51
|
Bucknell NW, Belderbos J, Palma DA, Iyengar P, Samson P, Chua K, Gomez D, McDonald F, Louie AV, Faivre-Finn C, Hanna GG, Siva S. Avoiding toxicity with lung radiation therapy: An IASLC perspective. J Thorac Oncol 2022; 17:961-973. [DOI: 10.1016/j.jtho.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
|
52
|
Medin P, Hrycushko B, van der Kogel AJ. In Reply to Goyal and Madan. Int J Radiat Oncol Biol Phys 2022; 113:232-233. [DOI: 10.1016/j.ijrobp.2022.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
|
53
|
Shah N, Ranjan S. Successful treatment of quadriparesis from radiation myelopathy with bevacizumab in a patient with metastatic breast cancer. BMJ Case Rep 2022; 15:e246470. [PMID: 35110282 PMCID: PMC8811543 DOI: 10.1136/bcr-2021-246470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Radiation myelopathy (RM) is rare condition defined as injury to the spinal cord by ionising radiation. Due to improved survival in patients with advanced malignancies, there is a renewed interest in recognition and treatment of RM. There are very few reports on treatment of RM. A 64-year-old woman with metastatic oestrogen receptor, progesterone receptor weakly positive and human epidermal growth factor 2 negative breast, stereotactic radiosurgeries to brain metastases and a history of reradiation to the cervical spinal cord presented with neck pain, arm weakness, hyperreflexia and gait ataxia. RM was suspected and the patient was started on high dose corticosteroid therapy. However, the patient's condition deteriorated and she developed quadriparesis. A timely treatment with an antivascular endothelial growth factor antibody, bevacizumab reversed her neurological deficits and preserved her walking ability. Our case illustrates a prompt diagnosis and successful treatment of RM with bevacizumab.
Collapse
Affiliation(s)
- Nirja Shah
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Surabhi Ranjan
- Department of Neurology, Orlando Health, Orlando, Florida, USA
| |
Collapse
|
54
|
Goyal N, Day A, Epstein J, Goodman J, Graboyes E, Jalisi S, Kiess AP, Ku JA, Miller MC, Panwar A, Patel VA, Sacco A, Sandulache V, Williams AM, Deschler D, Farwell DG, Nathan C, Fakhry C, Agrawal N. Head and neck cancer survivorship consensus statement from the American Head and Neck Society. Laryngoscope Investig Otolaryngol 2022; 7:70-92. [PMID: 35155786 PMCID: PMC8823162 DOI: 10.1002/lio2.702] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To provide a consensus statement describing best practices and evidence regarding head and neck cancer survivorship. METHODS Key topics regarding head and neck cancer survivorship were identified by the multidisciplinary membership of the American Head and Neck Society Survivorship, Supportive Care & Rehabilitation Service. Guidelines were generated by combining expert opinion and a review of the literature and categorized by level of evidence. RESULTS Several areas regarding survivorship including dysphonia, dysphagia, fatigue, chronic pain, intimacy, the ability to return to work, financial toxicity, lymphedema, psycho-oncology, physical activity, and substance abuse were identified and discussed. Additionally, the group identified and described the role of key clinicians in survivorship including surgical, medical and radiation oncologists; dentists; primary care physicians; psychotherapists; as well as physical, occupational, speech, and respiratory therapists. CONCLUSION Head and neck cancer survivorship is complex and requires a multidisciplinary approach centered around patients and their caregivers. As survival related to head and neck cancer treatment improves, addressing post-treatment concerns appropriately is critically important to our patient's quality of life. There continues to be a need to define effective and efficient programs that can coordinate this multidisciplinary effort toward survivorship.
Collapse
Affiliation(s)
- Neerav Goyal
- Department of Otolaryngology—Head and Neck SurgeryThe Pennsylvania State University, College of MedicineHersheyPennsylvaniaUSA
| | - Andrew Day
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Joel Epstein
- Department of SurgeryCedars SinaiLos AngelesCaliforniaUSA
- City of HopeCaliforniaDuarteUSA
| | - Joseph Goodman
- Ear, Nose and Throat CenterGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Evan Graboyes
- Department of Otolaryngology—Head and Neck SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Scharukh Jalisi
- Department of OtolaryngologyBeth Israel DeaconessBostonMassachusettsUSA
| | - Ana P. Kiess
- Department of Radiation Oncology and Molecular Radiation SciencesJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Jamie A. Ku
- Head and Neck InstituteCleveland ClinicClevelandOhioUSA
| | - Matthew C. Miller
- Department of OtolaryngologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Aru Panwar
- Department of Head and Neck Surgical Oncology, Methodist Estabrook Cancer CenterNebraska Methodist HospitalOmahaNebraskaUSA
| | - Vijay A. Patel
- Department of OtolaryngologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Assuntina Sacco
- Department of Medical OncologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Vlad Sandulache
- Department of Otolaryngology—Head and Neck SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Amy M. Williams
- Department of Otolaryngology—Head and Neck SurgeryHenry Ford Health SystemDetroitMichiganUSA
| | - Daniel Deschler
- Department of Otolaryngology–Head and Neck SurgeryMassachusetts Eye and EarBostonMassachusettsUSA
| | - D. Gregory Farwell
- Department of Otolaryngology—Head and Neck SurgeryUniversity of California DavisDavisCaliforniaUSA
| | - Cherie‐Ann Nathan
- Department of Otolaryngology—Head and Neck SurgeryLouisiana State UniversityShreveportLouisianaUSA
| | - Carole Fakhry
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Nishant Agrawal
- Department of Surgery, Section of Otolaryngology—Head and Neck SurgeryUniversity of Chicago Pritzker School of MedicineChicagoIllinoisUSA
| |
Collapse
|
55
|
Evaluation of plan robustness on the dosimetry of volumetric arc radiotherapy (VMAT) with set-up uncertainty in Nasopharyngeal carcinoma (NPC) radiotherapy. Radiat Oncol 2022; 17:1. [PMID: 34980178 PMCID: PMC8722041 DOI: 10.1186/s13014-021-01970-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To evaluate the sensitivity to set up the uncertainty of VMAT plans in Nasopharyngeal carcinoma (NPC) treatment by proposing a plan robustness evaluation method. Methods 10 patients were selected for this study. A 2-arc volumetric-modulated arc therapy (VMAT) plan was generated for each patient using Varian Eclipse (13.6 Version) treatment planning system (TPS). 5 uncertainty plans (U-plans) were recalculated based on the first 5 times set-up errors acquired from cone-beam computer tomography (CBCT). The dose differences of the original plan and perturbed plan corresponded to the plan robustness for the structure. Tumor control probability (TCP) and normal tissues complication probability (NTCP) were calculated for biological evaluation. Results The mean dose differences of D98% and D95% (ΔD98% and ΔD95%) of PTVp were respectively 3.30 Gy and 2.02 Gy. The ΔD98% and ΔD95% of CTVp were 1.12 Gy and 0.58 Gy. The ΔD98% and ΔD95% of CTVn were 1.39 Gy and 1.03 Gy, distinctively lower than those in PTVn (2.8 Gy and 2.0 Gy). The CTV-to-PTV margin increased the robustness of CTVs. The ΔD98% and ΔD95% of GTVp were 0.56 Gy and 0.33 Gy. GTVn exhibited strong robustness with little variation of D98% (0.64 Gy) and D95% (0.39 Gy). No marked mean dose variations of Dmean were seen. The mean reduction of TCP (ΔTCP) in GTVp and CTVp were respectively 0.4% and 0.3%. The mean ΔTCPs of GTVn and CTVn were 0.92% and 1.3% respectively. The CTV exhibited the largest ΔTCP (2.2%). In OARs, the brain stem exhibited weak robustness due to their locations in the vicinity of PTV. Bilateral parotid glands were sensitive to set-up uncertainty with a mean reduction of NTCP (ΔNTCP) of 6.17% (left) and 7.70% (right). The Dmax of optical nerves and lens varied slightly. Conclusion VMAT plans had a strong sensitivity to set-up uncertainty in NPC radiotherapy, with increasing risk of underdose of tumor and overdose of vicinal OARs. We proposed an effective method to evaluate the plan robustness of VMAT plans. Plan robustness and complexity should be taken into account in photon radiotherapy.
Collapse
|
56
|
Upadhyay R, Khose S, Pokhylevych H, Paulino AC, McAleer MF, Ghia A, Li J, Yeboa DN, Loghin M, Harrison R, O’Brien B, Kamiya-Matsuoka C, De Groot J, Puduvalli VK, Tatsui C, Alvarez-Breckenridge C, Prabhu S, Rhines L, Zaky W, Lin F, Weinberg JS, Fuller G, Sandberg DI, Johnson JM, McGovern SL. Patterns of failure after radiation therapy in primary spinal high-grade gliomas: A single institutional analysis. Neurooncol Adv 2022; 4:vdac129. [PMID: 36128585 PMCID: PMC9476222 DOI: 10.1093/noajnl/vdac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Primary spinal high-grade gliomas (S-HGG) are rare aggressive tumors; radiation therapy (RT) often plays a dominant role in management. We conducted a single-institution retrospective review to study the clinicopathological features and management of S-HGGs. Methods Patients with biopsy-proven S-HGG who received RT from 2001 to 2020 were analyzed for patient, tumor, and treatment characteristics. Kaplan–Meier estimates were used for survival analyses. Results Twenty-nine patients were identified with a median age of 25.9 years (range 1–74 y). Four patients had GTR while 25 underwent subtotal resection or biopsy. All patients were IDH wildtype and MGMT-promoter unmethylated, where available. H3K27M mutation was present in 5 out of 10 patients tested, while one patient harbored p53 mutation. Median RT dose was 50.4 Gy (range 39.6–54 Gy) and 65% received concurrent chemotherapy, most commonly temozolomide. Twenty-three (79%) of patients had documented recurrence. Overall, 16 patients relapsed locally, 10 relapsed in the brain and 8 developed leptomeningeal disease; only 8 had isolated local relapse. Median OS from diagnosis was 21.3 months and median PFS was 9.7 months. On univariate analysis, age, gender, GTR, grade, RT modality, RT dose and concurrent chemotherapy did not predict for survival. Patients with H3K27M mutation had a poorer PFS compared to those without mutation (10.1 m vs 45.1 m) but the difference did not reach statistical significance (P = .26). Conclusions The prognosis of patients with spinal HGGs remains poor with two-thirds of the patients developing distant recurrence despite chemoradiation. Survival outcomes were similar in patients ≤ 29 years compared to adults > 29 years. A better understanding of the molecular drivers of spinal HGGs is needed to develop more effective treatment options.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The James Cancer Centre, Ohio State University , Columbus, Ohio , USA
| | - Swapnil Khose
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Halyna Pokhylevych
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Arnold C Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Amol Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Debra Nana Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Monica Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Rebecca Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Barbara O’Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - John De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Claudio Tatsui
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | | | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Larry Rhines
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Wafik Zaky
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Frank Lin
- Texas Children’s Cancer Center, Baylor College of Medicine , Houston, Texas , USA
| | - Jeffery S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Gregory Fuller
- Department of Neuro-pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA (G.F.)
| | - David I Sandberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Jason Michael Johnson
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas , USA
| |
Collapse
|
57
|
Pagett CJ, Lilley J, Lindsay R, Short S, Murray L. Optimising tumour coverage and organ at risk sparing for hypofractionated re-irradiation in glioblastoma. Phys Imaging Radiat Oncol 2022; 21:84-89. [PMID: 35243037 PMCID: PMC8881705 DOI: 10.1016/j.phro.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Re-irradiation may be used for recurrent glioblastoma (GBM) patients. In some cases Planning Target Volume (PTV) under-coverage is necessary to meet organ at risk (OAR) constraints. This study aimed to develop a Volumetric Modulated Arc Therapy planning solution for GBM re-irradiation including a means of assessing if target coverage would be achievable and how much PTV 'cropping' would be required to meet OAR constraints, based on PTV volume and OAR proximity. MATERIALS AND METHODS For 10 PTVs, 360°, 180°, two coplanar 180° and 180° + non-coplanar 45° arc arrangements were compared using 35 Gy in 10 fractions. Using the preferred arrangement, dose fall-off was modelled to determine the separation required between PTV and OAR to ensure OAR dose constraints were met, with data presented graphically. To evaluate the graph as an aid to planning, seven cases with overlap were replanned in two treatment planning systems (TPSs). RESULTS There were no significant dosimetric differences between arc arrangements. 180° was preferred due to shorter treatment times. The graph, which indicated if 95% PTV coverage would be achievable based on PTV volume and OAR proximity, was employed in seven cases to guide planning in two TPSs. Plans were deliverable. CONCLUSIONS Re-irradiation treatment planning can be challenging, especially when PTV under-coverage is necessary. 180° was considered optimal. To assist in the planning process, graphical guidance was produced to inform planners whether PTV under-coverage would be necessary and how much PTV 'cropping' would be required to meet constraints during optimisation.
Collapse
Affiliation(s)
| | - John Lilley
- Leeds Teaching Hospitals NHS Trust, United Kingdom
| | | | - Susan Short
- Leeds Teaching Hospitals NHS Trust, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Louise Murray
- Leeds Teaching Hospitals NHS Trust, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
| |
Collapse
|
58
|
Thureau S, Supiot S, Jouglar E, Rogé M, Lebret L, Hadj Henni A, Beldjoudi G, Lagrange JL, Faivre JC. Radiotherapy of bone metastases. Cancer Radiother 2021; 26:368-376. [PMID: 34955420 DOI: 10.1016/j.canrad.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We present the update of the recommendations of the French society of oncological radiotherapy on bone metastases. This is a common treatment in the management of patients with cancer. It is a relatively simple treatment with proven efficacy in reducing pain or managing spinal cord compression. More complex treatments by stereotaxis can be proposed for oligometastatic patients or in case of reirradiation. In this context, increased vigilance should be given to the risks to the spinal cord.
Collapse
Affiliation(s)
- S Thureau
- Département de radiothérapie et de physique médicale, Quantif-Litis EA 4108, centre Henri-Becquerel, 76038 Rouen, France.
| | - S Supiot
- Service de radiothérapie, Institut de cancérologie de l'Ouest centre René- Gauducheau, 44800 Saint-Herblain, France
| | - E Jouglar
- Service de radiothérapie, Institut de cancérologie de l'Ouest centre René- Gauducheau, 44800 Saint-Herblain, France
| | - M Rogé
- Département de radiothérapie et de physique médicale, Quantif-Litis EA 4108, centre Henri-Becquerel, 76038 Rouen, France
| | - L Lebret
- Département de radiothérapie et de physique médicale, Quantif-Litis EA 4108, centre Henri-Becquerel, 76038 Rouen, France
| | - A Hadj Henni
- Département de radiothérapie et de physique médicale, Quantif-Litis EA 4108, centre Henri-Becquerel, 76038 Rouen, France
| | - G Beldjoudi
- Département de radiothérapie, centre Léon-Bérard, 69000 Lyon, France
| | | | - J-C Faivre
- Département de radiothérapie, Institut de cancérologie de Lorraine centre Alexis-Vautrin, 54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
59
|
Morse RT, Doke K, Ganju RG, Sood S, Mavroidis P, Chen AM. Stereotactic body radiotherapy for apical lung tumors: Dosimetric analysis of the brachial plexus and preliminary clinical outcomes. Pract Radiat Oncol 2021; 12:e183-e192. [PMID: 34929402 DOI: 10.1016/j.prro.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Dosimetric constraints of the brachial plexus have not yet been well-established for patients undergoing stereotactic body radiotherapy (SBRT). This study evaluated long-term experience with the treatment of early stage apical lung tumors with SBRT and reports on dosimetric correlates of outcome. METHODS Between 2009 and 2018, a total of 78 consecutive patients with 81 apical lung tumors underwent SBRT for T1-3N0 non-small cell lung cancer. Apical tumors were those with tumor epicenter superior to the aortic arch. The brachial plexus (BP) was anatomically contoured according to the Radiation Therapy Oncology Group (RTOG) atlas. Patient medical records were retrospectively reviewed to determine incidence of brachial plexus injury (BPI) and a normal tissue complication probability model (NTCP) was applied to the dosimetric data. RESULTS Five patients (6.4%) reported neuropathic symptoms consistent with BPI and occurred a median 11.9 months after treatment (range, 5.2 to 28.1 months). Most common dose and fractionation in those developing BPI were 50 Gy in 5 fractions (4 patients). Symptoms consisted of pain in 2 patients (40.0%), numbness in the hand or axilla in 4 patients (80.0%), and ipsilateral hand weakness in 1 patient (20.0%). In the overall cohort the median BP Dmax (EQD23 Gy) was 5.13 Gy (range, 0.18 to 217.2 Gy) and in patients with BPI the median BP Dmax (EQD23 Gy) was 32.14 Gy (range, 13.4 to 99.9 Gy). The NTCP model gave good fit with an area under the curve (AUC) of 0.75 (OR 7.3, 95% CI: 0.8-68.3) for BP Dmax (EQD23 Gy) threshold of 20 Gy. CONCLUSION Significant variation exists in the dose delivered to the brachial plexus for patients treated by SBRT for apical lung tumors. The incidence of neuropathic symptoms in the post-SBRT setting was appreciable and prospective clinical correlation with dosimetric information should be utilized in order to develop evidence-based dose constraints.
Collapse
Affiliation(s)
- Ryan T Morse
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Kaleigh Doke
- Department of Radiation Oncology, University of Colorado
| | - Rohit G Ganju
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Sumit Sood
- Department of Radiation Oncology, University of Minnesota
| | | | - Allen M Chen
- Department of Radiation Oncology, University of California Irvine.
| |
Collapse
|
60
|
Krauze AV, Camphausen K. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition. Int J Mol Sci 2021; 22:13278. [PMID: 34948075 PMCID: PMC8703419 DOI: 10.3390/ijms222413278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA;
| | | |
Collapse
|
61
|
Jiang P, Zou L, Wei L, Cheng G, Sun B, Zhang F, Wang R, Wang T, Qu A, Yuan X, Qiu B, Wei S, Liu Z, Zhang Y, Wang J. Chinese Expert Consensus on Iodine 125 Seed Implantation for Recurrent Cervical Cancer in 2021. Front Oncol 2021; 11:700710. [PMID: 34858802 PMCID: PMC8630633 DOI: 10.3389/fonc.2021.700710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
The treatment modality for recurrent cervical cancer (rCC) is limited, and the prognosis of these patients is poor. Seed implantation could be an important component of rCC management in the context of dose boost or salvage therapy after surgery or radiotherapy, which is characterized by a minimally invasive, high local dose, and rapidly does fall, sparing normal tissue. For patients with good performance status and lateral pelvic wall recurrence with an available puncture path, seed implantation was recommended, as well as for selected central pelvic recurrence and extra-pelvic recurrence. The combination of brachytherapy treatment planning system and CT guidance was needed, and three-dimensional printing templates could greatly improve the accuracy, efficiency, and quality of seed implantation to achieve a potential ablative effect and provide an efficient treatment for rCC. However, the recommendations of seed implantation were mainly based on retrospective articles and lack high-quality evidence, and multicenter prospective randomized studies are needed. In this consensus on iodine125 seed implantation for rCC, indication selection, technical process and requirements, dosimetry criteria, radiation protection, combined systemic therapy, and outcomes of seed implantation for rCC are discussed.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lijuan Zou
- Department Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lichun Wei
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baosheng Sun
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Ruoyu Wang
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Ang Qu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiangkun Yuan
- Department of Radiation Oncology, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Bin Qiu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Yunyan Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
62
|
Recurrent Solitary Fibrous Tumor in Intradural Extramedullary Space: Case Report and Review of the Literature. Case Rep Oncol Med 2021; 2021:4559749. [PMID: 34845431 PMCID: PMC8627340 DOI: 10.1155/2021/4559749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Solitary fibrous tumor/hemangiopericytoma (SFT/HPC) is a rare neoplasm arising from spindle cells and most commonly arising from pleura. Spinal SFT/HPC is a rare entity; hence, it is not on the top of the differential diagnosis list when a clinician faces a spinal lesion. In the review of the literature, there exist less than 50 case reports of intradural extramedullary SFT/HPC. Here, we present a 54-year-old female patient who underwent subtotal surgical excision of an intradural extramedullary spinal mass pathologically reported to be SFT/HPC and had symptomatic recurrence in the 3rd year of follow-up. Surgical intervention was unachievable and the patient was given 45 Gy to the surgical cavity followed by a 5.4 Gy boost to visible tumor with external radiotherapy. Patient reported significant relief of her symptoms. We aim to contribute to the formation of a treatment algorithm for this rare entity.
Collapse
|
63
|
Weppler S, Quon H, Schinkel C, Yarschenko A, Barbera L, Harjai N, Smith W. Patient-Reported Outcomes-Guided Adaptive Radiation Therapy for Head and Neck Cancer. Front Oncol 2021; 11:759724. [PMID: 34737963 PMCID: PMC8560706 DOI: 10.3389/fonc.2021.759724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Purpose To identify which patient-reported outcomes (PROs) may be most improved through adaptive radiation therapy (ART) with the goal of reducing toxicity incidence among head and neck cancer patients. Methods One hundred fifty-five head and neck cancer patients receiving radical VMAT (chemo)radiotherapy (66-70 Gy in 30-35 fractions) completed the MD Anderson Symptom Inventory, MD Anderson Dysphagia Inventory (MDADI), and Xerostomia Questionnaire while attending routine follow-up clinics between June-October 2019. Hierarchical clustering characterized symptom endorsement. Conventional statistical approaches indicated associations between dose and commonly reported symptoms. These associations, and the potential benefit of interfractional dose corrections, were further explored via logistic regression. Results Radiotherapy-related symptoms were commonly reported (dry mouth, difficulty swallowing/chewing). Clustering identified three patient subgroups reporting: none/mild symptoms for most items (60.6% of patients); moderate/severe symptoms affecting some aspects of general well-being (32.9%); and moderate/severe symptom reporting for most items (6.5%). Clusters of PRO items broadly consisted of acute toxicities, general well-being, and head and neck-specific symptoms (xerostomia, dysphagia). Dose-PRO relationships were strongest between delivered pharyngeal constrictor Dmean and patient-reported dysphagia, with MDADI composite scores (mean ± SD) of 25.7 ± 18.9 for patients with Dmean <50 Gy vs. 32.4 ± 17.1 with Dmean ≥50 Gy. Based on logistic regression models, during-treatment dose corrections back to planned values may confer ≥5% decrease in the absolute risk of self-reported physical dysphagia symptoms ≥1 year post-treatment in 1.2% of patients, with a ≥5% decrease in relative risk in 23.3% of patients. Conclusions Patient-reported dysphagia symptoms are strongly associated with delivered dose to the pharyngeal constrictor. Dysphagia-focused ART may provide the greatest toxicity benefit to head and neck cancer patients, and represent a potential new direction for ART, given that the existing ART literature has focused almost exclusively on xerostomia reduction.
Collapse
Affiliation(s)
- Sarah Weppler
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Harvey Quon
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Colleen Schinkel
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Adam Yarschenko
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada
| | - Lisa Barbera
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Nabhya Harjai
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Wendy Smith
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
64
|
Slevin F, Aitken K, Alongi F, Arcangeli S, Chadwick E, Chang AR, Cheung P, Crane C, Guckenberger M, Jereczek-Fossa BA, Kamran SC, Kinj R, Loi M, Mahadevan A, Massaccesi M, Mendez LC, Muirhead R, Pasquier D, Pontoriero A, Spratt DE, Tsang YM, Zelefsky MJ, Lilley J, Dickinson P, Hawkins MA, Henry AM, Murray LJ. An international Delphi consensus for pelvic stereotactic ablative radiotherapy re-irradiation. Radiother Oncol 2021; 164:104-114. [PMID: 34560186 DOI: 10.1016/j.radonc.2021.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Stereotactic Ablative Radiotherapy (SABR) is increasingly used to treat metastatic oligorecurrence and locoregional recurrences but limited evidence/guidance exists in the setting of pelvic re-irradiation. An international Delphi study was performed to develop statements to guide practice regarding patient selection, pre-treatment investigations, treatment planning, delivery and cumulative organs at risk (OARs) constraints. MATERIALS AND METHODS Forty-one radiation oncologists were invited to participate in three online surveys. In Round 1, information and opinion was sought regarding participants' practice. Guidance statements were developed using this information and in Round 2 participants were asked to indicate their level of agreement with each statement. Consensus was defined as ≥75% agreement. In Round 3, any statements without consensus were re-presented unmodified, alongside a summary of comments from Round 2. RESULTS Twenty-three radiation oncologists participated in Round 1 and, of these, 21 (91%) and 22 (96%) completed Rounds 2 and 3 respectively. Twenty-nine of 44 statements (66%) achieved consensus in Round 2. The remaining 15 statements (34%) did not achieve further consensus in Round 3. Consensus was achieved for 10 of 17 statements (59%) regarding patient selection/pre-treatment investigations; 12 of 13 statements (92%) concerning treatment planning and delivery; and 7 of 14 statements (50%) relating to OARs. Lack of agreement remained regarding the minimum time interval between irradiation courses, the number/size of pelvic lesions that can be treated and the most appropriate cumulative OAR constraints. CONCLUSIONS This study has established consensus, where possible, in areas of patient selection, pre-treatment investigations, treatment planning and delivery for pelvic SABR re-irradiation for metastatic oligorecurrence and locoregional recurrences. Further research into this technique is required, especially regarding aspects of practice where consensus was not achieved.
Collapse
Affiliation(s)
- Finbar Slevin
- Leeds Teaching Hospitals NHS Trust, UK; University of Leeds, UK.
| | - Katharine Aitken
- The Royal Marsden NHS Foundation Trust, London, UK; The Institute of Cancer Research, London, UK.
| | - Filippo Alongi
- IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Italy; University of Brescia, Italy.
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy.
| | | | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea.
| | | | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloane Kettering Cancer Centre, New York, USA.
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy.
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
| | - Rémy Kinj
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy.
| | - Anand Mahadevan
- Geisinger Medical Center - Radiation Oncology, Danville, USA.
| | - Mariangela Massaccesi
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, Roma, Italy.
| | - Lucas C Mendez
- Division of Radiation Oncology, London Health Sciences Centre, Canada.
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre Oscar Lambret, Lille, France; CRIStAL, UMR 9181, Lille University, Lille, France.
| | - Antonio Pontoriero
- Department of BIOMORF, Radiation Oncology Unit, University of Messina, Italy.
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Centre, Cleveland, USA.
| | | | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloane Kettering Cancer Centre, New York, USA.
| | | | | | - Maria A Hawkins
- Medical Physics and Biochemical Engineering, University College London, UK.
| | - Ann M Henry
- Leeds Teaching Hospitals NHS Trust, UK; University of Leeds, UK.
| | - Louise J Murray
- Leeds Teaching Hospitals NHS Trust, UK; University of Leeds, UK.
| |
Collapse
|
65
|
Buglione M, Guerini AE, Filippi AR, Spiazzi L, Pasinetti N, Magli A, Toraci C, Borghetti P, Triggiani L, Alghisi A, Costantino G, Bertagna F, Giaj Levra N, Pegurri L, Magrini SM. A Systematic Review on Intensity Modulated Radiation Therapy for Mediastinal Hodgkin's Lymphoma. Crit Rev Oncol Hematol 2021; 167:103437. [PMID: 34358649 DOI: 10.1016/j.critrevonc.2021.103437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 05/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Secondary malignant neoplasms (SMNs) and cardiovascular diseases induced by chemotherapy and radiotherapy represent the main cause of excess mortality for early-stage Hodgkin lymphoma patients, especially when the mediastinum is involved. Conformal radiotherapy techniques such as Intensity-Modulated Radiation Therapy (IMRT) could allow a reduction of the dose to the organs-at-risk (OARs) and therefore limit long-term toxicity. METHODS We performed a systematic review of the current literature regarding comparisons between IMRT and conventional photon beam radiotherapy, or between different IMRT techniques, for the treatment of mediastinal lymphoma. RESULTS AND CONCLUSIONS IMRT allows a substantial reduction of the volumes of OARs exposed to high doses, reducing the risk of long-term toxicity. This benefit is conterbalanced by the increase of volumes receiving low doses, that could potentially increase the risk of SMNs. Treatment planning should be personalized on patient and disease characteristics. Dedicated techniques such as "butterfly" VMAT often provide the best trade-off.
Collapse
Affiliation(s)
- Michela Buglione
- Università degli Studi di Brescia, Department of Radiation Oncology, Brescia University, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Andrea Emanuele Guerini
- Università degli Studi di Brescia, Department of Radiation Oncology, Brescia University, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Andrea Riccardo Filippi
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| | - Luigi Spiazzi
- Department of Radiation Oncology, ASST Spedali Civili di Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Nadia Pasinetti
- Università degli Studi di Brescia, Department of Radiation Oncology, Brescia University, P.le Spedali Civili 1, 25123 Brescia, Italy; Radiation Oncology Service, ASST Valcamonica Esine, Italy.
| | - Alessandro Magli
- Department of Radiation Oncology, Udine General Hospital, Udine, Italy.
| | - Cristian Toraci
- Department of Radiation Oncology, ASST Spedali Civili di Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Paolo Borghetti
- Department of Radiation Oncology, ASST Spedali Civili di Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Luca Triggiani
- Università degli Studi di Brescia, Department of Radiation Oncology, Brescia University, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Alessandro Alghisi
- Department of Radiation Oncology, Alessandro Manzoni Hospital, Lecco, Italy.
| | | | - Francesco Bertagna
- Nuclear Medicine Department, University of Brescia and Spedali Civili of Brescia, Brescia, Italy.
| | - Niccolò Giaj Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Italy.
| | - Ludovica Pegurri
- Department of Radiation Oncology, ASST Spedali Civili di Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy.
| | - Stefano Maria Magrini
- Università degli Studi di Brescia, Department of Radiation Oncology, Brescia University, P.le Spedali Civili 1, 25123 Brescia, Italy.
| |
Collapse
|
66
|
Lee CL, Wright AO, Lee JW, Brownstein J, Hasapis S, Satow S, Da Silva Campos L, Williams N, Ma Y, Luo L, Johnson T, Daniel AR, Harrison WT, Oldham M, Kirsch DG. Sensitization of Endothelial Cells to Ionizing Radiation Exacerbates Delayed Radiation Myelopathy in Mice. Radiat Res 2021; 197:0. [PMID: 34724704 DOI: 10.1667/rade-21-00166.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Delayed radiation myelopathy is a rare, but significant late side effect from radiation therapy that can lead to paralysis. The cellular and molecular mechanisms leading to delayed radiation myelopathy are not completely understood but may be a consequence of damage to oligodendrocyte progenitor cells and vascular endothelial cells. Here, we aimed to determine the contribution of endothelial cell damage to the development of radiation-induced spinal cord injury using a genetically defined mouse model in which endothelial cells are sensitized to radiation due to loss of the tumor suppressor p53. Tie2Cre; p53FL/+ and Tie2Cre; p53FL/- mice, which lack one and both alleles of p53 in endothelial cells, respectively, were treated with focal irradiation that specifically targeted the lumbosacral region of the spinal cord. The development of hindlimb paralysis was followed for up to 18 weeks after either a 26.7 Gy or 28.4 Gy dose of radiation. During 18 weeks of follow-up, 83% and 100% of Tie2Cre; p53FL/- mice developed hindlimb paralysis after 26.7 and 28.4 Gy, respectively. In contrast, during this period only 8% of Tie2Cre; p53FL/+ mice exhibited paralysis after 28.4 Gy. In addition, 8 weeks after 28.4 Gy the irradiated spinal cord from Tie2Cre; p53FL/- mice showed a significantly higher fractional area positive for the neurological injury marker glial fibrillary acidic protein (GFAP) compared with the irradiated spinal cord from Tie2Cre; p53FL/+ mice. Together, our findings show that deletion of p53 in endothelial cells sensitizes mice to the development of delayed radiation myelopathy indicating that endothelial cells are a critical cellular target of radiation that regulates myelopathy.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology.,Department of Pathology
| | | | | | | | | | | | | | | | - Yan Ma
- Department of Radiation Oncology
| | | | | | | | - William T Harrison
- Department of Pathology, Wake Forest Baptist Health, Winston Salem, North Carolina 27157
| | | | - David G Kirsch
- Department of Radiation Oncology.,Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
67
|
Chen L, Riaz N, Lee N, McBride S. Current considerations for radiotherapy in HPV-associated head and neck cancer. J Surg Oncol 2021; 124:945-951. [PMID: 34617275 DOI: 10.1002/jso.26689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023]
Abstract
Human papillomavirus (HPV)-mediated oncogenesis confers increased sensitivity to radiotherapy and HPV head and neck cancer is associated with improved patient outcomes. As such, management of HPV-related head and neck cancer requires a multidisciplinary approach that balances maximizing locoregional control with minimizing treatment-related toxicity. We highlight considerations in radiation dose and target delineation, as well as considerations for chemoradiation, postoperative radiotherapy, and single modality, definitive radiotherapy.
Collapse
Affiliation(s)
- Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
68
|
Anderson G, Ebadi M, Vo K, Novak J, Govindarajan A, Amini A. An Updated Review on Head and Neck Cancer Treatment with Radiation Therapy. Cancers (Basel) 2021; 13:4912. [PMID: 34638398 PMCID: PMC8508236 DOI: 10.3390/cancers13194912] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The complexity of head and neck cancers (HNC) mandates a multidisciplinary approach and radiation therapy (RT) plays a critical role in the optimal management of patients with HNC, either as frontline or adjuvant treatment postoperatively. The advent of both definitive and post-operative RT has significantly improved the outcomes of patients with HNC. Herein, we discuss the role of postoperative RT in different subtypes of HNC, its side effects, and the importance of surveillance. The treatment regions discussed in this paper are the oral cavity, nasopharynx, paranasal sinus cavity, oropharynx, larynx and hypopharynx. Multiple studies that demonstrate the importance of definitive and/or postoperative RT, which led to an improved outlook of survival for HNC patients will be discussed.
Collapse
Affiliation(s)
- Garrett Anderson
- Division of Nuclear Medicine, Department of Radiology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Maryam Ebadi
- Department of Internal Medicine, Louis A. Weiss Memorial Hospital, Chicago, IL 60640, USA
| | - Kim Vo
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jennifer Novak
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ameish Govindarajan
- Department of Internal Medicine, UCLA-Kern Medical Center, Bakersfield, CA 93306, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
69
|
A Case of Radiation Recall Myositis and Neuropathy in Locally Advanced Rectal Cancer. Adv Radiat Oncol 2021; 6:100770. [PMID: 34557607 PMCID: PMC8445835 DOI: 10.1016/j.adro.2021.100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
|
70
|
García-Cabezas S, Rivin del Campo E, Solivera-Vela J, Palacios-Eito A. Re-irradiation for high-grade gliomas: Has anything changed? World J Clin Oncol 2021; 12:767-786. [PMID: 34631441 PMCID: PMC8479348 DOI: 10.5306/wjco.v12.i9.767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Optimal management after recurrence or progression of high-grade gliomas is still undefined and remains a challenge for neuro-oncology multidisciplinary teams. Improved radiation therapy techniques, new imaging methods, published experience, and a better radiobiological knowledge of brain tissue have positioned re-irradiation (re-RT) as an option for many of these patients. Decisions must be individualized, taking into account the pattern of relapse, previous treatment, and functional status, as well as the patient’s preferences and expected quality of life. Many questions remain unanswered with respect to re-RT: Who is the most appropriate candidate, which dose and fractionation are most effective, how to define the target volume, which imaging technique is best for planning, and what is the optimal timing? This review will focus on describing the most relevant studies that include re-RT as salvage therapy, with the aim of simplifying decision-making and designing the best available therapeutic strategy.
Collapse
Affiliation(s)
- Sonia García-Cabezas
- Department of Radiation Oncology, Reina Sofia University Hospital, Cordoba 14004, Spain
| | | | - Juan Solivera-Vela
- Department of Neurosurgery, Reina Sofia University Hospital, Cordoba 14004, Spain
| | - Amalia Palacios-Eito
- Department of Radiation Oncology, Reina Sofia University Hospital, Cordoba 14004, Spain
| |
Collapse
|
71
|
Wang K, Tepper JE. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin 2021; 71:437-454. [PMID: 34255347 DOI: 10.3322/caac.21689] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is a curative treatment for many malignancies and provides effective palliation in patients with tumor-related symptoms. However, the biophysical effects of RT are not specific to tumor cells and may produce toxicity due to exposure of surrounding organs and tissues. In this article, the authors review the clinical context, pathophysiology, risk factors, presentation, and management of RT side effects in each human organ system. Ionizing radiation works by producing DNA damage leading to tumor death, but effects on normal tissue may result in acute and/or late toxicity. The manifestation of toxicity depends on both cellular characteristics and affected organs' anatomy and physiology. There is usually a direct relationship between the radiation dose and volume to normal tissues and the risk of toxicity, which has led to guidelines and recommended dose limits for most tissues. Side effects are multifactorial, with contributions from baseline patient characteristics and other oncologic treatments. Technological advances in recent decades have decreased RT toxicity by dramatically improving the ability to deliver RT that maximizes tumor dose and minimizes organ dose. Thus the study of RT-associated toxicity is a complex, core component of radiation oncology training that continues to evolve alongside advances in cancer management. Because RT is used in up to one-half of all patients with cancer, an understanding of its acute and late effects in different organ systems is clinically pertinent to both oncologists and nononcologists.
Collapse
Affiliation(s)
- Kyle Wang
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Joel E Tepper
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
72
|
Gong H, Li B. Guidelines for Radiotherapy of Esophageal Carcinoma (2020 Edition). PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
73
|
Postoperative Radiochemotherapy Using Modern Radiotherapy Techniques in Elderly Patients with Head and Neck Squamous Cell Carcinoma: The Challenge of Weighing Up Benefits and Harms of Treatment Modalities in Clinical Practice. Cancers (Basel) 2021; 13:cancers13143384. [PMID: 34298599 PMCID: PMC8307771 DOI: 10.3390/cancers13143384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Locally advanced head and neck squamous cell carcinomas (HNSCC) are often managed with surgery and postoperative radiochemotherapy (RCT). Until now, a deeper understanding of specific management strategies for elderly patients was lacking. In the present study, we compared patients ≥70 years of age and younger patients treated with postoperative RCT for HNSCC. All patients were treated with modern radiotherapy techniques (IMRT/VMAT). Elderly patients had more comorbidities. In addition, they less frequently received concomitant systemic treatment. The rates of mucositis and dermatitis were lower in patients ≥70 years. Elderly patients had significantly worse overall survival and progression-free survival. Locoregional and distant control were comparable in elderly and younger patients. In conclusion, postoperative radiochemotherapy is a safe and effective treatment option in patients ≥70 years. In light of comorbidities and poor survival rates, potential benefits and harms of radiotherapy and concomitant systemic treatment should be weighed carefully for this age group. Abstract Locally advanced head and neck squamous cell carcinomas (HNSCC) are often managed with surgery followed by postoperative radiochemotherapy (RCT). With the general increase in life expectancy, the proportion of elderly patients with HNSCC is expected to grow rapidly. Until now, a deeper understanding of specific management strategies for these patients in clinical routine was lacking. In the present study, we compared elderly patients (≥70 years, n = 52) and younger patients (n = 245) treated with postoperative RCT for HNSCC at our tertiary cancer center. All patients were irradiated with modern radiotherapy techniques (IMRT/VMAT). Patients ≥70 years of age had more comorbidities. Additionally, elderly patients less frequently received concomitant systemic treatment. The rates of mucositis and dermatitis were lower in patients ≥70 years. Elderly patients had significantly worse overall and progression-free survival. Locoregional and distant control were comparable in elderly and younger patients. In conclusion, postoperative RCT is a safe and effective treatment option in patients ≥70 years. In light of comorbidities and poor overall survival rates, benefits and harms of radiotherapy and concomitant systemic treatment should be weighed carefully. When exclusively applying up-to-date radiotherapy techniques with, at the same time, careful use of concomitant systemic therapy, favorable acute toxicity profiles are achieved.
Collapse
|
74
|
Slevin F, Thompson CM, Speight R, Murray LJ, Lilley J, Henry AM. Ultra hypofractionated extended nodal irradiation using volumetric modulated arc therapy for oligorecurrent pelvic nodal prostate cancer. Med Dosim 2021; 46:411-418. [PMID: 34148727 DOI: 10.1016/j.meddos.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Prostate cancer (PCa) may recur after primary treatment but no standard of care exists for patients with pelvic nodal relapse. Based on obervational data, Extended Nodal Irradiation (ENI) might be associated with fewer treatment failures than Stereotactic Ablative Radiotherapy (SABR) to the involved node(s) alone. Ultra hypofractionated ENI is yet to be evaluated in this setting, but it could provide a therapeutic advantage if PCa has a low α/β ratio in addition to patient convenience/resource benefits. This volumetric modulated arc therapy (VMAT) planning study developed a class solution for 5-fraction Extended Nodal Irradiation (ENI) plus a simultaneous integrated boost (SIB) to involved node(s). Ten patients with oligorecurrent nodal disease after radical prostatectomy/post-operative prostate bed radiotherapy were selected. Three plans were produced for each dataset to deliver 25 Gy in 5 fractions ENI plus SIBs of 40, 35 and 30 Gy. The biologically effective dose (BED) formula was used to determine the remaining dose in 5 fractions that could be delivered to re-irradiated segments of organs at risk (OARs). Tumour control probability (TCP) and normal tissue complication probability (NTCP) were calculated using the LQ-Poisson Marsden and Lyman-Kutcher-Burman models respectively. Six patients had an OAR positioned within planning target volume node (PTVn), which resulted in reduced target coverage to PTV node in six, five and four instances for 40, 35 and 30 Gy SIB plans respectively. In these instances, only 30 Gy SIB plans had a median PTV coverage >90% (inter-quartile range 90-95). No OAR constraint was exceeded for 30 Gy SIB plans, including where segments of OARs were re-irradiated. Gross tumour volume node (GTVn) median TCP was 95.7% (94.4-96), 90.7% (87.1-91.2) and 78.6% (75.8-81.1) for 40, 35 and 30 Gy SIB plans respectively, where an α/β ratio of 1.5 was assumed. SacralPlex median NTCP was 43.2% (0.7-61.2), 12.1% (0.6-29.7) and 2.5% (0.5-5.1) for 40, 35 and 30 Gy SIB plans respectively. NTCP for Bowel_Small was <0.3% and zero for other OARs for all three plan types. Ultra hypofractionated ENI planning for pelvic nodal relapsed PCa appears feasible with encouraging estimates of nodal TCP and low estimates of NTCP, especially where a low α/β ratio is assumed and a 30 Gy SIB is delivered. This solution should be further evaluated within a clinical trial and compared against SABR to involved node(s) alone.
Collapse
Affiliation(s)
- Finbar Slevin
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; University of Leeds, Leeds LS2 9JT, UK.
| | | | - Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Louise J Murray
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; University of Leeds, Leeds LS2 9JT, UK
| | - John Lilley
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Ann M Henry
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
75
|
Ebert MA, Gulliford S, Acosta O, de Crevoisier R, McNutt T, Heemsbergen WD, Witte M, Palma G, Rancati T, Fiorino C. Spatial descriptions of radiotherapy dose: normal tissue complication models and statistical associations. Phys Med Biol 2021; 66:12TR01. [PMID: 34049304 DOI: 10.1088/1361-6560/ac0681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Abstract
For decades, dose-volume information for segmented anatomy has provided the essential data for correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information has formed the basis for modelling those associations via normal tissue complication probability (NTCP) models and for driving treatment planning. Limitations to this approach have been identified. Many studies have emerged demonstrating that the incorporation of information describing the spatial nature of the dose distribution, and potentially its correlation with anatomy, can provide more robust associations with toxicity and seed more general NTCP models. Such approaches are culminating in the application of computationally intensive processes such as machine learning and the application of neural networks. The opportunities these approaches have for individualising treatment, predicting toxicity and expanding the solution space for radiation therapy are substantial and have clearly widespread and disruptive potential. Impediments to reaching that potential include issues associated with data collection, model generalisation and validation. This review examines the role of spatial models of complication and summarises relevant published studies. Sources of data for these studies, appropriate statistical methodology frameworks for processing spatial dose information and extracting relevant features are described. Spatial complication modelling is consolidated as a pathway to guiding future developments towards effective, complication-free radiotherapy treatment.
Collapse
Affiliation(s)
- Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- 5D Clinics, Claremont, Western Australia, Australia
| | - Sarah Gulliford
- Department of Radiotherapy Physics, University College Hospitals London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, United Kingdom
| | - Oscar Acosta
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, F-35000 Rennes, France
| | | | - Todd McNutt
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Marnix Witte
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Giuseppe Palma
- Institute of Biostructures and Bioimaging, National Research Council, Napoli, Italy
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
76
|
Weppler S, Quon H, Schinkel C, Ddamba J, Harjai N, Vigal C, Beers CA, Van Dyke L, Smith W. Determining Clinical Patient Selection Guidelines for Head and Neck Adaptive Radiation Therapy Using Random Forest Modelling and a Novel Simplification Heuristic. Front Oncol 2021; 11:650335. [PMID: 34164338 PMCID: PMC8216638 DOI: 10.3389/fonc.2021.650335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine which head and neck adaptive radiotherapy (ART) correction objectives are feasible and to derive efficient ART patient selection guidelines. Methods We considered various head and neck ART objectives including independent consideration of dose-sparing of the brainstem/spinal cord, parotid glands, and pharyngeal constrictor, as well as prediction of patient weight loss. Two-hundred head and neck cancer patients were used for model development and an additional 50 for model validation. Patient chart data, pre-treatment images, treatment plans, on-unit patient measurements, and combinations thereof were assessed as potential predictors of each objective. A stepwise approach identified combinations of predictors maximizing the Youden index of random forest (RF) models. A heuristic translated RF results into simple patient selection guidelines which were further refined to balance predictive capability and practical resource costs. Generalizability of the RF models and simplified guidelines to new data was tested using the validation set. Results Top performing RF models used various categories of predictors, however, final simplified patient selection guidelines only required pre-treatment information for ART predictions, indicating the potential for significant ART process streamlining. The simplified guidelines for each objective predicted which patients would experience increases in dose to: brainstem/spinal cord with sensitivity = 1.0, specificity = 0.66; parotid glands with sensitivity = 0.82, specificity = 0.70; and pharyngeal constrictor with sensitivity = 0.84, specificity = 0.68. Weight loss could be predicted with sensitivity = 0.60 and specificity = 0.55. Furthermore, depending on the ART objective, 28%-58% of patients required replan assessment, less than for previous studies, indicating a step towards more effective patient selection. Conclusions The above ART objectives appear to be practically achievable, with patients selected for ART according to simple clinical patient selection guidelines. Explicit ART guidelines are rare in the literature, and our guidelines may aid in balancing the potential clinical gains of ART with high associated resource costs, formalizing ART trials, and ensuring the reproducibility of clinical successes.
Collapse
Affiliation(s)
- Sarah Weppler
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Harvey Quon
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Colleen Schinkel
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - James Ddamba
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Nabhya Harjai
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Clarisse Vigal
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Craig A Beers
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lukas Van Dyke
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Wendy Smith
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
77
|
Jokovic M, Somma T, Ilic R, Guizzardi G, Stanimirovic A, Raicevic S, Milicevic M, Grujicic D, Solari D. Primary spinal glioblastoma multiforme. Single center experience and literature review. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
78
|
Pennington Z, Ehresman J, Elsamadicy AA, Shin JH, Goodwin CR, Schwab JH, Sciubba DM. Systematic review of charged-particle therapy for chordomas and sarcomas of the mobile spine and sacrum. Neurosurg Focus 2021; 50:E17. [PMID: 33932924 DOI: 10.3171/2021.2.focus201059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Long-term local control in patients with primary chordoma and sarcoma of the spine and sacrum is increasingly reliant upon en bloc resection with negative margins. At many institutions, adjuvant radiation is recommended; definitive radiation is also recommended for the treatment of unresectable tumors. Because of the high off-target radiation toxicities associated with conventional radiotherapy, there has been growing interest in the use of proton and heavy-ion therapies. The aim of this study was to systematically review the literature regarding these therapies. METHODS The PubMed, OVID, Embase, and Web of Science databases were queried for articles describing the use of proton, combined proton/photon, or heavy-ion therapies for adjuvant or definitive radiotherapy in patients with primary sarcoma or chordoma of the mobile spine and sacrum. A qualitative synthesis of the results was performed, focusing on overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and disease-specific survival (DSS); local control; and postradiation toxicities. RESULTS Of 595 unique articles, 64 underwent full-text screening and 38 were included in the final synthesis. All studies were level III or IV evidence with a high risk of bias; there was also significant overlap in the reported populations, with six centers accounting for roughly three-fourths of all reports. Five-year therapy outcomes were as follows: proton-only therapies, OS 67%-82%, PFS 31%-57%, and DFS 52%-62%; metastases occurred in 17%-18% and acute toxicities in 3%-100% of cases; combined proton/photon therapy, local control 62%-85%, OS 78%-87%, PFS 90%, and DFS 61%-72%; metastases occurred in 12%-14% and acute toxicities in 84%-100% of cases; and carbon ion therapy, local control 53%-100%, OS 52%-86%, PFS (only reported for 3 years) 48%-76%, and DFS 50%-53%; metastases occurred in 2%-39% and acute toxicities in 26%-48%. There were no studies directly comparing outcomes between photon and charged-particle therapies or comparing outcomes between radiation and surgical groups. CONCLUSIONS The current evidence for charged-particle therapies in the management of sarcomas of the spine and sacrum is limited. Preliminary evidence suggests that with these therapies local control and OS at 5 years are comparable among various charged-particle options and may be similar between those treated with definitive charged-particle therapy and historical surgical cohorts. Further research directly comparing charged-particle and photon-based therapies is necessary.
Collapse
Affiliation(s)
- Zach Pennington
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aladine A Elsamadicy
- 2Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - John H Shin
- 3Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - C Rory Goodwin
- 4Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina; and
| | - Joseph H Schwab
- 5Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Sciubba
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
79
|
Sahgal A, Chang JH, Ma L, Marks LB, Milano MT, Medin P, Niemierko A, Soltys SG, Tomé WA, Wong CS, Yorke E, Grimm J, Jackson A. Spinal Cord Dose Tolerance to Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 110:124-136. [DOI: 10.1016/j.ijrobp.2019.09.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022]
|
80
|
Li J, Wei W, Xu F, Wang Y, Liu Y, Fu C. Clinical Therapy of Metastatic Spinal Tumors. Front Surg 2021; 8:626873. [PMID: 33937314 PMCID: PMC8084350 DOI: 10.3389/fsurg.2021.626873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metastatic spinal tumors (MST) have high rates of morbidity and mortality. MST can destroy the vertebral body or compress the nerve roots, resulting in an increased risk of pathological fractures and intractable pain. Here, we elaborately reviewed the currently available therapeutic options for MST according to the following four aspects: surgical management, minimally invasive therapy (MIT), radiation therapy, and systemic therapy. In particular, these aspects were classified and introduced to show their developmental process, clinical effects, advantages, and current limitations. Furthermore, with the improvement of treatment concepts and techniques, we discovered the prevalent trend toward the use of radiation therapy and MIT in clinic therapies. Finally, the future directions of these treatment options were discussed. We hoped that along with future advances and study will lead to the improvement of living standard and present status of treatment in patients with MST.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Wei
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
81
|
Delayed Radiation Myelopathy in a Child With Hodgkin Lymphoma and ARTEMIS Mutation. J Pediatr Hematol Oncol 2021; 43:e404-e407. [PMID: 32341262 DOI: 10.1097/mph.0000000000001815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/29/2020] [Indexed: 11/25/2022]
Abstract
The authors present a case of delayed radiation myelopathy in a 12-year-old girl with Hodgkin lymphoma and Artemis mutation. This is the first of such a case presented in the literature.
Collapse
|
82
|
Hunter B, Crockett C, Faivre-Finn C, Hiley C, Salem A. Re-Irradiation of Recurrent Non-Small Cell Lung Cancer. Semin Radiat Oncol 2021; 31:124-132. [PMID: 33610269 DOI: 10.1016/j.semradonc.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Locoregional recurrence occurs in 10%-30% of non-small cell lung cancer (NSCLC) after treatment with definitive (chemo)radiotherapy. Re-irradiation is the main curative-intent treatment option for these patients; however, it represents a therapeutic challenge for thoracic radiation oncologists. Re-irradiation practices are variable worldwide with lack of agreement on the optimal dose or the cumulative maximum dose acceptable for critical organs. The role of re-irradiation in NSCLC is also not clearly defined in the era of immunotherapy. In this review, we will present published and on-going re-irradiation studies for recurrent NSCLC. We will appraise available evidence for critical organ dose constraints and provide a framework for future therapeutic approaches and trials.
Collapse
Affiliation(s)
| | - Cathryn Crockett
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Corrinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Crispin Hiley
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, Faculty of Medical Sciences, University College London, University College London Hospital, London, UK
| | - Ahmed Salem
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
83
|
Yang YC, Liu ASH. Primary epidural lumbar Ewing sarcoma presenting as cauda equina syndrome in an adult patient who underwent surgical decompression: A case report. Neurocirugia (Astur) 2021; 33:S1130-1473(21)00029-4. [PMID: 33775555 DOI: 10.1016/j.neucir.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2022]
Abstract
Ewing sarcoma (ES) is a rare primary neoplasm in the lumbar adult spine and may mimic a benign tumor. In this case, after a patient's three-month history of lower back pain and rapidly progressing leg numbness and weakness, magnetic resonance imaging (MRI) showed a mass in the third lumbar vertebra. At a two-month follow-up, imaging showed a fracture, compression and lesion enlargement. Decompression and fixation confirmed ES, and the patient began combined radiotherapy and chemotherapy. Two months postoperatively, residual ES was suspected on MRI. The patient underwent a second surgery, and histopathology confirmed necrosis. A six-month follow-up after the first surgery showed no tumor recurrence. This case supports the inclusion of ES in the differential diagnosis of pathologic spinal fracture. Early decompression and spinal fixation are critical for preserving neurologic and spinal functions in ES complicated by a compression fracture. Combined adjuvant radiotherapy and chemotherapy remain the standard therapeutic strategy.
Collapse
Affiliation(s)
- Yao-Chung Yang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; National Defense Medical Center, Taipei, Taiwan
| | - Andrew Szu-Hao Liu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
84
|
Franzese C, Fogliata A, Loi M, Badalamenti M, Franceschini D, Comito T, Cozzi L, Reggiori G, Tomatis S, Scorsetti M. Dosimetric impact of volumetric modulated arc therapy for nasopharyngeal cancer treatment. ACTA ACUST UNITED AC 2021; 26:101-110. [PMID: 34046220 DOI: 10.5603/rpor.a2021.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Background The purpose of the study was to evaluate the toxicity and outcome of nasopharyngeal carcinoma patients treated using 3-dimensional conformal radiotherapy (3DCRT) or volumetric modulated arc therapy (VMAT) technique. Materials and methods 68 patients treated between 2006 and 2018 were retrospectively analysed. Since 2009 patients received 3DCRT with 50/70 Gy to the elective/boost volumes in 35 fractions; from then, VMAT with simultaneous integrated boost (SIB) with 54.45/69.96 Gy in 33, or 54/66 Gy in 30 fractions. Induction chemotherapy was administered in 74% of the patients, concomitant cisplatinum in 87%. Acute and late toxicity data, progression-free survival PSF and overall survival OS, and toxicity correlations with dose metrics were reported. Results With a median follow-up of 64 months, complete remission at the last evaluation was in 68% of the patients, while 28% and 9% had locoregional relapse and distant disease, respectively. The 5- and 10-year progression free survival (PFS) rates were 62.7 ± 6.5% and 53.2 ± 8.7%, respectively. The 5- and 10-year OS rates were 78.9 ± 5.5% and 61.4 ± 9.2%, respectively. At the multivariate Cox analysis TNM stage (p = 0.02) and concomitant chemotherapy (p = 0.01) resulted significant for PFS, concomitant chemotherapy (p = 0.04) for OS.Improvements in acute toxicity were presented for VMAT patients due to its ability to spare OARs. Odds ratio (OR) for acute salivary toxicity, between VMAT and 3DCRT, was 4.67 (p = 0.02). Dosimetrically, salivary toxicity correlated with mean parotid dose (p = 0.05), dysphagia with laryngeal (p = 0.04) and mean oral cavity (p = 0.06) doses, when dose-volume histograms (DVHs) are corrected for fractionation. Conclusion This study is a proof of a significant benefit of the VMAT technique compared with 3DCRT in terms of side effects in nasopharynx patients, and adds dosimetric correlations.
Collapse
Affiliation(s)
- Ciro Franzese
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy.,Humanitas University, Biomedical Science Dept, Milan-Rozzano, Italy
| | - Antonella Fogliata
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Mauro Loi
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Marco Badalamenti
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Davide Franceschini
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Tiziana Comito
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Luca Cozzi
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy.,Humanitas University, Biomedical Science Dept, Milan-Rozzano, Italy
| | - Giacomo Reggiori
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Stefano Tomatis
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy
| | - Marta Scorsetti
- Humanitas Clinical and Research Hospital IRCCS, Radiotherapy Dept, Milan-Rozzano, Italy.,Humanitas University, Biomedical Science Dept, Milan-Rozzano, Italy
| |
Collapse
|
85
|
Py JF, Salleron J, Courrech F, Beckendorf V, Croisé-Laurent V, Peiffert D, Vogin G, Dietmann AS. Long-term outcome of Stereotactic Body Radiation Therapy for patient with unresectable liver metastases from colorectal cancer. Cancer Radiother 2021; 25:350-357. [PMID: 33618909 DOI: 10.1016/j.canrad.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate clinical outcome and predicting factors of local failures in patients with colorectal cancer treated for unresectable liver metastases with stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS We restrospectively reviewed the medical records of 67 patients treated with the Cyberknife SBRT system for 99 hepatic metastases between January 2007 and December 2015 in our center. In total, 37.5 to 54.0Gy in 3 to 5 fractions were prescribed to the 80% isodose line. Local control (LC), intrahepatic progression incidence, Progression-Free Survival (PFS), Overall Survival (OS) and toxicity were evaluated. RESULTS The median follow-up was 47 months (IQR, 28-59 months). The median OS was 53 months, the 2-year OS and PFS rates were 81.4% and 54.0%. The 1- and 2-year LC rates were 86.6% and 72.4%. In the multivariate analysis, the degree of differentiation was the only prognostic factor for LC (HR 0.31, 95% CI, 0.10-0.98, P=0.046). Margin expansion>5mm was not associated with a better LC (HR 0.72, 95% CI, 0.38-1.37, P=0.317). Performans Status≥2 (HR 3.27, 95% CI, 1.07-9.98, P=0.038), chemotherapy for metastases before SBRT (HR 0.36, 95% CI, 0.18-0.75, P=0.006) and regional lymph node at diagnosis (HR 2.19, 95% CI, 1.09-4.43, P=0.029) were independent prognostic factors for OS. We report 2 cases of grade≥3 toxicity (3.0%) - one grade 3 acute nausea and one grade 3 late gastric ulcer. CONCLUSION Stereotactic body radiation therapy is an effective and well-tolerated treatment that allow high LC for liver metastases from colorectal cancer during the first two years. A prescription dose of 45Gy in 3 fractions to the 80% isodose line with a risk adapted schedule to respect Organ At Risk constraints allows a low rate of toxicity.
Collapse
Affiliation(s)
- J F Py
- Département de radiothérapie, institut de cancérologie de Lorraine, 54000 Nancy, France.
| | - J Salleron
- Département de biostatistique et data management, institut de cancérologie de Lorraine, 54000 Nancy, France
| | - F Courrech
- Département de radiothérapie, institut de cancérologie de Lorraine, 54000 Nancy, France
| | - V Beckendorf
- Département de radiothérapie, institut de cancérologie de Lorraine, 54000 Nancy, France
| | - V Croisé-Laurent
- Département de radiologie, CHU de Nancy, Vandœuvre-les-Nancy, France
| | - D Peiffert
- Département de radiothérapie, institut de cancérologie de Lorraine, 54000 Nancy, France
| | - G Vogin
- Département de radiothérapie, institut de cancérologie de Lorraine, 54000 Nancy, France
| | - A S Dietmann
- Département de radiothérapie, institut de cancérologie de Lorraine, 54000 Nancy, France
| |
Collapse
|
86
|
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021; 16:36. [PMID: 33602305 PMCID: PMC7890828 DOI: 10.1186/s13014-021-01767-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as feasible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selection and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation necrosis.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, VR, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, MI, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
87
|
Doi H, Tamari K, Masai N, Akino Y, Tatsumi D, Shiomi H, Oh RJ. Intensity-modulated radiation therapy administered to a previously irradiated spine is effective and well-tolerated. Clin Transl Oncol 2021; 23:229-239. [PMID: 32504187 DOI: 10.1007/s12094-020-02410-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE This study sought to discern the clinical outcomes of intensity-modulated radiation therapy (IMRT) administered to the spine in patients who had undergone previous radiotherapy. METHODS A total of 81 sites of 74 patients who underwent previous radiotherapy administered to the spine or peri-spine and subsequently received IMRT for the spine were analyzed in this study. The prescribed dose of 80 Gy in a biologically effective dose (BED) of α/β = 10 (BED10) was set as the planning target volume. The constraint for the spinal cord and cauda equine was D0.1 cc ≤ 100 Gy and ≤ 150 Gy of BED for re-irradiation alone and the total irradiation dose, respectively. RESULTS The median follow-up period was 10.1 (0.9-92.1) months after re-irradiation, while the median interval from the last day of the previous radiotherapy to the time of re-irradiation was 15.6 (0.4-210.1) months. Separately, the median prescript dose of re-irradiation was 78.0 (28.0-104.9) of BED10. The median survival time in this study was 13.9 months, with 1-, 3-, and 5-year overall survival rates of 53.7%, 29.3%, and 26.6%, respectively. The 1-, 3-, and 5-year local control rates were 90.8%, 84.0%, and 84.0%, respectively. Neurotoxicity was observed in two of 72 treatments (2.8%) assessed after re-irradiation. CONCLUSION Re-irradiation for the spine using IMRT seems well-tolerated. Definitive re-irradiation can be a feasible treatment option in patients with the potential for a good prognosis.
Collapse
Affiliation(s)
- H Doi
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan.
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - K Tamari
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - N Masai
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Y Akino
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - D Tatsumi
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - H Shiomi
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - R-J Oh
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, Miyakojima-ku, Osaka, 534-0021, Japan
| |
Collapse
|
88
|
Kumar N, Ramakrishnan SA, Lopez KG, Madhu S, Ramos MRD, Fuh JYH, Hallinan J, Nolan CP, Benneker LM, Vellayappan BA. Can Polyether Ether Ketone Dethrone Titanium as the Choice Implant Material for Metastatic Spine Tumor Surgery? World Neurosurg 2021; 148:94-109. [PMID: 33508491 DOI: 10.1016/j.wneu.2021.01.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/08/2023]
Abstract
Instrumentation during metastatic spine tumor surgery (MSTS) provides stability to the spinal column in patients with pathologic fracture or iatrogenic instability produced while undergoing extensive decompression. Titanium is the current implant material of choice in MSTS. However, it hinders radiotherapy planning and generates artifacts, with magnetic resonance imaging and computed tomography scans used for postoperative evaluation of tumor recurrence and/or complications. The high modulus of elasticity of titanium (110 GPa) results in stress shielding, which may lead to construct failure at the bone-implant interface. Polyether ether ketone (PEEK), a thermoplastic polymer, is an emerging alternative to titanium for use in MSTS. The modulus of elasticity of PEEK (3.6 GPa) is close to that of cortical bone (17-21 GPa), resulting in minimal stress shielding. Its radiolucent and nonmetallic properties cause minimal interference with magnetic resonance imaging and computed tomography scans. PEEK also causes low-dose perturbation for radiotherapy planning. However, PEEK has reduced bioactivity with bone and lacks sufficient rigidity to be used as rods in MSTS. The reduced bioactivity of PEEK may be addressed by 1) surface modification (introducing porosity or bioactive coating with hydroxyapatite [HA] or titanium) and 2) forming composites with HA/titanium. The mechanical properties of PEEK may be improved by forming composites with HA or carbon fiber. Despite these modifications, all PEEK and PEEK-based implants are difficult to handle and contour intraoperatively. Our review provides a comprehensive overview of PEEK and modified PEEK implants, with a description of their properties and limitations, potentially serving as a basis for their future development and use in MSTS.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Singapore.
| | | | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | | | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - James Hallinan
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Colum P Nolan
- Department of Neurosurgery, National Neuroscience Institute, Singapore
| | - Lorin M Benneker
- Department of Orthopaedics, Spine Surgery, Sonnenhofspital, Bern, Switzerland
| | | |
Collapse
|
89
|
Iqbal MS, West N, Richmond N, Kovarik J, Gray I, Willis N, Morgan D, Yazici G, Cengiz M, Paleri V, Kelly C. A systematic review and practical considerations of stereotactic body radiotherapy in the treatment of head and neck cancer. Br J Radiol 2021; 94:20200332. [PMID: 32960652 PMCID: PMC7774675 DOI: 10.1259/bjr.20200332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Stereotactic radiotherapy (SBRT) is gaining popularity although its use in head and neck cancer (HNC) is not well defined. The primary objective was to review the published evidence regarding the use of stereotactic radiotherapy in HNC. METHODS A literature search was performed by using MEDLINE and EMBASE databases for eligible studies from 2000 to 2019 and 26 relevant studies were identified. RESULTS Literature demonstrates a heterogeneous use of this technique with regards to patient population, primary or salvage treatment, dose fractionation regimens, outcomes and follow-up protocols. Carotid blow out syndrome is a risk as with other forms of reirradiation but alternative treatment regimens may reduce this risk. CONCLUSION At present there is a lack of evidence regarding SBRT as a primary treatment option for HNC and definitive answers regarding efficacy and tolerability cannot be provided but there is growing evidence that SBRT reirradiation regimens are safe and effective. In lieu of evidence from large Phase III trials, we define appropriate organ at risk constraints and prescription doses, with accurate plan summation approaches. Prospective randomised trials are warranted to validate improved treatment outcomes and acceptable treatment morbidity. ADVANCES IN KNOWLEDGE This article provides a comprehensive review of evidence of use of stereotactic radiotherapy in HNC site (either as a primary treatment or as reirradiation). We also provide an evidence-based approach to the implementation and practical consideration of stereotactic radiotherapy in HNC.
Collapse
Affiliation(s)
- Muhammad Shahid Iqbal
- Department of Clinical Oncology, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Nick West
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Neil Richmond
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Josef Kovarik
- Department of Clinical Oncology, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Isabel Gray
- Department of Clinical Oncology, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Nick Willis
- Department of Radiotherapy Dosimetry, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David Morgan
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Gozde Yazici
- Department of Radiation Oncology, Hacettepe University, Ankara, Turkey
| | - Mustafa Cengiz
- Department of Radiation Oncology, Hacettepe University, Ankara, Turkey
| | - Vinidh Paleri
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Charles Kelly
- Department of Clinical Oncology, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
90
|
Chen Q, Carlton D, Howard TJ, Izumi T, Rong Y. Technical Note: Vendor miscalibration of preclinical orthovoltage irradiator identified through independent output check. Med Phys 2020; 48:881-889. [PMID: 33283893 DOI: 10.1002/mp.14642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Accurate radiation dosimetry in radiobiological experiments is crucial for preclinical research in advancement of cancer treatment. Vendors of cell irradiators often perform calibration for end-users. However, calibration accuracy remains unclear due to missing detailed information on calibration equipment and procedures. In this study, we report our findings of a vender miscalibration of the radiation output and our investigation on the root cause of the discrepancy. METHODS Independent calibration verification for a commercial preclinical orthovoltage irradiator was conducted. Initially, in the absence of ionization chambers calibrated at kV energy, radiochromic films (EBT3) was first calibrated at MV energy. Energy correction factors from literature were used to create an in-house kV dosimetry system. The miscalibration identified with the in-house kV EBT3 dosimetry was later confirmed by ADCL calibrated ionization chambers (Exradin A1SL and PTW 30013) at kV energy. Ionization chambers were suspended in-air following TG-61 recommendation for output calibration. To investigate the root cause of the miscalibration, additional measurements were performed with ionization chambers placed on the shelf. A validated Monte Carlo simulation code was also used to investigate the impact of placing the ionization chamber on the shelf instead of suspending it in air during the vendor-performed calibration process. RESULTS Up to a 6% dosimetry error was observed when comparing the vendor calibrated output of the preclinical irradiator with our independent calibration check. Further investigation showed incorrect setups in the vendor's calibration procedure which may result in dose errors up to 11% from the backscatter of the shelf board during calibration, and up to 5% from omitting temperature and pressure corrections to ionization chamber readings. CONCLUSION Our study revealed large dose calibration errors caused by incorrect setup and the omission of temperature/pressure correction in the vendor's calibration procedure. The findings also highlighted the importance of performing an independent check of the dose calibration for preclinical kV irradiators. More absolute dosimetry training is needed for both vendors and end users for establishing accurate absolute dosimetry.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Drew Carlton
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Thaddeus J Howard
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA.,Department of Radiation Oncology, Texas Oncology, Dallas, TX, 75231, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| |
Collapse
|
91
|
Patel G, Mandal A, Choudhary S, Mishra R, Shahi U, Mishra H. Myths, facts and scope of spinal cord tolerance dose revision in Intensity modulated SIB treatment of locally advanced head and neck cancer: A dosimetrical and radiobiological demonstration. Cancer Radiother 2020; 25:8-12. [PMID: 33293203 DOI: 10.1016/j.canrad.2020.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To explore the possibility of revising the spinal cord tolerance dose in Simultaneously Integrated Boost (SIB) intensity modulated treatment plan of locally advanced head and neck (H&N) cancer and assessment of achieved planning gain due to the revision. In SIB regimen, the Organ at Risk (OARs) tolerance dose is equally distributed throughout the treatment. Clinicians have usually considered the spinal cord tolerance to be the same as in conventional technique. However, in SIB fractionation regimen with intensity modulation treatment, the spinal cord may receive a physical dose of 45Gy, with much lesser dose per fraction than 2Gy per fraction. So when the dose of spinal cord is distributed throughout the treatment, the tolerance dose limit of physical dose can be considered higher than the usual conventional dose limits. In this study, an attempt has been made to explore the possibilities of dose escalation and treatment planning benefits while exploiting this "Window of Opportunity (WoO)" of increase in spinal cord and Planning Risk Volume (PRV) spinal cord tolerance dose. MATERIAL AND METHODS A total of 12 patients CT data set along with approved structure set of H&N cancer used for treatment planning in. Three independent SIB VMAT plans named as SPC, SPR and SPDE were generated for the 12 patients. First plan (SPC) was generated by considering standard spinal cord tissue constraint of maximum dose of 45Gy and PRV spinal cord maximum dose 50Gy as per QUANTEC summary and second plan (SPR) was generated considering spinal cord tissue constraint of maximum dose 52.50Gy and PRV spinal cord maximum dose 56.35Gy while optimization and dose calculation. The objectives for rest of the Organ at Risk (OAR) were kept same in both the plans during optimization and dose calculation. The SPC plan was copied for creation of third plan (SPDE) in which dose was escalated by increasing dose per fraction for target volumes such that dose to spinal cord reached a maximum dose of 52.50Gy and PRV spinal cord maximum dose of 56.35Gy. In this plan there have been changes to only dose per fraction, however dose optimization and dose calculation have not been performed. Radiobiological parameters TCP and NTCP were also calculated by using indigenously developed software. RESULTS Considering the increase of spinal cord tolerance dose as "window of opportunity", a sufficient escalation in physical dose, Biological Effective Dose (BED) and Tumor Control Probability (TCP) was observed for all target volumes with acceptable level of NTCP values. CONCLUSION Sufficient dose escalation and increased in TCP for target volumes or effective planning benefits can be achieved by revising the spinal cord tolerance dose in intensity modulated SIB treatment of locally advanced H&N cancers.
Collapse
Affiliation(s)
- G Patel
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, BHU, Varanasi, India.
| | - A Mandal
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, BHU, Varanasi, India.
| | - S Choudhary
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, BHU, Varanasi, India.
| | - R Mishra
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, BHU, Varanasi, India.
| | - U Shahi
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, BHU, Varanasi, India.
| | - H Mishra
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, BHU, Varanasi, India.
| |
Collapse
|
92
|
Combs SE, Baumert BG, Bendszus M, Bozzao A, Brada M, Fariselli L, Fiorentino A, Ganswindt U, Grosu AL, Lagerwaard FL, Niyazi M, Nyholm T, Paddick I, Weber DC, Belka C, Minniti G. ESTRO ACROP guideline for target volume delineation of skull base tumors. Radiother Oncol 2020; 156:80-94. [PMID: 33309848 DOI: 10.1016/j.radonc.2020.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE For skull base tumors, target definition is the key to safe high-dose treatments because surrounding normal tissues are very sensitive to radiation. In the present work we established a joint ESTRO ACROP guideline for the target volume definition of skull base tumors. MATERIAL AND METHODS A comprehensive literature search was conducted in PubMed using various combinations of the following medical subjects headings (MeSH) and free-text words: "radiation therapy" or "stereotactic radiosurgery" or "proton therapy" or "particle beam therapy" and "skull base neoplasms" "pituitary neoplasms", "meningioma", "craniopharyngioma", "chordoma", "chondrosarcoma", "acoustic neuroma/vestibular schwannoma", "organs at risk", "gross tumor volume", "clinical tumor volume", "planning tumor volume", "target volume", "target delineation", "dose constraints". The ACROP committee identified sixteen European experts in close interaction with the ESTRO clinical committee who analyzed and discussed the body of evidence concerning target delineation. RESULTS All experts agree that magnetic resonance (MR) images with high three-dimensional spatial accuracy and tissue-contrast definition, both T2-weighted and volumetric T1-weighted sequences, are required to improve target delineation. In detail, several key issues were identified and discussed: i) radiation techniques and immobilization, ii) imaging techniques and target delineation, and iii) technical aspects of radiation treatments including planning techniques and dose-fractionation schedules. Specific target delineation issues with regard to different skull base tumors, including pituitary adenomas, meningiomas, craniopharyngiomas, acoustic neuromas, chordomas and chondrosarcomas are presented. CONCLUSIONS This ESTRO ACROP guideline achieved detailed recommendations on target volume definition for skull base tumors, as well as comprehensive advice about imaging modalities and radiation techniques.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Munich, Germany; German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Alessandro Bozzao
- Dipartimento NESMOS, Università Sapienza Roma, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Michael Brada
- Department of Radiation Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Laura Fariselli
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, General Regional Hospital F. Miulli, Acquaviva delle fonti, Italy
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Faculty, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - Frank L Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, The Netherlands
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Tufve Nyholm
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
93
|
Kumar N, Madhu S, Bohra H, Pandita N, Wang SSY, Lopez KG, Tan JH, Vellayappan BA. Is there an optimal timing between radiotherapy and surgery to reduce wound complications in metastatic spine disease? A systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:3080-3115. [PMID: 32556627 DOI: 10.1007/s00586-020-06478-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Surgery with radiation therapy (RT) is more effective in treating spinal metastases, than RT alone. However, RT when administered in close proximity to surgery may predispose to wound complications. There exist limited guidelines on the optimal timing between RT and surgery. The purpose of this systematic review is to: (1) address whether pre-operative RT (preop-RT) and/or post-operative RT (postop-RT) is associated with wound complications and (2) define the safe interval between RT and surgery or vice versa. METHODS PubMed, Embase and Scopus databases were systematically searched for articles dealing with spinal metastases, treated with surgery and RT, and discussing wound status. RESULTS We obtained 2332 articles from all databases, and after applying exclusion criteria, removing duplicates and reading the full text, we identified 27 relevant articles. Fourteen additional articles were identified by hand-search, leading to a total of 41 articles. All 41 mentioned wound complications/healing. Sixteen articles discussed preop-RT, 8 postop-RT, 15 both, and 2 mentioned intraoperative-RT with additional pre/postop-RT. Twenty studies mentioned surgery-RT time interval; one concluded that wound complications were higher when RT-surgery interval was ≤ 7 days. Seven studies reported significant association between preop-RT and wound complications. CONCLUSIONS Evidence is insufficient to draw definitive conclusion about optimal RT-surgery interval. However, based on published literature and expert opinions, we conclude that an interval of 2 weeks, the minimum being 7 days, is optimum between RT-surgery or vice versa; this can be reduced further by postop-stereotactic body RT. If RT-surgery window is > 12 months, wound-complications rise. Postop-RT has fewer wound complications versus preop-RT.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Hussain Bohra
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Naveen Pandita
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Samuel Sherng Young Wang
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Jiong Hao Tan
- Department of Orthopaedic Surgery, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, Level 11, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Balamurugan A Vellayappan
- Department of Radiation Oncology, National University Health System, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| |
Collapse
|
94
|
Katsura M, Sato J, Akahane M, Furuta T, Mori H, Abe O. Recognizing Radiation-induced Changes in the Central Nervous System: Where to Look and What to Look For. Radiographics 2020; 41:224-248. [PMID: 33216673 DOI: 10.1148/rg.2021200064] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radiation therapy (RT) continues to play a central role as an effective therapeutic modality for a variety of tumors and vascular malformations in the central nervous system. Although the planning and delivery techniques of RT have evolved substantially during the past few decades, the structures surrounding the target lesion are inevitably exposed to radiation. A wide variety of radiation-induced changes may be observed at posttreatment imaging, which may be confusing when interpreting images. Histopathologically, radiation can have deleterious effects on the vascular endothelial cells as well as on neuroglial cells and their precursors. In addition, radiation induces oxidative stress and inflammation, leading to a cycle of further cellular toxic effects and tissue damage. On the basis of the time of expression, radiation-induced injury can be divided into three phases: acute, early delayed, and late delayed. Acute and early delayed injuries are usually transient and reversible, whereas late delayed injuries are generally irreversible. The authors provide a comprehensive review of the timeline and expected imaging appearances after RT, including the characteristic imaging features after RT with concomitant chemotherapy. Specific topics discussed are imaging features that help distinguish expected posttreatment changes from recurrent disease, followed by a discussion on the role of advanced imaging techniques. Knowledge of the RT plan, the amount of normal structures included, the location of the target lesion, and the amount of time elapsed since RT is highly important at follow-up imaging, and the reporting radiologist should be able to recognize the characteristic imaging features after RT and differentiate these findings from tumor recurrence. ©RSNA, 2020.
Collapse
Affiliation(s)
- Masaki Katsura
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Jiro Sato
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Masaaki Akahane
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Toshihiro Furuta
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Harushi Mori
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Osamu Abe
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| |
Collapse
|
95
|
Oztek MA, Mayr NA, Mossa-Basha M, Nyflot M, Sponseller PA, Wu W, Hofstetter CP, Saigal R, Bowen SR, Hippe DS, Yuh WTC, Stewart RD, Lo SS. The Dancing Cord: Inherent Spinal Cord Motion and Its Effect on Cord Dose in Spine Stereotactic Body Radiation Therapy. Neurosurgery 2020; 87:1157-1166. [PMID: 32497210 PMCID: PMC8184298 DOI: 10.1093/neuros/nyaa202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spinal cord dose limits are critically important for the safe practice of spine stereotactic body radiotherapy (SBRT). However, the effect of inherent spinal cord motion on cord dose in SBRT is unknown. OBJECTIVE To assess the effects of cord motion on spinal cord dose in SBRT. METHODS Dynamic balanced fast field echo (BFFE) magnetic resonance imaging (MRI) was obtained in 21 spine metastasis patients treated with SBRT. Planning computed tomography (CT), conventional static T2-weighted MRI, BFFE MRI, and dose planning data were coregistered. Spinal cord from the dynamic BFFE images (corddyn) was compared with the T2-weighted MRI (cordstat) to analyze motion of corddyn beyond the cordstat (Dice coefficient, Jaccard index), and beyond cordstat with added planning organ at risk volume (PRV) margins. Cord dose was compared between cordstat, and corddyn (Wilcoxon signed-rank test). RESULTS Dice coefficient (0.70-0.95, median 0.87) and Jaccard index (0.54-0.90, median 0.77) demonstrated motion of corddyn beyond cordstat. In 62% of the patients (13/21), the dose to corddyn exceeded that of cordstat by 0.6% to 13.8% (median 4.3%). The corddyn spatially excursed outside the 1-mm PRV margin of cordstat in 9 patients (43%); among these dose to corddyn exceeded dose to cordstat >+ 1-mm PRV margin in 78% of the patients (7/9). Corddyn did not excurse outside the 1.5-mm or 2-mm PRV cord cordstat margin. CONCLUSION Spinal cord motion may contribute to increases in radiation dose to the cord from SBRT for spine metastasis. A PRV margin of at least 1.5 to 2 mm surrounding the cord should be strongly considered to account for inherent spinal cord motion.
Collapse
Affiliation(s)
- Murat Alp Oztek
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Matthew Nyflot
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington.,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Patricia A Sponseller
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Wei Wu
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Christoph P Hofstetter
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Stephen R Bowen
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington.,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel S Hippe
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - William T C Yuh
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
96
|
Savoor R, Sita TL, Dahdaleh NS, Helenowski I, Kalapurakal JA, Marymont MH, Lukas R, Kruser TJ, Smith ZA, Koski T, Ganju A, Sachdev S. Long-term outcomes of spinal ependymomas: an institutional experience of more than 60 cases. J Neurooncol 2020; 151:241-247. [PMID: 33179213 DOI: 10.1007/s11060-020-03658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Spinal ependymomas represent the most common primary intramedullary tumors for which optimal management remains undefined. When possible, gross total resection (GTR) is often the mainstay of treatment, with consideration of radiotherapy (RT) in cases of residual or recurrent tumor. The impact of extent of resection and radiotherapy remain understudied. OBJECTIVE Report on a large institutional cohort with lengthy follow-up to provide information on long-term outcomes and to contribute to limited data assessing the value of extent of resection and RT. METHODS Patients with pathologically proven primary spinal ependymoma between 1990 and 2018 were identified. Kaplan-Meier estimates were used to calculate progression-free survival (PFS); local-control (LC) and overall survival (OS). Logistic regression was used to analyze variables' association with receipt of RT. RESULTS We identified 69 patients with ependymoma of which 4 had leptomeningeal dissemination at diagnosis and were excluded. Of the remaining cohort (n = 65), 42 patients (65%) had Grade II spinal ependymoma, 20 (31%) had Grade I myxopapillary ependymoma and 3 (5%) had Grade III anaplastic ependymoma; 54% underwent GTR and 39% underwent RT. With a median follow-up of 5.7 years, GTR was associated with improved PFS. For grade II lesions, STR+RT yielded better outcomes than STR alone (10y PFS 77.1% vs 68.2%, LC 85.7% vs 50%). Degree of resection was the only significant predictor of adjuvant radiotherapy (p < 0.0001). CONCLUSION Our findings confirm the importance of GTR in spinal ependymomas. Adjuvant RT should be utilized in the setting of a subtotal resection with expectation of improved disease-related outcomes.
Collapse
Affiliation(s)
- Rohan Savoor
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Timothy L Sita
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Nader S Dahdaleh
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 2200, Chicago, IL, 60611, USA
| | - Irene Helenowski
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - John A Kalapurakal
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Maryanne H Marymont
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Rimas Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Dr, Abbott Hall 1114, Chicago, IL, 60611, USA
| | - Timothy J Kruser
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Zachary A Smith
- Department of Neurological Surgery, Oklahoma University School of Medicine, 1000 N. Lincoln Blvd. Suite 4000, Oklahoma City, OK, 73104, USA
| | - Tyler Koski
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 2200, Chicago, IL, 60611, USA
| | - Aruna Ganju
- Department of Neurological Surgery, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 2200, Chicago, IL, 60611, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern Lou and Jean Malnati Brain Tumor Institute, Northwestern University Robert H. Lurie Comprehensive Cancer Center, 676 N. St Clair Street, Suite 1820, Chicago, IL, 60611, USA.
| |
Collapse
|
97
|
Diao K, Song J, Thall PF, McGinnis GJ, Boyce-Fappiano D, Amini B, Brown PD, Yeboa DN, Bishop AJ, Li J, Briere TM, Tatsui CE, Rhines LD, Chang EL, Ghia AJ. Low risk of radiation myelopathy with relaxed spinal cord dose constraints in de novo, single fraction spine stereotactic radiosurgery. Radiother Oncol 2020; 152:49-55. [PMID: 32745668 DOI: 10.1016/j.radonc.2020.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE Spine stereotactic radiosurgery (SSRS) offers high rates of local control in a critical anatomic area by delivering precise, ablative doses of radiation for treatment of spine metastases. However, the dose tolerance of the spinal cord (SC) after SSRS with relation to radiation myelopathy (RM) is not well-described. MATERIALS AND METHODS We reviewed patients who underwent single fraction, de novo SSRS from 2012-2017 and received >12 Gy Dmax to the SC, defined using MRI-CT fusion without PRV expansion. The standard SC constraint was D0.01cc ≤ 12 Gy. Local control was estimated with the Kaplan-Meier method. Bayesian analysis was used to compute posterior probabilities for RM. RESULTS A total of 146 SSRS treatments among 132 patients were included. The median SC Dmax was 12.6 Gy (range, 12.1-17.1 Gy). The SC Dmax was >12 and <13 Gy for 109 (75%) treatments, ≥13 and <14 Gy for 28 (19%) treatments, and ≥14 Gy for 9 (6%) treatments. The 1-year local control rate was 94%. With a median follow-up time of 42 months, there were zero (0) RM events observed. Assuming a prior 4.3% risk of RM, the true rate of RM for SC Dmax of ≤14 Gy was computed as <1% with 98% probability. CONCLUSION In one of the largest series of patients treated with single fraction, de novo SSRS, there were no cases of RM observed with a median follow-up of 42 months. These data support safe relaxation of MRI-defined SC dose up to D0.01cc ≤ 12 Gy, which corresponds to <1% risk of RM.
Collapse
Affiliation(s)
- Kevin Diao
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States.
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, United States
| | - Peter F Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, United States
| | - Gwendolyn J McGinnis
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States
| | - David Boyce-Fappiano
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States
| | - Behrang Amini
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, United States
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, United States
| | - Debra N Yeboa
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States
| | - Andrew J Bishop
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States
| | - Jing Li
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States
| | - Tina M Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, United States
| | - Claudio E Tatsui
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, United States
| | - Lawrence D Rhines
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, United States
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine of USC, United States
| | - Amol J Ghia
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, United States
| |
Collapse
|
98
|
Price RA, Jin L, Meyer J, Chen L, Lin T, Eldib A, Chen X, Liu J, Veltchev I, Wang L, Ma C. Practical Clinical Implementation of the Special Physics Consultation Process in the Re-irradiation Environment. Adv Radiat Oncol 2020; 6:100594. [PMID: 33490729 PMCID: PMC7811122 DOI: 10.1016/j.adro.2020.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this work is to present a practical, structured process allowing for consistent, safe radiation therapy delivery in the re-treatment environment. Methods and materials A process for reirradiation is described with documentation in the form of a special physics consultation. Data acquisition associated with previous treatment is described from highest to lowest quality. Methods are presented for conversion to equieffective dose, as well as our departmental assumptions for tissue repair. The generation of organ-at-risk available physical dose for use in treatment planning is discussed. Results using our methods are compared with published values after conversion to biologically effective dose. Utilization of pulsed-low-dose-rate delivery is described, and data for reirradiation using these methods over the previous 5 years are presented. Results Between 2015 and 2019, the number of patients in our department requiring equieffective dose calculation has doubled. We have developed guidelines for estimation of sublethal damage repair as a function of time between treatment courses ranging from 0% for <6 months to 50% for >1 year. These guidelines were developed based on available spinal cord data because we found that 84% of organs at risk involved nerve-like tissues. The average percent repair used increased from 32% to 37% over this time period. When comparing the results obtained using our methods with published values, 99% of patients had a cumulative biologically effective dose below the limits established for acceptable myelopathy rates. Pulsed-low-dose-rate use over this period tripled with an average prescription dose of 49 Gy. Conclusions The methods described result in safe, effective treatment in the reirradiation setting. Further correlation with patient outcomes and side effects is warranted.
Collapse
|
99
|
Zhang L, Zhang S, Xu J, Li Y, He J, Yang Y, Huynh T, Ni P, Duan G, Yang Z, Zhou R. Low-Dose X-ray-Responsive Diselenide Nanocarriers for Effective Delivery of Anticancer Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43398-43407. [PMID: 33003260 DOI: 10.1021/acsami.0c11627] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
X-ray-responsive nanocarriers for anticancer drug delivery have shown great promise for enhancing the efficacy of chemoradiotherapy. A critical challenge remains for development of such radiation-controlled drug delivery systems (DDSs), which is to minimize the required X-ray dose for triggering the cargo release. Herein, we design and fabricate an effective DDS based on diselenide block copolymers (as nanocarrier), which can be triggered to release their cargo with a reduced radiation dose of 2 Gy due to their sensitivity to both X-ray and the high level of reactive oxygen species (ROS) in the microenvironment of cancer cells. The underlying molecular mechanism is further illustrated by proton nuclear magnetic resonance (1H NMR) experiments and density functional theory (DFT) calculations. In vivo experiments on tumor-bearing mice validated that the loaded drugs are effectively delivered to the tumor site and exert remarkable antitumor effects (minimum tumor volume/weight) along with X-ray. Furthermore, the diselenide nanocarriers exhibit no noticeable cytotoxicity. These findings provide new insights for the de novo design of radiation-controlled DDSs for cancer chemoradiotherapy.
Collapse
Affiliation(s)
- Lianxue Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shitong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Youyun Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Tien Huynh
- Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
100
|
Saager M, Hahn EW, Peschke P, Brons S, Huber PE, Debus J, Karger CP. Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation. JOURNAL OF RADIATION RESEARCH 2020; 61:791-798. [PMID: 32657322 PMCID: PMC7482157 DOI: 10.1093/jrr/rraa042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/26/2020] [Indexed: 06/11/2023]
Abstract
To test the hypothesis that the use of an angiotensin-converting enzyme inhibitor (ACEi) during radiotherapy may be ameliorative for treatment-related normal tissue damage, a pilot study was conducted with the clinically approved (ACE) inhibitor ramipril on the outcome of radiation-induced myelopathy in the rat cervical spinal cord model. Female Sprague Dawley rats were irradiated with single doses of either carbon ions (LET 45 keV/μm) at the center of a 6 cm spread-out Bragg peak (SOBP) or 6 MeV photons. The rats were randomly distributed into 4 experimental arms: (i) photons; (ii) photons + ramipril; (iii) carbon ions and (iv) carbon ions + ramipril. Ramipril administration (2 mg/kg/day) started directly after irradiation and was maintained during the entire follow-up. Complete dose-response curves were generated for the biological endpoint radiation-induced myelopathy (paresis grade II) within an observation time of 300 days. Administration of ramipril reduced the rate of paralysis at high dose levels for photons and for the first time a similar finding for high-LET particles was demonstrated, which indicates that the effect of ramipril is independent from radiation quality. The reduced rate of myelopathy is accompanied by a general prolongation of latency time for photons and for carbon ions. Although the already clinical approved drug ramipril can be considered as a mitigator of radiation-induced normal tissue toxicity in the central nervous system, further examinations of the underlying pathological mechanisms leading to radiation-induced myelopathy are necessary to increase and sustain its mitigative effectiveness.
Collapse
Affiliation(s)
- Maria Saager
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Eric W Hahn
- Preclinical Imaging Section, Department of Radiology, The University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter E Huber
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|