51
|
Qelliny MR, Aly UF, Elgarhy OH, Khaled KA. Budesonide-Loaded Eudragit S 100 Nanocapsules for the Treatment of Acetic Acid-Induced Colitis in Animal Model. AAPS PharmSciTech 2019; 20:237. [PMID: 31243601 DOI: 10.1208/s12249-019-1453-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues as insufficient drug amount at diseased regions, high adverse effects of released drugs, and unintentionally premature drug release to noninflamed gastrointestinal regions. Herein, the prepared budesonide-loaded Eudragit S 100/Capryol 90 nanocapsules for the treatment of inflammatory bowel disease. Nanocapsules were prepared efficiently by nanoprecipitation technique and composed mainly of the pH-sensitive Eudragit S 100 polymeric coat with a semisynthetic Capryol 90 oily core. Full 31 × 21 factorial design was applied to obtain optimized nanocapsules. Optimal nanocapsules showed mean particle size of 171 nm with lower polydispersity index indicating the production of monodispersed system and negative zeta-potential of - 37.6 mV. Optimized nanocapsules showed high encapsulation efficiency of 83.4% with lower initial rapid release of 10% for first 2 h and higher rapid cumulative release of 72% after 6 h. The therapeutic activity of the prepared budesonide-loaded nanocapsules was evaluated using a rat colitis model. Disease activity score, macroscopical examination, blood glucose level, and histopathological assessment showed marked improvements over that free drug suspension. Obtained results demonstrate that the budesonide-loaded Eudragit S 100 nanocapsules are an effective colon-targeting nanosystem for the treatment of inflammatory bowel disease. Capryol 90 was found to be a successful, and even preferred, alternative to benzyl benzoate, which is commonly employed as the oil core of such nanocapsules.
Collapse
|
52
|
Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, Rochev Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev 2019; 146:248-266. [PMID: 29966684 DOI: 10.1016/j.addr.2018.06.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/27/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Oral colon-specific delivery systems emerged as the main therapeutic cargos by making a significant impact in the field of modern medicine for local drug delivery in intestinal inflammation. The site-specific delivery of therapeutics (aminosalicylates, glucocorticoids, biologics) to the ulcerative mucus tissue can provide prominent advantages in mucosal healing (MH). Attaining gut mucosal healing and anti-fibrosis are main treatment outcomes in inflammatory bowel disease (IBD). The pharmaceutical strategies that are commonly used to achieve a colon-specific drug delivery system include time, pH-dependent polymer coating, prodrug, colonic microbiota-activated delivery systems and a combination of these approaches. Amongst the different approaches reported, the use of biodegradable polysaccharide coated systems holds great promise in delivering drugs to the ulcerative regions. The present review focuses on major physiological gastro-intestinal tract challenges involved in altering the pharmacokinetics of delivery systems, pathophysiology of MH and fibrosis, reported drug-polysaccharide cargos and focusing on conventional to advanced disease responsive delivery strategies, highlighting their limitations and future perspectives in intestinal inflammation therapy.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland.
| | - Shubhasmin Rana
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Praveen K Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation.
| |
Collapse
|
53
|
Novel polyurethane-based nanoparticles of infliximab to reduce inflammation in an in-vitro intestinal epithelial barrier model. Int J Pharm 2019; 565:533-542. [PMID: 31085256 DOI: 10.1016/j.ijpharm.2019.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022]
Abstract
In this study we examined the potential of novel biodegradable polymers of polyesterurethane (PU), and its PEGylated (PU-PEG) form as nanocarriers of Infliximab (INF), to treat inflammation in an in-vitro epithelial model. Nanoparticles (NPs) formulated were of average size of 200-287 nm. INF loading of NPs (INF-NPs) resulted in an increase in size and zeta potential. No cytotoxicity was observed for any of the NPs. Cellular interaction and uptake of PU NPs were similar compared with polycaprolactone (PCL) NPs and significantly higher to Poly(lactic-co-glycolic) acid (PLGA) NPs. Cellular interaction was higher for corresponding PEG-NPs. INF-PU and INF-PU-PEG NPs showed a rapid rate and extent of recovery of the epithelial barrier function in inflamed Caco-2 cell monolayers and decreased cytokine levels in inflamed monocytes. Results obtained in this study are promising and the potential of PU and PU-PEG NPs for drug delivery and targeting to treat gastrointestinal inflammation warrants further investigation.
Collapse
|
54
|
Dietary Chitin Particles Called Mimetic Fungi Ameliorate Colitis in Toll-Like Receptor 2/CD14- and Sex-Dependent Manners. Infect Immun 2019; 87:IAI.00006-19. [PMID: 30782858 DOI: 10.1128/iai.00006-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is a natural N-acetylglucosamine polymer and a major structural component of fungal cell walls. Dietary chitin is mucoadhesive; anti-inflammatory effects of chitin microparticles (CMPs; 1- to 10-μm diameters) have been demonstrated in models of inflammatory bowel disease (IBD). The goals of this study were to assess (i) whether CMPs among various chitin preparations are the most effective against colitis in male and female mice and (ii) whether host chitin-binding Toll-like receptor 2 (TLR2) and CD14 are required for the anti-inflammatory effect of chitin. We found that colitis in male mice was ameliorated by CMPs and large chitin beads (LCBs; 40 to 70 μm) but not by chitosan (deacetylated chitin) microparticles, oligosaccharide chitin, or glucosamine. In fact, LCBs were more effective than CMPs. In female colitis, on the other hand, CMPs and LCBs were equally and highly effective. Neither sex of TLR2-deficient mice showed anti-inflammatory effects when treated with LCBs. No anti-inflammatory effect of LCBs was seen in either CD14-deficient males or females. Furthermore, an in vitro study indicated that when LCBs and CMPs were digested with stomach acidic mammalian chitinase (AMC), their size-dependent macrophage activations were modified, at least in part, suggesting reduced particle sizes of dietary chitin in the stomach. Interestingly, stomach AMC activity was greater in males than females. Our results indicated that dietary LCBs were the most effective preparation for treating colitis in both sexes; these anti-inflammatory effects of LCBs were dependent on host TLR2 and CD14.
Collapse
|
55
|
Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine. Toxicol Rep 2019; 6:358-368. [PMID: 31080743 PMCID: PMC6502743 DOI: 10.1016/j.toxrep.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
The most preferable mode of drugs administration is via the oral route but physiological barriers such as pH, enzymatic degradation etc. limit the absolute use of this route. Herein lies the importance of nanotechnology having a wide range of applications in the field of nano-medicine, particularly in drug delivery systems. The exclusive properties particularly small size and high surface area (which can be modified as required), exhibited by these nanoparticlesrender these structures more suitable for the purpose of drug delivery. Various nanostructures, like liposomes, dendrimers, mesoporous silica nanoparticles, etc. have been designed for the said purpose. These nanostructures have several advantages over traditional administration of medicine. Apart from overcoming the pharmacokinetic and pharmacodynamics limitations of many potential therapeutic molecules, they may also be useful for advanced drug delivery purposes like targeted drug delivery, controlled release, enhanced permeability and retention (EPR) effect. In this review, we attempt to describe an up-to-date knowledge on various strategically devised nanostructures to overcome the problems related to oral drug administration.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- AD, Alzheimer’s disease
- AMCNS, cationic niosome-based azithromycin delivery systems
- AP, acetylpuerarin
- AT1R, angiotensin II receptor type 1
- AmB, amphotericin B
- BCRP, breast cancer resistance protein
- CNL, conventional lipid nanoparticles
- CSC, core shell corona nanolipoparticles
- DCK, N-deoxycholyl-l-lysyl-methylester
- DDS, drug delivery system
- DM, diabetes mellitus
- DOX, doxorubicin
- Drug delivery system
- EPR, enhanced permeability and retention effect
- FRET, Foster resonance energy transfer
- GI, gastrointestinal
- GMO, glyceryl monoolein
- IBD, inflammatory bowel disease
- LG, Lakshadi Guggul
- LNC, Lipid Nanocapsule
- MFS, Miltefosine
- MNBNC, Micronucleated Binucleated Cells
- MSN, mesoporous silica nanoparticle
- MTX, methotrexate
- NP, nanoparticle
- NPC, nanoparticulate carriers
- NSAID, non-steroidal anti-inflammatory drug
- Nanostructures
- OA, osteoarthritis
- OXA, oxaliplatin
- Oral medicine
- PAMAM, poly (amidoamine)
- PD, Parkinson’s disease
- PEG, polyethylene glycol
- PIP, 1-piperoylpiperidine
- PLGA, polylactic-co-glycolic acid
- PNL, PEGylated lipid nanoparticles
- PZQ, praziquantel
- SLN, solid lipid nanoparticle
- SMA, styrene maleic acid
- SMEDD, self microemulsifying drug delivery system
- TB, tuberculosis
- TNBS, trinitrobenzenesulphonic acid
- TPGS, tocopheryl polyethylene glycol succinate
- Tmf, tamoxifen
- WGA, wheat germ agglutinin
- pSi, porous silicon
- pSiO, porous silica oxide
Collapse
|
56
|
Gonzalez-Valdivieso J, Girotti A, Muñoz R, Rodriguez-Cabello JC, Arias FJ. Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt. Biomacromolecules 2019; 20:1996-2007. [DOI: 10.1021/acs.biomac.9b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Raquel Muñoz
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - J. Carlos Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - F. Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
57
|
Soubaneh YD, Ouellet S, Dion C, Gagnon J. Formation of highly quaternized N,N,N-trimethylchitosan: a chemoselective methodology in aqueous media. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
N,N,N-Trimethylchitosan (TMC) represents a rare example of cationic polysaccharides and numerous studies have shown its potential in biological and biomedical applications. TMC with high degrees of quaternization (DQ) were synthesized from N-methylation of N,N-dimethylchitosan (DMC), which was obtained by reductive alkylation of high molecular weight chitosan in a simple step process and in good yields. The effects of base and solvents were evaluated on the quaternization reaction. The N-methylation of DMC was performed selectively by CH3I and carbonate in water where quaternization was achieved quantitatively with a low degree of O-methylation (17 %). Moreover, the greener procedure allows easy recovery and purification by conventional filtration as a carbonate salt, in which the anion can be exchanged by an acid-base reaction. Quantification of DQ involving 1H NMR integration of methyl peaks must be performed on protonated TMC. High field NMR spectra of TMC showed two specific chemical shifts for anomeric peaks (5.0 and 5.4 ppm) that can also be used for the determination of DQ. This latter method avoids the superimposition problems with other pyranosyl peaks.
Collapse
Affiliation(s)
- Youssouf D. Soubaneh
- Département de Biologie, chimie et géographie , Université du Québec à Rimouski , 300, allée des Ursulines , Rimouski, Québec G5L 3A1 , Canada
| | - Steeven Ouellet
- Département de Biologie, chimie et géographie , Université du Québec à Rimouski , 300, allée des Ursulines , Rimouski, Québec G5L 3A1 , Canada
| | - Caroline Dion
- Département de Biologie, chimie et géographie , Université du Québec à Rimouski , 300, allée des Ursulines , Rimouski, Québec G5L 3A1 , Canada
| | - Jonathan Gagnon
- Département de Biologie, chimie et géographie , Université du Québec à Rimouski , 300, allée des Ursulines , Rimouski, Québec G5L 3A1 , Canada , Phone: +1 418-723-1986 ext 1691, Fax: +1 418-724-1849
| |
Collapse
|
58
|
Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 2019; 558:367-379. [PMID: 30664993 DOI: 10.1016/j.ijpharm.2019.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Site-specific colon drug delivery is a practical approach for the treatment of local diseases of the colon with several advantages such as rapid onset of action and reduction of the dosage of the drug as well as minimization of harmful side effects. 5-aminosalicylic acid (5-ASA) is a drug of choice in the treatment of inflammatory bowel disease and colitis. For the efficient delivery of this drug, it is vital to prevent 5-ASA release in the upper part of the gastrointestinal tract and to promote its release in the proximal colon. Different approaches including chemical manipulation of drug molecule for production of prodrugs or modification of drug delivery systems using pH-dependent, time-dependent and/or bacterially biodegradable materials have been tried to optimize 5-ASA delivery to the colon. In the current review, the different strategies utilized in the design and development of an oral colonic delivery dosage form of 5-ASA are presented and discussed.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardo
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farinaz Saremnejad
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Bagheri
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
59
|
Mohan LJ, Daly JS, Ryan BM, Ramtoola Z. The future of nanomedicine in optimising the treatment of inflammatory bowel disease. Scand J Gastroenterol 2019; 54:18-26. [PMID: 30678499 DOI: 10.1080/00365521.2018.1563805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There have been major advancements in the treatment of inflammatory bowel disease (IBD) over the past three decades. However despite significant progress, the best available treatments continue to demonstrate variable efficacy in patients and are associated with adverse effects. Therefore there remains an unmet clinical need for ongoing therapeutic advances for IBD. In recent years nanomedicines have emerged as promising diagnostic and therapeutic tools. Nanoparticles in particular show promise to facilitate targeted oral drug delivery in IBD. Here we discuss the pitfalls of current therapies and explore the potential for nanoparticles to improve the treatment of IBD. This review examines the range of conventional and novel therapies which have benefited from nanoparticle-mediated delivery and highlights the proven therapeutic efficacy of this approach in preclinical models. These strategies under development represent a novel and innovative treatment for IBD.
Collapse
Affiliation(s)
- Lauren J Mohan
- a Division of Biology, Department of Anatomy , Royal College of Surgeons in Ireland , Dublin , Ireland.,b School of Pharmacy, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Jacqueline S Daly
- a Division of Biology, Department of Anatomy , Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Barbara M Ryan
- c Department of Gastroenterology and Clinical Medicine , Tallaght Hospital and Trinity College , Dublin , Ireland
| | - Zebunnissa Ramtoola
- b School of Pharmacy, Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
60
|
Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
Collapse
|
61
|
Advances in Pharmaceutical Strategies Enhancing the Efficiencies of Oral Colon-Targeted Delivery Systems in Inflammatory Bowel Disease. Molecules 2018; 23:molecules23071622. [PMID: 29973488 PMCID: PMC6099616 DOI: 10.3390/molecules23071622] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a common disease characterized by chronic inflammation in gastrointestinal tracts, which is primarily treated by administering anti-inflammatory and immunosuppressive drugs that inhibit the burden of intestinal inflammation and improve disease-related symptoms. However, the established therapeutic strategy has limited therapeutic efficacy and adverse drug reactions. Therefore, new disease-targeting drug-delivery strategies to develop more effective treatments are urgent. This review provides an overview of the drug-targeting strategies that can be used to treat IBD, and our recent attempts on the colon-specific delivery system (Pae-SME-CSC) with a paeonol-loaded self-microemulsion (Pae-SMEDDS) are introduced.
Collapse
|
62
|
Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2018; 24:1401-1415. [PMID: 29788186 PMCID: PMC6085987 DOI: 10.1093/ibd/izy123] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 12/17/2022]
Abstract
10.1093/ibd/izy123_video1izy123.video15786481867001.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Alanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
63
|
Milo S, Acosta FB, Hathaway HJ, Wallace LA, Thet NT, Jenkins ATA. Development of an Infection-Responsive Fluorescent Sensor for the Early Detection of Urinary Catheter Blockage. ACS Sens 2018; 3:612-617. [PMID: 29443508 DOI: 10.1021/acssensors.7b00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of crystalline biofilms following infection by Proteus mirabilis can lead to encrustation and blockage of long-term indwelling catheters, with serious clinical consequences. We describe a simple sensor, placed within the catheter drainage bag, to alert of impending blockage via a urinary color change. The pH-responsive sensor is a dual-layered polymeric "lozenge", able to release the self-quenching dye 5(6)-carboxyfluorescein in response to the alkaline urine generated by the expression of bacterial urease. Sensor performance was evaluated within a laboratory model of the catheterized urinary tract, infected with both urease positive and negative bacterial strains under conditions of established infection, achieving an average "early warning" of catheter blockage of 14.5 h. Signaling only occurred following infection with urease positive bacteria. Translation of these sensors into a clinical environment would allow appropriate intervention before the occurrence of catheter blockage, a problem for which there is currently no effective control method.
Collapse
Affiliation(s)
- Scarlet Milo
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | - Hollie J. Hathaway
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Laura A. Wallace
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Naing T. Thet
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - A. Toby A. Jenkins
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
64
|
Naeem M, Oshi MA, Kim J, Lee J, Cao J, Nurhasni H, Im E, Jung Y, Yoo JW. pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:823-834. [PMID: 29353017 DOI: 10.1016/j.nano.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/18/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023]
Abstract
In this study, we developed pH-triggered surface charge-reversal lipid nanoparticles (LNPs), loaded with budesonide, which could precisely deliver the drug to inflamed colon segments for the treatment of ulcerative colitis. Polyethyleneimine (PEI) was used to render LNPs cationic (PEI-LNPs), and Eudragit® S100 (ES) was coated on PEI-LNPs to obtain pH-triggered charge-reversal LNPs (ES-PEI-LNPs). ES coating avoided a burst drug release under acidic conditions mimicking the stomach and early small intestine environments and showed a sustained release in the colon. The surface charge of ES-PEI-LNPs switched from negative to positive under colonic conditions owing to pH-triggered removal of the ES coating. Bioimaging of the mouse gastrointestinal tract and confocal analysis of colon tissues revealed that ES-PEI-LNPs selectively accumulated in an inflamed colon. Furthermore, ES-PEI-LNPs mitigated experimental colitis in mice. These results suggest that the pH-triggered charge-reversal LNPs could be a promising drug carrier for ulcerative colitis therapy and other colon-targeted treatments.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Murtada A Oshi
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hasan Nurhasni
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea.
| |
Collapse
|
65
|
Danish MK, Vozza G, Byrne HJ, Frias JM, Ryan SM. Comparative study of the structural and physicochemical properties of two food derived antihypertensive tri-peptides, Isoleucine-Proline-Proline and Leucine-Lysine-Proline encapsulated into a chitosan based nanoparticle system. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017; 9:E53. [PMID: 29156634 PMCID: PMC5750659 DOI: 10.3390/pharmaceutics9040053] [Citation(s) in RCA: 661] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.
Collapse
Affiliation(s)
- Munawar A Mohammed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Jaweria T M Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
67
|
Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MR, Garton NJ, Stapley AG, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017; 249:100-133. [PMID: 28688779 DOI: 10.1016/j.cis.2017.05.014] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field.
Collapse
|
68
|
Zhang S, Langer R, Traverso G. Nanoparticulate Drug Delivery Systems Targeting Inflammation for Treatment of Inflammatory Bowel Disease. NANO TODAY 2017; 16:82-96. [PMID: 31186671 PMCID: PMC6557461 DOI: 10.1016/j.nantod.2017.08.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, idiopathic inflammatory set of conditions that can affect the entire gastrointestinal (GI) tract and is associated with an increased risk of colorectal cancer. To date there is no curative therapy for IBD; therefore life-long medication can be necessary for IBD management if surgery is to be avoided. Drug delivery systems specific to the colon have improved IBD treatment and several such systems are available to patients. However, current delivery systems for IBD do not target drugs to the site of inflammation, which leads to frequent dosing and potentially severe side effects that can adversely impact patients' adherence to medication. There is a need for novel drug delivery systems that can target drugs to the site of inflammation, prolong local drug availability, improve therapeutic efficacy, and reduce drug side effects. Nanoparticulate (NP) systems are attractive in designing targeted drug delivery systems for the treatment of IBD because of their unique physicochemical properties and capability of targeting the site of disease. This review analyzes the microenvironment at the site of inflammation in IBD, highlighting the pathophysiological features as possible cues for targeted delivery; discusses different strategies and mechanisms of NP targeting IBD, including size-, charge-, ligand-receptor, degradation- and microbiome-mediated approaches; and summarizes recent progress on using NPs towards improved therapies for IBD. Finally, challenges and future directions in this field are presented to advance the development of targeted drug delivery for IBD treatment.
Collapse
Affiliation(s)
- Sufeng Zhang
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Giovanni Traverso
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
69
|
Melero A, Draheim C, Hansen S, Giner E, Carreras JJ, Talens-Visconti R, Garrigues TM, Peris JE, Recio MC, Giner R, Lehr CM. Targeted delivery of Cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. Eur J Pharm Biopharm 2017; 119:361-371. [DOI: 10.1016/j.ejpb.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
|
70
|
Jakubiak P, Thwala LN, Cadete A, Préat V, Alonso MJ, Beloqui A, Csaba N. Solvent-free protamine nanocapsules as carriers for mucosal delivery of therapeutics. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
71
|
Beloqui A, Brayden DJ, Artursson P, Préat V, des Rieux A. A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat Protoc 2017; 12:1387-1399. [PMID: 28617450 DOI: 10.1038/nprot.2017.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The specialized microfold cells (M cells) in the follicle-associated epithelium (FAE) of intestinal Peyer's patches serve as antigen-sampling cells of the intestinal innate immune system. Unlike 'classical' enterocytes, they are able to translocate diverse particulates without digesting them. They act as pathways for microorganism invasion and mediate food tolerance by transcellular transport of intestinal microbiota and antigens. Their ability to transcytose intact particles can be used to develop oral drug delivery and oral immunization strategies. This protocol describes a reproducible and versatile human M-cell-like in vitro model. This model can be exploited to evaluate M-cell transport of microparticles and nanoparticles for protein, drug or vaccine delivery and to study bacterial adherence and translocation across M cells. The inverted in vitro M-cell model consists of three main steps. First, Caco-2 cells are seeded at the apical side of the inserts. Second, the inserts are inverted and B lymphocytes are seeded at the basolateral side of the inserts. Third, the conversion to M cells is assessed. Although various M-cell culture systems exist, this model provides several advantages over the rest: (i) it is based on coculture with well-established differentiated human cell lines; (ii) it is reproducible under the conditions described herein; (iii) it can be easily mastered; and (iv) it does not require the isolation of primary cells or the use of animals. The protocol requires skills in cell culture and microscopy analysis. The model is obtained after 3 weeks, and transport experiments across the differentiated model can be carried out over periods of up to 10 h.
Collapse
Affiliation(s)
- Ana Beloqui
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - David J Brayden
- Veterinary Biosciences Section, School of Veterinary Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Véronique Préat
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne des Rieux
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Institute of the Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
72
|
Higa LH, Jerez HE, de Farias MA, Portugal RV, Romero EL, Morilla MJ. Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine (Lond) 2017; 12:1165-1175. [DOI: 10.2217/nnm-2016-0437] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Develop nanoparticulate agents for oral targeted delivery of dexamethasone (Dex) to macrophages of inflamed mucosa. Materials & methods: Solid archaeolipid nanoparticles (SAN-Dex) (compritol/Halorubrum tebenquichense polar archaeolipids/soybean phosphatidylcholine/Tween-80 4; 0.9; 0.3; 3% w/w) loaded with Dex were prepared. Their mucopenetration, stability under digestion and in vitro anti-inflammatory activity, were determined. Results: Ultra-small SAN-Dex strongly reduced the levels of TNF-α, IL-6 and IL-12 on J774A1 cells stimulated with lipopolysaccharides as compared with free Dex or loaded in ordinary solid lipid nanoparticles-Dex. After in vitro digestion, the anti-inflammatory activity of SAN-Dex was retained, while that of solid lipid nanoparticles-Dex was lost. Conclusion: Because of their structural and pharmacodynamic features, SAN-Dex may be suitable for oral targeted delivery to inflamed mucosa.
Collapse
Affiliation(s)
- Leticia Herminia Higa
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Horacio Emanuel Jerez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| |
Collapse
|
73
|
Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int J Biol Macromol 2017; 97:16-22. [DOI: 10.1016/j.ijbiomac.2016.12.087] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023]
|
74
|
Dar MJ, Ali H, Khan A, Khan GM. Polymer-based drug delivery: the quest for local targeting of inflamed intestinal mucosa. J Drug Target 2017; 25:582-596. [DOI: 10.1080/1061186x.2017.1298601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. Junaid Dar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
75
|
Zhu C, Zhang S, Song C, Zhang Y, Ling Q, Hoffmann PR, Li J, Chen T, Zheng W, Huang Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J Nanobiotechnology 2017; 15:20. [PMID: 28270147 PMCID: PMC5341357 DOI: 10.1186/s12951-017-0252-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 12/20/2022] Open
Abstract
Background Selenium (Se) is an essential micronutrient trace element and an established nutritional antioxidant. Low Se status exacerbates inflammatory bowel diseases progression, which involves hyper inflammation in the digestive tract. Se nanoparticles (SeNPs) exhibit anti-inflammatory activity accompanied by low toxicity, especially when decorated with natural biological compounds. Herein, we explored the beneficial effects of SeNPs decorated with Ulva lactuca polysaccharide (ULP) in mice subjected to the acute colitis model. Results We constructed SeNPs coated with ULP (ULP-SeNPs) in average diameter ~130 nm and demonstrated their stability and homogeneity. Supplementation with ULP-SeNPs (0.8 ppm Se) resulted in a significant protective effect on DSS-induced acute colitis in mice including mitigation of body weight loss, and colonic inflammatory damage. ULP-SeNPs ameliorated macrophage infiltration as evidenced by decreased CD68 levels in colon tissue sections. The anti-inflammatory effects of ULP-SeNPs were found to involve modulation of cytokines including IL-6 and TNF-α. Mechanistically, ULP-SeNPs inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which drives the transcription of these pro-inflammatory cytokines. Conclusions ULP-SeNPs supplementation may offer therapeutic potential for reducing the symptoms of acute colitis through its anti-inflammatory actions. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0252-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenghui Zhu
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Shuimei Zhang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Chengwei Song
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Yibo Zhang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Qinjie Ling
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Peter R Hoffmann
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jun Li
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Tianfeng Chen
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,College of Chemistry and Material Science, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Wenjie Zheng
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China. .,College of Chemistry and Material Science, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| | - Zhi Huang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| |
Collapse
|
76
|
Kulkarni AD, Patel HM, Surana SJ, Vanjari YH, Belgamwar VS, Pardeshi CV. N,N,N-Trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine. Carbohydr Polym 2017; 157:875-902. [DOI: 10.1016/j.carbpol.2016.10.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
77
|
Development and characterization of anti-inflammatory activity of curcumin-loaded biodegradable microspheres with potential use in intestinal inflammatory disorders. Int J Pharm 2017; 518:86-104. [DOI: 10.1016/j.ijpharm.2016.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/24/2022]
|
78
|
Čalija B, Milić J. Targeted delivery of anti-inflammatory drugs in lower parts of gastrointestinal tract: Conventional and novel approaches. ARHIV ZA FARMACIJU 2017. [DOI: 10.5937/arhfarm1702124c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
79
|
Beloqui A, des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:242-255. [PMID: 27117710 DOI: 10.1016/j.addr.2016.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/27/2016] [Accepted: 04/16/2016] [Indexed: 01/02/2023]
Abstract
Unraveling the mechanisms of nanoparticle transport across the intestinal barrier is essential for designing more efficient nanoparticles for oral administration. The physicochemical parameters of the nanoparticles (e.g., size, surface charge, chemical composition) dictate nanoparticle fate across the intestinal barrier. This review aims to address the most important findings regarding polymeric and lipidic nanoparticle transport across the intestinal barrier, including the evaluation of critical physicochemical parameters of nanoparticles that affect nanocarrier interactions with the intestinal barrier.
Collapse
|
80
|
Sahle FF, Gerecke C, Kleuser B, Bodmeier R. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int J Pharm 2016; 516:21-31. [PMID: 27845215 DOI: 10.1016/j.ijpharm.2016.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023]
Abstract
pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit® L 100, Eudragit® L 100-55, Eudragit® S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10mM pH 7.5 buffer and released>80% of the drug within 7h. The acrylate nanoparticles dissolved in 40mM pH 7.5 buffer and released 65-70% of the drug within 7h. The nanoparticles remained intact in 10 and 40mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, D-12169, Berlin, Germany
| | - Christian Gerecke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Potsdam, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Potsdam, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, D-12169, Berlin, Germany.
| |
Collapse
|
81
|
Risk management and statistical multivariate analysis approach for design and optimization of satranidazole nanoparticles. Eur J Pharm Sci 2016; 96:273-283. [PMID: 27693296 DOI: 10.1016/j.ejps.2016.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
Rapidly evolving technical and regulatory landscapes of the pharmaceutical product development necessitates risk management with application of multivariate analysis using Process Analytical Technology (PAT) and Quality by Design (QbD). Poorly soluble, high dose drug, Satranidazole was optimally nanoprecipitated (SAT-NP) employing principles of Formulation by Design (FbD). The potential risk factors influencing the critical quality attributes (CQA) of SAT-NP were identified using Ishikawa diagram. Plackett-Burman screening design was adopted to screen the eight critical formulation and process parameters influencing the mean particle size, zeta potential and dissolution efficiency at 30min in pH7.4 dissolution medium. Pareto charts (individual and cumulative) revealed three most critical factors influencing CQA of SAT-NP viz. aqueous stabilizer (Polyvinyl alcohol), release modifier (Eudragit® S 100) and volume of aqueous phase. The levels of these three critical formulation attributes were optimized by FbD within established design space to minimize mean particle size, poly dispersity index, and maximize encapsulation efficiency of SAT-NP. Lenth's and Bayesian analysis along with mathematical modeling of results allowed identification and quantification of critical formulation attributes significantly active on the selected CQAs. The optimized SAT-NP exhibited mean particle size; 216nm, polydispersity index; 0.250, zeta potential; -3.75mV and encapsulation efficiency; 78.3%. The product was lyophilized using mannitol to form readily redispersible powder. X-ray diffraction analysis confirmed the conversion of crystalline SAT to amorphous form. In vitro release of SAT-NP in gradually pH changing media showed <20% release in pH1.2 and pH6.8 in 5h, while, complete release (>95%) in pH7.4 in next 3h, indicative of burst release after a lag time. This investigation demonstrated effective application of risk management and QbD tools in developing site-specific release SAT-NP by nanoprecipitation.
Collapse
|
82
|
A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces 2016; 143:327-335. [DOI: 10.1016/j.colsurfb.2016.03.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/16/2016] [Accepted: 03/14/2016] [Indexed: 01/29/2023]
|
83
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
84
|
Cerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci M, Nicoletta F, Luppi B. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 2016; 143:124-30. [DOI: 10.1016/j.carbpol.2016.02.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 02/06/2016] [Indexed: 01/26/2023]
|
85
|
Abstract
The use of gene delivery systems for the expression of antigenic proteins is an established means for activating a patient’s own immune system against the cancer they carry. Since tumor cells are poor antigen-presenting cells, cross-presentation of tumor antigens by dendritic cells (DCs) is essential for the generation of tumor-specific cytotoxic T-lymphocyte responses. A number of polymer-based nanomedicines have been developed to deliver genes into DCs, primarily by incorporating tumor-specific, antigen-encoding plasmid DNA with polycationic molecules to facilitate DNA loading and intracellular trafficking. Direct in vivo targeting of plasmid DNA to DC surface receptors can induce high transfection efficiency and long-term gene expression, essential for antigen loading onto major histocompatibility complex molecules and stimulation of T-cell responses. This chapter summarizes the physicochemical properties and biological information on polymer-based non-viral vectors used for targeting DCs, and discusses the main challenges for successful in vivo gene transfer into DCs.
Collapse
Affiliation(s)
- Kenneth A. Howard
- Department of Molecular Biology and Gen, Interdisciplinary Nanoscience Center (i, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Biophysical I, Aarhus University, Aarhus, Denmark
| | - Dan Peer
- Britannia Bldg, 2nd Fl, Rm 226, Tel-Aviv Univ, Dept Cell Research, Tel-Aviv, Israel
| |
Collapse
|
86
|
Saade H, Diaz de León-Gómez R, Enríquez-Medrano FJ, López RG. Preparation of ultrafine poly(methyl methacrylate-co-methacrylic acid) biodegradable nanoparticles loaded with ibuprofen. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1126-38. [DOI: 10.1080/09205063.2016.1184120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hened Saade
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, México
| | - Ramón Diaz de León-Gómez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, México
| | | | - Raúl Guillermo López
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, México
| |
Collapse
|
87
|
Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv 2016; 13:1177-94. [PMID: 27087148 DOI: 10.1080/17425247.2016.1178232] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chitosan, a polymer from the chitin family has diverse pharmaceutical and bio-medical utility because of its easy widespread availability, non-toxicity, biocompatibility, biodegradability, rich functionalities and high drug-loading capacity. Recent pharmaceutical research has examined the use of chitosan-based systems for drug delivery applications in various diseases. The availability of functional groups permits the conjugation of specific ligands and thus helps to target loaded drugs to the site of infection/inflammation. Slow biodegradation of chitosan permits controlled and sustained release of loaded moieties; reduces the dosing frequency and is useful for improving patient compliance in infectious drug therapy. The muco-adhesion offered by chitosan makes it an attractive candidate for anti-inflammatory drug delivery, where rapid clearance of the active moiety due to the increased tissue permeability is the major problem. The pH-dependent swelling and drug release properties of chitosan present a means of passive targeting of active drug moieties to inflammatory sites. AREAS COVERED Development of chitosan-based nanoparticulate systems for drug delivery applications is reviewed. The current state of chitosan-based nanosystems; with particular emphasis on drug therapy in inflammatory and infectious diseases is also covered. EXPERT OPINION The authors believe that chitosan-based nanosystems, due to the special and specific advantages, will have a promising role in the management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- P Rajitha
- a Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre , Amrita Vishwa Vidyapeetham University , Kochi , India
| | - Divya Gopinath
- a Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre , Amrita Vishwa Vidyapeetham University , Kochi , India
| | - Raja Biswas
- b Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre , Amrita Vishwa Vidyapeetham University , Kochi , India
| | - M Sabitha
- a Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre , Amrita Vishwa Vidyapeetham University , Kochi , India
| | - R Jayakumar
- b Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre , Amrita Vishwa Vidyapeetham University , Kochi , India
| |
Collapse
|
88
|
On prilled Nanotubes-in-Microgel Oral Systems for protein delivery. Eur J Pharm Biopharm 2016; 101:90-102. [DOI: 10.1016/j.ejpb.2016.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022]
|
89
|
Glass JJ, Kent SJ, De Rose R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev Vaccines 2016; 15:719-29. [PMID: 26783186 DOI: 10.1586/14760584.2016.1141054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV. We highlight the central role of dendritic cells in the immune response to vaccination and describe how nanotechnology can be used to enhance delivery to and activation of these important antigen-presenting cells. Strategies employed to improve biodistribution are discussed, including improved lymph node delivery and mucosal penetration concepts, before detailing methods to enhance the humoral and/or cellular immune response to vaccines. We conclude with a commentary on the current state of nanovaccinology.
Collapse
Affiliation(s)
- Joshua J Glass
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| | - Stephen J Kent
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia.,c Melbourne Sexual Health Centre and Department of Infectious Diseases , Alfred Health, Central Clinical School, Monash University , Melbourne , Australia
| | - Robert De Rose
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| |
Collapse
|
90
|
Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym 2016; 144:371-81. [PMID: 27083829 DOI: 10.1016/j.carbpol.2016.01.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
To develop a nanoparticulate drug carrier for targeting of the inflamed intestinal mucosa, amphiphilic hyaluronic acid (HA) conjugates were synthesized, which could form self-assembled nanoparticles (NPs) in aqueous solution and budesonide (BDS) was loaded into the HANPs. Their particle sizes were in the range of 177 to 293nm with negative surface charge. The model of inflammatory CACO-2 cells was utilized to investigate the therapeutic potential of budesonide loaded HA nanocarriers. The highest expression of CD44 receptors was found on inflamed Caco-2 cells, as determined by flow cytometry. FITC-labeled HANPs revealed greater uptake in inflamed CACO-2 cells compared to untreated CACO-2 and CD44-negative cell lines, NIH3T3. BDS loaded HANPs displayed almost no toxicity indicating HANPs are excellent biocompatible nano-carriers. BDS loaded HANPs demonstrated higher anti-inflammatory effect on IL-8 and TNF-α secretion in inflamed cell model compared to the same dose of free drug. These results revealed the promising potential of HA nanoparticles as a targeted drug delivery system for IBD treatment.
Collapse
|
91
|
Biocompatible and Biodegradable Ultrafine Nanoparticles of Poly(Methyl Methacrylate-co-Methacrylic Acid) Prepared via Semicontinuous Heterophase Polymerization: Kinetics and Product Characterization. INT J POLYM SCI 2016. [DOI: 10.1155/2016/7674620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafine nanoparticles, less than 10 nm in mean diameter, of the FDA approved copolymer methyl methacrylate- (MMA-)co-methacrylic acid (MAA), 2/1 (mol/mol), were prepared. The method used for the preparation of these particles stabilized in a latex containing around 11% solids includes the dosing of the monomers mixture on a micellar solution preserving monomer starved conditions. It is thought that the operation at these conditions combined with the hydrophilicity of MMA and MAA units favors the formation of ultrafine particles; the propagation reaction carried out within so small compartments renders copolymer chains rich in syndiotactic units very likely as consequence of the restricted movements of the end propagation of the chains. Because of their biocompatibility and biodegradability as well as their extremely small size these nanoparticles could be used as vehicles for improved drug delivery in the treatment of chronic-degenerative diseases.
Collapse
|
92
|
Youshia J, Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin Drug Deliv 2015; 13:281-94. [PMID: 26637060 DOI: 10.1517/17425247.2016.1114604] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a chronic autoimmune disease, whose main forms are Crohn's disease and ulcerative colitis. The main treatment of IBD includes oral administration of anti-inflammatory or immunosuppressive agents enclosed in traditional dosage forms, intended to release the active ingredient in the large intestine. However, most of them have been designed based on the physiology of healthy colon, which differs distinctly from conditions met in IBD patients risking adverse effects and patient intolerance. The use of nanoparticles as a drug carrier for treatment of IBD is a promising approach that is capable of solving this problem. Previous studies have shown a size-dependent behavior, where reducing the particle size, increases the targeting efficacy and the residence time compared to healthy controls. AREAS COVERED This review covers the utilization of nanoparticles as drug delivery carriers for treating IBD. They can reach the inflamed colonic sites either by endothelial or epithelial delivery employing passive and active targeting strategies. The effect of particle size is analyzed in detail while elucidating other essential parameters such as the particle surface properties. EXPERT OPINION One of the most important advantages of nanoparticles is their passive targeting to the inflamed colonic tissues due to their size. Recent findings underline that this size-dependent bioadhesion behavior can be further enhanced by selecting smart surface properties to help in penetrating the mucus and reach the inflamed sites.
Collapse
Affiliation(s)
- John Youshia
- a Department of Pharmaceutics , Institute of Pharmacy, University of Bonn , Bonn , Germany.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Alf Lamprecht
- a Department of Pharmaceutics , Institute of Pharmacy, University of Bonn , Bonn , Germany.,c Laboratory of Pharmaceutical Engineering, EA 4267 , University of Franche-Comté , Besançon , France
| |
Collapse
|
93
|
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol 2015; 6:286. [PMID: 26648870 PMCID: PMC4664963 DOI: 10.3389/fphar.2015.00286] [Citation(s) in RCA: 1394] [Impact Index Per Article: 154.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
Abstract
The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.
Collapse
Affiliation(s)
- Lisa Sercombe
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Tejaswi Veerati
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, USA ; Department of Biochemistry and Cell Biology, Rice University Houston, TX, USA
| | - Fatemeh Moheimani
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, USA ; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center Houston, TX, USA ; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Susan Hua
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| |
Collapse
|
94
|
Leads from Physical, Chemical, and Thermal Characterization on Cytotoxic Effects of Xylan-Based Microparticles. Polymers (Basel) 2015. [DOI: 10.3390/polym7111515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
95
|
Conway TF, Hammer L, Furtado S, Mathiowitz E, Nicoletti F, Mangano K, Egilmez NK, Auci DL. Oral Delivery of Particulate Transforming Growth Factor Beta 1 and All-Trans Retinoic Acid Reduces Gut Inflammation in Murine Models of Inflammatory Bowel Disease. J Crohns Colitis 2015; 9:647-58. [PMID: 25987350 PMCID: PMC4817304 DOI: 10.1093/ecco-jcc/jjv089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS We investigated oral delivery of transforming growth factor beta 1 [TGFβ]- and all-trans retinoic acid [ATRA]-loaded microspheres as therapy for gut inflammation in murine models of inflammatory bowel disease [IBD]. METHODS ATRA and TGFβ were separately encapsulated in poly [lactic-co-glycolic] acid or polylactic acid microspheres [respectively]. TGFβ was encapsulated using proprietary phase-inversion nanoencapsulation [PIN] technology. RESULTS PIN particles provided sustained release of bioactive protein for at least 4 days and were stable for up to 52 weeks when stored at either 4(0)C or -20(0)C. In the SCID mouse CD4 + CD25- T cell transfer model of IBD, oral treatment starting at disease onset prevented weight loss, significantly reduced average disease score [~ 50%], serum amyloid A levels [~ 5-fold], colon weight-to-length ratio [~ 50%], and histological score [~ 5-fold]. CONCLUSIONS Both agents given together outperformed either separately. Highest TGFβ doses and most frequent dose schedule were most effective. Activity was associated with a significant increase [45%] in Foxp3 expression by colonic lamina propria CD4+ CD25+ T-cells. Activity was also demonstrated in dextran sulphate sodium-induced colitis. The data support development of the combination product as a novel, targeted immune based therapy for treatment for IBD.
Collapse
Affiliation(s)
- Thomas F. Conway
- TherapyX, Buffalo, NY, USA,State University of New York, at Buffalo, NY, USA
| | | | - Stacia Furtado
- TherapyX, Buffalo, NY, USA,Brown University, Department Biomedical and Molecular Pharmacology, Providence, RI, USA
| | - Edith Mathiowitz
- Brown University, Department Biomedical and Molecular Pharmacology, Providence, RI, USA
| | - Ferdinando Nicoletti
- University of Catania, Department of Biomedical and Biotechnological Sciences, Catania, Italy
| | - Katia Mangano
- University of Catania, Department of Biomedical and Biotechnological Sciences, Catania, Italy
| | - Nejat K. Egilmez
- TherapyX, Buffalo, NY, USA,State University of New York, at Buffalo, NY, USA
| | | |
Collapse
|
96
|
Chereddy KK, Lopes A, Koussoroplis S, Payen V, Moia C, Zhu H, Sonveaux P, Carmeliet P, des Rieux A, Vandermeulen G, Préat V. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1975-84. [PMID: 26238081 DOI: 10.1016/j.nano.2015.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/01/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Growth factor therapies to induce angiogenesis and thereby enhance the blood perfusion, hold tremendous potential to address the shortcomings of current impaired wound care modalities. Vascular endothelial growth factor stimulates (VEGF) wound healing via multiple mechanisms. Poly(lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. Hence, we hypothesized that the administration of VEGF encapsulated in PLGA nanoparticles (PLGA-VEGF NP) would promote fast healing due to the sustained and combined effects of VEGF and lactate. In a splinted mouse full thickness excision model, compared with untreated, VEGF and PLGA NP, PLGA-VEGF NP treated wounds showed significant granulation tissue formation with higher collagen content, re-epithelialization and angiogenesis. The cellular and molecular studies revealed that PLGA-VEGF NP enhanced the proliferation and migration of keratinocytes and upregulated the expression of VEGFR2 at mRNA level. We demonstrated the combined effects of lactate and VEGF for active healing of non-diabetic and diabetic wounds. FROM THE CLINICAL EDITOR The study of wound healing has been under a tremendous amount of research over recent years. In diabetic wounds, vasculopathy leading to localized ischemia would often result in delayed
wound healing. In this article, the authors encapsulated vascular endothelial growth factor stimulates (VEGF) in PLGA nanoparticles and studies the potential pro-healing effects. It was found that the combination of these two components provided synergistic actions for healing. The encouraging results should provide a basis for combination therapy in the future.
Collapse
Affiliation(s)
- Kiran Kumar Chereddy
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Lopes
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Salome Koussoroplis
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Valéry Payen
- Institut de Recherche Expérimentale et Clinique (IREC) Pole of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claudia Moia
- Environmental Technology Department, School of Energy, Environment and Agrifood, Cranfield University, Bedford, UK
| | - Huijun Zhu
- Environmental Technology Department, School of Energy, Environment and Agrifood, Cranfield University, Bedford, UK
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC) Pole of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | | | - Anne des Rieux
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
97
|
Rajesh AM, Bhatt SA, Brahmbhatt H, Anand PS, Popat KM. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
98
|
Albuquerque J, Moura CC, Sarmento B, Reis S. Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics. Molecules 2015; 20:11103-18. [PMID: 26087258 PMCID: PMC6272405 DOI: 10.3390/molecules200611103] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common joint-related autoimmune disease and one of the most severe. Despite intensive investigation, the RA inflammatory process remains largely unknown and finding effective and long lasting therapies that specifically target RA is a challenging task. This study proposes a different approach for RA therapy, taking advantage of the new emerging field of nanomedicine to develop a targeted theranostic system for intravenous administration, using solid lipid nanoparticles (SLN), a biocompatible and biodegradable colloidal delivery system, surface-functionalized with an anti-CD64 antibody that specifically targets macrophages in RA. Methotrexate (MTX) and superparamagnetic iron oxide nanoparticles (SPIONs) were co-encapsulated inside the SLNs to be used as therapeutic and imaging agents, respectively. All the formulations presented sizes under 250 nm and zeta potential values lower than −16 mV, suitable characteristics for intravenous administration. Transmission electron microscopy (TEM) photographs indicated that the SPIONs were encapsulated inside the SLN matrix and MTX association efficiency values were higher than 98%. In vitro studies, using THP-1 cells, demonstrated that all formulations presented low cytotoxicity at concentrations lower than 500 μg/mL. It was proven that the proposed NPs were not cytotoxic, that both a therapeutic and imaging agent could be co-encapsulated and that the SLN could be functionalized for a potential future application such as anti-body specific targeting. The proposed formulations are, therefore, promising candidates for future theranostic applications.
Collapse
Affiliation(s)
- João Albuquerque
- UCIBIO, ICETA REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Catarina Costa Moura
- UCIBIO, ICETA REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Bruno Sarmento
- Biocarrier Group, INEB-Instituto de Engenharia Biomédica, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Granda PRD, Portugal.
| | - Salette Reis
- UCIBIO, ICETA REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
99
|
Cerchiara T, Abruzzo A, di Cagno M, Bigucci F, Bauer-Brandl A, Parolin C, Vitali B, Gallucci M, Luppi B. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 2015; 92:112-9. [DOI: 10.1016/j.ejpb.2015.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
|
100
|
Pourcelle V, Laurent S, Welle A, Vriamont N, Stanicki D, Vander Elst L, Muller RN, Marchand-Brynaert J. Functionalization of the PEG Corona of Nanoparticles by Clip Photochemistry in Water: Application to the Grafting of RGD Ligands on PEGylated USPIO Imaging Agent. Bioconjug Chem 2015; 26:822-9. [DOI: 10.1021/acs.bioconjchem.5b00041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Pourcelle
- Institute
of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-La-Neuve, Belgium
| | - Sophie Laurent
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8 B-6041 Gosselies, Belgium
| | - Alexandre Welle
- Institute
of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-La-Neuve, Belgium
| | - Nicolas Vriamont
- Institute
of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-La-Neuve, Belgium
| | - Dimitri Stanicki
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, B-7000 Mons, Belgium
| | - Luce Vander Elst
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8 B-6041 Gosselies, Belgium
| | - Robert N. Muller
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8 B-6041 Gosselies, Belgium
| | - Jacqueline Marchand-Brynaert
- Institute
of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|