular weight of chitosan influence the formation, fiber orientation, and nanoarchitecture of the membranes. Likewise, it was evidenced that a higher molecular weight of chitosan in the bilayer membranes increases the stiffness and favors polar anchor points. This increased Young's modulus, wettability, and permeability, which, in turn, influenced the reduction in the percentage of cell viability and hemolysis. It is concluded that the development of biomimetic bilayer nanofibrillar membranes modulate the physicochemical properties and improve the hemolytic behavior so they can be used as a hemocompatible biomaterial.
Collapse
Affiliation(s)
- Maria Oviedo
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (M.O.); (W.A.); (J.B.)
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (M.O.); (W.A.); (J.B.)
| | - Wilson Agudelo
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (M.O.); (W.A.); (J.B.)
| | - Alejandra García-García
- Laboratorio de Síntesis and Modificación de Nanoestructuras and Materiales Bidimensionales, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (M.O.); (W.A.); (J.B.)
| |
Collapse
|
88
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
89
|
de Oliveira RS, Fantaus SS, Guillot AJ, Melero A, Beck RCR. 3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics 2021; 13:1946. [PMID: 34834360 PMCID: PMC8625283 DOI: 10.3390/pharmaceutics13111946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023] Open
Abstract
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Stephani Silva Fantaus
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| |
Collapse
|
90
|
Bandatang N, Pongsomboon SA, Jumpapaeng P, Suwanakood P, Saengsuwan S. Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. Int J Biol Macromol 2021; 190:585-600. [PMID: 34499957 DOI: 10.1016/j.ijbiomac.2021.08.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
This work aims to improve the electrospinability and antibacterial activity of chitosan (CS) - based nanofibers. Three approaches consisting of reducing molecular weight of CS by NaOH hydrolysis (HCS), blending with two carrying polymers (polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA)) and incorporating with in-situ synthesized silver nanoparticles (AgNPs) were integrated simultaneously for the first time to fabricate the HCS-AgNPs/PVP/PVA multicomponent nanofibers. The electrospinning parameters were optimized to obtain the smooth and uniform nanofibers without beads of both HCS/PVP/PVA and HCS-AgNPs/PVP/PVA systems. The presence of in-situ AgNPs in the multicomponent blends gives the better electrospinning performance and the lowest fiber diameter of 139 nm. In addition, the thermal properties, thermal stability and crystallinity index of both nanofibers also increased with increasing HCS or HCS-AgNPs fractions. Finally, the best antibacterial activity of HCS/PVP/PVA and HCS-AgNPs/PVP/PVA nanofibers against E. coli was found to be 74.4% and 99.9%, respectively. The significant enhancement in bactericidal activity of HCS-AgNPs/PVP/PVA nanofibers against E. coli is due to the synergistic properties of HCS/PVP/PVA blends and AgNPs. Both nanofiber mats displayed the excellent structural stability in moisture environment for at least 7 days. Therefore, the HCS-AgNPs/PVP/PVA nanofibers could be a potential material for applying in the medical purpose.
Collapse
Affiliation(s)
- Naruedee Bandatang
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Song-Amnart Pongsomboon
- Department of Bioscience, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Punnapat Jumpapaeng
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Pitchayaporn Suwanakood
- Department of Bioscience, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Sayant Saengsuwan
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand.
| |
Collapse
|
91
|
Chen W, Li X, Zeng L, Pan H, Liu Z. Allicin-loaded chitosan/polyvinyl alcohol scaffolds as a potential wound dressing material to treat diabetic wounds: An in vitro and in vivo study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
92
|
Wani TU, Pandith AH, Sheikh FA. Polyelectrolytic nature of chitosan: Influence on physicochemical properties and synthesis of nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
93
|
Shah BR, Xu W, Mráz J. Formulation and characterization of zein/chitosan complex particles stabilized Pickering emulsion with the encapsulation and delivery of vitamin D 3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5419-5428. [PMID: 33647164 DOI: 10.1002/jsfa.11190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pickering emulsions (PEs) which are stabilized by solid particles instead of surfactants have recently attracted tremendous attentions due to their non-toxic and long-term stable nature. In the current study, we fabricated and characterized zein (ZN)/chitosan (CS) complex particles (ZNCSPs) stabilized PE for the encapsulation and delivery of vitamin D3 . RESULTS The ZNCSPs were synthesized with different ratios, i.e. 1:1, 1:1.5 and 1:2 to investigate the optimum ratio. Transmission electron microscopy observations showed the spherical nature with smooth surface of the obtained particles in the case of ZNCS ratio 1:1.5 and 1:2. Furthermore, ζ-potential values for the these particles were 32.53 ± 1.3 and 52.86 ± 0.68 mV respectively, indicating particles with (1:2) being more stable than 1:1.5. Thereafter, using these particles, the PEs were successfully formulated with different oil (medium chain triglyceride) fractions (330, 500 and 660 g kg-1 ). The emulsions were evaluated for stability during storage and against different environmental factors including pH, temperature and ionic strength on the creaming indices (CIs) of these emulsions. The results demonstrated that the PEs with oil fractions 330 and 500 g kg-1 exhibited significant stability during storage, particularly the ones with 500 g kg-1 oil fractions which were stable against all the tested parameters. Finally, the prepared PEs were evaluated as efficient delivery system by encapsulating and delivering vitamin D3 . In vitro drug release profile confirmed sustained and controlled release of the encapsulated vitamin D3 . CONCLUSION Overall, our findings suggest that ZNCSPs can be promising stabilizers for stable PEs that can be used as potential delivery systems in food, cosmetic and pharmaceutical industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- B R Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - W Xu
- College of Life Science, Xinyang Normal University, Xinyang, P. R. China
| | - J Mráz
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
94
|
Azzazy HMES, Fahmy SA, Mahdy NK, Meselhy MR, Bakowsky U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2438. [PMID: 34578755 PMCID: PMC8464825 DOI: 10.3390/nano11092438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Wound healing is a major healthcare concern, and complicated wounds may lead to severe outcomes such as septicemia and amputations. To date, management choices are limited, which warrants the search for new potent wound healing agents. Natural products loaded in poly (lactic-co-glycolic acid) (PLGA) coated with chitosan (CS) constitute a promising antibacterial wound healing formulation. In this work, harmala alkaloid-rich fraction (HARF) loaded into PLGA nanoparticles coated with chitosan (H/CS/PLGA NPs) were designed using the emulsion-solvent evaporation method. Optimization of the formulation variables (HARF: PLGA and CS: PLGA weight ratios, sonication time) was performed using the 33 Box-Behnken design (BBD). The optimal NPs were characterized using transmission electron microscopy (TEM) and Attenuated Total Reflection Fourier-Transformed Infrared Spectroscopy (ATR-FTIR). The prepared NPs had an average particle size of 202.27 ± 2.44 nm, a PDI of 0.23 ± 0.01, a zeta potential of 9.22 ± 0.94 mV, and an entrapment efficiency of 86.77 ± 4.18%. In vitro drug release experiments showed a biphasic pattern where an initial burst of 82.50 ± 0.20% took place in the first 2 h, which increased to 87.50 ± 0.50% over 72 h. The designed optimal H/CS/PLGA NPs exerted high antibacterial activity against Staphylococcus aureus and Escherichia coli (MIC of 0.125 and 0.06 mg/mL, respectively) compared to unloaded HARF (MIC of 0.50 mg/mL). The prepared nanoparticles were found to be biocompatible when tested on human skin fibroblasts. Moreover, the wound closure percentage after 24 h of applying H/CS/PLGA NPs was found to be 94.4 ± 8.0%, compared to free HARF and blank NPs (68.20 ± 5.10 and 50.50 ± 9.40%, respectively). In conclusion, the three components of the developed nanoformulation (PLGA, chitosan, and HARF) have synergistic antibacterial and wound healing properties for the management of infected wounds.
Collapse
Affiliation(s)
- Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Noha Khalil Mahdy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Meselhy Ragab Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
95
|
Beneficial effect on rapid skin wound healing through carboxylic acid-treated chicken eggshell membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112350. [PMID: 34474899 DOI: 10.1016/j.msec.2021.112350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023]
Abstract
At the initial stage of wound healing, growth factors stimulate tissue regeneration by interacting with the extracellular matrix (ECM), leading to rapid wound repair and structural support. Chicken eggshell membrane (ESM) is a low-cost and highly functional ECM biomaterial for tissue regeneration. However, natural ESM has limitations for tissue engineering purposes because it is difficult to control the size, shape, and biocompatibility of the surfaces. To overcome this, blends of synthetic materials and natural ESMs, such as soluble eggshell membrane protein, are combined for biomaterial applications. Unfortunately, it is difficult to pattern fibrous structure. Here, we modified the natural chicken ESM through weak acid treatment to promote wound healing and skin regeneration without loss of fibrous structure. Treatment of citric acid and acetic acid reacted the amine or amide group with carboxyl groups (R-COOH) and achieved hydrophilicity for adherence of proliferating regenerative cells. Our in vitro study revealed that the modified ESM scaffolds significantly promoted human dermal fibroblasts adhesion, viability, proliferation, and cytokine secretion, compared with natural ESM. In addition, the modified ESM accelerated skin regeneration and enhanced the wound healing process even at early stages in an in vivo rat wound model. Collectively, the modified ESM performed best for promoting skin regeneration, cytokine secretion, epidermal cell proliferation, and controlling the inflammatory response both in vitro and in vivo.
Collapse
|
96
|
Qin X, Mukerabigwi JF, Ma M, Huang R, Ma M, Huang X, Cao Y, Yu Y. In situ photo-crosslinking hydrogel with rapid healing, antibacterial, and hemostatic activities. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Uncontrollable bleeding is still the main cause of post-traumatic deaths due to the blood loss. Moreover, infectious complication of wound is also still a challenging problem for wound healing. Nevertheless, the currently available hemostasis drugs or materials cannot stanch bleeding well due to single function, slow in effectiveness, adhere to wounds easily, poor gas permeability, etc. Therefore, it is of a great significance to utilize a biomedical hemostatic material that can stop bleeding quickly, preventing from bacterial infections, and with good biocompatibility properties. Herein chitosan (CS) was modified with gallic acid (GA) and thrombin (TB) to prepare an antibacterial hemostatic composite dressing. The CS-based composite hydrogel dressing was obtained by acylation modification, ultraviolet curing crosslinking method and physical mixing. The in vitro results showed that our prepared CS-based composite hydrogel has obvious burst release and good degradation property. Moreover, the in vivo results showed that it has a strong antibacterial property that is much better than single CS, and it can stop bleeding in 1 min which can promote wound healing. Therefore, the findings of this study is expected to contribute to the future designing of biomedical hemostatic materials with improved properties.
Collapse
Affiliation(s)
- Xiaolei Qin
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University , Wuhan 430079 , China
| | - Jean Felix Mukerabigwi
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University , Wuhan 430079 , China
- Department of Chemistry, University of Rwanda, College of Science and Technology , P.O. Box 3900 , Kigali , Rwanda
| | - Mingzi Ma
- Medical School of Chinese PLA , Beijing 100853 , China
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital , Beijing 100853 , China
| | - Ruyi Huang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University , Wuhan 430079 , China
| | - Mengdi Ma
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University , Wuhan 430079 , China
| | - Xueying Huang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University , Wuhan 430079 , China
| | - Yu Cao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University , Wuhan 430079 , China
| | - Yang Yu
- Medical School of Chinese PLA , Beijing 100853 , China
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital , Beijing 100853 , China
| |
Collapse
|
97
|
Zhang M, Wang D, Ji N, Lee S, Wang G, Zheng Y, Zhang X, Yang L, Qin Z, Yang Y. Bioinspired Design of Sericin/Chitosan/Ag@MOF/GO Hydrogels for Efficiently Combating Resistant Bacteria, Rapid Hemostasis, and Wound Healing. Polymers (Basel) 2021; 13:2812. [PMID: 34451350 PMCID: PMC8398496 DOI: 10.3390/polym13162812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Due to the spread of drug-resistant bacteria in hospitals, the development of antibacterial dressings has become a strategy to control wound infections caused by bacteria. Here, we reported a green strategy for in situ biomimetic syntheses of silver nanoparticles@organic frameworks/graphene oxide (Ag@MOF-GO) in sericin/chitosan/polyvinyl alcohol hydrogel. Ag@MOF-GO was synthesized in situ from the redox properties of tyrosine residues in silk sericin without additional chemicals, similar to a biomineralization process. The sericin/chitosan/Ag@MOF-GO dressing possessed a high porosity, good water retention, and a swelling ratio. The hemolysis rate of the composite was 3.9% and the cell viability rate was 131.2%, which indicated the hydrogel possessed good biocompatibility. The composite also showed excellent lasting antibacterial properties against drug-sensitive and drug-resistant pathogenic bacteria. The composite possessed excellent hemostatic activity. The coagulation effect of the composite may be related to its effect on the red blood cells and platelets, but it has nothing to do with the activation of coagulation factors. An in vitro cell migration assay confirmed and an in vivo evaluation of mice indicated that the composite could accelerate wound healing and re-epithelialization. In summary, the composite material is an ideal dressing for accelerating hemostasis, preventing bacterial infection, and promoting wound healing.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nana Ji
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuqi Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Yang
- Sinochem Chemical Science and Technology Research Institute Co., Ltd., Beijing 100089, China; (L.Y.); (Z.Q.)
| | - Zhiwei Qin
- Sinochem Chemical Science and Technology Research Institute Co., Ltd., Beijing 100089, China; (L.Y.); (Z.Q.)
| | - Yang Yang
- National Marine Data and Information Service, Tianjin 300171, China;
| |
Collapse
|
98
|
Caroni JG, de Almeida Mattos AV, Fernandes KR, Balogh DT, Renno ACM, Okura MH, Malpass ACG, Ferraresi C, Garcia LA, Sanfelice RC, Pavinatto A. Chitosan-based glycerol-plasticized membranes: bactericidal and fibroblast cellular growth properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
99
|
Chen L, Pan Z, Zhu J, Mao Y, Sun J. Novel fabrication of dual nanoparticle loaded-co-polymeric dressing for effective healing efficiency in wound care after fracture surgery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2009-2027. [PMID: 34338145 DOI: 10.1080/09205063.2021.1953237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study, curcumin loaded chitosan/poly ethylene glycol nanomaterial (CUR loaded CH/PEG/AgNPs) was fabricated and characterized for wound healing efficiency after fracture surgery. The interaction of functional groups and crystal nature were recorded under FTIR and XRD spectrometer and reveals that the stabilization and purity of NPs was mediated by OH/NH2 groups in chitosan. FESEM showed the presence of spherical and well dispersed particles. The average size of the particle was 13.48 nm. The CUR loaded CH/PEG/AgNPs showed higher swelling capacity (495.6 g/g) in phosphate buffer saline compared to water (140.2 g/g). The drug loading efficiency was higher in CUR loaded CH/PEG/AgNPs compared to CH/PEG films as recorded by the absorbance peak at 460 nm corresponds to curcumin in the composite. A dose dependent cytotoxicity of CUR loaded CH/PEG/AgNPs was noticed on Vero cells. The viability of Vero cells was increased to 96.5% at 100 μg/mL. A remarkable change in Vero cells such as condensed nuclei and membrane blabbing was noticed in cells treated with CUR loaded CH/PEG/AgNPs. A greater inhibition of Staphylococcus aureus and Escherichia coli was noticed at 24 h and 48 h treated with CUR loaded CH/PEG/AgNPs. A greater healing effect by increasing the wound contraction (98% on day 12) was observed with CUR loaded CH/PEG/AgNPs compared to control. Histopathological examination demonstrated that CUR loaded CH/PEG/AgNPs showed complete tissue regeneration in wound excised rats. The results of this study conclude that CUR loaded CH/PEG/AgNPs could be promising candidate to prevent microbial infections in wound, healing wound rapidly and inhibit the proliferation of apoptotic cells. Thus, CUR loaded CH/PEG/AgNPs could be a potential therapeutic agent with broad spectrum applications in the future. HighlightsA new approach was used to develop curcumin-loaded chitosan/poly(ethylene glycol)/AgNPs.The CUR-loaded CH/PEG/AgNPs were confirmed to be crystals by XRD analysis.The prepared CH/PEG/AgNPs were spherical and averaged 13.48 nm in size.The growth of S. aureus and E. coli were inhibited mostly by CH/PEG/AgNPs treatment.CUR loaded CH/PEG/AgNPs showed complete tissue regeneration in wound excised mice.
Collapse
Affiliation(s)
- Lili Chen
- EICU, the First People's Hospital of Wenling, Wenling, PR China
| | - Zhenfei Pan
- First Aid Center, the First People's Hospital of Wenling, Wenling, PR China
| | - Jinqiang Zhu
- First Aid Center, the First People's Hospital of Wenling, Wenling, PR China
| | - Yi Mao
- First Aid Center, the First People's Hospital of Wenling, Wenling, PR China
| | - Junhong Sun
- Orthopaedic Center, the First People's Hospital of Wenling, Wenling, PR China
| |
Collapse
|
100
|
Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res 2021; 506:108368. [PMID: 34111686 DOI: 10.1016/j.carres.2021.108368] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is the most abundant natural biopolymer, after cellulose. It is mainly derived from the fungi, shrimp's shells, and exoskeleton of crustaceans, through the deacetylation of chitin. The ecological sustainability associated with its exercise and the flexibility of chitosan owing to its active functional hydroxyl and amino groups makes it a promising candidate for a wide range of applications through a variety of modifications. The biodegradability and biocompatibility of chitosan and its derivatives along with their various chemical functionalities make them promising carriers for pharmaceutical, nutritional, medicinal, environmental, agriculture, drug delivery, and biotechnology applications. The present work aims to provide a detailed and organized description of modified chitosan and its derivatives-based nanomaterials for biomedical applications. We addressed the biological and physicochemical benefits of nanocomposite materials made up of chitosan and its derivatives in various formulations, including improved physicochemical stability and cells/tissue interaction, controlled drug release, and increased bioavailability and efficacy in clinical practice. Moreover, several modification techniques and their effective utilization are also reviewed and collected in this review.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khalid A Alamry
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|