51
|
Farzan M, Roth R, Schoelkopf J, Huwyler J, Puchkov M. The processes behind drug loading and release in porous drug delivery systems. Eur J Pharm Biopharm 2023:S0939-6411(23)00141-8. [PMID: 37230292 DOI: 10.1016/j.ejpb.2023.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Porous materials are ubiquitous and exhibit properties suitable for depositing therapeutic compounds. Drug loading in porous materials can protect the drug, control its release rate, and improve its solubility. However, to achieve such outcomes from porous delivery systems, effective incorporation of the drug in the internal porosity of the carrier must be guaranteed. Mechanistic knowledge of the factors influencing drug loading and release from porous carriers allows rational design of formulations by selecting a suitable carrier for each application. Much of this knowledge exists in research areas other than drug delivery. Thus, a comprehensive overview of this topic from the drug delivery aspect is warranted. This review aims to identify the loading processes and carrier characteristics influencing the drug delivery outcome with porous materials. Additionally, the kinetics of drug release from porous materials are elucidated, and the common approaches to mathematical modeling of these processes are outlined.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Roger Roth
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Joachim Schoelkopf
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
52
|
Scomoroscenco C, Teodorescu M, Nistor CL, Gifu IC, Petcu C, Banciu DD, Banciu A, Cinteza LO. Preparation and In Vitro Characterization of Alkyl Polyglucoside-Based Microemulsion for Topical Administration of Curcumin. Pharmaceutics 2023; 15:pharmaceutics15051420. [PMID: 37242662 DOI: 10.3390/pharmaceutics15051420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest. The aim of this study was to develop new microemulsion systems for topical use; to identify a suitable water-soluble polymer in order to obtain gel microemulsions; and to study the efficacy of the developed microemulsion and gel microemulsion systems in the delivery of a model active ingredient, namely curcumin, into the skin. A pseudo-ternary phase diagram was developed using AKYPO® SOFT 100 BVC, PLANTACARE® 2000 UP Solution and ethanol as a surfactant mix; caprylic/capric triglycerides, obtained from coconut oil, as the oily phase; and distilled water. To obtain gel microemulsions, sodium hyaluronate salt was used. All these ingredients are safe for the skin and are biodegradable. The selected microemulsions and gel microemulsions were physicochemically characterized by means of dynamic light scattering, electrical conductivity, polarized microscopy and rheometric measurements. To evaluate the efficiency of the selected microemulsion and gel microemulsion to deliver the encapsulated curcumin, an in vitro permeation study was performed.
Collapse
Affiliation(s)
- Cristina Scomoroscenco
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Cristina Lavinia Nistor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Ioana Catalina Gifu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adela Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| |
Collapse
|
53
|
Garcia L, Palma-Florez S, Espinosa V, Soleimani Rokni F, Lagunas A, Mir M, García-Celma MJ, Samitier J, Rodríguez-Abreu C, Grijalvo S. Ferulic acid-loaded polymeric nanoparticles prepared from nano-emulsion templates facilitate internalisation across the blood-brain barrier in model membranes. NANOSCALE 2023; 15:7929-7944. [PMID: 37067009 DOI: 10.1039/d2nr07256d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A hydroxycinnamic acid derivative, namely ferulic acid (FA) has been successfully encapsulated in polymeric nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA). FA-loaded polymeric NPs were prepared from O/W nano-emulsion templates using the phase inversion composition (PIC) low-energy emulsification method. The obtained PLGA NPs exhibited high colloidal stability, good drug-loading capacity, and particle hydrodynamic diameters in the range of 74 to 117 nm, depending on the FA concentration used. In vitro drug release studies confirmed a diffusion-controlled mechanism through which the amount of released FA reached a plateau at 60% after 6 hours-incubation. Five kinetic models were used to fit the FA release data as a function of time. The Weibull distribution and Korsmeyer-Peppas equation models provided the best fit to our experimental data and suggested quasi-Fickian diffusion behaviour. Moderate dose-response antioxidant and radical scavenging activities of FA-loaded PLGA NPs were demonstrated using the DPPH˙ assay achieving inhibition activities close to 60 and 40%, respectively. Cell culture studies confirmed that FA-loaded NPs were not toxic according to the MTT colorimetric assay, were able to internalise efficiently SH-SY5Y neuronal cells and supressed the intracellular ROS-level induced by H2O2 leading to 52% and 24.7% of cellular viability at 0.082 and 0.041 mg mL-1, respectively. The permeability of the NPs through the blood brain barrier was tested with an in vitro organ-on-a-chip model to evaluate the ability of the FA-loaded PLGA and non-loaded PLGA NPs to penetrate to the brain. NPs were able to penetrate the barrier, but permeability decreased when FA was loaded. These results are promising for the use of loaded PLGA NPs for the management of neurological diseases.
Collapse
Affiliation(s)
- Luna Garcia
- IQAC, CSIC, Jordi Girona 18-26, E-08034-Barcelona, Spain.
| | - Sujey Palma-Florez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | | | | | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | - Mònica Mir
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- Department of Electronics and Biomedical engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-chemistry, IN2UB, R+D Associated Unit to CSIC, Pharmaceutical Nanotechnology, University of Barcelona, Joan XXIII 27-31, E-08028-Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | | | | |
Collapse
|
54
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
55
|
Romeo A, Kazsoki A, Omer S, Pinke B, Mészáros L, Musumeci T, Zelkó R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041296. [PMID: 37111782 PMCID: PMC10143234 DOI: 10.3390/pharmaceutics15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The poor ocular bioavailability of melatonin (MEL) limits the therapeutic action the molecule could exert in the treatment of ocular diseases. To date, no study has explored the use of nanofiber-based inserts to prolong ocular surface contact time and improve MEL delivery. Here, the electrospinning technique was proposed to prepare poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) nanofiber inserts. Both nanofibers were produced with different concentrations of MEL and with or without the addition of Tween® 80. Nanofibers morphology was evaluated by scanning electron microscopy. Thermal and spectroscopic analyses were performed to characterize the state of MEL in the scaffolds. MEL release profiles were observed under simulated physiological conditions (pH 7.4, 37 °C). The swelling behavior was evaluated by a gravimetric method. The results confirmed that submicron-sized nanofibrous structures were obtained with MEL in the amorphous state. Different MEL release rates were achieved depending on the nature of the polymer. Fast (20 min) and complete release was observed for the PVA-based samples, unlike the PLA polymer, which provided slow and controlled MEL release. The addition of Tween® 80 affected the swelling properties of the fibrous structures. Overall, the results suggest that membranes could be an attractive vehicle as a potential alternative to liquid formulations for ocular administration of MEL.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Mészáros
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Teresa Musumeci
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- NANOMED-Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| |
Collapse
|
56
|
Mohammed M, Ibrahim UH, Aljoundi A, Omolo CA, Devnarain N, Gafar MA, Mocktar C, Govender T. Enzyme-responsive biomimetic solid lipid nanoparticles for antibiotic delivery against hyaluronidase-secreting bacteria. Int J Pharm 2023; 640:122967. [PMID: 37084831 DOI: 10.1016/j.ijpharm.2023.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
In this work, a potent hyaluronidase inhibitor (ascorbyl stearate (AS)) was successfully employed to design vancomycin-loaded solid lipid nanoparticles (VCM-AS-SLNs) with biomimetic and enzyme-responsive features, to enhance the antibacterial efficacy of vancomycin against bacterial-induced sepsis. The VCM-AS-SLNs prepared were biocompatible and had appropriate physicochemical parameters. The VCM-AS-SLNs showed an excellent binding affinity to the bacterial lipase. The in vitro drug release study showed that the release of the loaded vancomycin was significantly accelerated by the bacterial lipase. The in silico simulations and MST studies confirmed the strong binding affinity of AS and VCM-AS-SLNs to bacterial hyaluronidase compared to its natural substrate. This binding superiority indicates that AS and VCM-AS-SLNs could competitively inhibit the effect of hyaluronidase enzyme, and thus block its virulence action. This hypothesis was further confirmed using the hyaluronidase inhibition assay. The in vitro antibacterial studies against sensitive and resistant Staphylococcus aureus revealed that the VCM-AS-SLNs had a 2-fold lower minimum inhibitory concentration, and a 5-fold MRSA biofilm elimination compared to the free vancomycin. Furthermore, the bactericidal-kinetic showed a 100% bacterial clearance rate within 12 hours of treatment with VCM-AS-SLNs, and less than 50 % eradication after 24 hours for the bare VCM. Therefore, the VCM-AS-SLN shows potential as an innovative multi-functional nanosystem for effective and targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Faculty of Pharmacy, University of Khartoum, El Qasr Street P.O. Box 1996, Khartoum, Sudan
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, College of Health Sciences, University of KwaZulu-Natal, 4001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Faculty of Pharmacy, University of Khartoum, El Qasr Street P.O. Box 1996, Khartoum, Sudan
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
57
|
Zhang Y, Pan W, Wang D, Wang H, Hou Y, Zou M, Piao H. Solid-in-oil nanodispersion as a novel topical transdermal delivery to enhance stability and skin permeation and retention of hydrophilic drugs l-ascorbic acid. Eur J Pharm Biopharm 2023; 185:82-93. [PMID: 36791884 DOI: 10.1016/j.ejpb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
l-ascorbic acid (Vitamin C, VC) is the most abundant antioxidant in human skin. But its poor penetration into the skin and unstability limit the application. The aim of the study was to promote the topical skin permeation and retention of VC, increase the stability as well as effectiveness by a novel solid in oil nanodispersion. In the nanodispersions system, nano-sized particles of hydrophilic molecules are dispersed in an oil vehicle with the assistance of hydrophobic surfactants. The optimized formula composed of O170 and S1570 (12.5:1, w/w) showed high EE% of 98% and good stability. FTIR analysis confirmed that there may be hydrogen bond between VC and surfactants. The results of DSC, and XRD revealed that the drug was successfully encapsulated in the surfactants, which maintained the stability of drug. By analyzing and fitting the release data in vitro, the drug release mechanism of SONDs was predicted as a multi-dynamic model. Skin permeation of VC was improved 3.43-fold for SONDs compared with VC aqueous solution, highlighting that the lipophilicity and nano size of the carrier more easily penetrated into the skin. Finally, the photoaging study revealed that topical application of VC-SONDs provided the highest skin protection compared UV and VC aqueous solution treated group which was evident by the normal thick epidermal morphology, no obvious melanocytes and the densely arranged dermal elastic fibers. These results demonstrated that the solid-in-oil nanodispersions may be a potential transdermal delivery system for hydrophilic bioactive ingredients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxiu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dequan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Han Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yanting Hou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Hongyu Piao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
58
|
In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics 2023; 15:pharmaceutics15030983. [PMID: 36986844 PMCID: PMC10059005 DOI: 10.3390/pharmaceutics15030983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
In vitro dissolution and permeability testing aid the simulation of the in vivo behavior of inhalation drug products. Although the regulatory bodies have specific guidelines for the dissolution of orally administered dosage forms (e.g., tablets and capsules), this is not the case for orally inhaled formulations, as there is no commonly accepted test for assessing their dissolution pattern. Up until a few years ago, there was no consensus that assessing the dissolution of orally inhaled drugs is a key factor in the assessment of orally inhaled products. With the advancement of research in the field of dissolution methods for orally inhaled products and a focus on systemic delivery of new, poorly water-soluble drugs at higher therapeutic doses, an evaluation of dissolution kinetics is proving crucial. Dissolution and permeability testing can determine the differences between the developed formulations and the innovator’s formulations and serve as a useful tool in correlating in vitro and in vivo studies. The current review highlights recent advances in the dissolution and permeability testing of inhalation products and their limitations, including recent cell-based technology. Although a few new dissolution and permeability testing methods have been established that have varying degrees of complexity, none have emerged as the standard method of choice. The review discusses the challenges of establishing methods that can closely simulate the in vivo absorption of drugs. It provides practical insights into method development for various dissolution testing scenarios and challenges with dose collection and particle deposition from inhalation devices for dissolution tests. Furthermore, dissolution kinetic models and statistical tests to compare the dissolution profiles of test and reference products are discussed.
Collapse
|
59
|
Pacheco ARF, Cardoso BD, Pires A, Pereira AM, Araújo JP, Carvalho VM, Rodrigues RO, Coutinho PJG, Castelo-Grande T, Augusto PA, Barbosa D, Lima RA, Teixeira SFCF, Rodrigues ARO, Castanheira EMS. Development of pH-Sensitive Magnetoliposomes Containing Shape Anisotropic Nanoparticles for Potential Application in Combined Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1051. [PMID: 36985945 PMCID: PMC10054438 DOI: 10.3390/nano13061051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release of the chemotherapeutic drug doxorubicin (DOX). Shape anisotropic magnetic nanoparticles of magnesium ferrite with partial substitution by calcium (Mg0.75Ca0.25Fe2O4) were synthesized, with and without calcination, and their structural, morphological and magnetic properties were investigated. Their superparamagnetic properties were evaluated and heating capabilities proven, either by exposure to an alternating magnetic field (AMF) (magnetic hyperthermia) or by irradiation with near-infrared (NIR) light (photothermia). The Mg0.75Ca0.25Fe2O4 calcined nanoparticles were selected to integrate the SMLs, surrounded by a lipid bilayer of DOPE:Ch:CHEMS (45:45:10). DOX was encapsulated in the nanosystems with an efficiency above 98%. DOX release assays showed a much more efficient release of the drug at pH = 5 compared to the release kinetics at physiological pH. By subjecting tumor cells to DOX-loaded SMLs, cell viability was significantly reduced, confirming that they can release the encapsulated drug. These results point to the development of efficient pH-sensitive nanocarriers, suitable for a synergistic action in cancer therapy with magnetic targeting, stimulus-controlled drug delivery and dual hyperthermia (magnetic and plasmonic) therapy.
Collapse
Affiliation(s)
- Ana Rita F. Pacheco
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Ana Pires
- Associate Laboratory LaPMET, 4169-007 Porto, Portugal
- IFIMUP—Instituto de Física dos Materiais, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - André M. Pereira
- Associate Laboratory LaPMET, 4169-007 Porto, Portugal
- IFIMUP—Instituto de Física dos Materiais, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - João P. Araújo
- Associate Laboratory LaPMET, 4169-007 Porto, Portugal
- IFIMUP—Instituto de Física dos Materiais, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - Violeta M. Carvalho
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- ALGORITMI Center, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Raquel O. Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Teresa Castelo-Grande
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paulo A. Augusto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Domingos Barbosa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- CEFT—Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| |
Collapse
|
60
|
Rawal S, Khot S, Bora V, Patel B, Patel MM. Surface-modified nanoparticles of docetaxel for chemotherapy of lung cancer: An intravenous to oral switch. Int J Pharm 2023; 636:122846. [PMID: 36921744 DOI: 10.1016/j.ijpharm.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Despite being potent, the marketed formulations of Docetaxel (DX) are associated with numerous side effects and are meant for intravenous administration. Advanced pharmaceutical nanotechnology has a significant potential to facilitate the 'intravenous (i.v) to oral switch'. The present research work deals with the development of an orally administrable, folate-receptor-targeted Nanostructured lipid carriers (NLCs) of DX (FA-DX-NLCs) for facilitating oral chemotherapy of lung cancer while overcoming the bioavailability and toxicity issues. The nanoformulation prepared to employ high-pressure homogenization and lyophilization, was evaluated and statistically analyzed for various in-vitro and in-vivo formulation characteristics. The lyophilized nanoparticles were observed to be spherical with a particle size of 183.4 ± 2.13 (D90), Pdi of 0.358 ± 0.03, % EE of 82.41 ± 2.44, % DL of 4.41 ± 0.54 and a zeta potential of -3.3 ± 0.7 mv. The increased oral in-vivo bioavailability of DX was evident from the plasma-concentration area under the time curve (AUC0-t), which was ∼ 27-fold greater for FA-DX-NLCs as compared to DX suspension. The orally administered FA-DX-NLCs exhibited excellent antitumor efficacy in a pre-clinical model of lung carcinoma. Tumor staging, histopathology, and immunostaining of the tumors suggested greater anti-proliferative, apoptotic, anti-metastatic, and anti-angiogenic potential as compared to DX-suspension. The pre-clinical toxicity studies affirmed the excellent safety and bio-compatibility of FA-DX-NLCs. The research work presents immense translational potential for switching the DX-based chemotherapy for lung cancer from 'hospital to home.'
Collapse
Affiliation(s)
- Shruti Rawal
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Shubham Khot
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Bhoomika Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad: 382 481, Gujarat, India.
| |
Collapse
|
61
|
Estimating the asymptotic characteristic time scales for diffusion-controlled drug release systems using partially sampled data. Int J Pharm 2023; 634:122674. [PMID: 36736966 DOI: 10.1016/j.ijpharm.2023.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Drug release experiments and numerical simulations only give access to partial release data (i.e., within a finite time range t∈[0,tf]). In this article, we propose fitting-based procedures to estimate the asymptotic time scales of the release process, namely the global relaxation time τ∗ and the longest (or terminal) relaxation time τ0, from partially sampled data of diffusion-controlled drug release systems. We test these procedures on both synthetic and experimental data using, as an example, the well-known Weibull function. Our results show that the Weibull function must be used with great care because the values of the fitting parameters can vary significantly depending on the ratio tf/τ0. Beyond their practical simplicity, the usefulness of our procedures is evidenced by the fact that: (1) the initial loading profile does not need to be known and (2) the chosen fitting function does not require any physical basis. These two advantages allow us to determine the diffusion coefficient of the molecules directly from the characteristic time τ0.
Collapse
|
62
|
Klara J, Onak S, Kowalczyk A, Horak W, Wójcik K, Lewandowska-Łańcucka J. Towards Controlling the Local Bone Tissue Remodeling-Multifunctional Injectable Composites for Osteoporosis Treatment. Int J Mol Sci 2023; 24:ijms24054959. [PMID: 36902390 PMCID: PMC10002562 DOI: 10.3390/ijms24054959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate for osteoporosis therapy. However, its administration is associated with serious side effects. Therefore, the drug delivery systems (DDS) enabling local administration and localized action of that drug are still of great importance. Herein, a novel multifunctional DDS system based on the hydroxyapatite-decorated mesoporous silica particles (MSP-NH2-HAp-ALN) embedded into collagen/chitosan/chondroitin sulfate hydrogel for simultaneous osteoporosis treatment and bone regeneration is proposed. In such a system, the hydrogel serves as a carrier for the controlled delivery of ALN at the site of implantation, thus limiting potential adverse effects. The involvement of MSP-NH2-HAp-ALN in the crosslinking process was established, as well as the ability of hybrids to be used as injectable systems. We have shown that the attachment of MSP-NH2-HAp-ALN to the polymeric matrix provides a prolonged ALN release (up to 20 days) and minimizes the initial burst effect. It was revealed that obtained composites are effective osteoconductive materials capable of supporting the osteoblast-like cell (MG-63) functions and inhibiting osteoclast-like cell (J7741.A) proliferation in vitro. The purposely selected biomimetic composition of these materials (biopolymer hydrogel enriched with the mineral phase) allows their biointegration (in vitro study in the simulated body fluid) and delivers the desired physicochemical features (mechanical, wettability, swellability). Furthermore, the antibacterial activity of the composites in in vitro experiments was also demonstrated.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Horak
- Department of Machine Design and Technology, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
63
|
Liu Y, Yin X, Xia X, Liu Z, Chen L, Dong M. 3D printed lactic acid bacteria hydrogel: cell release kinetics and stability. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
64
|
Yu S, Xing J. Preparation of temperature-responsive PMMA-based microspheres encapsulating erythromycin in situ by emulsion photopolymerization. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
65
|
Pathania K, Sah SP, Salunke DB, Jain M, Yadav AK, Yadav VG, Pawar SV. Green synthesis of lignin-based nanoparticles as a bio-carrier for targeted delivery in cancer therapy. Int J Biol Macromol 2023; 229:684-695. [PMID: 36603714 DOI: 10.1016/j.ijbiomac.2022.12.323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Polymeric magnetic nanoparticles have shown higher efficacy in cancer diagnosis and treatment than conventional chemotherapies. Lignin is an abundantly available natural polymer that can be selectively modified using a rapidly expanding toolkit of biocatalytic and chemical reactions to yield 'intelligent' theranostic-nanoprobes. We aim to valorize lignin to develop a natural polymeric-magnetic-nano-system for the targeted delivery of methotrexate. In the current study, we synthesized nanoparticles of lignin and iron oxide with methotrexate using a new approach of anti-solvent precipitation with ultrasonication. The ensuing nanoparticles are magnetic, smooth, polyhedral with characteristic dimension of 110-130 nm. The drug loading and encapsulation efficiencies were calculated to be 66.06 % and 64.88 %, respectively. The nanoparticles exhibit a concentration-dependent release of methotrexate for the initial 24 h, followed by sustained release. Moreover, formulation is non-hemolytic and scavenges radicals owing to the antioxidant property of lignin. Additionally, methotrexate delivered using the nanoparticles exhibited higher cytotoxicity in cellular-viability assays employing breast cancer and macrophage cell lines compared to the pure form of the drug. Synergistic action of lignin, iron oxide, and methotrexate contribute to enhanced caspase-3 activity and reduced glutathione levels in the breast cancer cells, as well as elevated internalization of the drug on account of increased receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics & Antimicrobials, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
66
|
Ureña-Amate MD, Socias-Viciana MDM, Urbano-Juan MDM, García-Alcaraz MDC. Effects of pH and Crosslinking Agent in the Evaluation of Hydrogels as Potential Nitrate-Controlled Release Systems. Polymers (Basel) 2023; 15:1246. [PMID: 36904488 PMCID: PMC10007039 DOI: 10.3390/polym15051246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Water scarcity and the loss of fertilizer from agricultural soils through runoff, which also leads to contamination of other areas, are increasingly common problems in agriculture. To mitigate nitrate water pollution, the technology of controlled release formulations (CRFs) provides a promising alternative for improving the management of nutrient supply and decreasing environmental pollution while maintaining good quality and high crop yields. This study describes the influence of pH and crosslinking agent, ethylene glycol dimethacrylate (EGDMA) or N,N'-methylenebis (acrylamide) (NMBA), on the behavior of polymeric materials in swelling and nitrate release kinetics. The characterization of hydrogels and CRFs was performed by FTIR, SEM, and swelling properties. Kinetic results were adjusted to Fick, Schott, and a novel equation proposed by the authors. Fixed-bed experiments were carried out by using the NMBA systems, coconut fiber, and commercial KNO3. Results showed that on the one hand, no significant differences were observed in nitrate release kinetics for any system in the selected pH range, this fact allowing to apply these hydrogels to any type of soil. On the other hand, nitrate release from SLC-NMBA was found to be a slower and longer process versus commercial potassium nitrate. These features indicate that the NMBA polymeric system could potentially be applied as a controlled release fertilizer suitable for a wide variety of soil typologies.
Collapse
Affiliation(s)
- María Dolores Ureña-Amate
- Department of Chemistry and Physics, Agroalimentary Campus of International Excellence (ceiA3), University of Almería, La Cañada de San Urbano, s/n, 04120 Almería, Spain
| | | | | | | |
Collapse
|
67
|
Osetrov K, Uspenskaya M, Olekhnovich R. The model pH-controlled delivery system based on gelatin-tannin hydrogels containing ferrous ascorbate: iron release in vitro. Biomed Phys Eng Express 2023; 9. [PMID: 36758228 DOI: 10.1088/2057-1976/acbaa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Hydrogels have become an essential class among all biomaterials. The specialized biomaterials are highly valued in the field of biomedical applications. One of the problems in wound management is local microelement deficiency associated with extensive wound lesions. The significant lack of elemental iron in the human body leads to serious consequences and prolongs treatment. The synthesis of gelatin-tannin hydrogels with ion delivery function is proposed in this study. The ability to release ions in low acid solution is a sphere of great interest. The pH drop in the wound cavity is usually associated with the contamination of some bacterial cultures. pH-controlled delivery of iron in buffer solutions (рН = 5.5/6.4/7.4) was considered for these hydrogels. The kinetics of iron release was determined by visible spectroscopy. Theoretical models were applied to describe the process of ion delivery. The structure of materials was examined by IR-spectroscopy and demonstrated the incorporation of ferrous ascorbate into hydrogel matrix. Thermal analysis was used to point out the key differences in thermal behavior by isoconversional methods (Flynn-Wall-Ozawa/Kissinger-Akahira-Sunose). The mechanical properties of the materials have been studied. The effect of iron ascorbate on polymer network parameters was discussed. The current study demonstrated the possibility of obtaining gelatin-tannin hydrogels for pH-dependent iron delivery. That provides future perspectives to expand the set of releasing microelements for biomedical applications.
Collapse
Affiliation(s)
- Konstantin Osetrov
- Center for Chemical Engineering, ITMO University, 197101, Saint-Petersburg, Russia
| | - Mayya Uspenskaya
- Center for Chemical Engineering, ITMO University, 197101, Saint-Petersburg, Russia
| | - Roman Olekhnovich
- Center for Chemical Engineering, ITMO University, 197101, Saint-Petersburg, Russia
| |
Collapse
|
68
|
Ünal S, Varan G, Benito JM, Aktaş Y, Bilensoy E. Insight into oral amphiphilic cyclodextrin nanoparticles for colorectal cancer: comprehensive mathematical model of drug release kinetic studies and antitumoral efficacy in 3D spheroid colon tumors. Beilstein J Org Chem 2023; 19:139-157. [PMID: 36814451 PMCID: PMC9940600 DOI: 10.3762/bjoc.19.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-β-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-β-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100, Ankara, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, 41092, Sevilla, Spain
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
69
|
Kollipara S, Bhattiprolu AK, Boddu R, Ahmed T, Chachad S. Best Practices for Integration of Dissolution Data into Physiologically Based Biopharmaceutics Models (PBBM): A Biopharmaceutics Modeling Scientist Perspective. AAPS PharmSciTech 2023; 24:59. [PMID: 36759492 DOI: 10.1208/s12249-023-02521-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Dissolution is considered as a critical input into physiologically based biopharmaceutics models (PBBM) as it governs in vivo exposure. Despite many workshops, initiatives by academia, industry, and regulatory, wider practices are followed for dissolution data input into PBBM models. Due to variety of options available for dissolution data input into PBBM models, it is important to understand pros, cons, and best practices while using specific dissolution model. This present article attempts to summarize current understanding of various dissolution models and data inputs in PBBM software's and aims to discuss practical challenges and ways to overcome such scenarios. Different approaches to incorporate dissolution data for immediate, modified, and delayed release formulations are discussed in detail. Common challenges faced during fitting of z-factor are discussed along with novel approach of dissolution data incorporation using P-PSD model. Ways to incorporate dissolution data for MR formulations using Weibull and IVIVR approaches were portrayed with examples. Strategies to incorporate dissolution data for DR formulations was depicted along with practical aspects. Approaches to generate virtual dissolution profiles, using Weibull function, DDDPlus, and time scaling for defining dissolution safe space, and strategies to generate virtual dissolution profiles for justifying single and multiple dissolution specifications were discussed. Finally, novel ways to integrate dissolution data for complex products such as liposomes, data from complex dissolution systems, importance of precipitation, and bio-predictive ability of QC media for evaluation of CBA's impact were discussed. Overall, this article aims to provide an easy guide for biopharmaceutics modeling scientist to integrate dissolution data effectively into PBBM models.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| | - Siddharth Chachad
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| |
Collapse
|
70
|
The Finite Absorption Time (FAT) concept en route to PBPK modeling and pharmacometrics. J Pharmacokinet Pharmacodyn 2023; 50:5-10. [PMID: 36369406 DOI: 10.1007/s10928-022-09832-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
The concept of Finite Absorption Time (FAT) for oral drug administration is set to affect pharmacokinetic analyses, Physiologically-based Pharmacokinetics simulations, and Pharmacometrics.
Collapse
|
71
|
Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs. Pharm Res 2023; 40:337-357. [PMID: 35840856 DOI: 10.1007/s11095-022-03319-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
For successful oral drug development, defining a bioequivalence (BE) safe space is critical for the identification of newer bioequivalent formulations or for setting of clinically relevant in vitro specifications to ensure drug product quality. By definition, the safe space delineates the dissolution profile boundaries or other drug product quality attributes, within which the drug product variants are anticipated to be bioequivalent. Defining a BE safe space with physiologically based biopharmaceutics model (PBBM) allows the establishment of mechanistic in vitro and in vivo relationships (IVIVR) to better understand absorption mechanism and critical bioavailability attributes (CBA). Detailed case studies on how to use PBBM to establish a BE safe space for both innovator and generic drugs are described. New case studies and literature examples demonstrate BE safe space applications such as how to set in vitro dissolution/particle size distribution (PSD) specifications, widen dissolution specification to supersede f2 tests, or application toward a scale-up and post-approval changes (SUPAC) biowaiver. A workflow for detailed PBBM set-up and common clinical study data requirements to establish the safe space and knowledge space are discussed. Approaches to model in vitro dissolution profiles i.e. the diffusion layer model (DLM), Takano and Johnson models or the fitted PSD and Weibull function are described with a decision tree. The conduct of parameter sensitivity analyses on kinetic dissolution parameters for safe space and virtual bioequivalence (VBE) modeling for innovator and generic drugs are shared. The necessity for biopredictive dissolution method development and challenges with PBBM development and acceptance criteria are described.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Maitri Sanghavi
- Pharmacokinetics & Biopharmaceutics Group, Pharmaceutical Technology Center (PTC), Zydus Lifesciences Ltd., NH-8A, Sarkhej-Bavla Highway, Moraiya Ahmedabad, Gujarat, 382210, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Anuj K Saini
- Pharmacokinetics & Biopharmaceutics Group, Pharmaceutical Technology Center (PTC), Zydus Lifesciences Ltd., NH-8A, Sarkhej-Bavla Highway, Moraiya Ahmedabad, Gujarat, 382210, India
| | - Tycho Heimbach
- Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
| |
Collapse
|
72
|
Enteric coating of drug loaded aerogel particles in a wurster fluidized bed and its effect on release behaviour. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
73
|
Kolosova OY, Shaikhaliev AI, Krasnov MS, Bondar IM, Sidorskii EV, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 64. Preparation and Properties of Poly(vinyl alcohol)-Based Cryogels Loaded with Antimicrobial Drugs and Assessment of the Potential of Such Gel Materials to Perform as Gel Implants for the Treatment of Infected Wounds. Gels 2023; 9:gels9020113. [PMID: 36826283 PMCID: PMC9956285 DOI: 10.3390/gels9020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Physical macroporous poly(vinyl alcohol)-based cryogels formed by the freeze-thaw technique without the use of any foreign cross-linkers are of significant interests for biomedical applications. In the present study, such gel materials loaded with the antimicrobial substances were prepared and their physicochemical properties were evaluated followed by an assessment of their potential to serve as drug carriers that can be used as implants for the treatment of infected wounds. The antibiotic Ceftriaxone and the antimycotic Fluconazole were used as antimicrobial agents. It was shown that the Ceftriaxone additives caused the up-swelling effects with respect to the cryogel matrix and some decrease in its heat endurance but did not result in a substantial change in the gel strength. With that, the drug release from the cryogel vehicle occurred without any diffusion restrictions, which was demonstrated by both the spectrophotometric recording and the microbiological agar diffusion technique. In turn, the in vivo biotesting of such drug-loaded cryogels also showed that these materials were able to function as rather efficient antimicrobial implants injected in the artificially infected model wounds of laboratory rabbits. These results confirmed the promising biomedical potential of similar implants.
Collapse
Affiliation(s)
- Olga Yu. Kolosova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Astemir I. Shaikhaliev
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Mikhail S. Krasnov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan M. Bondar
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Egor V. Sidorskii
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Elena V. Sorokina
- Microbiology Department, Biology Faculty, M.V.Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I. Lozinsky
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-499-135-6492
| |
Collapse
|
74
|
Sorzano C, Moreno MPDLC, Vilas J. An Analytical Solution for Saturable Absorption in Pharmacokinetics Models. Pharm Res 2023; 40:481-485. [PMID: 36543972 PMCID: PMC9944386 DOI: 10.1007/s11095-022-03455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The first-order absorption is a common model used in Pharmacokinetics. The absorption of some drugs follows carrier mediated transport. It has been proposed that the amount of drug available may saturate the transport mechanism resulting in an absorption slower than the one predicted by the first-order model. Saturable absorption has been modeled at the differential equation level by substituting the constant rate absorption by a Hill kinetics absorption. However, its exact solution is so far unknown. The goal of this is to know the exact solution of different Hill kinetic absorption models. METHODS We start defining different absorption models and increasing then their complexity. The simplest case is the first-order absorption model and the most complex will be a generalized Hill kinetic absorption model. The differential equation of each model is integrated. RESULTS The complexity of the models their solutions may be not expressed in a close-form, or in term of elementary functions. We obtain and discuss the exact solutions of the different Hill kinetics absorption models. To do that, the solutions are studied according to the possible values of the free parameters of the models. We show the differences between models through simulations. CONCLUSIONS The knowledge of closed-form solutions allows to illustrate the differences between the different absorption models and minimizes the errors of numerical integration.
Collapse
Affiliation(s)
- C.O.S. Sorzano
- National Center of Biotechnology, CSIC., Madrid, Spain
- Kinestat Pharma, Madrid, Spain
| | | | - J.L. Vilas
- National Center of Biotechnology, CSIC., Madrid, Spain
| |
Collapse
|
75
|
Wu L, Kutas SK, Morrow BR, Hong L. Sustained release of dipyridamole from collagen membranes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
76
|
Zhao Y, Bai T, Liu Y, Lv Y, Zhou Z, Shen Y, Jiang L. Encapsulation of Volatile Monoterpene Fragrances in Mesoporous Organosilica Nanoparticles and Potential Application in Fruit Preservation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:104. [PMID: 36616014 PMCID: PMC9823477 DOI: 10.3390/nano13010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In this work, we synthesized mesoporous silica nanoparticles (MSNs) and periodic mesoporous organosilica nanoparticles containing bridging groups of ethylene (E-PMO) and phenylene (P-PMO) and compared their adsorption properties using D-limonene (Lim), myrcene (Myr), and cymene (Cym) as model guest molecules. For the selected nanoparticles of ~100 nm in diameter, the loading capacity to the volatile fragrances was in the order of P-PMO < E-PMO < MSN, consistent with the trend of increasing total pore volume. For example, P-PMO, E-PMO, and MSN had a Lim uptake of 42.2 wt%, 47.3 wt%, and 62.7 wt%, respectively, which was close to their theoretical adsorption capacity. Under isothermal thermogravimetric analysis conditions (30 °C, a N2 flow of 1 mL min−1), the lowest fragrance release of ~56% over 24 h was observed for P-PMO, followed by E-PMO (74−80%), and MSN (~89%). The release kinetics of the fragrant molecules from MSN and PMO materials can be well described by first-order and Weibull models, respectively. Moreover, the incorporation of Lim-loaded P-PMO NPs in an aqueous solution of regenerated silk fibroin provided a composite coating material suitable for perishable fruit preservation. The active layer deposited on fruit peels using dip coating showed good preservation efficacy, enabling the shelf-life of mangoes in a highly humid and hot atmosphere (30−35 °C, 75−85% RH) to be extended to 6 days.
Collapse
Affiliation(s)
- Yuanjiang Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yichao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liming Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
77
|
Yu L, Madsen FB, Eriksen SH, Andersen AJC, Skov AL. A reliable quantitative method for determining CBD content and release from transdermal patches in Franz cells. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1257-1265. [PMID: 36372393 PMCID: PMC10100468 DOI: 10.1002/pca.3188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION There are several cannabidiol (CBD) transdermal patches available on the market. However, none are FDA-approved. Furthermore, not much evidence has been published about CBD release and skin permeation from such patches, so the effectiveness and reliability remain unclear. OBJECTIVES We aimed to develop a method to determine the in vitro release and skin permeation of CBD from transdermal patches using Franz cell diffusion in combination with quantitative 1 H-NMR (qNMR). MATERIALS AND METHODS The study was conducted on CBD patches with known CBD content and six different commercially available or market-ready CBD patches using a Franz cell with a Strat-M™ membrane and with samples taken directly from the transdermal patch for qNMR analysis. RESULTS The use of qNMR yielded an average recovery of 100% ± 7% when samples with known CBD content were tested. Results from the testing of six commercially available patches indicated that five out of six patches did not contain the CBD amount stated by the manufacturer according to a ± 10% variance margin, of which four patches were under-labeled and one was over-labeled. The release rate of patches was determined, and significant differences between the patches were shown. Maximum release of CBD was calculated to occur after 39 to 70 h. CONCLUSION The established method was proven to be a reliable means of determining the quantity and release of CBD from transdermal patches and can be used to verify CBD content and release rate in transdermal patches.
Collapse
Affiliation(s)
- Liyun Yu
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
| | - Frederikke Bahrt Madsen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
- GlysiousHolteDenmark
| | - Sofie Helvig Eriksen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
| | - Aaron J. C. Andersen
- Department of Biotechnology and Biomedicine, Building 221Technical University of DenmarkKgs. LyngbyDenmark
| | - Anne Ladegaard Skov
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
- GlysiousHolteDenmark
| |
Collapse
|
78
|
Prathyusha E, A P, Ahmed H, Dethe MR, Agrawal M, Gangipangi V, Sudhagar S, Krishna KV, Dubey SK, Pemmaraju DB, Alexander A. Investigation of ROS generating capacity of curcumin-loaded liposomes and its in vitro cytotoxicity on MCF-7 cell lines using photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 40:103091. [PMID: 36031144 DOI: 10.1016/j.pdpdt.2022.103091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) is highly efficient in eradicating targetlesions by using photosensitizers (PS) triggered by external light energy. Nanotechnology may help increase the solubility and effective delivery of PS towards improving its efficacy. Curcumin (Cur) was used as a natural PS for PDT in the present work. Briefly, curcumin was encapsulated in liposomes (LPs) using the thin film hydration method and optimized using the QbD approach through the Box-Behnken Design (BBD) to optimize the responses like entrapment efficiency and drug loading with a smaller vesicle size. The in vitro release studies performed using a dialysis bag (MWCO 12 KDa) suggested a sustained release of the Cur over 72 h in pH 7.4 PBS following the Weibull drug release kinetics. In addition, the ROS generating capabilities upon application of blue light (460 nm) and resulting cytotoxicity were evaluated in MCF-7 cell lines. The Cur-loaded liposome exhibited significant ROS generation and cytotoxicity to the cancer cells than free curcumin. Thus, the Cur-loaded liposomes could be used to treat breast cancer with photodynamic therapy.
Collapse
Affiliation(s)
- Eluri Prathyusha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Polepally SEZ, Jadcherla, Telangana, India
| | - Vijayakumar Gangipangi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India.
| |
Collapse
|
79
|
Bhattiprolu AK, Kollipara S, Ahmed T, Boddu R, Chachad S. Utility of Physiologically Based Biopharmaceutics Modeling (PBBM) in Regulatory Perspective: Application to Supersede f2, Enabling Biowaivers & Creation of Dissolution Safe Space. J Pharm Sci 2022; 111:3397-3410. [PMID: 36096285 DOI: 10.1016/j.xphs.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023]
Abstract
Product DRL is a generic IR tablet formulation with BCS Class-III API, available in two strengths: 50mg & 100mg. The reference and test formulations have salt-A & salt-B of API but both products were bioequivalent based on the in vivo bioequivalence study conducted for higher strength 100mg. While leveraging the generic product to different market, the reference product from other market showed slower release than generic formulation resulting in f2<50 in pH 6.8 for both 50mg and 100mg, because of which waiver for BE study couldn't be granted. To support f2 mismatch at 100mg, 50mg and to facilitate biowaiver of 50mg, a Gastroplus® PBBM model was developed & validated. Virtual bioequivalence trials were performed using the slower dissolution profile of other market reference. It was demonstrated that despite slower dissolution, bioequivalence was achieved for test product against other market reference for 50mg & 100mg strengths. Additionally, dissolution safe space was created using virtual dissolution profiles, which indicated that when >85% released up to 60 min there is no impact on bioequivalence. Overall, for molecules with permeability controlled absorption (i.e. BCS-III), very rapid dissolution criteria can be relaxed by defining dissolution safe space thereby enabling more waivers in future.
Collapse
Affiliation(s)
- Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India.
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| | - Siddharth Chachad
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| |
Collapse
|
80
|
Development and cytotoxicity evaluation of a cylindrical pH-responsive chitosan-genipin hydrogel for the oral delivery of diclofenac sodium. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
81
|
Xiao Y, Zheng H, Du M, Zhang Z. Investigation on the Potential Application of Na-Attapulgite as an Excipient in Domperidone Sustained-Release Tablets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238266. [PMID: 36500360 PMCID: PMC9738564 DOI: 10.3390/molecules27238266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
In this study, Na-attapulgite was explored as an excipient to prepare domperidone sustained-release tablets and test them in accordance with United States Pharmacopoeia requirements. Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) were employed to explore the compatibility between Na-attapulgite and domperidone. The XRD and DSC show no interaction between the drug and Na-attapulgite. The FTIR spectrum indicates a shift in the absorption of N-H in the drug molecule, which can be explained by the hydrogen bonding interaction between the N-H in the DOM molecule and the -OH on the surface of Na-ATP. The diameter, hardness, friability and drug content of the tablets were measured, and they all met the relevant requirements of the United States Pharmacopoeia. In addition, the tablets with Na-attapulgite as excipient exhibit a better release performance within the release time of 12 h. These results demonstrate that the domperidone sustained-release tablets have been successfully prepared by using Na-attapulgite as an excipient. The doping of Na-ATP in domperidone sustained-release tablets improves the cytocompatibility. Moreover, with the increase of Na-ATP content, cells proliferate remarkably and cell activity is significantly enhanced.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiyu Zheng
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Meng Du
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhe Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9321-9765
| |
Collapse
|
82
|
Ünal S, Doğan O, Aktaş Y. Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1393-1407. [PMID: 36483636 PMCID: PMC9704015 DOI: 10.3762/bjnano.13.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Intestinal cancers are the third most lethal cancers globally, beginning as polyps in the intestine and spreading with a severe metastatic tendency. Chemotherapeutic drugs used in the treatment of intestinal tumors are usually formulated for parenteral administration due to poor solubility and bioavailability problems. Pharmaceutically, clinical failure due to a drug's wide biodistribution and non-selective toxicity is one of the major challenges of chemotherapy. In addition, parenteral drug administration in chronic diseases that require long-term drug use, such as intestinal tumors, is challenging in terms of patient compliance and poses a burden in terms of health economy. Especially in the field of chemotherapy research, oral chemotherapy is a subject that has been intensively researched in recent years, and developments in this field will provide serious breakthroughs both scientifically and socially. Development of orally applicable nanodrug formulations that can act against diseases seen in the distant region of the gastrointestinal tract (GIT), such as intestinal tumor, brings with it a series of difficulties depending on the drug and/or GIT physiology. The aim of this study is to develop an oral nanoparticle drug delivery system loaded with docetaxel (DCX) as an anticancer drug, using poly(lactic-co-glycolic acid) (PLGA) as nanoparticle material, and modified with chitosan (CS) to gain mucoadhesive properties. In this context, an innovative nanoparticle formulation that can protect orally administered DCX from GIT conditions and deliver the drug to the intestinal tumoral region by accumulating in mucus has been designed. For this purpose, DCX-PLGA nanoparticles (NPs) and CS/DCX-PLGA NPs were prepared, and their in vitro characteristics were elucidated. Nanoparticles around 250-300 nm were obtained. DCX-PLGA NPs had positive surface charge with CS coating. The formulations have the potential to deliver the encapsulated drug to the bowel according to the in vitro release studies in three different simulated GIT fluids for approximately 72 h. Mucin interaction and penetration into the artificial mucus layer were also investigated in detail, and the mucoadhesive and mucus-penetration characteristics of the formulations were examined. Furthermore, in vitro release kinetic studies of the NPs were elucidated. DCX-PLGA NPs were found to be compatible with the Weibull model, and CS/DCX-PLGA NPs were found to be compatible with the Peppas-Sahlin model. Within the scope of in vitro cytotoxicity studies, the drug-loaded NPs showed significantly higher cytotoxicity than a DCX solution on the HT-29 colon cell line, and CS/DCX-PLGA showed the highest cytotoxicity (p < 0.05). According to the permeability studies on the Caco-2 cell line, the CS/DCX-PLGA formulation increased permeability by 383% compared to free DCX (p < 0.05). In the light of all results, CS/DCX-PLGA NPs can offer a promising and innovative approach as an oral anticancer drug-loaded nanoformulation for intestinal tumors.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| | - Osman Doğan
- Department of Bioengineering, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| |
Collapse
|
83
|
Hydroxyethylcellulose-Based Hydrogels Containing Liposomes Functionalized with Cell-Penetrating Peptides for Nasal Delivery of Insulin in the Treatment of Diabetes. Pharmaceutics 2022; 14:pharmaceutics14112492. [PMID: 36432681 PMCID: PMC9699037 DOI: 10.3390/pharmaceutics14112492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Liposomes functionalized with cell-penetrating peptides are a promising strategy to deliver insulin through the nasal route. A hydrogel based on hydroxyethylcellulose (HEC) aqueous solution was prepared, followed by a subsequent addition of liposomes containing insulin solution functionalized with trans-activator of transcription protein of HIV-1 (TAT) or Penetratin (PNT). The formulations were characterized for rheological behavior, mucoadhesion, syringeability, in vitro release and in vivo efficacy. Rheological tests revealed non-Newtonian fluids with pseudoplastic behavior, and the incorporation of liposomes (HLI, HLITAT and HLIPNT) in hydrogels did not alter the behavior original pseudoplastic characteristic of the HEC hydrogel. Pseudoplastic flow behavior is a desirable property for formulations intended for the administration of drugs via the nasal route. The results of syringeability and mucoadhesive strength from HEC hydrogels suggest a viable vehicle for nasal delivery. Comparing the insulin release profile, it is observed that HI was the system that released the greatest amount while the liposomal gel promoted greater drug retention, since the liposomal system provides an extra barrier for the release through the hydrogel. Additionally, it is observed that both peptides tested had an impact on the insulin release profile, promoting a slower release, due to complexation with insulin. The in vitro release kinetics of insulin from all formulations followed Weibull's mathematical model, reaching approximately 90% of release in the formulation prepared with HEC-based hydrogels. Serum insulin levels and the antihyperglycemic effects suggested that formulations HI and HLI have potential as carriers for insulin delivery by the nasal pathway, a profile not observed when insulin was administered by subcutaneous injection or by the nasal route in saline. Furthermore, formulations functionalized with TAT and PNT can be considered promoters of late and early absorption, respectively.
Collapse
|
84
|
Dastidar DG, Singh P, Bhattacharjee R, Ghosh D, Banerjee M, Biswas S, Mukherjee SK, Mandal S. Development of Copper Nanoparticle Conjugated Chitosan Microparticle as a Stable Source of 2nm Copper Nanoparticle Effective against Methicillin- resistant Staphylococcus aureus. Pharm Nanotechnol 2022; 10:310-326. [PMID: 36017866 DOI: 10.2174/2211738510666220823152415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Copper nanoparticle (CuNP) has well-established antimicrobial activity. Instability in an aqueous medium due to aggregation into larger particles, conversion into metal ions, and oxidation into metal oxides are the major limitations of its practical use against bacterial infections. OBJECTIVE Development of CuNP Conjugated Chitosan Microparticles as a reservoir that will release CuNP effective against notorious bacteria like Methicillin-resistant Staphylococcus aureus. METHODS CuNP conjugated chitosan microparticles (CNCCM) were synthesized using a simple twostep process. In the first step, a solution of chitosan in 2% (w/v) ascorbic acid was added dropwise in copper sulphate solution to prepare Cu ion conjugated chitosan beads. In the second step, these beads were soaked in sodium hydroxide solution to get the CNCCM. The dried CNCCM were characterized thoroughly for surface conjugation of CuNP, and the release of CuNP in a suitable medium. The physicochemical properties of release CuNP were further verified with the in silico modelled CuNP. The Antimicrobial and antibiofilm activities of released CuNp were evaluated against methicillin-resistant Staphylococcus aureus (MRSA). RESULTS 2% (w/v) ascorbic acid solution (pH 3.5) was the optimum medium for the release of ~2 nm CuNP from CNCCM. The CuNP had an optical band gap of ~ 2 eV. It inhibited the cell wall synthesis of MRSA. The minimum inhibitory concentration was 200 nM. At 100 nM dose, the CuNP caused ~73% reduction in biofilm development after 24 h of growth. The cytotoxic effect of CuNP on the human cell line (HEK 293) was significantly less than that on MRSA. The 48 h IC50 value against HEK 293 was 3.45-fold higher than the MIC value against MRSA after 24 h treatment. CONCLUSION CuNP Conjugated Chitosan Microparticle has been developed. It works as a stable reservoir of ~2 nm CuNP. The CuNP is released in an aqueous medium containing 2% (w/v) ascorbic acid (pH 3.5). The released CuNP has a bacteriostatic effect against MRSA at a concentration safe for human cells.
Collapse
Affiliation(s)
- Debabrata Ghosh Dastidar
- Department of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Prabhakar Singh
- Electron Microscopy Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029 India
| | - Romit Bhattacharjee
- Department of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Dipanjan Ghosh
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700019, India
| | - Malabika Banerjee
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Samik Biswas
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Samir Kumar Mukherjee
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal 741235, India
| |
Collapse
|
85
|
Zuliani A, Chelazzi D, Mastrangelo R, Giorgi R, Baglioni P. Adsorption kinetics of acetic acid into ZnO/castor oil-derived polyurethanes. J Colloid Interface Sci 2022; 632:74-86. [DOI: 10.1016/j.jcis.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
86
|
Dourado D, Oliveira MCD, Araujo GRSD, Amaral-Machado L, Porto DL, Aragão CFS, Alencar EDN, Egito ESTD. Low-surfactant microemulsion, a smart strategy intended for curcumin oral delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
87
|
Pylkkänen R, Mohammadi P, Liljeström V, Płaziński W, Beaune G, Timonen JVI, Penttilä M. β-1,3-Glucan synthesis, novel supramolecular self-assembly, characterization and application. NANOSCALE 2022; 14:15533-15541. [PMID: 36194159 DOI: 10.1039/d2nr02731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
β-1,3-Glucans are ubiquitously observed in various biological systems with diverse physio-ecological functions, yet their underlying assembly mechanism and multiscale complexation in vitro remains poorly understood. Here, we provide for the first-time evidence of unidentified β-1,3-glucan supramolecular complexation into intricate hierarchical architectures over several length scales. We mediated these unique assemblies using a recombinantly produced β-1,3-glucan phosphorylase (Ta1,3BGP) by fine-tuning solution conditions during particle nucleation and growth. We report a synthesis of interconnected parallel hexagonal lamellae composed of 8 nm thick sheets of highly expanded paracrystals. The architecture consists of β-1,3-glucan triple-helices with considerable inter-intra hydrogen bonding within, as well as in between adjacent triple-helices. The results extend our understanding of β-1,3-glucan molecular organization and shed light on different aspects of the crystallization processes of biomolecules into structures unseen by nature. The presented versatile synthesis yields new materials for diverse medical and industrial applications.
Collapse
Affiliation(s)
- Robert Pylkkänen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
| | | | - Ville Liljeström
- Nanomicroscopy Center, OtaNano, Aalto University, FI-00076 Aalto, Finland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Grégory Beaune
- Nanomicroscopy Center, OtaNano, Aalto University, FI-00076 Aalto, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Merja Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
| |
Collapse
|
88
|
Fernandes MJG, Pereira RB, Rodrigues ARO, Vieira TF, Fortes AG, Pereira DM, Sousa SF, Gonçalves MST, Castanheira EMS. Liposomal Formulations Loaded with a Eugenol Derivative for Application as Insecticides: Encapsulation Studies and In Silico Identification of Protein Targets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3583. [PMID: 36296773 PMCID: PMC9611868 DOI: 10.3390/nano12203583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against Sf9 (Spodoptera frugiperda) insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8 ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in Sf9 insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.
Collapse
Affiliation(s)
- Maria José G. Fernandes
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Renato B. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM—Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - A. Gil Fortes
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM—Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
89
|
Zhou Y, Wu J, Zhou J, Lin S, Cheng D. pH-responsive release and washout resistance of chitosan-based nano-pesticides for sustainable control of plumeria rust. Int J Biol Macromol 2022; 222:188-197. [PMID: 36150567 DOI: 10.1016/j.ijbiomac.2022.09.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Controlled pesticide release in response to environmental stimuli by encapsulating pesticides in a carrier is a feasible approach to improve the effective utilization rate. In this study, pH-responsive release nanoparticles loaded with penconazole (PE) were prepared by ionic cross-linking of chitosan and carboxymethyl chitosan (PE@CS/CMCS-NPs). PE@CS/CMCS-NPs exhibited good washout resistance and wettability properties, increasing the washing resistance of the pesticide by approximately 20 times under continuous washing. The results of the release experiments showed that nanoparticles had adjustable controlled-release characteristics with the change in pH based on the swelling of nanoparticles. The results of spore germination experiments showed that PE@CS/CMCS-NPs enhanced the inhibitory effect under acidic conditions. The field experiment results showed that PE@CS/CMCS-NPs had a better control effect than PE-aqueous solution, extended the duration and slowed down the dissipation of PE. These results indicated that the CS/CMCS-NPs pH-responsive release system has great potential in the development of an effective pesticide formulation.
Collapse
Affiliation(s)
- Yi Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiyingzi Wu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jun Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sukun Lin
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
90
|
Xiong Y, Wang L, Xu W, Li L, Tang Y, Shi C, Li X, Niu Y, Sun C, Ren C. Electrostatic induced peptide hydrogel containing PHMB for sustained antibacterial activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
91
|
Milan EP, Martins VC, Horn MM, Plepis AM. Influence of blend ratio and mangosteen extract in chitosan/collagen gels and scaffolds: Rheological and release studies. Carbohydr Polym 2022; 292:119647. [DOI: 10.1016/j.carbpol.2022.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
92
|
Lin YS, Lin KS, Mdlovu NV, Weng MT, Tsai WC, Jeng US. De novo synthesis of a MIL-125(Ti) carrier for thermal- and pH-responsive drug release. BIOMATERIALS ADVANCES 2022; 140:213070. [PMID: 35961189 DOI: 10.1016/j.bioadv.2022.213070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Microporous round cake-like (diameter: 900 ± 100 nm) MIL-125(Ti) carrier with a central metal (Ti) exhibiting bio-affinity and possessing a great potential to be used as drug release platform, has been synthesized in the present study. The thermal and pH responsiveness of drug delivery systems (DDS) are the most important parameters for drug release and can be provided through polymer coating techniques. The Pluronic F127 (F127) and chitosan (CH) monomers were inserted into the crystal lattice of MIL-125(Ti) carrier during the de novo synthesis process, which were subsequently loaded with doxorubicin (DOX). The results reveal particle size changes (ranged between 30 and 50 %) from the original size of the MIL-125(Ti) carrier in response to temperature and pH when the carrier reaches acid environment. The drug release profiles have been completed through self-design device, which provides for the real-time release in the DOX amounts via UV-Vis spectra. The kinetics analysis was used to evaluate the R2 values of first order, Higuchi, Korsmeyer-peppas, and Weibull fitting equations, where the Weibull fitting indicated the best R2. An increase by 59.3 % of DOX released under the acid status (pH = 5.4) was observed, indicating that the CH-MIL-125(Ti) carrier is temperature and pH responsive. Moreover, the lattice explosion resulting from the temperature increase in the range of 25-42 °C caused an increase in F127-MIL-125(Ti) by 30.8-38.3 %. The simulated SAXS/WAXS studies for the microstructures of MIL-125(Ti) based DDS at different temperatures after polymer coating (F127-MIL-125(Ti)) provide the possible mechanism of lattice explosion. As such, the responsive Ti-MOF has a highly potential for use in the applications of cancer treatment.
Collapse
Affiliation(s)
- You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
| | - Wei-Chin Tsai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Science-Based Industrial Park, Hsinchu 30077, Taiwan
| |
Collapse
|
93
|
Sun Y, Davis EW. Multi-Stimuli-Responsive Janus Hollow Polydopamine Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9777-9789. [PMID: 35921245 DOI: 10.1021/acs.langmuir.2c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A tubular-shaped Janus nanoparticle based on polydopamine that responds to near-infrared, magnetic, and pH stimuli is reported. The robust tubular polydopamine structure was obtained by optimizing the halloysite template-to-dopamine ratio during synthesis. The inner and outer surfaces of the tube were exposed at different steps of the template-sonication--etching process, enabling the differential surface modification of these surfaces. Poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were grafted to the outer and inner surface of the nanotube, respectively. The PEG-coated surface limited aggregation of the nanoparticles at elevated temperatures. The PNIPAM-coated interior enhanced doxorubicin loading and endowed the nanoparticle with temperature-responsive behavior. The deposition of precipitated Fe3O4 nanoparticles further modified the nanoparticles. The resulting magnetic Janus nanoparticles responded to pH, temperature, and magnetic fields. Temperature changes could be induced by near-infrared laser, and all three stimuli were found to influence release rates of adsorbed doxorubicin from the nanoparticles. The interaction of the stimuli on release kinetics was elucidated using a linear mixed model; reduced pH and NIR irradiation enhanced release while applying a static magnetic field retarded release. Furthermore, the mechanism was shifted toward Fickian behavior by applying a static magnetic field and low pH conditions. However, NIR irradiation only shifted the behavior toward Fickian behavior at low pH.
Collapse
Affiliation(s)
- Yuzhe Sun
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn, Alabama 36849, United States
| | - Edward W Davis
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn, Alabama 36849, United States
| |
Collapse
|
94
|
Lv Y, Zhao Y, Liu Y, Zhou Z, Shen Y, Jiang L. Self-Assembling Oligo(2-oxazoline) Organogelators for the Encapsulation and Slow Release of Bioactive Volatiles. ACS OMEGA 2022; 7:27523-27531. [PMID: 35967068 PMCID: PMC9366986 DOI: 10.1021/acsomega.2c02905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Herein, we report a class of distinctive supramolecular nanostructures in situ-generated from the cationic ring-opening polymerization of a particular 2-oxazoline monomer, i.e., 2-(N-tert-butyloxycarbonylaminomethyl)-2-oxazoline (Ox1). Driven by side-chain hydrogen bonding between neighboring molecules and van der Waals interactions, the growing oligomers of Ox1 precipitate in the form of macroscopic platelets when the degree of polymerization reaches 5-7. A similar self-assembly occurred in the block copolymerization of 2-ethyl-2-oxazoline (EtOx) or 2-pentyl-2-oxazoline (PeOx) and Ox1 as the second monomer. These polymeric aggregates were found to disassemble into rod-like nanoparticles under appropriate conditions, and to form stable organogels in some polar solvents like dimethylformamide as well as in natural liquid fragrances such as (R)-carvone, citronellal, and (R)-limonene. Scanning electron microscopy revealed that the morphology of their xerogels was solvent-dependent, mainly with a lamellar or fibrous structure. The rheology measurements confirmed the as-obtained organogels feature an obvious thixotropic character. The storage modulus was about 7-10 times higher than the loss modulus, indicating the physical crosslinking in the gel. The fragrance release profiles showed that the presented supramolecular gel system exhibits good sustained-release effect for the loaded bioactive volatiles.
Collapse
Affiliation(s)
- Yichao Lv
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Zhao
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhang Liu
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education
and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liming Jiang
- Key
Laboratory of Macromolecular Synthesis and Functionalization of Ministry
of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
95
|
Dual-targeting magnetic fluorescent mesoporous organosilicon hollow nanospheres for gambogic acid loading, sustained release and anti-tumor properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
96
|
Özdal ZD, Gültekin Y, Vural İ, Takka S. Development and characterization of polymeric nanoparticles containing ondansetron hydrochloride as a hydrophilic drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
97
|
Miranda RR, Ferreira NN, Souza EED, Lins PMP, Ferreira LM, Krüger A, Cardoso VMD, Durigon EL, Wrenger C, Zucolotto V. Modulating Fingolimod (FTY720) Anti-SARS-CoV-2 Activity Using a PLGA-Based Drug Delivery System. ACS APPLIED BIO MATERIALS 2022; 5:3371-3383. [PMID: 35732506 PMCID: PMC9236206 DOI: 10.1021/acsabm.2c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
COVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment. Nanoparticles (NPs) based on PLGA for fingolimod (FTY720) encapsulation show a size of ∼150 nm and high drug entrapment (∼90%). The NP (NP@FTY720) can control FTY720 release in a pH-dependent manner. Cytotoxicity assays using different cell lines show that NP@FTY720 displays less toxicity than the free drug. Flow cytometry and confocal microscopy reveal that NPs are actively internalized mostly through caveolin-mediated endocytosis and macropinocytosis pathways and co-localized with lysosomes. Finally, NP@FTY720 not only exhibits anti-SARS-CoV-2 activity at non-cytotoxic concentrations, but its biological potential for viral infection inhibition is nearly 70 times higher than that of free drug treatment. Based on these findings, the combination of drug repurposing and nanotechnology as NP@FTY720 is presented for the first time and represents a promising frontline in the fight against COVID-19.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Natália Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Paula Maria Pincela Lins
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Leonardo Miziara
Barboza Ferreira
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Valéria Maria de
Oliveira Cardoso
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Edison Luiz Durigon
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| |
Collapse
|
98
|
Bonardd S, Maiti B, Grijalvo S, Rodríguez J, Enshaei H, Kortaberria G, Alemán C, Díaz Díaz D. Biomass-derived isosorbide-based thermoresponsive hydrogel for drug delivery. SOFT MATTER 2022; 18:4963-4972. [PMID: 35748523 DOI: 10.1039/d2sm00623e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we describe the design and synthesis of a new variety of bio-based hydrogel films using a Cu(I)-catalyzed photo-click reaction. These films exhibited thermal-triggered swelling-deswelling and were constructed by crosslinking a triazide derivative of glycerol ethoxylate and dialkyne structures derived from isosorbide, a well-known plant-based platform molecule. The success of the click reaction was corroborated through infrared spectroscopy (FTIR) and the smooth surface of the obtained films was confirmed by scanning electron microscopy (SEM). The thermal characterization was carried out in terms of thermogravimetry (TGA) and differential scanning calorimetry (DSC), from which the decomposition onset and glass transition temperatures were determined, respectively. Additionally, mechanical properties of the samples were estimated by stress-strain experiments. Then, their swelling and deswelling properties were systematically examined in PBS buffer, revealing a thermoresponsive behavior that was successfully tested in the release of the anticancer drug doxorubicin. We also confirmed the non-cytotoxicity of these materials, which is a fundamental aspect for their potential use as drug carriers or tissue engineering matrices.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departmento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain.
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain
| | - Binoy Maiti
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jacqueline Rodríguez
- Departmento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain.
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain
| | - Hamidreza Enshaei
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, 08019, Barcelona, Spain
| | - Galder Kortaberria
- Materials + Technologies" Group, Chemical & Environmental Engineering Department, Basque Country University, Plaza Europa 1, 20018, Donostia, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, 08019, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - David Díaz Díaz
- Departmento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain.
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg 93053, Germany
| |
Collapse
|
99
|
Peng Y, Du X, Zhu D, Nie Y, Shi S, Xing J. Nanogels loading 5-Fluorouracil in situ through thiol-ene click reaction and photopolymerization at 532 nm for its controlled release. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
100
|
Guadagno L, Raimondo M, Vertuccio L, Lamparelli EP, Ciardulli MC, Longo P, Mariconda A, Della Porta G, Longo R. Electrospun Membranes Designed for Burst Release of New Gold-Complexes Inducing Apoptosis of Melanoma Cells. Int J Mol Sci 2022; 23:ijms23137147. [PMID: 35806152 PMCID: PMC9267035 DOI: 10.3390/ijms23137147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Two non-commercial metallic Au-based complexes were tested against one of the most aggressive malignant melanomas of the skin (MeWo cells), through cell viability and time-lapse live-cell imaging system assays. The tests with the complexes were carried out both in the form of free metallic complexes, directly in contact with the MeWo cell line culture, and embedded in fibers of Polycaprolactone (PCL) membranes produced by the electrospinning technique. Membranes functionalized with complexes were prepared to evaluate the efficiency of the membranes against the melanoma cells and therefore their feasibility in the application as an antitumoral patch for topical use. Both series of tests highlighted a very effective antitumoral activity, manifesting a very relevant cell viability inhibition after both 24 h and 48 h. In the case of the AuM1 complex at the concentration of 20 mM, melanoma cells completely died in this short period of time. A mortality of around 70% was detected from the tests performed using the membranes functionalized with AuM1 complex at a very low concentration (3 wt.%), even after 24 h of the contact period. The synthesized complexes also manifest high selectivity with respect to the MeWo cells. The peculiar structural and morphological organization of the nanofibers constituting the membranes allows for a very effective antitumoral activity in the first 3 h of treatment. Experimental points of the release profiles were perfectly fitted with theoretical curves, which easily allow interpretation of the kinetic phenomena occurring in the release of the synthesized complexes in the chosen medium.
Collapse
Affiliation(s)
- Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: (L.G.); (R.L.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, 813031 Aversa, Italy;
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy;
| | | | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
- Interdepartment Centre BIONAM, Università di Salerno, 84084 Fisciano, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: (L.G.); (R.L.)
| |
Collapse
|