51
|
Lee J, Sah H. Preparation of PLGA Nanoparticles by Milling Spongelike PLGA Microspheres. Pharmaceutics 2022; 14:pharmaceutics14081540. [PMID: 35893796 PMCID: PMC9330877 DOI: 10.3390/pharmaceutics14081540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, emulsification-templated nanoencapsulation techniques (e.g., nanoprecipitation) have been most frequently used to prepare poly-d,l-lactide-co-glycolide (PLGA) nanoparticles. This study aimed to explore a new top-down process to produce PLGA nanoparticles. The fundamental strategy was to prepare spongelike PLGA microspheres with a highly porous texture and then crush them into submicron-sized particles via wet milling. Therefore, an ethyl formate-based ammonolysis method was developed to encapsulate progesterone into porous PLGA microspheres. Compared to a conventional solvent evaporation process, the ammonolysis technique helped reduce the tendency of drug crystallization and improved drug encapsulation efficiency accordingly (solvent evaporation, 27.6 ± 4.6%; ammonolysis, 65.1 ± 1.7%). Wet milling was performed on the highly porous microspheres with a D50 of 64.8 μm under various milling conditions. The size of the grinding medium was the most crucial factor for our wet milling. Milling using smaller zirconium oxide beads (0.3~1 mm) was simply ineffective. However, when larger beads with diameters of 3 and 5 mm were used, our porous microspheres were ground into submicron-sized particles. The quality of the resultant PLGA nanoparticles was demonstrated by size distribution measurement and field emission scanning electron microscopy. The present top-down process that contrasts with conventional bottom-up approaches might find application in manufacturing drug-loaded PLGA nanoparticles.
Collapse
|
52
|
Li X, Zhang Z, Harris A, Yang L. Bridging the gap between fundamental research and product development of long acting injectable PLGA microspheres. Expert Opin Drug Deliv 2022; 19:1247-1264. [PMID: 35863759 DOI: 10.1080/17425247.2022.2105317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long acting Injectable PLGA microspheres have gained more and more interest and attention in the field of life cycle management of pharmaceutical products due to their biocompatibility and biodegradability. So far, a multitude of trial-and-error experiments at lab scale have been used for establishing the correlation relationship between critical process parameters, critical material attributes and critical quality attributes. However, few published studies have elaborated on the development of PLGA microspheres from an industrial perspective. AREAS COVERED In this review, the scale-up feasibility of translational technologies of PLGA microspheres manufacturing have been evaluated. Additionally, state-of-the-art of technologies and facilities in PLGA development have been summarized. Meanwhile, the industrial knowledge matrix of PLGA microspheres development and research are establishing which provide comprehensive insight for understanding properties of PLGA microspheres as controlled/sustained release vehicle. EXPERT OPINION There is still big gap between fundamental research in academic institute and product development in pharmaceuticals. Therefore, the difference and connection between them should be identified gradually for better understanding of PLGA microspheres development.
Collapse
Affiliation(s)
- Xun Li
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Zhanpeng Zhang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Alan Harris
- Global R&D life cycle management department, Ferring International Center SA, St-Prex, Switzerland
| | - Lin Yang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| |
Collapse
|
53
|
Yonet-Tanyeri N, Amer M, Balmert SC, Korkmaz E, Falo LD, Little SR. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation. ACS Biomater Sci Eng 2022; 8:2864-2877. [PMID: 35674145 PMCID: PMC10368402 DOI: 10.1021/acsbiomaterials.2c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Particles synthesized from biodegradable polymers hold great potential as controlled drug delivery systems. Continuous flow platforms based on microfluidics offer attractive advantages over conventional batch-emulsification techniques for the scalable fabrication of drug-loaded particles with controlled physicochemical properties. However, widespread utilization of microfluidic technologies for the manufacturing of drug-loaded particles has been hindered largely by the lack of practical guidelines toward cost-effective development and reliable operation of microfluidic systems. Here, we present a framework for rational design and construction of microfluidic systems using commercially available components for high-throughput production of uniform biodegradable particles encapsulating drugs. We also demonstrate successful implementation of this framework to devise a robust microfluidic system that is capable of producing drug-carrying particles with desired characteristics. The guidelines provided in this study will likely help broaden the applicability of microfluidic technologies for the synthesis of high-quality, drug-loaded biodegradable particles.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, Pennsylvania 15261, United States
| | - Maher Amer
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, Pennsylvania 15261, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
54
|
Sivasankaran S, Jonnalagadda S. Levonorgestrel loaded biodegradable microparticles for injectable contraception: Preparation, characterization and modelling of drug release. Int J Pharm 2022; 624:121994. [PMID: 35809830 DOI: 10.1016/j.ijpharm.2022.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
The integration of mechanistic modeling and machine learning facilitates the understanding and engineering of drug release from controlled release systems. Here, we present hybrid models to predict the effect of drug loading on levonorgestrel release from spray-dried poly(L-lactic acid) microparticles. We developed three Monte Carlo methods that differ in the consideration of polymer's degradability and crystallinity, to simulate drug release from the matrices using the Python programming language. To build each method, we utilized data from the characterization of the particles, such as the actual drug content (ranges from 6% to 52%), size (Dv(50) ∼ 5 μm), and polymer crystallinity (ranges from 0% to 15%). We trained each method using drug release data from particles of 4 batches and derived appropriate machine learning models through regression analysis. Results indicate the contribution of drug diffusion and polymer degradation to drug release for particles of lower drug content (<20 %w/w). At higher drug loadings, particles encountered a combination of burst and diffusional release. We validated the predictive powers of the machine learning models by testing them against experimental data. This paper specifically highlights the power of hybrid modeling to engineer drug release for long-term contraception.
Collapse
Affiliation(s)
- Sowmya Sivasankaran
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, United States
| | | |
Collapse
|
55
|
Yang B, Gomes Dos Santos A, Puri S, Bak A, Zhou L. The industrial design, translation, and development strategies for long-acting peptide delivery. Expert Opin Drug Deliv 2022; 19:1233-1245. [PMID: 35787229 DOI: 10.1080/17425247.2022.2098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peptides are widely recognized as therapeutic agents in the treatment of a wide range of diseases, such as cancer, diabetes etc. However, their use has been limited by their short half-life, due to significant metabolism by exo- and endo-peptidases as well as their inherent poor physical and chemical stability. Research with the aim of improving their half-life in the body, and thus improving patient compliance (by decreasing the frequency of injections) has gained significant attention. AREAS COVERED This review outlines the current landscape and industrial approaches to achieve extended peptide exposure and reduce dosing frequency. Emphasis is placed on identifying challenges in drug product manufacturing and desirable critical quality attributes that are essential for activity and safety, providing insights into chemistry and design aspects impacting peptide release, and summarizing important considerations for CMC developability assessments of sustained release peptide drugs. EXPERT OPINION Bring the patient and disease perspective early into development. Substantial advances have been made in the field of sustained delivery of peptides despite their complexity. The article will also highlight considerations for early-stage product design and development, providing an industrial perspective on risk mitigation in developing sustained release peptide drug products.
Collapse
Affiliation(s)
- Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| |
Collapse
|
56
|
Huo Y, Liu Y, Xia M, Du H, Lin Z, Li B, Liu H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers (Basel) 2022; 14:2648. [PMID: 35808693 PMCID: PMC9268916 DOI: 10.3390/polym14132648] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nanocellulose has lately emerged as one of the most promising "green" materials due to its unique properties. Nanocellulose can be mainly divided into three types, i.e., cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose (BC). With the rapid development of technology, nanocellulose has been designed into multidimensional structures, including 1D (nanofibers, microparticles), 2D (films), and 3D (hydrogels, aerogels) materials. Due to its adaptable surface chemistry, high surface area, biocompatibility, and biodegradability, nanocellulose-based composite materials can be further transformed as drug delivery carriers. Herein, nanocellulose-based composite material used for drug delivery was reviewed. The typical drug release behaviors and the drug release mechanisms of nanocellulose-based composite materials were further summarized, and the potential application of nanocellulose-based composite materials was prospected as well.
Collapse
Affiliation(s)
- Ying Huo
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Yingying Liu
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Mingfeng Xia
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Hong Du
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Zhaoyun Lin
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| |
Collapse
|
57
|
Kim M, Kim JH, Kim S, Maharjan R, Kim NA, Jeong SH. New long-acting injectable microspheres prepared by IVL-DrugFluidic™ system: 1-month and 3-month in vivo drug delivery of leuprolide. Int J Pharm 2022; 622:121875. [PMID: 35636628 DOI: 10.1016/j.ijpharm.2022.121875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
The microspheres for 1-month (PLGA-based) and 3-month (PLA-based) drug releases of leuprolide were manufactured using an IVL-DrugFluidic™ system and their morphology, particle size and distribution, and encapsulation efficiency were compared with the commercialized products. In vivo test was also conducted to monitor the amount of leuprolide and testosterone in plasma after a single subcutaneous injection in male Sprague-Dawley (SD) rats and male Beagle dogs. The median diameter, span value, drug loading, and encapsulation efficiency of PLGA-based microspheres (63.29 μm, 0.26, 13.15%, and 78.90%, respectively) and PLA-based microspheres (80.28 μm, 0.21, 14.42%, and 86.50%, respectively) demonstrated narrow particle size distribution (monodispersed) and efficient drug loading/encapsulation efficiency. Both the microspheres exhibited a desired time-dependent drug release profile and reduced initial burst release by 16-fold in SD rats and 240-fold in Beagle dogs compared to Leuplin DPS®. Moreover, the testosterone level in plasma was suppressed to < 0.50 ng/mL after 28 days with a steady plasma drug concentration. The results suggested that newly developed leuprolide-loaded microspheres produced by the IVL-DrugFluidic™ system could provide extended drug release with advantages such as reduced initial burst release and testosterone level suppression, along with steady plasma drug concentration, over the existing products.
Collapse
Affiliation(s)
- Minsung Kim
- Inventage Lab Inc, Seongnam, Gyeonggi 13438, Republic of Korea.
| | - Ju Hee Kim
- Inventage Lab Inc, Seongnam, Gyeonggi 13438, Republic of Korea.
| | - Seyeon Kim
- Inventage Lab Inc, Seongnam, Gyeonggi 13438, Republic of Korea.
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea; College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
58
|
Antonov EN, Andreevskaya SN, Bocharova IV, Bogorodsky SE, Krotova LI, Larionova EE, Mariyanats AO, Mishakov GV, Smirnova TG, Chernousova LN, Popov VK. PLGA Carriers for Controlled Release of Levofloxacin in Anti-Tuberculosis Therapy. Pharmaceutics 2022; 14:pharmaceutics14061275. [PMID: 35745846 PMCID: PMC9227258 DOI: 10.3390/pharmaceutics14061275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Levofloxacin (LFX) is a highly effective anti-tuberculosis drug with a pronounced bactericidal activity against Mycobacterium tuberculosis (Mtb). In this work, an “organic solvent-free” approach has been used for the development of polylactic-co-glycolic acid (PLGA) microparticles and scaffolds containing LFX at a therapeutically significant concentration, providing for its sustained release. To achieve the target, both nonpolar supercritical carbon dioxide and polar supercritical trifluoromethane have been used. By changing the composition, surface morphology, size, and internal structure of the polymer carriers, one can control the kinetics of the LFX release into phosphate buffered saline solutions and physiological media, providing for its acceptable burst and desirable concentration in the prolonged phase. The biocompatibility and bactericidal efficacy of PLGA/LFX carriers assessed both in vitro (against Mtb phagocytosed by macrophages) and in vivo (against inbred BALB/c mice aerogenically infected with Mtb) demonstrated their anti-tuberculosis activity comparable with that of the standard daily intragastric levofloxacin administration. These results make it possible to consider the developed compositions as a promising candidate for anti-tuberculosis control release formulations providing for the further evaluation of their activity against Mtb and their metabolism in vivo over long periods of tuberculosis infection.
Collapse
Affiliation(s)
- Evgeny N. Antonov
- Institute of Photon Technologies, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia; (E.N.A.); (S.E.B.); (L.I.K.); (A.O.M.); (G.V.M.)
| | - Sofya N. Andreevskaya
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (S.N.A.); (I.V.B.); (E.E.L.); (T.G.S.); (L.N.C.)
| | - Irina V. Bocharova
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (S.N.A.); (I.V.B.); (E.E.L.); (T.G.S.); (L.N.C.)
| | - Sergei E. Bogorodsky
- Institute of Photon Technologies, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia; (E.N.A.); (S.E.B.); (L.I.K.); (A.O.M.); (G.V.M.)
| | - Larisa I. Krotova
- Institute of Photon Technologies, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia; (E.N.A.); (S.E.B.); (L.I.K.); (A.O.M.); (G.V.M.)
| | - Elena E. Larionova
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (S.N.A.); (I.V.B.); (E.E.L.); (T.G.S.); (L.N.C.)
| | - Alexandra O. Mariyanats
- Institute of Photon Technologies, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia; (E.N.A.); (S.E.B.); (L.I.K.); (A.O.M.); (G.V.M.)
| | - Gennady V. Mishakov
- Institute of Photon Technologies, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia; (E.N.A.); (S.E.B.); (L.I.K.); (A.O.M.); (G.V.M.)
| | - Tatiana G. Smirnova
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (S.N.A.); (I.V.B.); (E.E.L.); (T.G.S.); (L.N.C.)
| | - Larisa N. Chernousova
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (S.N.A.); (I.V.B.); (E.E.L.); (T.G.S.); (L.N.C.)
| | - Vladimir K. Popov
- Institute of Photon Technologies, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia; (E.N.A.); (S.E.B.); (L.I.K.); (A.O.M.); (G.V.M.)
- Correspondence:
| |
Collapse
|
59
|
Optimizing Zinc-HisTag Coordination Remote Loading of Proteins in PLGA Microspheres. Int J Pharm 2022; 623:121889. [PMID: 35671852 DOI: 10.1016/j.ijpharm.2022.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Metal-HisTag coordination remote loading (MHCRL) of proteins in PLGA microspheres was previously developed to provide a useful tool for discovery and preclinical development of controlled release protein formulations. Here we describe optimization of MHCRL, including (1) reducing thermal stress, (2) decreasing the complexity and duration of the procedure, (3) increasing loading capacity, (4) increasing the penetration depth of protein, and (5) improving the release profile. Directly encapsulating ZnCO3as a Zn2+source for HisTag coordination, rather than remotely loading Zn2+, increased the Zn content ∼6-fold. Microspheres with directly encapsulated ZnCO3more deeply encapsulated green fluorescent protein and more efficiently encapsulated human serum albumin at protein loading solutions concentrations ≥ 100 μg/mL than remotely loaded Zn2+microspheres. Tributyl acetylcitrate plasticized microspheres in terms of decreasingTg, but led to a decrease in protein encapsulation efficiency. As such, the plasticizer was not deemed useful. The loading/healing cycles were reduced in time and temperature from 48h/42h at 43°C to 2h/6h at 37°C while maintaining strong encapsulation efficiency, resulting in significantly improved protein stability. Immunoreactive protein was slowly released for months following a modest burst release. The improved microspheres and shorter, low-temperature encapsulation could be a valuable asset to drug discovery scientists interested in controlled release of delicate and/or costly biologic candidates.
Collapse
|
60
|
Ivanova TA, Golubeva EN. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Ovejero-Paredes K, Díaz-García D, Mena-Palomo I, Marciello M, Lozano-Chamizo L, Morato YL, Prashar S, Gómez-Ruiz S, Filice M. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. BIOMATERIALS ADVANCES 2022; 137:212823. [PMID: 35929238 DOI: 10.1016/j.bioadv.2022.212823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.
Collapse
Affiliation(s)
- Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Irene Mena-Palomo
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
62
|
Abdurahim J, Serra CA, Blanck C, Vauthier M. One-step production of highly monodisperse size-controlled poly(lactic-co-glycolic acid) nanoparticles for the release of a hydrophobic model drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
63
|
Study in the stabilization of proteins encapsulated in PLGA delivery system: Effects of additives on protein encapsulation, release, and stability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
64
|
Effect of Solvents, Stabilizers and the Concentration of Stabilizers on the Physical Properties of Poly(d,l-lactide- co-glycolide) Nanoparticles: Encapsulation, In Vitro Release of Indomethacin and Cytotoxicity against HepG2-Cell. Pharmaceutics 2022; 14:pharmaceutics14040870. [PMID: 35456705 PMCID: PMC9028368 DOI: 10.3390/pharmaceutics14040870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
A biocompatible, biodegradable and FDA-approved polymer [Poly lactic-co-glycolic acid (PLGA)] was used to prepare the nanoparticles (NPs) to observe the effect of solvents, stabilizers and their concentrations on the physical properties of the PLGA-NPs, following the encapsulation and in vitro release of Indomethacin (IND). PLGA-NPs were prepared by the single-emulsion solvent evaporation technique using dichloromethane (DCM)/chloroform as the organic phase with Polyvinyl-alcohol (PVA)/Polyvinylpyrrolidone (PVP) as stabilizers to encapsulate IND. The effects of different proportions of PVA/PVP with DCM/chloroform on the physiochemical properties (particle size, the polydispersity index, the zeta potential by Malvern Zetasizer and morphology by SEM) of the NPs were investigated. DSC was used to check the physical state, the possible complexation of PLGA with stabilizer(s) and the crystallinity of the encapsulated drug. Stabilizers at all concentrations produced spherical, regular-shaped, smooth-surfaced discrete NPs. Average size of 273.2–563.9 nm was obtained when PVA (stabilizer) with DCM, whereas it ranged from 317.6 to 588.1 nm with chloroform. The particle size was 273.2–563.9 nm when PVP was the stabilizer with DCM, while it was 381.4–466.6 nm with chloroform. The zeta potentials of PVA-stabilized NPs were low and negative (−0.62 mV) while they were comparatively higher and positive for PVP-stabilized NPs (+17.73 mV). Finally, drug-loaded optimal NPs were composed of PLGA (40 mg) and IND (4 mg) in 1 mL DCM/chloroform with PVA/PVP (1–3%), which resulted in sufficient encapsulation (54.94–74.86%) and drug loading (4.99–6.81%). No endothermic peak of PVA/PVP appeared in the optimized formulation, which indicated the amorphous state of IND in the core of the PLGA-NPs. The in vitro release study indicated a sustained release of IND (32.83–52.16%) from the PLGA-NPs till 72 h and primarily followed the Higuchi matrix release kinetics followed by Korsmeyer–Peppas models. The cell proliferation assay clearly established that the organic solvents used to prepare PLGA-NPs had evaporated. The PLGA-NPs did not show any particular toxicity in the HepG2 cells within the dose range of IND (250–500 µg/mL) and at an equivalent concentration of PLGA-NPs (3571.4–7142.7 µg/mL). The cytotoxicity of the hepatotoxic drug (IND) was reduced by its encapsulation into PLGA-NPs. The outcomes of this investigation could be implemented to prepare PLGA-NPs of acceptable properties for the encapsulation of low/high molecular weight drugs. It would be useful for further in vitro and in vivo applications to use this delivery system.
Collapse
|
65
|
Isely C, Atube KJ, Cheung CV, Steege CF, Pellechia PJ, Gower RM. Surface Functionalization of Polymer Particles for Cell Targeting by Modifying Emulsifier Chemistry. ACS APPLIED POLYMER MATERIALS 2022; 4:2269-2282. [PMID: 35493439 PMCID: PMC9049500 DOI: 10.1021/acsapm.1c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oil in water emulsion/solvent extraction method is used to fabricate many FDA approved, polymer particle formulations for drug delivery. However, these formulations do not benefit from surface functionalization that can be achieved through tuning particle surface chemistry. Poly(vinyl alcohol) (PVA) is the emulsifier used for many FDA approved formulations and remains associated with the particle surface after fabrication. We hypothesized that the hydroxyl groups in PVA could be conjugated with biomolecules using isothiocyanate chemistry and that these modifications would endow the particle surface with additional functionality. We demonstrate that fluorescein isothiocyanate and an isothiocyanate derivatized mannose molecule can be covalently attached to PVA in a one-step reaction. The modified PVA polymers perform as well as unmodified PVA in acting as an emulsifier for fabrication of poly(lactide-co-glycolide) particles. Particles made with the fluorescein modified PVA exhibit fluorescence confined to the particle surface, while particles made with mannose modified PVA bind concanavalin A. In addition, mannose modified PVA increases particle association with primary macrophages by three-fold. Taken together, we present a facile method for modifying the surface reactivity of polymer particles widely used for drug delivery in basic research and clinical practice. Given that methods are established for conjugating the isothiocyanate functional group to a wide range of biomolecules, our approach may enable PVA based biomaterials to engage a multitude of biological systems.
Collapse
Affiliation(s)
- Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Kidochukwu J. Atube
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Candice V. Cheung
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christine F. Steege
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
66
|
Safari H, Felder ML, Kaczorowski N, Eniola-Adefeso O. Effect of the Emulsion Solvent Evaporation Technique Cosolvent Choice on the Loading Efficiency and Release Profile of Anti-CD47 from PLGA nanospheres. J Pharm Sci 2022; 111:2525-2530. [DOI: 10.1016/j.xphs.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
|
67
|
Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030638. [PMID: 35336011 PMCID: PMC8955426 DOI: 10.3390/pharmaceutics14030638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polymeric nanoparticles’ drug delivery systems represent a promising platform for targeted controlled release since they are capable of improving the bioavailability and tissue localization of drugs compared to traditional means of administration. Investigation of key parameters of nanoparticle preparation and their impact on performance, such as size, drug loading, and sustained release, is critical to understanding the synthesis parameters surrounding a given nanoparticle formulation. This comprehensive and systematic study reports for the first time and focuses on the development and characterization of formoterol polymeric nanoparticles that have potential application in a variety of acute and chronic diseases. Nanoparticles were prepared by a variety of solvent emulsion methods with varying modifications to the polymer and emulsion system with the aim of increasing drug loading and tuning particle size for renal localization and drug delivery. Maximal drug loading was achieved by amine modification of polyethylene glycol (PEG) conjugated to the poly(lactic-co-glycolic acid) (PLGA) backbone. The resulting formoterol PEGylated PLGA polymeric nanoparticles were successfully lyophilized without compromising size distribution by using either sucrose or trehalose as cryoprotectants. The physicochemical characteristics of the nanoparticles were examined comprehensively, including surface morphology, solid-state transitions, crystallinity, and residual water content. In vitro formoterol drug release characteristics from the PEGylated PLGA polymeric nanoparticles were also investigated as a function of both polymer and emulsion parameter selection, and release kinetics modeling was successfully applied.
Collapse
|
68
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| |
Collapse
|
69
|
Lee JA, Shin JM, Song SH, Kim CH, Son S, Shin S, Park JH. Recruitment of dendritic cells using ‘find-me’ signaling microparticles for personalized cancer immunotherapy. Biomaterials 2022; 282:121412. [DOI: 10.1016/j.biomaterials.2022.121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
|
70
|
Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14050993. [PMID: 35267816 PMCID: PMC8912735 DOI: 10.3390/polym14050993] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Over recent decades, poly(lactic-co-glycolic acid) (PLGA) based nano- and micro- drug delivery vehicles have been rapidly developed since PLGA was approved by the Food and Drug Administration (FDA). Common factors that influence PLGA particle properties have been extensively studied by researchers, such as particle size, polydispersity index (PDI), surface morphology, zeta potential, and drug loading efficiency. These properties have all been found to be key factors for determining the drug release kinetics of the drug delivery particles. For drug delivery applications the drug release behavior is a critical property, and PLGA drug delivery systems are still plagued with the issue of burst release when a large portion of the drug is suddenly released from the particle rather than the controlled release the particles are designed for. Other properties of the particles can play a role in the drug release behavior, such as the glass transition temperature (Tg). The Tg, however, is an underreported property of current PLGA based drug delivery systems. This review summarizes the basic knowledge of the glass transition temperature in PLGA particles, the factors that influence the Tg, the effect of Tg on drug release behavior, and presents the recent awareness of the influence of Tg on drug delivery applications.
Collapse
|
71
|
Akram Ghumman S, Mahmood A, Noreen S, Rana M, Hameed H, Ijaz B, Hasan S, Aslam A, Fayyaz ur Rehman M. Formulation and evaluation of quince seeds mucilage - sodium alginate microspheres for sustained delivery of cefixime and its toxicological studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
72
|
Adouni K, Júlio A, Santos-Buelga C, González-Paramás AM, Filipe P, Rijo P, Costa Lima SA, Reis S, Fernandes Â, Ferreira IC, Fernández-Ruiz V, Morales P, Flamini G, Achour L, Fonte P. Roots and rhizomes of wild Asparagus: Nutritional composition, bioactivity and nanoencapsulation of the most potent extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
How agarose gels surrounding PLGA implants limit swelling and slow down drug release. J Control Release 2022; 343:255-266. [PMID: 35085697 DOI: 10.1016/j.jconrel.2022.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to better understand to which extent and in which way the presence of an agarose gel (mimicking living tissue) around a PLGA [poly(lactic-co-glycolic acid)] implant affects the resulting drug release kinetics. Ibuprofen-loaded implants were prepared by hot melt extrusion. Drug release was measured upon exposure to phosphate buffer pH 7.4 in Eppendorf tubes, as well as upon inclusion into an agarose gel which was exposed to phosphate buffer pH 7.4 in an Eppendorf tube or in a transwell plate. Dynamic changes in the implants' dry & wet mass and dimensions were monitored gravimetrically and by optical macroscopy. Implant erosion and polymer degradation were observed by SEM and GPC. Different pH indicators were used to measure pH changes in the bulk fluids, gels and within the implants during drug release. Ibuprofen release was bi-phasic in all cases: A zero order release phase (~20% of the dose) was followed by a more rapid, final drug release phase. Interestingly, the presence of the hydrogel delayed the onset of the 2nd release phase. This could be attributed to the sterical hindrance of implant swelling: After a certain lag time, the degrading PLGA matrix becomes sufficiently hydrophilic and mechanically instable to allow for the penetration of substantial amounts of water into the system. This fundamentally changes the conditions for drug release: The latter becomes much more mobile and is more rapidly released. A gel surrounding the implant mechanically hinders system swelling and, thus, slows down drug release. These observations also strengthen the hypothesis of the "orchestrating" role of PLGA swelling for the control of drug release and can help developing more realistic in vitro release set-ups.
Collapse
|
74
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
75
|
Yang T, Qin W, Zhang Q, Luo J, Lin D, Chen H. Essential-oil capsule preparation and its application in food preservation: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tian Yang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Junyun Luo
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
76
|
Malaquias DP, Dourado LFN, Lana ÂMQ, Souza F, Vilela J, Andrade M, Roa JPB, Carvalho-Junior ÁDD, Leite EA. Development and optimization by factorial design of polymeric nanoparticles for simvastatin delivery. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
77
|
Yang F, Cabe M, Nowak HA, Langert KA. Chitosan/poly(lactic-co-glycolic)acid Nanoparticle Formulations with Finely-Tuned Size Distributions for Enhanced Mucoadhesion. Pharmaceutics 2022; 14:95. [PMID: 35056991 PMCID: PMC8778482 DOI: 10.3390/pharmaceutics14010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Feipeng Yang
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Maleen Cabe
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Hope A Nowak
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Kelly A Langert
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
78
|
Coaxial electrospray of uniform polylactide core-shell microparticles for long-acting contraceptive. J Control Release 2021; 341:634-645. [PMID: 34921972 DOI: 10.1016/j.jconrel.2021.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Despite its high efficacy and good patient compliance, the only long-acting injectable (LAI) contraceptive currently available in the US, depot medroxyprogesterone acetate (DMPA), is limited by significant side effects and a delayed return to fertility for up to 10 months after its intended duration of action. To overcome these limitations, we sought to develop an injectable poly(D,l-lactide) (PLA) microparticle for sustained release of contraceptive hormone, etonogestrel (ENG). A one-step technique, coaxial electrospray method was applied to prepare uniform ENG loaded core-shell structured and slow-degrading PLA microparticles (ENG-cs-MPs) to provide release control while minimizing polymer content. By adjusting voltage, polymer concentration and flow rate of the coaxial jetting solution, the prepared ENG-cs-MPs exhibited uniformly small particle size with volume mean diameter of 14.7 ± 0.5 μm and a shell thickness of 2.5 ± 0.1 μm, high drug loading of ~54%, high encapsulation efficiency of ~99%, and initial 1-day burst release of just ~10%. Long-term in vitro release of ENG was continuous for more than 3 months without change of the shell structure in 6 months. In PK studies, ENG-cs-MPs achieved a steady and continuous drug release for approximately 3 months and then quickly tapered off within 3 weeks. Hence, ENG-cs-MPs prepared by the coaxial electrospray method may be useful as a LAI contraceptive with an improved PK profile relative to DMPA.
Collapse
|
79
|
Optimization of critical parameters for coating of polymeric nanoparticles with plasma membrane vesicles by sonication. Sci Rep 2021; 11:23996. [PMID: 34907240 PMCID: PMC8671476 DOI: 10.1038/s41598-021-03422-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Top-down functionalization of nanoparticles with cellular membranes imparts nanoparticles with enhanced bio-interfacing capabilities. Initial methods for membrane coating involved physical co-extrusion of nanoparticles and membrane vesicles through a porous membrane; however, recent works employ sonication as the disruptive force to reform membranes around the surface of nanoparticles. Although sonication is widely used, there remains a paucity of information on the effects of sonication variables on coating efficiency, leading to inconsistent membrane coating across studies. In this work, we present a systematic analysis of the sonication parameters that influence the membrane coating. The results showed that sonication amplitude, time, temperature, membrane ratio, sample volume, and density need to be considered in order to optimize membrane coating of polymeric nanoparticles.
Collapse
|
80
|
Bonilla L, Esteruelas G, Ettcheto M, Espina M, García ML, Camins A, Souto EB, Cano A, Sánchez-López E. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open 2021; 7 Suppl 1:S121-S132. [PMID: 34862851 PMCID: PMC9340299 DOI: 10.1002/epi4.12567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is the second most prevalent neurological disease worldwide. It is mainly characterized by an electrical abnormal activity in different brain regions. The massive entrance of Ca2+ into neurons is the main neurotoxic process that lead to cell death and finally to neurodegeneration. Although there are a huge number of antiseizure medications, there are many patients who do not respond to the treatments and present refractory epilepsy. In this context, nanomedicine constitutes a promising alternative to enhance the central nervous system bioavailability of antiseizure medications. The encapsulation of different chemical compounds at once in a variety of controlled drug delivery systems gives rise to an enhanced drug effectiveness mainly due to their targeting and penetration into the deepest brain region and the protection of the drug chemical structure. Thus, in this review we will explore the recent advances in the development of drugs associated with polymeric and lipid-based nanocarriers as novel tools for the management of epilepsy disorders.
Collapse
Affiliation(s)
- Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Antoni Camins
- Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
81
|
Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Targeted oral delivery of a drug via the intestinal lymphatic system (ILS) has the advantages of protecting against hepatic first-pass metabolism of the drug and improving its pharmacokinetic performance. It is also a promising route for the oral delivery of vaccines and therapeutic agents to induce mucosal immune responses and treat lymphatic diseases, respectively. This article describes the anatomical structures and physiological characteristics of the ILS, with an emphasis on enterocytes and microfold (M) cells, which are the main gateways for the transport of particulate delivery vehicles across the intestinal epithelium into the lymphatics. A comprehensive overview of recent advances in the rational engineering of particulate vehicles, along with the challenges and opportunities that they present for improving ILS drug delivery, is provided, and the mechanisms by which such vehicles target and transport through enterocytes or M cells are discussed. The use of naturally sourced materials, such as yeast microcapsules and their derived polymeric β-glucans, as novel ILS-targeting delivery vehicles is also reviewed. Such use is the focus of an emerging field of research. Their potential use in the oral delivery of nucleic acids, such as mRNA vaccines, is proposed.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shun-Hao Chuang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsien-Meng Tai
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
82
|
Özkahraman B, Özbaş Z, Yaşayan G, Akgüner ZP, Yarımcan F, Alarçin E, Bal-Öztürk A. Development of mucoadhesive modified kappa-carrageenan/pectin patches for controlled delivery of drug in the buccal cavity. J Biomed Mater Res B Appl Biomater 2021; 110:787-798. [PMID: 34846796 DOI: 10.1002/jbm.b.34958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
In this study, modified kappa-carrageenan/pectin hydrogel patches were fabricated for treatment of buccal fungal infections. For this purpose, kappa-carrageenan-g-acrylic acid was modified with different thiolated agents (L-cysteine and 3-mercaptopropionic acid), and the thiol content of the resulting modified kappa-carrageenan was confirmed by elemental analyzer. Then, the hydrogel patches were fabricated, and characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, ex vivo mucoadhesion test, and swelling behavior. Triamcinolone acetonide was added either directly or by encapsulating within the poly(lactic-co-glycolic acid) nanoparticles. The release amount of the drug from the directly loaded patch was 7.81 mg/g polymer, while it was 3.28 mg/g polymer for the encapsulated patch with the same content at 7 hr. The hydrogel patches had no cytotoxicity by cell culture studies. Finally, the drug loaded hydrogel patches were demonstrated antifungal activity against Aspergillus fumigatus and Aspergillus flavus. These results provide that the novel modified kappa-carrageenan and pectin based buccal delivery system has promising antifungal property, and could have advantages compared to conventional buccal delivery systems.
Collapse
Affiliation(s)
- Bengi Özkahraman
- Department of Polymer Materials Engineering, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Zehra Özbaş
- Department of Chemical Engineering, Faculty of Engineering, Çankırı Karatekin University, Çankırı, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Zeynep Püren Akgüner
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Filiz Yarımcan
- Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Emine Alarçin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| |
Collapse
|
83
|
Design of Hybrid Polymeric-Lipid Nanoparticles Using Curcumin as a Model: Preparation, Characterization, and In Vitro Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin-Loaded Nanoparticles. Polymers (Basel) 2021; 13:polym13234207. [PMID: 34883709 PMCID: PMC8659538 DOI: 10.3390/polym13234207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric lipid hybrid nanoparticles (PLHNs) are the new generation of drug delivery systems that has emerged as a combination of a polymeric core and lipid shell. We designed and optimized a simple method for the preparation of Pluronic F-127-based PLHNs able to load separately demethoxycurcumin (DMC) and bisdemethoycurcumin (BDM). CUR was used as a model compound due to its greater availability from turmeric and its structure similarity with DMC and BDM. The developed method produced DMC and BDM-loaded PLHNs with a size average of 75.55 ± 0.51 and 15.13 ± 0.014 nm for DMC and BDM, respectively. An FT-IR analysis confirmed the encapsulation and TEM images showed their spherical shape. Both formulations achieved an encapsulation efficiency ≥ 92% and an exhibited significantly increased release from the PLHN compared with free compounds in water. The antioxidant activity was enhanced as well, in agreement with the improvement in water dissolution; obtaining IC50 values of 12.74 ± 0.09 and 16.03 ± 0.55 for DMC and BDM-loaded PLHNs, respectively, while free curcuminoids exhibited considerably lower antioxidant values in an aqueous solution. Hence, the optimized PHLN synthesis method using CUR as a model and then successfully applied to obtain DMC and BDM-loaded PLHNs can be extended to curcuminoids and molecules with a similar backbone structure to improve their bioactivities.
Collapse
|
84
|
Wan B, Bao Q, Zou Y, Wang Y, Burgess DJ. Effect of polymer source variation on the properties and performance of risperidone microspheres. Int J Pharm 2021; 610:121265. [PMID: 34748813 DOI: 10.1016/j.ijpharm.2021.121265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
Owing to their inherent heterogeneity, determination of similarity of poly (lactic-co-glycolic acid) (PLGA) polymers is very challenging. The complexity in controlling PLGA characteristics has been recognized as an obstacle to the development of PLGA based long-acting complex drug products (such as microspheres). The objectives of the present study were: (1) to determine minor differences in the physicochemical characteristics (such as inherent viscosity, molecular weight (Mw), monomer ratio (L/G ratio), glass transition temperature (Tg), and blockiness) as well as in the hydrolytic degradation profiles of PLGAs from different sources; and (2) to investigate the impact of PLGAs from different sources on the properties and in vitro performance of risperidone microspheres. Four PLGA polymers were purchased from different sources with similar inherent viscosity and/or Mw, L/G ratio and end groups as per the manufacturers' certificate of analysis (CoA). The physicochemical properties of these PLGAs were characterized using the same in-house methods and exhibited differences in inherent viscosity, Mw, blockiness and residue amount. Risperidone was chosen as the model drug and four microsphere formulations were prepared via the same solvent extraction/evaporation method using the PLGAs from different sources. The critical quality attributes of the microspheres (such as particle size, porosity and average pore diameter) and their in vitro release characteristics (burst effect and release rate) were shown to be different. A strong linear correlation was established between risperidone release and PLGA blockiness. This is the first time that such a correlation has been established, which promotes the potential need to further investigate the impact of PLGA blockiness on other PLGA based controlled release drug products.
Collapse
Affiliation(s)
- Bo Wan
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269, United States
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269, United States
| | - Yuan Zou
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, United States
| | - Yan Wang
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, United States
| | - Diane J Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269, United States.
| |
Collapse
|
85
|
Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021; 608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The novel particle generation processes of Active Pharmaceutical Ingredient (API)/drug have been extensively explored in recent decades due to their wide-range applications in the pharmaceutical industry. The Rapid Expansion of Supercritical Solutions (RESS) is one of the promising techniques to obtain the fine particles (micro to nano-size) of APIs with narrow particle size distribution (PSD). In RESS, supercritical carbon dioxide (SC CO2) and API are used as solvent and solute respectively. In this literature survey, the application of RESS in the formation of fine particles is critically reviewed. Solubility of API in SC CO2 and supersaturation are the key factors in tuning the particle size. The different approaches to model and predict the solubility of API in SC CO2 are discussed. Then, the effect of process parameters on mean particle size and the particle size distribution are interpreted in the context of solubility and supersaturation. Furthermore, the less-explored applications of RESS in preparation of solid-lipid nanoparticles, liposome, polymorphic conversion, cocrystallization and inclusion complexation are compared with traditional processes. The solubility enhancement of API in SC CO2 using co-solvent and its applications in particle generation are explored in published literature. The development and modifications in the conventional RESS process to overcome the limitations of RESS are presented. Finally, the perspective on RESS with special attention to its commercial operation is highlighted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Nilanjana Banerjee
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Pranava Chaudhari
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
86
|
Hao L, Jiang Y, Zhang R, Zhang N, Yang Y, Gao Y, Song Y. Preparation and in vivo/in vitro characterization of Ticagrelor PLGA sustained-release microspheres for injection. Des Monomers Polym 2021; 24:305-319. [PMID: 34650328 PMCID: PMC8510617 DOI: 10.1080/15685551.2021.1984008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective of this paper was to develop a PLGA carrier Ticagrelor sustained-release microspheres preparation, which was expected to continue to release Ticagrelor for 14 days with a high encapsulation rate. Ticagrelor microspheres were prepared successfully with average diameter of 7.31 µm, drug loading of 12.49 ± 0.32% and EE up to 79.09 ± 1.69%. In the release medium of PH7.4 PBS, the microspheres showed good drug release behavior in vitro. In vivo release results also showed that the sustained-release microspheres could effectively control drug release in vivo and maintain a relatively stable blood drug concentration for about 2 weeks. The results indicate that Ticagrelor sustained-release microspheres can be used for long-term treatment of acute coronary syndrome.
Collapse
Affiliation(s)
- Linkun Hao
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Yunying Jiang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Ru Zhang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Ningning Zhang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Yang Yang
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Ying Gao
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| | - Yimin Song
- Qingdao University of Science and Technology, Chemical Engineering Institute, Qingdao, China
| |
Collapse
|
87
|
Elmowafy M, Alhakamy NA, Shalaby K, Alshehri S, Ali HM, Mohammed EF, Alruwaili NK, Zafar A. Hybrid polylactic acid/Eudragit L100 nanoparticles: A promising system for enhancement of bioavailability and pharmacodynamic efficacy of luteolin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
88
|
Ravikiran T, Anand S, Ansari MA, Alomary MN, AlYahya S, Ramachandregowda S, Alghamdi S, Sindhghatta Kariyappa A, Dundaiah B, Madhugiri Gopinath M, Sultana S, Punekar SM, Lakshmeesha TR. Fabrication and in vitro Evaluation of 4-HIA Encapsulated PLGA Nanoparticles on PC12 Cells. Int J Nanomedicine 2021; 16:5621-5632. [PMID: 34429603 PMCID: PMC8380134 DOI: 10.2147/ijn.s317986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose 4-Hydroxyisophthalic acid (4-HIA) is a bioactive compound present in the roots of Decalepis hamiltonii, which has attracted considerable attention in attenuating oxidative stress-related neurodegenerative diseases. However, its efficacy is limited because of its low solubility and bioavailability. Therefore, the present study aimed to encapsulate 4-HIA using biocompatible copolymer polylactide-co-glycolide (PLGA) and evaluate its antioxidant and neuroprotective potential. Methods The nanoparticles (NPs) were fabricated by solid/oil/water (s/o/w) emulsion technique and characterized using XRD, SEM, HR-TEM, and FTIR spectroscopy. Antioxidant assays such as 1,1 diphenyl-2-picrylhydrazyl (DPPH), superoxide, and hydroxyl radical scavenging ability were performed to assess the antioxidant potential of the fabricated NPs. Results The bioactive component, 4-HIA, was efficiently encapsulated by the PLGA polymer and was found to be spherical and smooth with a size <10nm. 4-HIA showed better scavenging capability in DPPH and superoxide assays as compared to 4-HIA encapsulated PLGA and butylated hydroxytoluene (BHT). In contrast, 4-HIA encapsulated PLGA NPs exhibited a significant hydroxyl radical scavenging activity than 4-HIA and BHT alone. Further, the encapsulated NPs efficiently curtailed hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion Our findings indicate that 4-HIA encapsulated PLGA NPs might be a therapeutic intervention towards the effective management of oxidative stress as it has exhibited efficient neuroprotective potential against H2O2-induced oxidative stress in PC12 cells.
Collapse
Affiliation(s)
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammad N Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sami AlYahya
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | | | | | - Sumreen Sultana
- Department of Biotechnology, Bangalore University, Bangalore, India
| | | | | |
Collapse
|
89
|
PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int J Mol Sci 2021; 22:ijms22168884. [PMID: 34445587 PMCID: PMC8396256 DOI: 10.3390/ijms22168884] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible to harsh processing conditions associated with microsphere fabrication methods, including exposure to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying techniques. The purpose of this review is to provide an overview of the formulation attributes and conventional manufacturing techniques of LAI microspheres that are currently in clinical use for protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations are deliberated.
Collapse
|
90
|
Gas generating microspheres for immediate release of Hsp90 inhibitor aiming at postembolization hypoxia in transarterial chemoembolization therapy of hepatocellular carcinoma. Int J Pharm 2021; 607:120988. [PMID: 34389420 DOI: 10.1016/j.ijpharm.2021.120988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
CO2 gas generating poly(lactic-co-glycolic acid) (PLGA) microsphere (MS) was designed for rapid release of tanespimycin (17-AAG) in transarterial chemoembolization (TACE) treatment of hepatocellular carcinoma (HCC). As poorly water-soluble drug is generally released from PLGA MS in a sustained manner, the drug release profile should be controlled according to its clinical indications. In current study, responding to immediate increase in hypoxia inducible factor-1α (HIF-1α) level under hypoxia state followed by embolization of tumor feeding arteries, sodium bicarbonate (NaHCO3) was added to PLGA/17-AAG MS for fast drug release by CO2 gas generation in slightly acidic tumor microenvironment. With the aid of NaHCO3, initial burst release of 17-AAG was available without losing the micron-size and spherical shape of designed MS for embolization of artery. Acid-responsive CO2 gas generation and subsequent immediate release of 17-AAG from MS were successfully verified. PLGA/17-AAG/NaHCO3 MS-treated group exhibited higher antiproliferation and apoptosis induction efficacies in McA-RH7777 and SNU-761 cells. McA-RH7777 tumor-implanted rats treated by TACE using PLGA/17-AAG/NaHCO3 MS presented a complete therapeutic response. All these findings suggest that developed tumor microenvironment-responsive gas-generating MS can be efficiently applied to TACE therapy of HCC.
Collapse
|
91
|
Ji Y, Hao D, Luebbert C, Sadowski G. Insights into influence mechanism of polymeric excipients on dissolution of drug formulations: A molecular interaction‐based theoretical model analysis and prediction. AIChE J 2021. [DOI: 10.1002/aic.17372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuanhui Ji
- Jiangsu Province Hi‐Tech Key Laboratory for Bio‐medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing China
| | - Dule Hao
- Jiangsu Province Hi‐Tech Key Laboratory for Bio‐medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing China
| | - Christian Luebbert
- TU Dortmund, Department of Biochemical and Chemical Engineering Laboratory of Thermodynamics Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund, Department of Biochemical and Chemical Engineering Laboratory of Thermodynamics Dortmund Germany
| |
Collapse
|
92
|
Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm 2021; 607:120907. [PMID: 34332059 DOI: 10.1016/j.ijpharm.2021.120907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Determination of the qualitative (Q1) sameness of poly (lactic-co-glycolic acid) (PLGA) polymers can be very challenging due to PLGA being a random copolymer with inherent heterogeneity. Performance variation of PLGA microsphere drug product as a result of altered PLGA characteristics has been recognized as a critical limiting factor in product development. It has been reported that PLGA characteristics and degradation profiles are sensitive to minor differences in the manufacturing and control processes. Accordingly, the objectives of the present research were: 1) to determine minor differences in the physicochemical properties (such as inherent viscosity/molecular weight (Mw), blockiness, and glass transition temperature (Tg)) and the hydrolytic degradation profiles of PLGA polymers from different sources; and 2) to investigate the impact of any differences determined in (1) on the physicochemical properties (Q3) and in vitro release of leuprolide acetate microspheres. PLGA polymers were purchased from three different sources with similar inherent viscosity/Mw, monomer (Lactide/Glycolide) ratio, and end group as per the manufacturers' certificate of analysis (COA). These PLGA polymers were evaluated using the same in-house methods and showed differences in their properties such as Mw and blockiness. Three compositionally equivalent leuprolide acetate microspheres were prepared via a solvent evaporation method using the three PLGA polymers from different sources. The prepared microspheres showed differences in their physicochemical properties (such as particle size, porosity and average pore diameter) as well as in their in vitro drug release characteristics (burst effect and release rate). These results indicate that polymer source related variations have the potential to significantly impact the Q3 sameness and therapeutic performance of long-acting PLGA microspheres. The fundamental understanding gained on polymer properties will make a critical contribution to the development of quality control strategies as well as to future regulatory guidance on the evaluation of such complex drug products.
Collapse
Affiliation(s)
- Bo Wan
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States
| | - Janki V Andhariya
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States
| | - Yan Wang
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring MD 20993, United States
| | - Yuan Zou
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring MD 20993, United States
| | - Diane J Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States.
| |
Collapse
|
93
|
Ahmed AMQ, Chen LQ, Du HH, Sun W, Cao QR. Formulation optimization and in vitro characterization of granisetron-loaded polylactic-co-glycolic acid microspheres prepared by a dropping-in-liquid emulsification technique. Curr Drug Deliv 2021; 19:721-729. [PMID: 34325634 DOI: 10.2174/1567201818666210729111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Traditional dosage forms of granisetron (GRN) decrease patient compliance associated with repeated drug administration because of the short half-life of the drug. METHODS In this study, novel GRN-loaded polylactic-co-glycolic acid (PLGA) sustained release microspheres were prepared for the first time via a dropping-in-liquid emulsification technique. The effect of various factors, such as pH of the outer phase, Tween80, polyvinyl alcohol (PVA) concentrations, and hardening process, on the encapsulation efficiency (EE), drug loading (DL), and particle size of microspheres were extensively studied. The physicochemical properties, including drug release, surface morphology, crystallinity, thermal changes, and molecular interactions, were also studied. RESULTS GRN has a pH-dependent solubility and showed a remarkably high solubility under an acidic condition. The EE of the alkaline medium (pH 8) was higher than that of the acidic medium (pH 4.0). EE and DL decreased in the presence of Tween80 in the outer phase, whereas EE significantly increased during hardening. The particle size of microspheres was not affected by PVA and Tween80 concentrations, but it was influenced by PVA volume and hardening. X-ray diffraction and differential scanning calorimetry results showed that the physical state of the drug changed from a crystalline form to an amorphous form, thereby confirming that the drug was encapsulated into the PLGA matrix. Fourier transform-infrared spectroscopy confirmed that some molecular interactions occurred between the drug and the polymer. GRN-loaded PLGA microspheres showed sustained release profiles of over 90% on week 3. CONCLUSION GRN-loaded PLGA microspheres with sustained release were successfully prepared, and they exhibited a relatively high EE without Tween 80 as an emulsifier and with hardening process.
Collapse
Affiliation(s)
| | - Li-Qing Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huan-Huan Du
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
94
|
Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm 2021; 606:120926. [PMID: 34303818 DOI: 10.1016/j.ijpharm.2021.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated. Finally, the effect of varying polymer properties such as end functionalities, molecular weights, and lactide to glycolide ratios, on the characteristics of the produced microcapsules was studied. This was done by utilizing seven different grades of the polyester polymers. It was demonstrated that, within certain limits, drug loading is nearly proportional to the initial amounts of drug and water. Furthermore, drug encapsulation studies demonstrated that ester termination and increases in polymeric molecular weight result in lower drug loading and encapsulation efficiency. Moreover, drug release studies demonstrated that ester termination, increases in molecular weight, and increases in the lactide to glycolide ratio all result in slower drug release; this grants the ability to tailor the drug release duration from a few days to several weeks. In conclusion, such minor variations in polymer characteristics and formulation composition can result in dramatic changes in the properties of the produced microcapsules. These changes can be fine-tuned to obtain desirable long-acting microcapsules capable of encapsulating a variety of hydrophilic drugs which can be used in a wide range of applications.
Collapse
Affiliation(s)
| | - Bayan H Al-Anati
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yazan Al Thaher
- School of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ziad A Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
95
|
Development and characterization of composition-equivalent formulations to the Sandostatin LAR® by the solvent evaporation method. Drug Deliv Transl Res 2021; 12:695-707. [PMID: 34215997 DOI: 10.1007/s13346-021-01013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
Sandostatin long-acting release® (SLAR) is a long-acting injectable somatostatin analogue formulation composed of octreotide encapsulated in glucose-initiated poly(lactic-co-glycolic acid) (PLGA) microspheres. Despite the end of patent protection, SLAR remains resistant to generic competition likely due to complexity of production process, the uniqueness of the glucose star polymer, and the instability of octreotide in the formulation. Here, we describe development of glucose-PLGA-based composition-equivalent to SLAR formulations prepared by double emulsion-solvent evaporation method and the effect of variations in encapsulation variables on release kinetics and other formulation characteristics. The following encapsulation variables were adjusted at constant theoretical loading of 7.0% peptide: PLGA concentration, pH of inner water phase, and stirring rate. After final drying, the microspheres were examined with and without annealing at 50 °C under vacuum for 3 days. The loading and encapsulation efficiency (EE) of octreotide acetate, manufacturing yield, and in vitro drug release kinetics in PBStc (10 mM phosphate-buffered saline (PBS) with 1% triethyl citrate and 0.02% sodium azide at pH 7.4) were determined by UPLC. The in vitro release and acylation kinetics of octreotide for the solvent evaporation formulations prepared were similar to SLAR although the initial burst was slightly higher. Key formulation steps identified to maximize microsphere yield and minimize residual solvent and initial burst release included (a) addition of acetic acid to the peptide before preparation and (b) annealing the microspheres under vacuum after drying. Controlled release octreotide formulations prepared and investigated in this study could provide a better understanding of the effect of production variables on release performance and supply information useful for making progress in manufacturing of SLAR generic equivalents.
Collapse
|
96
|
Spetz MR, Isely C, Gower RM. Effect of fabrication parameters on morphology and drug loading of polymer particles for rosiglitazone delivery. J Drug Deliv Sci Technol 2021; 65:S1773-2247(21)00352-X. [PMID: 35096148 PMCID: PMC8793769 DOI: 10.1016/j.jddst.2021.102672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the past several decades, drug-encapsulated polymer particles have been investigated as locally-delivered, long-acting therapies. The most common method of producing such particles is the oil in water solvent extraction technique. Using this technique, we produced poly(lactide-co-glycolide) (PLG) microparticles encapsulating rosiglitazone, a small molecule anti-diabetic drug. We investigated the impact of modulating fabrication parameters, including choice of organic solvent, concentration of polymer, and speed of homogenization and centrifugation on particle morphology and drug loading. Additionally, we studied the ratio of air-water-interface area to the extraction bath volume, a previously unstudied fabrication parameter, and its impact on rosiglitazone loading when using dichloromethane as the organic solvent. Under the conditions tested, drug loading can be increased 5-fold by increasing this ratio, which may be achieved by simply selecting a larger extraction vessel. By changing the organic solvent from dichloromethane to ethyl acetate, we produced particles with 60% higher rosiglitazone loading. Interestingly, the particles made with ethyl acetate appeared phase dark under light microscopy suggesting the presence of internal pores. By increasing the proportion of organic phase in the emulsion we eliminated the aberrant morphology but did not alter drug loading. As a final step in the development of the particles, we established that rosiglitazone remained stable throughout the encapsulation process and its subsequent release from particles by demonstrating that rosiglitazone loaded particles enhanced adipocyte lipid storage and adiponectin secretion. Taken together, for this system, air-water-interface area to volume ratio of the extraction bath and organic solvent both arose as key parameters in maximizing rosiglitazone loading in PLG microparticles. This study of how fabrication parameters impact drug loading and particle morphology may be useful in other investigations to encapsulate small molecules in polymer particles for controlled release applications.
Collapse
Affiliation(s)
- Madeline R. Spetz
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
97
|
Mares AG, Pacassoni G, Marti JS, Pujals S, Albertazzi L. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One 2021; 16:e0251821. [PMID: 34143792 PMCID: PMC8213178 DOI: 10.1371/journal.pone.0251821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
Collapse
Affiliation(s)
- Adrianna Glinkowska Mares
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gaia Pacassoni
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Josep Samitier Marti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
98
|
Sun Y, Ran H, Liu F. Polymer-Based Materials and Their Applications in Image-Guided Cancer Therapy. Curr Med Chem 2021; 29:1352-1368. [PMID: 34137360 DOI: 10.2174/0929867328666210616160717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advances in nanotechnology have enabled the combination of disease diagnosis and therapy into a single nano package that has tremendous potential for the development of new theranostic strategies. The variety of polymer-based materials has grown exponentially over the past several decades. Such materials have great potential as carriers in disease detection imaging and image monitoring and in systems for the precise delivery of drugs to specific target sites. OBJECTIVE In the present article, we review recent key developments in the synthesis of polymer-based materials for various medical applications and their clinical trials. CONCLUSION There is a growing range of multi-faceted, polymer-based materials with various functions. These functions include carriers for image contrast agents, drug delivery systems, and real-time image-guided systems for noninvasive or minimally invasive therapeutic procedures for cancer therapy.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Fan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| |
Collapse
|
99
|
Omidi M, Mansouri V, Mohammadi Amirabad L, Tayebi L. Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24370-24384. [PMID: 34006111 PMCID: PMC9328745 DOI: 10.1021/acsami.0c22140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)2 nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
- Protein Research Center, Shahid Beheshti University G.C., Tehran 19839-69411, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical sciences, Tehran 19857-17443, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
100
|
Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res 2021; 12:1195-1208. [PMID: 34024015 DOI: 10.1007/s13346-021-01006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biodegradable polymeric microneedle arrays (BPMNAs) could be explored as potential devices for transdermal drug delivery, which can provide a painless and safe drug delivery method. BPMNAs could also provide high drug-loading capacity and prolonged drug delivery once integrated with a drug reservoir. However, the fabrication of MNAs with a drug reservoir is expensive and requires complicated procedures. The present study was conducted to describe the preparation of a reservoir-based BPMNA containing estradiol valerate using polylactic acid (PLA) with the combination of FDM 3D printing and injection volume filling techniques. The tip size of the 3D printed needles decreased to 173 μm utilizing a chemical etching process. The content of estradiol valerate loaded in the 3D printed PLA MNAs was 29.79 ± 0.03 mg, and the release was in a prolonged manner for up to 7 days. The results of mechanical tests revealed that the force needed for the 3D printed PLA MNAs fracture (900 N) was significantly higher than that needed for their skin penetration (4 N). The successful penetration of 3D printed PLA MNAs through the stratum corneum was confirmed via penetration test, methylene blue staining, and histological examination. The results showed that 3D printed PLA MNAs can penetrate into the skin without reaching to the dermal nerves and puncture of blood vessels. In conclusion, in the current study, we explored the practicability of the preparation of drug loaded reservoir-based BPMNAs using the combination of FDM 3D printing and injection volume filling techniques for painless and prolonged transdermal drug delivery.
Collapse
|