51
|
de la Torre-Escudero E, Robinson MW. Extracellular vesicle-mediated communication in host-parasite interactions: insight from Fasciola hepatica. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:S8. [PMID: 28567390 DOI: 10.21037/atm.2017.03.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eduardo de la Torre-Escudero
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark W Robinson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
52
|
Cameron TC, Cooke I, Faou P, Toet H, Piedrafita D, Young N, Rathinasamy V, Beddoe T, Anderson G, Dempster R, Spithill TW. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep. Int J Parasitol 2017; 47:555-567. [PMID: 28455238 DOI: 10.1016/j.ijpara.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
A more thorough understanding of the immunological interactions between Fasciola spp. and their hosts is required if we are to develop new immunotherapies to control fasciolosis. Deeper knowledge of the antigens that are the target of the acquired immune responses of definitive hosts against both Fasciola hepatica and Fasciola gigantica will potentially identify candidate vaccine antigens. Indonesian Thin Tail sheep express a high level of acquired immunity to infection by F. gigantica within 4weeks of infection and antibodies in Indonesian Thin Tail sera can promote antibody-dependent cell-mediated cytotoxicity against the surface tegument of juvenile F. gigantica in vitro. Given the high protein sequence similarity between F. hepatica and F. gigantica, we hypothesised that antibody from F. gigantica-infected sheep could be used to identify the orthologous proteins in the tegument of F. hepatica. Purified IgG from the sera of F. gigantica-infected Indonesian Thin Tail sheep collected pre-infection and 4weeks p.i. were incubated with live adult F. hepatica ex vivo and the immunosloughate (immunoprecipitate) formed was isolated and analysed via liquid chromatography-electrospray ionisation-tandem mass spectrometry to identify proteins involved in the immune response. A total of 38 proteins were identified at a significantly higher abundance in the immunosloughate using week 4 IgG, including eight predicted membrane proteins, 20 secreted proteins, nine proteins predicted to be associated with either the lysosomes, the cytoplasm or the cytoskeleton and one protein with an unknown cellular localization. Three of the membrane proteins are transporters including a multidrug resistance protein, an amino acid permease and a glucose transporter. Interestingly, a total of 21 of the 38 proteins matched with proteins recently reported to be associated with the proposed small exosome-like extracellular vesicles of adult F. hepatica, suggesting that the Indonesian Thin Tail week 4 IgG is either recognising individual proteins released from extracellular vesicles or is immunoprecipitating intact exosome-like extracellular vesicles. Five extracellular vesicle membrane proteins were identified including two proteins predicted to be associated with vesicle transport/ exocytosis (VPS4, vacuolar protein sorting-associated protein 4b and the Niemann-Pick C1 protein). RNAseq analysis of the developmental transcription of the 38 immunosloughate proteins showed that the sequences are expressed over a wide abundance range with 21/38 transcripts expressed at a relatively high level from metacercariae to the adult life cycle stage. A notable feature of the immunosloughates was the absence of cytosolic proteins which have been reported to be secreted markers for damage to adult flukes incubated in vitro, suggesting that the proteins observed are not inadvertent contaminants leaking from damaged flukes ex vivo. The identification of tegument protein antigens shared between F. gigantica and F. hepatica is beneficial in terms of the possible development of a dual purpose vaccine effective against both fluke species.
Collapse
Affiliation(s)
- Timothy C Cameron
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Ira Cooke
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hayley Toet
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, Australia
| | - Neil Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Glenn Anderson
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Robert Dempster
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
53
|
Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol 2017; 33:400-413. [PMID: 28089171 DOI: 10.1016/j.pt.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets.
Collapse
|
54
|
de la Torre-Escudero E, Bennett AP, Clarke A, Brennan GP, Robinson MW. Extracellular Vesicle Biogenesis in Helminths: More than One Route to the Surface? Trends Parasitol 2016; 32:921-929. [DOI: 10.1016/j.pt.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
|
55
|
Abstract
Fasciolosis caused by Fasciola hepatica severely affects the efficiency of livestock production systems worldwide. In addition to the economic impact inflicted on livestock farmers, fasciolosis is an emergent zoonosis. This review emphasizes different aspects of the disease in South America. Available data on epidemiology in bovines and ovines in different countries, as well as a growing body of information on other domestic and wildlife definitive hosts, are summarized. The issue of drug resistance that compromises the long-term sustainability of current pharmacological strategies is examined from a regional perspective. Finally, efforts to develop a single-antigen recombinant vaccine in ruminants are reviewed, focusing on the cases of leucine aminopeptidase or thioredoxin glutathione reductase.
Collapse
|
56
|
Di Maggio LS, Tirloni L, Pinto AFM, Diedrich JK, Yates Iii JR, Benavides U, Carmona C, da Silva Vaz I, Berasain P. Across intra-mammalian stages of the liver f luke Fasciola hepatica: a proteomic study. Sci Rep 2016; 6:32796. [PMID: 27600774 PMCID: PMC5013449 DOI: 10.1038/srep32796] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Fasciola hepatica is the agent of fasciolosis, a foodborne zoonosis that affects livestock production and human health. Although flukicidal drugs are available, re-infection and expanding resistance to triclabendazole demand new control strategies. Understanding the molecular mechanisms underlying the complex interaction with the mammalian host could provide relevant clues, aiding the search for novel targets in diagnosis and control of fasciolosis. Parasite survival in the mammalian host is mediated by parasite compounds released during infection, known as excretory/secretory (E/S) products. E/S products are thought to protect parasites from host responses, allowing them to survive for a long period in the vertebrate host. This work provides in-depth proteomic analysis of F. hepatica intra-mammalian stages, and represents the largest number of proteins identified to date for this species. Functional classification revealed the presence of proteins involved in different biological processes, many of which represent original findings for this organism and are important for parasite survival within the host. These results could lead to a better comprehension of host-parasite relationships, and contribute to the development of drugs or vaccines against this parasite.
Collapse
Affiliation(s)
- Lucía Sánchez Di Maggio
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antonio F M Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Chemical Physiology, The Scripps Research Institute, CA, Unites States of America
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, CA, Unites States of America
| | - John R Yates Iii
- Department of Chemical Physiology, The Scripps Research Institute, CA, Unites States of America
| | - Uruguaysito Benavides
- Departamento de Inmunología, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Berasain
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
57
|
Alba A, Sánchez J, Hernández H, Mosqueda M, Rodríguez SY, Capó V, Otero O, Alfonso C, Marcet R, Sarracent J. Insights into the biological features of the antigenic determinants recognized by four monoclonal antibodies in redia and adult stages of the liver fluke Fasciola hepatica. Exp Parasitol 2016; 168:39-44. [DOI: 10.1016/j.exppara.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 05/26/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
58
|
Morphew RM, Wilkinson TJ, Mackintosh N, Jahndel V, Paterson S, McVeigh P, Abbas Abidi SM, Saifullah K, Raman M, Ravikumar G, LaCourse J, Maule A, Brophy PM. Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species. J Proteome Res 2016; 15:3308-21. [PMID: 27495901 DOI: 10.1021/acs.jproteome.6b00331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a foodborne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on triclabendazole (TCBZ), and overuse has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty-acid-binding protein (FABP) superfamily has proposed multifunctional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterized FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome, and EST data mining with proteomics and phylogenetics to reveal a liver fluke FABP superfamily of seven clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analyzed using bioinformatics and cloned from both liver flukes. The extended FABP data set will provide new study tools to research the role of FABPs in parasite biology and as therapy targets.
Collapse
Affiliation(s)
- Russell M Morphew
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| | - Toby J Wilkinson
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| | - Neil Mackintosh
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| | - Veronika Jahndel
- University of Leipzig , Institute of Biochemistry, D-04103 Leipzig, Germany
| | - Steve Paterson
- University of Liverpool , School of Biological Sciences, Liverpool L69 7ZB, United Kingdom
| | - Paul McVeigh
- Queen's University Belfast , School of Biological Sciences, Belfast BT7 1NN, United Kingdom
| | | | - Khalid Saifullah
- Aligarh Muslim University , Aligarh, Uttar Pradesh 202002, India
| | - Muthusamy Raman
- Tamil Nadu Veterinary and Animal Sciences University , Chennai 600-051, India
| | | | - James LaCourse
- Liverpool School of Tropical Medicine , Liverpool L3 5QA, United Kingdom
| | - Aaron Maule
- Queen's University Belfast , School of Biological Sciences, Belfast BT7 1NN, United Kingdom
| | - Peter M Brophy
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| |
Collapse
|
59
|
Ravidà A, Cwiklinski K, Aldridge AM, Clarke P, Thompson R, Gerlach JQ, Kilcoyne M, Hokke CH, Dalton JP, O'Neill SM. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host. Mol Cell Proteomics 2016; 15:3139-3153. [PMID: 27466253 PMCID: PMC5054340 DOI: 10.1074/mcp.m116.059774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Collapse
Affiliation(s)
- Alessandra Ravidà
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Krystyna Cwiklinski
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Allison M Aldridge
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Clarke
- ¶Glycoselect, Dublin City University, Glasnevin, Dublin 9
| | | | - Jared Q Gerlach
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; **Regenerative Medicine Institute, NUI Galway, Ireland
| | - Michelle Kilcoyne
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; ‡‡Carbohydrate Signalling Group, Microbiology, NUI Galway, Ireland
| | - Cornelis H Hokke
- §§Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - John P Dalton
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sandra M O'Neill
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland;
| |
Collapse
|
60
|
Immunization with Fasciola hepatica thioredoxin glutathione reductase failed to confer protection against fasciolosis in cattle. Vet Parasitol 2016; 224:13-19. [DOI: 10.1016/j.vetpar.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022]
|
61
|
Mahana N, Abd-Allah HS, Salah M, Tallima H, El Ridi R. Fasciola gigantica enolase is a major component of worm tegumental fraction protective against sheep fasciolosis. Acta Trop 2016; 158:189-196. [PMID: 26970372 DOI: 10.1016/j.actatropica.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
Abstract
Infection of cattle and sheep with the parasite Fasciola gigantica is a cause of important economic losses throughout Asia and Africa. Many of the available anthelmintics have undesirable side effects, and the parasite may acquire drug resistance as a result of mass and repeated treatments of livestock. Accordingly, the need for developing a vaccine is evident. Triton-soluble surface membrane and tegumental proteins (TSMTP) of 60, 32, and 28 kDa previously shown to elicit protective immunity in mice against challenge F. gigantica infection were found to be strongly immunogenic in sheep eliciting vigorous specific antibody responses to a titer>1:16,000 as assessed by enzyme-linked immunosorbent assay. Furthermore, the 60 kDa fraction induced production of antibodies able to bind to the surface membrane of newly excysted juvenile flukes and mediate their attrition in antibody-dependent complement- and cell-mediated cytotoxicity assays, and significant (P<0.05) 40% protection of sheep against F. gigantica challenge infection. Amino acid micro sequencing of the 60 kDa-derived tryptic peptides revealed the fraction predominantly consists of F. gigantica enolase. The cDNA nucleotide and translated amino acid sequences of F. gigantica enolase showed homology of 92% and 95%, respectively to Fasciola hepatica enolase, suggesting that a fasciolosis vaccine might be effective against both tropical and temperate liver flukes.
Collapse
|
62
|
Labbunruang N, Phadungsil W, Tesana S, Smooker PM, Grams R. Similarity of a 16.5kDa tegumental protein of the human liver fluke Opisthorchis viverrini to nematode cytoplasmic motility protein. Mol Biochem Parasitol 2016; 207:1-9. [PMID: 27140280 DOI: 10.1016/j.molbiopara.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
Opisthorchis viverrini is the causative agent of human opisthorchiasis in Thailand and long lasting infection with the parasite has been correlated with the development of cholangiocarcinoma. In this work we have molecularly characterized the first member of a protein family carrying two DM9 repeats in this parasite (OvDM9-1). InterPro and other protein family databases describe the DM9 repeat as a protein domain of unknown function that has been first noted in Drosophila melanogaster. Two paralogous proteins have been partially characterized in the genus Fasciola, Fasciola hepatica TP16.5, a novel tegumental antigen in human fascioliasis and, recently F. gigantica DM9-1, a parenchymal protein with structural similarity to nematode cytoplasmic motility protein (MFP2). In this study, we show further evidence that this family of trematode proteins is related to MFP2 in sequence and structure. Soluble recombinant OvDM9-1 was used for structural analyses and for production of specific antisera. The native protein was detected in soluble and insoluble crude worm extracts and in seemingly various oligomeric forms in the latter. The potential for oligomerization was supported by cross-linking experiments of recombinant OvDM9-1. Structure prediction suggested a β-rich secondary structure of the protein and this was supported by a circular dichroism analysis. Molecular modeling in Phyre2 identified both MFP2 domains as distant homologs of OvDM9-1. The protein was located in tegumental type tissue and the cecal epithelium in the mature parasite. Recombinant OvDM9-1 was used as target in indirect ELISA but sera from infected hamsters showed only marginal reactivity towards it. It is proposed that OvDM9-1 and other members of this protein family have a role in cellular transport through functions on the cytoskeleton.
Collapse
Affiliation(s)
- Nipawan Labbunruang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand.
| |
Collapse
|
63
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
64
|
Ravidà A, Aldridge AM, Driessen NN, Heus FAH, Hokke CH, O’Neill SM. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor. PLoS Negl Trop Dis 2016; 10:e0004601. [PMID: 27104959 PMCID: PMC4841591 DOI: 10.1371/journal.pntd.0004601] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica’s tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg’s binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg’s ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host’s immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg. Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. These worms infect the liver and can survive for many years in its animal or human host because they supress the host’s immune system that is important in clearing worm infection. Worms are similar to humans in that they are made of proteins, fats and sugars, and while there are many studies on worm proteins, few studies have examined the sugars. We are interested in the sugars because we believe that they help the parasite survive for many years within its host. To examine this, we have used a technique called mass spectrometric analysis to characterise the sugars present in F. hepatica. We also have developed systems in the laboratory to test if these sugars can suppress the host’s immune system. We conclude that F. hepatica sugars are crucial in suppressing its host’s immune system; however, the exact way the sugars can do this requires further studies. These studies are important for the development of worm vaccines or therapies.
Collapse
Affiliation(s)
- Alessandra Ravidà
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Allison M. Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Nicole N. Driessen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry A. H. Heus
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra M. O’Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
65
|
Aldridge A, O'Neill SM. Fasciola hepatica tegumental antigens induce anergic-like T cells via dendritic cells in a mannose receptor-dependent manner. Eur J Immunol 2016; 46:1180-92. [PMID: 26931640 DOI: 10.1002/eji.201545905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/11/2022]
Abstract
FoxP3(+) Treg cells and anergic T cells are the two regulatory phenotypes of T-cell responses associated with helminth infection. Here, we examine the T-cell responses in mice during Fasciola hepatica infection, and to its tegumental coat antigens (FhTeg) that are shed from the fluke every 2-3 h. FhTeg comprises a rich source of glycoproteins, mainly oligomannose N-glycans that bind to mannose receptor. This study demonstrated a novel mechanism for the T-cell unresponsiveness observed during F. hepatica infection and after injection with FhTeg. Markers of T-cell anergy, such as GRAIL, EGR2, ICOS, and ITCH, are enhanced amongst CD4(+) T-cell populations during infection and following FhTeg injection. This is characterized by a lack of cytokine responses and reduced proliferative activity, which can be reversed with the addition of IL-2. FhTeg-activated dendritic cells (DCs) suppress T cells in vitro as measured by enhanced GRAIL and CTLA4 by RNA and suppressed cytokine expression in anti-CD3 stimulated CD4(+) T cells. FhTeg-treated DCs have enhanced MR expression, which is critical for DC-CD4(+) T-cell communication. Taken together, this study presents markers of anergy in a mouse model of F. hepatica infection, and improves our understanding of host-pathogen interactions and how helminths modulate host immunity.
Collapse
Affiliation(s)
- Allison Aldridge
- Fundamental and Translational Immunology Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Sandra M O'Neill
- Fundamental and Translational Immunology Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
66
|
Wilson RA, Li XH, MacDonald S, Neves LX, Vitoriano-Souza J, Leite LCC, Farias LP, James S, Ashton PD, DeMarco R, Castro Borges W. The Schistosome Esophagus Is a 'Hotspot' for Microexon and Lysosomal Hydrolase Gene Expression: Implications for Blood Processing. PLoS Negl Trop Dis 2015; 9:e0004272. [PMID: 26642053 PMCID: PMC4671649 DOI: 10.1371/journal.pntd.0004272] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background The schistosome esophagus is divided into anterior and posterior compartments, each surrounded by a dense cluster of gland cell bodies, the source of distinct secretory vesicles discharged into the lumen to initiate the processing of ingested blood. Erythrocytes are lysed in the lumen, leucocytes are tethered and killed and platelets are eliminated. We know little about the proteins secreted from the two glands that mediate these biological processes. Methodology/Principal Findings We have used subtractive RNA-Seq to characterise the complement of genes that are differentially expressed in a head preparation, compared to matched tissues from worm tails. The expression site of representative highlighted genes was then validated using whole munt in situ hybridisation (WISH). Mapping of transcript reads to the S. mansoni genome assembly using Cufflinks identified ~90 genes that were differentially expressed >fourfold in the head preparation; ~50 novel transcripts were also identified by de novo assembly using Trinity. The largest subset (27) of secreted proteins was encoded by microexon genes (MEGs), the most intense focus identified to date. Expression of three (MEGs 12, 16, 17) was confirmed in the anterior gland and five (MEGs 8.1, 9, 11, 15 and 22) in the posterior gland. The other major subset comprised nine lysosomal hydrolases (aspartyl proteases, phospholipases and palmitoyl thioesterase), again localised to the glands. Conclusions A proportion of the MEG-encoded secretory proteins can be classified by their primary structure. We have suggested testable hypotheses about how they might function, in conjunction with the lysosomal hydrolases, to mediate the biological processes that occur in the esophagus lumen. Antibodies bind to the esophageal secretions in both permissive and self-curing hosts, suggesting that the proteins represent a novel panel of untested vaccine candidates. A second major task is to identify which of them can serve as immune targets. Schistosomes feed on blood and we have previously shown that its processing begins in the esophagus, which does not act simply as a conduit. It comprises anterior and posterior compartments, each surrounded by glands that secrete proteins into the lumen. Erythrocytes are ruptured as they pass through the compartments and leucocytes are tethered and killed but blood fails to clot. We wanted to identify the proteins secreted from these glands by sequencing the transcriptomes of head and tail preparations to pinpoint those messenger RNAs predominantly or exclusively present only in the heads. We found approximately 50 such proteins, the largest group of 27 being encoded by microexon genes. A second group comprised hydrolytic enzymes that operate at an acid pH. We showed by hybridisation experiments that expression of these genes is indeed localised to either the anterior or the posterior gland. We have suggested that this complex mixture of secreted proteins act together to perform the biological processes that occur in the lumen or, in the case of O-glycosylated membrane proteins, form a protective lining coat. We now want to discover which of them can serve as immune targets in infected animal hosts.
Collapse
Affiliation(s)
- R. Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom
- * E-mail:
| | - Xiao Hong Li
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Sandy MacDonald
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Leandro Xavier Neves
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | | | | | - Leonardo P. Farias
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcão, Salvador, Bahia, Brasil
| | - Sally James
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Peter D. Ashton
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, Sao Carlos, Brasil
| | - William Castro Borges
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
67
|
Cwiklinski K, de la Torre-Escudero E, Trelis M, Bernal D, Dufresne PJ, Brennan GP, O'Neill S, Tort J, Paterson S, Marcilla A, Dalton JP, Robinson MW. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis. Mol Cell Proteomics 2015; 14:3258-73. [PMID: 26486420 PMCID: PMC4762619 DOI: 10.1074/mcp.m115.053934] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular “machinery” required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | | | - Maria Trelis
- §Área de Parasitología, Departamento de Biología Celular y Parasitología, Universitat de València, Burjassot, Valencia, Spain; ¶Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Dolores Bernal
- ‖Departmento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | | | - Gerard P Brennan
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Sandra O'Neill
- ‡‡School of Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Jose Tort
- §§Departmento de Genética. Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - Steve Paterson
- ¶¶Centre for Genomic Research, University of Liverpool, UK
| | - Antonio Marcilla
- §Área de Parasitología, Departamento de Biología Celular y Parasitología, Universitat de València, Burjassot, Valencia, Spain; ¶Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - John P Dalton
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Mark W Robinson
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland; ‖‖Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, UK
| |
Collapse
|
68
|
FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology 2015; 142:1375-86. [DOI: 10.1017/s0031182015000736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYFhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.
Collapse
|
69
|
Human IgG1 Responses to Surface Localised Schistosoma mansoni Ly6 Family Members Drop following Praziquantel Treatment. PLoS Negl Trop Dis 2015; 9:e0003920. [PMID: 26147973 PMCID: PMC4492491 DOI: 10.1371/journal.pntd.0003920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022] Open
Abstract
Background The heptalaminate-covered, syncytial tegument is an important anatomical adaptation that enables schistosome parasites to maintain long-term, intravascular residence in definitive hosts. Investigation of the proteins present in this surface layer and the immune responses elicited by them during infection is crucial to our understanding of host/parasite interactions. Recent studies have revealed a number of novel tegumental surface proteins including three (SmCD59a, SmCD59b and Sm29) containing uPAR/Ly6 domains (renamed SmLy6A SmLy6B and SmLy6D in this study). While vaccination with SmLy6A (SmCD59a) and SmLy6D (Sm29) induces protective immunity in experimental models, human immunoglobulin responses to representative SmLy6 family members have yet to be thoroughly explored. Methodology/Principal Findings Using a PSI-BLAST-based search, we present a comprehensive reanalysis of the Schistosoma mansoni Ly6 family (SmLy6A-K). Our examination extends the number of members to eleven (including three novel proteins) and provides strong evidence that the previously identified vaccine candidate Sm29 (renamed SmLy6D) is a unique double uPAR/Ly6 domain-containing representative. Presence of canonical cysteine residues, signal peptides and GPI-anchor sites strongly suggest that all SmLy6 proteins are cell surface-bound. To provide evidence that SmLy6 members are immunogenic in human populations, we report IgG1 (as well as IgG4 and IgE) responses against two surface-bound representatives (SmLy6A and SmLy6B) within a cohort of S. mansoni-infected Ugandan males before and after praziquantel treatment. While pre-treatment IgG1 prevalence for SmLy6A and SmLy6B differs amongst the studied population (7.4% and 25.3% of the cohort, respectively), these values are both higher than IgG1 prevalence (2.7%) for a sub-surface tegumental antigen, SmTAL1. Further, post-treatment IgG1 levels against surface-associated SmLy6A and SmLy6B significantly drop (p = 0.020 and p < 0.001, respectively) when compared to rising IgG1 levels against sub-surface SmTAL1. Conclusions/Significance Collectively, these results expand the number of SmLy6 proteins found within S. mansoni and specifically demonstrate that surface-associated SmLy6A and SmLy6B elicit immunological responses during infection in endemic communities. Adult schistosome parasites can live in the human bloodstream for years without being adversely affected by the host immune response. Identifying which proteins are on the surface of the parasite and understanding how they contribute to long-term host/parasite relationships is an essential step in developing novel intervention strategies. Here, utilising a comprehensive bioinformatics approach to identify Schistosoma mansoni gene products sharing distinct surface-associated features including signal peptides, hydrophobic C-termini, disulfide bonds and uPAR/Ly6 domains, we identified eleven proteins of interest. These proteins, reassuringly, include three representatives previously found associated with the schistosome surface (here termed SmLy6A, SmLy6B and SmLy6D) as well as three novel members (SmLy6G, SmLy6H and SmLy6J). To identify if surface-associated SmLy6 members are recognized by S. mansoni infected individuals, we specifically examined antibody responses to SmLy6A and SmLy6B in an endemic human population. Our work expands the number of putative cell surface associated schistosome proteins and provides a greater understanding of the dynamics of antibody responses in endemic communities against two representatives.
Collapse
|
70
|
van der Ree AM, Mutapi F. The helminth parasite proteome at the host-parasite interface - Informing diagnosis and control. Exp Parasitol 2015; 157:48-58. [PMID: 26116863 DOI: 10.1016/j.exppara.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Helminth parasites are a significant health burden for humans in the developing world and also cause substantial economic losses in livestock production across the world. The combined lack of vaccines for the major human and veterinary helminth parasites in addition to the development of drug resistance to anthelmintics in sheep and cattle mean that controlling helminth infection and pathology remains a challenge. However, recent high throughput technological advances mean that screening for potential drug and vaccine candidates is now easier than in previous decades. A better understanding of the host-parasite interactions occurring during infection and pathology and identifying pathways that can be therapeutically targeted for more effective and 'evolution proof' interventions is now required. This review highlights some of the advances that have been made in understanding the host-parasite interface in helminth infections using studies of the temporal expression of parasite proteins, i.e. the parasite proteome, and discuss areas for potential future research and translation.
Collapse
Affiliation(s)
- Anna M van der Ree
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
71
|
Martin I, Cabán-Hernández K, Figueroa-Santiago O, Espino AM. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by lipopolysaccharide in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:3924-36. [PMID: 25780044 DOI: 10.4049/jimmunol.1401182] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
Abstract
TLR4, the innate immunity receptor for bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. There is a need to develop molecules that block either activation through TLR4 or the downstream signaling pathways to inhibit the storm of inflammation typically elicited by bacterial LPS, which is a major cause of the high mortality associated with bacterial sepsis. We report in this article that a single i.p. injection of 15 μg fatty acid binding protein from Fasciola hepatica (Fh12) 1 h before exposure to LPS suppressed significantly the expression of serum inflammatory cytokines in a model of septic shock using C57BL/6 mice. Because macrophages are a good source of IL-12p70 and TNF-α, and are critical in driving adaptive immunity, we investigated the effect of Fh12 on the function of mouse bone marrow-derived macrophages (bmMΦs). Although Fh12 alone did not induce cytokine expression, it significantly suppressed the expression of IL-12, TNF-α, IL-6, and IL-1β cytokines, as well as inducible NO synthase-2 in bmMΦs, and also impaired the phagocytic capacity of bmMΦs. Fh12 had a limited effect on the expression of inflammatory cytokines induced in response to other TLR ligands. One mechanism used by Fh12 to exert its anti-inflammatory effect is binding to the CD14 coreceptor. Moreover, it suppresses phosphorylation of ERK, p38, and JNK. The potent anti-inflammatory properties of Fh12 demonstrated in this study open doors to further studies directed at exploring the potential of this molecule as a new class of drug against septic shock or other inflammatory diseases.
Collapse
Affiliation(s)
- Ivelisse Martin
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico 00936-5067
| | - Kimberly Cabán-Hernández
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico 00936-5067
| | - Olgary Figueroa-Santiago
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico 00936-5067
| | - Ana M Espino
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico 00936-5067
| |
Collapse
|
72
|
Alvarez Rojas CA, Ansell BRE, Hall RS, Gasser RB, Young ND, Jex AR, Scheerlinck JPY. Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver. Parasit Vectors 2015; 8:124. [PMID: 25885344 PMCID: PMC4382932 DOI: 10.1186/s13071-015-0715-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although fascioliasis has been relatively well studied, little is known about the molecular basis of this disease. This is particularly relevant, considering the very different response that sheep have to Fasciola hepatica relative to cattle. The acute phase of this disease is severe in sheep, whereas chronic fascioliasis is more common in cattle. METHODS To begin to explore the host-response to Fasciola in sheep and improve the understanding of the host-pathogen interactions during the parasite's migration through liver parenchyma to the bile duct, we used RNA sequencing (RNA-seq) to investigate livers from sheep infected for eight weeks compared with those from uninfected controls. RESULTS This study identified 572 and 42 genes that were up- and down-regulated, respectively, in infected livers relative to uninfected controls. Our molecular findings provide significant new insights into the mechanisms linked to metabolism, fibrosis and tissue-repair in sheep, and highlight the relative importance of specific components of immune response pathways, which appear to be driven toward a suppression of inflammation. CONCLUSIONS This study is, to our knowledge, the first detailed investigation of the transcriptomic responses in the liver tissue of any host to F. hepatica infection. It defines the involvement of specific genes associated with the host's metabolism, immune response and tissue repair/regeneration, and highlights an apparent overlapping function of many genes involved in these processes.
Collapse
Affiliation(s)
- Cristian A Alvarez Rojas
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jean-Pierre Y Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
73
|
Molina-Hernández V, Mulcahy G, Pérez J, Martínez-Moreno Á, Donnelly S, O'Neill SM, Dalton JP, Cwiklinski K. Fasciola hepatica vaccine: we may not be there yet but we're on the right road. Vet Parasitol 2015; 208:101-11. [PMID: 25657086 PMCID: PMC4366043 DOI: 10.1016/j.vetpar.2015.01.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances have been made in identifying potential vaccine molecules for the control of fasciolosis in livestock but we have yet to reach the level of efficacy required for commercialisation. The pathogenesis of fasciolosis is associated with liver damage that is inflicted by migrating and feeding immature flukes as well as host inflammatory immune responses to parasite-secreted molecules and tissue damage alarm signals. Immune suppression/modulation by the parasites prevents the development of protective immune responses as evidenced by the lack of immunity observed in naturally and experimentally infected animals. In our opinion, future efforts need to focus on understanding how parasites invade and penetrate the tissues of their hosts and how they potentiate and control the ensuing immune responses, particularly in the first days of infection. Emerging 'omics' data employed in an unbiased approach are helping us understand liver fluke biology and, in parallel with new immunological data, to identify molecules that are essential to parasite development and accessible to vaccine-induced immune responses.
Collapse
Affiliation(s)
| | - Grace Mulcahy
- Veterinary Science Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Jose Pérez
- School of Veterinary Medicine, University of Cordoba, Córdoba, Spain
| | | | - Sheila Donnelly
- The i3 Institute & School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | | | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
74
|
Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, Fernandez-Becerra C, Almeida IC, Del Portillo HA. Extracellular vesicles in parasitic diseases. J Extracell Vesicles 2014; 3:25040. [PMID: 25536932 PMCID: PMC4275648 DOI: 10.3402/jev.v3.25040] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.
Collapse
Affiliation(s)
- Antonio Marcilla
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain;
| | - Lorena Martin-Jaular
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria Trelis
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain
| | - Armando de Menezes-Neto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Antonio Osuna
- Institute of Biotechnology, Biochemistry and Molecular Parasitology, University of Granada, Granada, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Igor C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
75
|
Toet H, Piedrafita DM, Spithill TW. Liver fluke vaccines in ruminants: strategies, progress and future opportunities. Int J Parasitol 2014; 44:915-27. [PMID: 25200351 DOI: 10.1016/j.ijpara.2014.07.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/27/2022]
Abstract
The development of a vaccine for Fasciola spp. in livestock is a challenge and would be advanced by harnessing our knowledge of acquired immune mechanisms expressed by resistant livestock against fluke infection. Antibody-dependent cell-mediated cytotoxicity directed to the surface tegument of juvenile/immature flukes is a host immune effector mechanism, suggesting that antigens on the surface of young flukes may represent prime candidates for a fluke vaccine. A Type 1 immune response shortly after fluke infection is associated with resistance to infection in resistant sheep, indicating that vaccine formulations should attempt to induce Type 1 responses to enhance vaccine efficacy. In cattle or sheep, an optimal fluke vaccine would need to reduce mean fluke burdens in a herd below the threshold of 30-54 flukes to ensure sustainable production benefits. Fluke infection intensity data suggest that vaccine efficacy of approximately 80% is required to reduce fluke burdens below this threshold in most countries. With the increased global prevalence of triclabendazole-resistant Fasciolahepatica, it may be commercially feasible in the short term to introduce a fluke vaccine of reasonable efficacy that will provide economic benefits for producers in regions where chemical control of new drug-resistant fluke infections is not viable. Commercial partnerships will be needed to fast-track new candidate vaccines using acceptable adjuvants in relevant production animals, obviating the need to evaluate vaccine antigens in rodent models.
Collapse
Affiliation(s)
- Hayley Toet
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia
| | - David M Piedrafita
- School of Applied Sciences and Engineering, Federation University, Churchill, Victoria 3842, Australia
| | - Terry W Spithill
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
76
|
UDP-galactose 4'-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors. Parasitology 2014; 142:463-72. [PMID: 25124392 DOI: 10.1017/s003118201400136x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.
Collapse
|
77
|
Shi Y, Toet H, Rathinasamy V, Young ND, Gasser RB, Beddoe T, Huang W, Spithill TW. First insight into CD59-like molecules of adult Fasciola hepatica. Exp Parasitol 2014; 144:57-64. [PMID: 24955521 DOI: 10.1016/j.exppara.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/01/2014] [Accepted: 06/13/2014] [Indexed: 11/16/2022]
Abstract
The present study focussed on investigating CD59-like molecules of Fasciola hepatica. A cDNA encoding a CD59-like protein (termed FhCD59-1) identified previously in the membrane fraction of the F. hepatica tegument was isolated. This homologue was shown to encode a predicted open reading frame (ORF) of 122 amino acids (aa) orthologous to human CD59 with a 25 aa signal peptide, a mature protein containing 10 cysteines and a conserved CD59/Ly-6 family motif "CCXXXXCN". An analysis of cDNAs from two different adult specimens of F. hepatica revealed seven variable types of FhCD59-1 sequences, designated FhCD59-1.1 to FhCD59-1.7, which had 94.3-99.7% amino acid sequence identity upon pairwise comparison. Molecular modeling of FhCD59-1.1 with human CD59 confirmed the presence of the three-finger protein domain found in the CD59 family and predicted three disulphide bonds in the F. hepatica sequence. The interrogation of F. hepatica databases identified two additional sequences, designated FhCD59-2 and FhCD59-3, which had only 23.4-29.5% amino acid identity to FhCD59-1.1. Orthologues of the inferred CD59 protein sequences of F. hepatica were also identified in other flatworms, including Fasciola gigantica, Fascioloides magna, Schistosoma haematobium, Schistosoma japonicum, Schistosoma mansoni, Clonorchis sinensis, Opisthorchis viverrini, Taenia solium, Echinococcus granulosus and the free living Schmidtea mediterannea. The results revealed a considerable degree of sequence complexity in the CD59-like sequence families in F. hepatica and flatworms. Phylogenetic analysis of CD59-like aa sequences from F. hepatica and flatworms showed that FhCD59-2 clustered with the known surface-associated protein SmCD59-2 of S. mansoni. Relatively well-supported clades specific to schistosomes, fasciolids and opisthorchiids were identified. The qPCR analysis of gene transcription showed that the relative expression of these 3 FhCD59-like sequences varied by 11-47-fold during fluke maturation, from the newly excysted juvenile (NEJ) to the adult stage. These findings suggest that different FhCD59-like sequences play distinct roles during the development of F. hepatica.
Collapse
Affiliation(s)
- Yunliang Shi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Hayley Toet
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Vignesh Rathinasamy
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Travis Beddoe
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Weiyi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Terry W Spithill
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
78
|
In vitro biomarker discovery in the parasitic flatworm Fasciola hepatica for monitoring chemotherapeutic treatment. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
Haçarız O, Baykal AT, Akgün M, Kavak P, Sağıroğlu MŞ, Sayers GP. Generating a detailed protein profile of Fasciola hepatica during the chronic stage of infection in cattle. Proteomics 2014; 14:1519-30. [PMID: 24733753 DOI: 10.1002/pmic.201400012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/11/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Fasciola hepatica is a trematode helminth causing a damaging disease, fasciolosis, in ruminants and humans. Comprehensive proteomic studies broaden our knowledge of the parasite's protein profile, and provide new insights into the development of more effective strategies to deal with fasciolosis. The objective of this study was to generate a comprehensive profile of F. hepatica proteins expressed during the chronic stage of infection in cattle by building on previous efforts in this area. The approach included an improved sample preparation procedure for surface and internal layers of the parasite, the application of nano-UPLC-ESI-qTOF-MS (nano-ultra-performance LC and ESI quadrupole TOF MS) integrated with different acquisition methods and in silico database search against various protein databases and a transcript database including a new assembly of publically available EST. Of a total of 776 identified proteins, 206 and 332 were specific to the surface and internal layers of the parasite, respectively. Furthermore, 238 proteins were common to both layers, with comparative differences of 172 proteins detected. Specific proteins not previously identified in F. hepatica, but shown to be immunomodulatory or potential drug targets for other parasites, are discussed.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, Gebze, Kocaeli, Turkey
| | | | | | | | | | | |
Collapse
|
80
|
Molecular and biochemical characterizations of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis. Mol Biochem Parasitol 2014; 194:36-43. [DOI: 10.1016/j.molbiopara.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/13/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022]
|
81
|
Development of two antibody detection enzyme-linked immunosorbent assays for serodiagnosis of human chronic fascioliasis. J Clin Microbiol 2013; 52:766-72. [PMID: 24353000 DOI: 10.1128/jcm.02875-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coprological examination based on egg detection in stool samples is currently used as the gold standard for the diagnosis of human fascioliasis. However, this method is not effective during the acute phase of the disease and has poor sensitivity during the chronic phase. Serodiagnosis has become an excellent alternative to coprological examination in efforts to combat the effects of fascioliasis on human and animal health. Two novel recombinant Fasciola hepatica proteins, i.e., a ferritin (FhFtn-1) and a tegument-associated protein (FhTP16.5), were used as antigens to develop in-house enzyme-linked immunosorbent assay (ELISA) methods. The assays were optimized and validated using 152 serum samples from humans with a known infection status, including healthy subjects, patients with chronic fascioliasis, and patients with other parasitic diseases. The FhFtn-1 ELISA was shown to be 96.6% sensitive and 95.7% specific; the respective parameters for the FhTP16.5 ELISA were 91.4% and 92.4%. The performances of the FhFtn-1 and FhTP16.5 ELISAs were compared with that of an available commercial test (the DRG test) using a subset of serum samples. Our in-house tests were slightly more sensitive than the DRG test in detecting antibodies against F. hepatica, but the differences were not statistically significant. In conclusion, the present study provides evidence for the potential of the FhFtn-1 and FhTP16.5 ELISAs as diagnostic tools for human fascioliasis, as might be implemented in conjunction with standard assays for large-scale screenings in areas where the disease is endemic and for the detection of occasional cases in clinical laboratories.
Collapse
|
82
|
Cabán-Hernández K, Espino AM. Differential expression and localization of saposin-like protein 2 of Fasciola hepatica. Acta Trop 2013; 128:591-7. [PMID: 23988299 DOI: 10.1016/j.actatropica.2013.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022]
Abstract
FhSAP2 is a novel antigen isolated from the adult fluke of Fasciola hepatica. Based on sequence similarity with amoebapores and other related proteins, it belongs to the saposin-like protein (SAPLIP) family. FhSAP2 has been shown to be highly immunogenic and capable of inducing protective immune responses in mice and rabbits challenged with F. hepatica. Moreover, FhSAP2 is also reactive with sera from humans with chronic fascioliasis. In the present study, we investigated the expression of FhSAP2 in various developmental stages of F. hepatica by qPCR and demonstrated that FhSAP2-mRNA species are up-regulated in undeveloped eggs, newly excysted juveniles, and adults, but down-regulated in the miracidium stage. Monoclonal antibodies against FhSAP2 were produced, and two clones that are positive to F. hepatica whole-body extract, but not reactive with extracts from other trematodes, were selected, expanded and used for histolocalization studies. Confocal immunofluorescence revealed the presence of native FhSAP2 in epithelial cells surrounding the gut, toward the outermost part of the tegument, and toward the tegumental cells of both adults and newly excysted juveniles.
Collapse
Affiliation(s)
- Kimberly Cabán-Hernández
- Laboratory of Immunology and Molecular Parasitology, University of Puerto Rico, School of Medicine, Office A-386, San Juan 00936-5067, Puerto Rico
| | | |
Collapse
|
83
|
Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol 2013; 3:49. [PMID: 24032108 PMCID: PMC3764926 DOI: 10.3389/fcimb.2013.00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
There is a rapidly growing body of evidence that production of microvesicles (MVs) is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA, mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune surveillance, and transfer cargo between cells. These properties make MVs an essential player in intercellular communication. Increasing evidence supports the notion that MVs can also act as long-distance vehicles for RNA molecules and participate in metabolic synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV ability to carry on DNA and their general distribution makes them attractive candidates for horizontal gene transfer, particularly between multi-cellular organisms and their parasites; this suggests important implications for the co-evolution of parasites and their hosts. In this review, we provide current understanding of the roles played by MVs in intracellular pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection and host shifting.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Natasha.Barteneva@ childrens.harvard.edu
| | | | | |
Collapse
|
84
|
Dalton JP, Robinson MW, Mulcahy G, O'Neill SM, Donnelly S. Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol 2013; 195:272-85. [PMID: 23623183 DOI: 10.1016/j.vetpar.2013.04.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.
Collapse
Affiliation(s)
- John P Dalton
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, St. Anne de Bellevue, Quebec H9X 3V9, Canada.
| | | | | | | | | |
Collapse
|
85
|
Martínez-Ibeas A, González-Lanza C, Manga-González M. Proteomic analysis of the tegument and excretory–secretory products of Dicrocoelium dendriticum (Digenea) adult worms. Exp Parasitol 2013; 133:411-20. [DOI: 10.1016/j.exppara.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|
86
|
Vukman KV, Adams PN, Metz M, Maurer M, O’Neill SM. Fasciola hepaticaTegumental Coat Impairs Mast Cells’ Ability To Drive Th1 Immune Responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2873-9. [DOI: 10.4049/jimmunol.1203011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
87
|
Piratae S, Tesana S, Jones MK, Brindley PJ, Loukas A, Lovas E, Eursitthichai V, Sripa B, Thanasuwan S, Laha T. Molecular characterization of a tetraspanin from the human liver fluke, Opisthorchis viverrini. PLoS Negl Trop Dis 2012; 6:e1939. [PMID: 23236532 PMCID: PMC3516575 DOI: 10.1371/journal.pntd.0001939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
Background The human liver fluke, Opisthorchis viverrini, is designated as a group 1 carcinogen, and is the major risk factor for cholangiocarcinoma in endemic countries throughout Southeast Asia. Proteins in the excretory-secretory products and tegumental surface membranes of the fluke have been proposed to play pivotal roles in parasite survival in the host, and subsequent pathogenesis. These macromolecules are therefore valid targets for the development of vaccines and new drugs to control the infection. Tetraspanins (TSP) are prominent components of the tegument of blood flukes where they are essential for tegument formation, are directly exposed to the immune system, and are major targets for a schistosomiasis vaccine. We propose that similar molecules in the surface membranes of O. viverrini are integral to tegument biogenesis and will be efficacious vaccine antigens. Methodology/Principal Findings The cDNA sequence encoding O. viverrini tetraspanin-1 (Ov-TSP-1) was identified and cloned. The Ov-tsp-1gene was isolated from a cDNA library. Ov-tsp-1 mRNA was expressed most highly in metacercariae and eggs, and to a lesser extent in juvenile and adult worms. Immunolocalization with adult flukes confirmed that Ov-TSP-1 was expressed in the tegument and eggs in utero. Western blot analysis of rOv-TSP-1 probed with sera from O. viverrini-infected humans and hamsters indicated that both hosts raise antibody responses against the native TSP. Using RNA interference we silenced the expression level of Ov-tsp-1 mRNA in adult flukes by up to 72% by 10 days after delivery of dsRNA. Ultrastructural morphology of adult worms treated with Ov-tsp-1 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls. Conclusions/Significance This is the first report of a tetraspanin from the tegument of a liver fluke. Our data imply that tetraspanins play important structural roles in the development of the tegument in the adult fluke. Potential uses of O. viverrini tetraspanins as novel interventions are discussed. Liver fluke infection is a fish borne disease that afflicts millions of residents in Thailand and Laos. Infection results from eating undercooked freshwater fish contaminated with larvae of the worm Opisthorchis viverrini. Infection can lead to cancer of the bile ducts (cholangiocarcinoma). Indeed, O. viverrini is designated as a Group 1 carcinogen by the World Health Organization, i.e. a definitive cause for cancer. Proteins produced at the surface and/or released from this parasite play pivotal roles in maintaining the infection and disease. These proteins are valid targets for development of vaccines and new drugs. Tetraspanins are prominent in the tegument (the surface covering) of parasites closely related to O. viverrini where they are exposed to immune responses. Similar molecules on the surface of O. viverrini may be vital for the parasite's survival and may make effective vaccines. Here the gene coding for O. viverrini tetraspanin-1 (Ov-TSP-1) was investigated. We used electron microscopy to show that Ov-TSP-1 is expressed in the tegument. We then silenced expression of the gene encoding Ov-TSP-1 and showed that this resulted in malformation of the tegument, highlighting the importance of this molecule for parasite development and its potential as a vaccine target.
Collapse
Affiliation(s)
- Supawadee Piratae
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Cantacessi C, Mulvenna J, Young ND, Kasny M, Horak P, Aziz A, Hofmann A, Loukas A, Gasser RB. A deep exploration of the transcriptome and "excretory/secretory" proteome of adult Fascioloides magna. Mol Cell Proteomics 2012; 11:1340-53. [PMID: 22899770 PMCID: PMC3494180 DOI: 10.1074/mcp.m112.019844] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/16/2012] [Indexed: 11/06/2022] Open
Abstract
Parasitic liver flukes of the family Fasciolidae are responsible for major socioeconomic losses worldwide. However, at present, knowledge of the fundamental molecular biology of these organisms is scant. Here, we characterize, for the first time, the transcriptome and secreted proteome of the adult stage of the "giant liver fluke," Fascioloides magna, using Illumina sequencing technology and one-dimensional SDS-PAGE and OFFGEL protein electrophoresis, respectively. A total of ∼54,000,000 reads were generated and assembled into ∼39,000 contiguous sequences (contigs); ∼20,000 peptides were predicted and classified based on homology searches, protein motifs, gene ontology, and biological pathway mapping. From the predicted proteome, 48.1% of proteins could be assigned to 384 biological pathway terms, including "spliceosome," "RNA transport," and "endocytosis." Putative proteins involved in amino acid degradation were most abundant. Of the 835 secreted proteins predicted from the transcriptome of F. magna, 80 were identified in the excretory/secretory products from this parasite. Highly represented were antioxidant proteins, followed by peptidases (particularly cathepsins) and proteins involved in carbohydrate metabolism. The integration of transcriptomic and proteomic datasets generated herein sets the scene for future studies aimed at exploring the potential role(s) that molecules might play at the host-parasite interface and for establishing novel strategies for the treatment or control of parasitic fluke infections.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- From the ‡Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
- §Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland 4878, Australia
| | - Jason Mulvenna
- ‖Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia
| | - Neil D. Young
- From the ‡Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Kasny
- ‡‡Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Horak
- ‡‡Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ammar Aziz
- §Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland 4878, Australia
| | - Andreas Hofmann
- §§Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland 4111, Australia
| | - Alex Loukas
- §Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland 4878, Australia
| | - Robin B. Gasser
- From the ‡Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
89
|
Evaluation and characterization of Fasciola hepatica tegument protein extract for serodiagnosis of human fascioliasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1870-8. [PMID: 23015645 DOI: 10.1128/cvi.00487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tegument protein extract from Fasciola hepatica adult flukes (FhTA) was obtained and assessed for its potential as a diagnostic agent for the serological detection of human fascioliasis using an indirect enzyme-linked immunosorbent assay (ELISA). In an analysis of sera from 45 patients infected with F. hepatica, sera from 41 patients with other parasitic infections, and sera from 33 healthy controls, the FhTA-ELISA showed sensitivity, specificity, and accuracy of 91.1%, 97.3%, and 95%, respectively. Specific IgG1 and IgG4 were the antibody isotypes mainly detected in sera from patients with fascioliasis. Polypeptides of 52, 38, 24 to 26, and 12 to 14 kDa were identified by Western blotting as the most immunoreactive components of the FhTA. A proteomic approach led us to identify enolase, aldolase, glutathione S-transferase, and fatty acid binding protein as the major immunoreactive components of the FhTA.
Collapse
|
90
|
Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One 2012; 7:e45974. [PMID: 23029346 PMCID: PMC3454434 DOI: 10.1371/journal.pone.0045974] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022] Open
Abstract
The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents.
Collapse
|
91
|
Morphew RM, Hamilton CM, Wright HA, Dowling DJ, O'Neill SM, Brophy PM. Identification of the major proteins of an immune modulating fraction from adult Fasciola hepatica released by Nonidet P40. Vet Parasitol 2012; 191:379-85. [PMID: 23021260 DOI: 10.1016/j.vetpar.2012.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/24/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Fasciola hepatica NP-40 released protein extract (FhNPE) exhibits potent Th1 immunosuppressive properties in vitro and in vivo. However, the protein composition of this active fraction, responsible for Th1 immune modulatory activity, has yet to be resolved. Therefore, FhNPE, a Nonidet P-40 extract, was subjected to a proteomic analysis in order to identify individual protein components. This was performed using an in house F. hepatica EST database following 2D electrophoresis combined with de novo sequencing based mass spectrometry. The identified proteins, a mixture of excretory/secretory and membrane-associated proteins, are associated with stress response and chaperoning, energy metabolism and cytoskeletal components. The immune modulatory properties of these identified protein(s) are discussed and HSP70 from F. hepatica is highlighted as a potential host immune modulator for future study.
Collapse
Affiliation(s)
- Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3FG, UK.
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
SUMMARYAnthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.
Collapse
|
93
|
Haçarız O, Sayers G, Baykal AT. A Proteomic Approach To Investigate the Distribution and Abundance of Surface and Internal Fasciola hepatica Proteins during the Chronic Stage of Natural Liver Fluke Infection in Cattle. J Proteome Res 2012; 11:3592-604. [DOI: 10.1021/pr300015p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK
Marmara
Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470, Gebze, Kocaeli, Turkey
| | - Gearóid Sayers
- Veterinary Sciences Centre,
School of Agriculture, Food Science and Veterinary Medicine, College
of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ahmet Tarık Baykal
- TÜBİTAK
Marmara
Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
94
|
Proteomics at the schistosome-mammalian host interface: any prospects for diagnostics or vaccines? Parasitology 2012; 139:1178-94. [PMID: 22717150 DOI: 10.1017/s0031182012000339] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since 2004 there has been a remarkable increment in our knowledge of the proteins and glycans that reside at, or are released from the surfaces of schistosomes in the mammalian host. Initial characterization of the soluble proteome permits distinctions to be made between the parasite secretome and its necrotome. The principal proteins secreted by the cercaria to gain access to the skin have been described as well as those released by migrating schistosomula. An inventory of transporters, enzymes and structural proteins has been shown to reside the tegument surface, but also immunoglobulins, complement factors and host CD44. The secreted membranocalyx that overlies the plasma membrane may contain a small number of proteins, not simply acting as physical barrier, but its lipid composition remains elusive. Analysis of worm vomitus has provided insights into blood feeding, increasing the number of known lysosomal hydrolases, and identifying a series of carrier proteins potentially involved in uptake of lipids and inorganic ions by the gut epithelium. The egg secretions that aid escape from the tissues include a mixture of MEG-2 and MEG-3 family variant proteins. The utility of identified proteins for the development of new diagnostics, and their potential as vaccines candidates is evaluated.
Collapse
|
95
|
Biochemical characterization and differential expression of a 16.5-kilodalton tegument-associated antigen from the liver fluke Fasciola hepatica. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:325-33. [PMID: 22278327 DOI: 10.1128/cvi.05501-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA encoding a 16.5-kDa protein termed FhTP16.5 was identified by immunoscreening of a cDNA library from Fasciola hepatica adult flukes using pooled sera from rabbits infected with F. hepatica for 4 weeks. Quantitative reverse transcriptase PCR (qPCR) analysis revealed that FhTP16.5 is not expressed in unembryonated eggs. It is poorly expressed in miracidia and highly expressed at the juvenile and adult stages; however, significant differences were found between the expression levels of FhTP16.5 in juveniles versus adult flukes. Recombinant FhTP16.5 was expressed at high levels in Escherichia coli, purified by affinity chromatography, and used to raise anti-FhTP16.5 polyclonal antibodies in rabbits. Immunoblot analysis using the anti-FhTP16.5 IgG antibody identified FhTP16.5 in crude and tegumental extracts and in excretory-secretory products of F. hepatica. The protein was not detected in crude extracts of Schistosoma mansoni or Schistosoma japonicum. Antibodies to FhTP16.5 were detected in the sera of rabbits at 3 to 12 weeks of F. hepatica infection as well as in the sera of humans with chronic fascioliasis; these findings suggest that FhTP16.5 could be a good antigen for serodiagnosis of fascioliasis. Immunohistochemistry demonstrated that FhTP16.5 localizes to the surface of the tegument of various developmental stages and in parenchymal tissues of the adult fluke. Such specific localization makes FhTP16.5 an attractive target for immunoprophylaxis or chemotherapy.
Collapse
|