51
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
52
|
Espaillat MP, Kew RR, Obeid LM. Sphingolipids in neutrophil function and inflammatory responses: Mechanisms and implications for intestinal immunity and inflammation in ulcerative colitis. Adv Biol Regul 2016; 63:140-155. [PMID: 27866974 DOI: 10.1016/j.jbior.2016.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023]
Abstract
Bioactive sphingolipids are regulators of immune cell function and play critical roles in inflammatory conditions including ulcerative colitis. As one of the major forms of inflammatory bowel disease, ulcerative colitis pathophysiology is characterized by an aberrant intestinal inflammatory response that persists causing chronic inflammation and tissue injury. Innate immune cells play an integral role in normal intestinal homeostasis but their dysregulation is thought to contribute to the pathogenesis of ulcerative colitis. In particular, neutrophils are key effector cells and are first line defenders against invading pathogens. While the activity of neutrophils in the intestinal mucosa is required for homeostasis, regulatory mechanisms are equally important to prevent unnecessary activation. In ulcerative colitis, unregulated neutrophil inflammatory mechanisms promote tissue injury and loss of homeostasis. Aberrant neutrophil function represents an early checkpoint in the detrimental cycle of chronic intestinal inflammation; thus, dissecting the mechanisms by which these cells are regulated both before and during disease is essential for understanding the pathogenesis of ulcerative colitis. We present an analysis of the role of sphingolipids in the regulation of neutrophil function and the implication of this relationship in ulcerative colitis.
Collapse
Affiliation(s)
- Mel Pilar Espaillat
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Richard R Kew
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
53
|
Ols ML, Cullen JL, Turqueti-Neves A, Giles J, Shlomchik MJ. Dendritic Cells Regulate Extrafollicular Autoreactive B Cells via T Cells Expressing Fas and Fas Ligand. Immunity 2016; 45:1052-1065. [PMID: 27793595 DOI: 10.1016/j.immuni.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022]
Abstract
The extrafollicular (EF) plasmablast response to self-antigens that contain Toll-like receptor (TLR) ligands is prominent in murine lupus models and some bacterial infections, but the inhibitors and activators involved have not been fully delineated. Here, we used two conventional dendritic cell (cDC) depletion systems to investigate the role of cDCs on a classical TLR-dependent autoreactive EF response elicited in rheumatoid-factor B cells by DNA-containing immune complexes. Contrary to our hypothesis, cDC depletion amplified rather than dampened the EF response in Fas-intact but not Fas-deficient mice. Further, we demonstrated that cDC-dependent regulation requires Fas and Fas ligand (FasL) expression by T cells, but not Fas expression by B cells. Thus, cDCs activate FasL-expressing T cells that regulate Fas-expressing extrafollicular helper T (Tefh) cells. These studies reveal a regulatory role for cDCs in B cell plasmablast responses and provide a mechanistic explanation for the excess autoantibody production observed in Fas deficiency.
Collapse
Affiliation(s)
- Michelle L Ols
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jaime L Cullen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Adriana Turqueti-Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Josephine Giles
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
54
|
Sichien D, Scott C, Martens L, Vanderkerken M, Van Gassen S, Plantinga M, Joeris T, De Prijck S, Vanhoutte L, Vanheerswynghels M, Van Isterdael G, Toussaint W, Madeira F, Vergote K, Agace W, Clausen B, Hammad H, Dalod M, Saeys Y, Lambrecht B, Guilliams M. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity 2016; 45:626-640. [DOI: 10.1016/j.immuni.2016.08.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022]
|
55
|
Novel immunoregulatory role of perforin-positive dendritic cells. Semin Immunopathol 2016; 39:121-133. [PMID: 27577575 DOI: 10.1007/s00281-016-0589-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
Abstract
The recently described generation of a highly defined population of dendritic cells which express perforin and granzyme A (termed "perf-DCs") and their ability to selectively delete cognate CD8+ T cell has raised the possibility that these cells play a role in the maintenance of peripheral tolerance. Using bone marrow transplantation, we generated mice selectively lacking perforin expressing dendritic cells. These mice progressively gain weight and exhibit features resembling metabolic syndrome as well as an enhanced susceptibility to autoimmunity induction. Interestingly, these pathological phenotypes were reversed upon treatment with CD4/CD8 neutralizing antibodies. Thus, it appears that this rare subpopulation of dendritic cells (perf-DCs) displays a major regulatory role in adipose tissue inflammatory processes and in autoimmunity.
Collapse
|
56
|
Herbin O, Bonito AJ, Jeong S, Weinstein EG, Rahman AH, Xiong H, Merad M, Alexandropoulos K. Medullary thymic epithelial cells and CD8α + dendritic cells coordinately regulate central tolerance but CD8α + cells are dispensable for thymic regulatory T cell production. J Autoimmun 2016; 75:141-149. [PMID: 27543048 DOI: 10.1016/j.jaut.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
In the thymus, antigen presenting cells (APCs) namely, medullary thymic epithelial cells (mTECs) and thymic dendritic cells (tDCs) regulate T cell tolerance through elimination of autoreactive T cells and production of thymic T regulatory (tTreg) cells. How the different APCs in the thymus share the burden of tolerazing the emerging T cell repertoire remains unclear. For example, while mutations that inhibit mTEC development or function associate with peripheral autoimmunity, the role of tDCs in organ-specific autoimmunity and tTreg cell production remains controversial. In this report we used mice depleted of mTECs and/or CD8α+ DCs, to examine the contributions of these cell populations in thymic tolerance. We found that while mice depleted of CD8α+ DCs or mTECs were normal or developed liver inflammation respectively, combined depletion of mTECs and CD8α+ DCs resulted in overt peripheral autoimmunity. The autoimmune manifestations in mice depleted of both mTECs and CD8α+ cDCs associated with increased percentages of CD4+ and CD8+ T cells in the thymus. In contrast, while mTEC depletion resulted in reduced percentages of tTreg cells, no additional effect was observed when CD8α+ DCs were also depleted. These results reveal that: 1) mTECs and CD8α+ DCs cooperatively safeguard against peripheral autoimmunity through thymic T cell deletion; 2) CD8α+ DCs are dispensable for tTreg cell production, whereas mTECs play a non-redundant role in this process; 3) mTECs and CD8α+ DCs make unique contributions to tolerance induction that cannot be compensated for by other thymic APCs such as migratory SIRPα+ or plasmacytoid DCs.
Collapse
Affiliation(s)
- Olivier Herbin
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony J Bonito
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seihwan Jeong
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica G Weinstein
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb H Rahman
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute/Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huabao Xiong
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute/Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Alexandropoulos
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
57
|
Luessi F, Zipp F, Witsch E. Dendritic cells as therapeutic targets in neuroinflammation. Cell Mol Life Sci 2016; 73:2425-50. [PMID: 26970979 PMCID: PMC11108452 DOI: 10.1007/s00018-016-2170-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disorder of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin sheaths and neurons. There is still no cure for the disease, but drug regimens can reduce the frequency of relapses and slightly delay progression. Myeloid cells or antigen-presenting cells (APCs) such as dendritic cells (DC), macrophages, and resident microglia, are key players in both mediating immune responses and inducing immune tolerance. Mounting evidence indicates a contribution of these myeloid cells to the pathogenesis of multiple sclerosis and to the effects of treatment, the understanding of which might provide strategies for more potent novel therapeutic interventions. Here, we review recent insights into the role of APCs, with specific focus on DCs in the modulation of neuroinflammation in MS.
Collapse
Affiliation(s)
- Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Esther Witsch
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
58
|
Inducible targeting of cDCs and their subsets in vivo. J Immunol Methods 2016; 434:32-8. [PMID: 27073171 DOI: 10.1016/j.jim.2016.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Conventional dendritic cells (cDCs) are essential immune cells linking the innate and adaptive immune system. cDC depletion in mice is an important method to study the function of these cells in vivo. Here we report an inducible in vivo system for cDC depletion in which excision of a loxP flanked Stop signal enables expression of the human diphtheria toxin receptor (DTR) under the control of Zbtb46 (zDC(lSlDTR)). cDCs can be specifically depleted by combining zDC(lSlDTR) mice with a Csf1r(Cre) driver line. In addition, we show that zDC(Cre) mice can be used to produce cDC specific conditional knockout mice (Irf8, Irf4, Notch2) which lack specific subsets of cDCs.
Collapse
|
59
|
Loschko J, Schreiber HA, Rieke GJ, Esterházy D, Meredith MM, Pedicord VA, Yao KH, Caballero S, Pamer EG, Mucida D, Nussenzweig MC. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J Exp Med 2016; 213:517-34. [PMID: 27001748 PMCID: PMC4821651 DOI: 10.1084/jem.20160062] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/12/2016] [Indexed: 01/04/2023] Open
Abstract
Conventional dendritic cells (cDCs) play an essential role in host immunity by initiating adaptive T cell responses and by serving as innate immune sensors. Although both innate and adaptive functions of cDCs are well documented, their relative importance in maintaining immune homeostasis is poorly understood. To examine the significance of cDC-initiated adaptive immunity in maintaining homeostasis, independent of their innate activities, we generated a cDC-specific Cre mouse and crossed it to a floxed MHC class II (MHCII) mouse. Absence of MHCII on cDCs resulted in chronic intestinal inflammation that was alleviated by antibiotic treatment and entirely averted under germ-free conditions. Uncoupling innate and adaptive functions of cDCs revealed that innate immune functions of cDCs are insufficient to maintain homeostasis and antigen presentation by cDCs is essential for a mutualistic relationship between the host and intestinal bacteria.
Collapse
Affiliation(s)
- Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065
| | - Heidi A Schreiber
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065
| | - Gereon J Rieke
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065 Rheinische Friedrich-Wilhelms University Bonn, 53113 Bonn, Germany
| | - Daria Esterházy
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065
| | - Matthew M Meredith
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065
| | - Virginia A Pedicord
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065
| | - Silvia Caballero
- Immunology Program, Sloan Kettering Institute Infectious Diseases Service Clinical Microbiology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute Infectious Diseases Service Clinical Microbiology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065 Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065
| |
Collapse
|
60
|
Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells. J Immunol Res 2016; 2016:6269157. [PMID: 27034965 PMCID: PMC4789470 DOI: 10.1155/2016/6269157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations.
Collapse
|
61
|
Sivakumaran S, Henderson S, Ward S, Santos E Sousa P, Manzo T, Zhang L, Conlan T, Means TK, D'Aveni M, Hermine O, Rubio MT, Chakraverty R, Bennett CL. Depletion of CD11c⁺ cells in the CD11c.DTR model drives expansion of unique CD64⁺ Ly6C⁺ monocytes that are poised to release TNF-α. Eur J Immunol 2016; 46:192-203. [PMID: 26464217 PMCID: PMC4722854 DOI: 10.1002/eji.201545789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) play a vital role in innate and adaptive immunities. Inducible depletion of CD11c(+) DCs engineered to express a high-affinity diphtheria toxin receptor has been a powerful tool to dissect DC function in vivo. However, despite reports showing that loss of DCs induces transient monocytosis, the monocyte population that emerges and the potential impact of monocytes on studies of DC function have not been investigated. We found that depletion of CD11c(+) cells from CD11c.DTR mice induced the expansion of a variant CD64(+) Ly6C(+) monocyte population in the spleen and blood that was distinct from conventional monocytes. Expansion of CD64(+) Ly6C(+) monocytes was independent of mobilization from the BM via CCR2 but required the cytokine, G-CSF. Indeed, this population was also expanded upon exposure to exogenous G-CSF in the absence of DC depletion. CD64(+) Ly6C(+) monocytes were characterized by upregulation of innate signaling apparatus despite the absence of inflammation, and an increased capacity to produce TNF-α following LPS stimulation. Thus, depletion of CD11c(+) cells induces expansion of a unique CD64(+) Ly6C(+) monocyte population poised to synthesize TNF-α. This finding will require consideration in experiments using depletion strategies to test the role of CD11c(+) DCs in immunity.
Collapse
Affiliation(s)
- Shivajanani Sivakumaran
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Stephen Henderson
- Cancer Institute, University College LondonLondon, UK
- Bill Lyons Informatics Centre, University College LondonLondon, UK
| | - Sophie Ward
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Pedro Santos E Sousa
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Teresa Manzo
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Lei Zhang
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Thomas Conlan
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Terry K Means
- MGH Center for Immunology and Inflammatory Diseases, Harvard Medical SchoolBoston, MA, USA
| | - Maud D'Aveni
- CNRS UMR 8147, Université Paris Descartes, Faculté de MédecineHôpital Necker, Paris, France
| | - Olivier Hermine
- CNRS UMR 8147, Université Paris Descartes, Faculté de MédecineHôpital Necker, Paris, France
| | - Marie-Thérèse Rubio
- CNRS UMR 8147, Université Paris Descartes, Faculté de MédecineHôpital Necker, Paris, France
| | - Ronjon Chakraverty
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Clare L Bennett
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| |
Collapse
|
62
|
Kim JH, Choi JY, Kim SB, Uyangaa E, Patil AM, Han YW, Park SY, Lee JH, Kim K, Eo SK. CD11c(hi) Dendritic Cells Regulate Ly-6C(hi) Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation. Sci Rep 2015; 5:17548. [PMID: 26626303 PMCID: PMC4667186 DOI: 10.1038/srep17548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b+Ly-6Chi monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11chiPDCA-1int/lo DCs without alteration in CD11cintPDCA-1hi plasmacytoid DC number, we found that CD11chi DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b+Ly-6Chi monocytes and higher expression of CC chemokines. More interestingly, selective CD11chi DC ablation provided altered differentiation and function of infiltrated CD11b+Ly-6Chi monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b+Ly-6Chi monocytes generated in CD11chi DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11chi DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b+Ly-6Chi monocytes.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Young Woo Han
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
63
|
Celhar T, Hopkins R, Thornhill SI, De Magalhaes R, Hwang SH, Lee HY, Yasuga H, Jones LA, Casco J, Lee B, Thamboo TP, Zhou XJ, Poidinger M, Connolly JE, Wakeland EK, Fairhurst AM. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc Natl Acad Sci U S A 2015; 112:E6195-204. [PMID: 26512111 PMCID: PMC4653170 DOI: 10.1073/pnas.1507052112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glomerulonephritis is a common and debilitating feature of systemic lupus erythematosus (SLE). The precise immune mechanisms that drive the progression from benign autoimmunity to glomerulonephritis are largely unknown. Previous investigations have shown that a moderate increase of the innate Toll-like receptor 7 (TLR7) is sufficient for the development of nephritis. In these systems normalization of B-cell TLR7 expression or temporal depletion of plasmacytoid dendritic cells (pDCs) slow progression; however, the critical cell that is responsible for driving full immunopathology remains unidentified. In this investigation we have shown that conventional DC expression of TLR7 is essential for severe autoimmunity in the Sle1Tg7 model of SLE. We show that a novel expanding CD11b(+) conventional DC subpopulation dominates the infiltrating renal inflammatory milieu, localizing to the glomeruli. Moreover, exposure of human myeloid DCs to IFN-α or Flu increases TLR7 expression, suggesting they may have a role in self-RNA recognition pathways in clinical disease. To our knowledge, this study is the first to highlight the importance of conventional DC-TLR7 expression for kidney pathogenesis in a murine model of SLE.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Richard Hopkins
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | | | | | - Sun-Hee Hwang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Hui-Yin Lee
- Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Hiroko Yasuga
- Singapore Immunology Network, A*STAR, 138648 Singapore; School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Leigh A Jones
- Singapore Immunology Network, A*STAR, 138648 Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Jose Casco
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Thomas P Thamboo
- Department of Pathology, National University Hospital, 119074 Singapore
| | - Xin J Zhou
- Department of Pathology, Baylor University Medical Center, Dallas, TX 75246
| | | | - John E Connolly
- Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX76798
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, A*STAR, 138648 Singapore; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093; School of Biological Sciences, Nanyang Technological University, 637551 Singapore;
| |
Collapse
|
64
|
Osorio F, Fuentes C, López MN, Salazar-Onfray F, González FE. Role of Dendritic Cells in the Induction of Lymphocyte Tolerance. Front Immunol 2015; 6:535. [PMID: 26539197 PMCID: PMC4611163 DOI: 10.3389/fimmu.2015.00535] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023] Open
Abstract
The ability of dendritic cells (DCs) to trigger tolerance or immunity is dictated by the context in which an antigen is encountered. A large body of evidence indicates that antigen presentation by steady-state DCs induces peripheral tolerance through mechanisms such as the secretion of soluble factors, the clonal deletion of autoreactive T cells, and feedback control of regulatory T cells. Moreover, recent understandings on the function of DC lineages and the advent of murine models of DC depletion have highlighted the contribution of DCs to lymphocyte tolerance. Importantly, these findings are now being applied to human research in the contexts of autoimmune diseases, allergies, and transplant rejection. Indeed, DC-based immunotherapy research has made important progress in the area of human health, particularly in regards to cancer. A better understanding of several DC-related aspects including the features of DC lineages, milieu composition, specific expression of surface molecules, the control of signaling responses, and the identification of competent stimuli able to trigger and sustain a tolerogenic outcome will contribute to the success of DC-based immunotherapy in the area of lymphocyte tolerance. This review will discuss the latest advances in the biology of DC subtypes related to the induction of regulatory T cells, in addition to presenting current ex vivo protocols for tolerogenic DC production. Particular attention will be given to the molecules and signals relevant for achieving an adequate tolerogenic response for the treatment of human pathologies.
Collapse
Affiliation(s)
- Fabiola Osorio
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Camila Fuentes
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Mercedes N López
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile ; Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital , Santiago , Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Fermín E González
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile , Santiago , Chile ; Laboratory of Experimental Immunology and Cancer, Faculty of Dentistry, University of Chile , Santiago , Chile
| |
Collapse
|
65
|
Shemer A, Erny D, Jung S, Prinz M. Microglia Plasticity During Health and Disease: An Immunological Perspective. Trends Immunol 2015; 36:614-624. [DOI: 10.1016/j.it.2015.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022]
|
66
|
Li S, Dislich B, Brakebusch CH, Lichtenthaler SF, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. THE JOURNAL OF IMMUNOLOGY 2015; 195:4244-56. [PMID: 26408665 DOI: 10.4049/jimmunol.1500676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022]
Abstract
Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation.
Collapse
Affiliation(s)
- Shuai Li
- Institute for Immunology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Cord H Brakebusch
- Biotech Research and Innovation Center, Molecular Pathology Section, 2200 Copenhagen, Denmark
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany; Neuroproteomics, Technical University Munich, 81675 Munich, Germany; and Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
67
|
Zlotnikov-Klionsky Y, Nathansohn-Levi B, Shezen E, Rosen C, Kagan S, Bar-On L, Jung S, Shifrut E, Reich-Zeliger S, Friedman N, Aharoni R, Arnon R, Yifa O, Aronovich A, Reisner Y. Perforin-Positive Dendritic Cells Exhibit an Immuno-regulatory Role in Metabolic Syndrome and Autoimmunity. Immunity 2015; 43:776-87. [PMID: 26384546 DOI: 10.1016/j.immuni.2015.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/27/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that immunological mechanisms underlie metabolic control of adipose tissue. Here, we have shown the regulatory impact of a rare subpopulation of dendritic cells, rich in perforin-containing granules (perf-DCs). Using bone marrow transplantation to generate animals selectively lacking perf-DCs, we found that these chimeras progressively gained weight and exhibited features of metabolic syndrome. This phenotype was associated with an altered repertoire of T cells residing in adipose tissue and could be completely prevented by T cell depletion in vivo. A similar impact of perf-DCs on inflammatory T cells was also found in a well-defined model of multiple sclerosis, experimental autoimmune encephlalomyelitis (EAE). Thus, perf-DCs probably represent a regulatory cell subpopulation critical for protection from metabolic syndrome and autoimmunity.
Collapse
Affiliation(s)
| | - Bar Nathansohn-Levi
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Elias Shezen
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Chava Rosen
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Sivan Kagan
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Liat Bar-On
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Shlomit Reich-Zeliger
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Rina Aharoni
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Ruth Arnon
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Oren Yifa
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Anna Aronovich
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel
| | - Yair Reisner
- Department of Immunology, Weizmann Institute of Science, Herzel St 1, Rehovot 76100, Israel.
| |
Collapse
|
68
|
Hu Z, Lancaster JN, Ehrlich LIR. The Contribution of Chemokines and Migration to the Induction of Central Tolerance in the Thymus. Front Immunol 2015; 6:398. [PMID: 26300884 PMCID: PMC4528182 DOI: 10.3389/fimmu.2015.00398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/20/2015] [Indexed: 02/01/2023] Open
Abstract
As T cells develop, they migrate throughout the thymus where they undergo essential bi-directional signaling with stromal cells in distinct thymic microenvironments. Immature thymocyte progenitors are located in the thymic cortex. Following T cell receptor expression and positive selection, thymocytes undergo a dramatic transition: they become rapidly motile and relocate to the thymic medulla. Antigen-presenting cells (APCs) within the cortex and medulla display peptides derived from a wide array of self-proteins, which promote thymocyte self-tolerance. If a thymocyte is auto-reactive against such antigens, it undergoes either negative selection, via apoptosis, or differentiation into the regulatory T cell lineage. This induction of central tolerance is critical for prevention of autoimmunity. Chemokines and adhesion molecules play an essential role in tolerance induction, as they promote migration of developing thymocytes through the different thymic microenvironments and enhance interactions with APCs displaying self-antigens. Herein, we review the contribution of chemokines and other regulators of thymocyte localization and motility to T cell development, with a focus on their contribution to the induction of central tolerance.
Collapse
Affiliation(s)
- Zicheng Hu
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| | - Jessica Naomi Lancaster
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| | - Lauren I R Ehrlich
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| |
Collapse
|
69
|
Zenclussen AC, Hämmerling GJ. Cellular Regulation of the Uterine Microenvironment That Enables Embryo Implantation. Front Immunol 2015; 6:321. [PMID: 26136750 PMCID: PMC4470084 DOI: 10.3389/fimmu.2015.00321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
Implantation of the fertilized egg into the maternal uterus is a crucial step in pregnancy establishment. Increasing evidence suggests that its success depends on various cell types of the innate immune system and on the fine balance between inflammatory and anti-inflammatory processes. In addition, it has recently been established that regulatory T cells play a superordinate role in dictating the quality of uterine environment required for successful pregnancy. Here, we discuss the cellular regulation of uterine receptivity with emphasis on the function and regulation of cells from the innate and adaptive immune system.
Collapse
Affiliation(s)
- Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University , Magdeburg , Germany
| | - Günter J Hämmerling
- Molecular Immunology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
70
|
Yamano T, Nedjic J, Hinterberger M, Steinert M, Koser S, Pinto S, Gerdes N, Lutgens E, Ishimaru N, Busslinger M, Brors B, Kyewski B, Klein L. Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. Immunity 2015; 42:1048-61. [PMID: 26070482 DOI: 10.1016/j.immuni.2015.05.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022]
Abstract
Thymic antigen-presenting cells (APCs) such as dendritic cells and medullary thymic epithelial cells (mTECs) use distinct strategies of self-antigen expression and presentation to mediate central tolerance. The thymus also harbors B cells; whether they also display unique tolerogenic features and how they genealogically relate to peripheral B cells is unclear. Here, we found that Aire is expressed in thymic but not peripheral B cells. Aire expression in thymic B cells coincided with major histocompatibility class II (MHCII) and CD80 upregulation and immunoglobulin class-switching. These features were recapitulated upon immigration of naive peripheral B cells into the thymus, whereby this intrathymic licensing required CD40 signaling in the context of cognate interactions with autoreactive CD4(+) thymocytes. Moreover, a licensing-dependent neo-antigen selectively upregulated in immigrating B cells mediated negative selection through direct presentation. Thus, autoreactivity within the nascent T cell repertoire fuels a feed forward loop that endows thymic B cells with tolerogenic features.
Collapse
Affiliation(s)
- Tomoyoshi Yamano
- Institute for Immunology, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Jelena Nedjic
- Institute for Immunology, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Maria Hinterberger
- Institute for Immunology, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Madlen Steinert
- Institute for Immunology, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Sandra Koser
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336 Munich, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336 Munich, Germany; Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ludger Klein
- Institute for Immunology, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336 Munich, Germany.
| |
Collapse
|
71
|
Huang QQ, Perlman H, Birkett R, Doyle R, Fang D, Haines GK, Robinson W, Datta S, Huang Z, Li QZ, Phee H, Pope RM. CD11c-mediated deletion of Flip promotes autoreactivity and inflammatory arthritis. Nat Commun 2015; 6:7086. [PMID: 25963626 PMCID: PMC4429912 DOI: 10.1038/ncomms8086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are critical for immune homeostasis. To target DCs, we generated a mouse line with Flip deficiency in cells that express cre under the CD11c promoter (CD11c-Flip-KO). CD11c-Flip-KO mice spontaneously develop erosive, inflammatory arthritis, resembling rheumatoid arthritis, which is dramatically reduced when these mice are crossed with Rag−/− mice. The CD8α+ DC subset is significantly reduced, along with alterations in NK cells and macrophages. Autoreactive CD4+ T cells and autoantibodies specific for joint tissue are present, and arthritis severity correlates with the number of autoreactive CD4+ T cells and plasmablasts in the joint-draining lymph nodes. Reduced T regulatory cells (Tregs) inversely correlate with arthritis severity, and the transfer of Tregs ameliorates arthritis. This KO line identifies a model that will permit in depth interrogation of the pathogenesis of rheumatoid arthritis, including the role of CD8α+ DCs and other cells of the immune system. Dendritic cells are critical for initiation of immune responses and for induction of tolerance. Here the authors show that deletion of survival factor c-flip in CD11c-expressing cells subset perturbs CD8a+ dendritic cell, NK and macrophage pools, and leads to development of autoimmune arthritis.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert Birkett
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Renee Doyle
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - G Kenneth Haines
- Department of Pathology, Mount Sinai Hospital School of Medicine, New York city, New York 10029, USA
| | - William Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, VA Health Care System, Palo Alto, California 94304, USA
| | - Syamal Datta
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zan Huang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hyewon Phee
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Richard M Pope
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
72
|
Kim SJ, Diamond B. Modulation of tolerogenic dendritic cells and autoimmunity. Semin Cell Dev Biol 2015; 41:49-58. [PMID: 24747368 PMCID: PMC9973561 DOI: 10.1016/j.semcdb.2014.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.
Collapse
Affiliation(s)
| | - Betty Diamond
- The Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, United States.
| |
Collapse
|
73
|
Schock SN, Young JA, He TH, Sun Y, Winoto A. Deletion of FADD in macrophages and granulocytes results in RIP3- and MyD88-dependent systemic inflammation. PLoS One 2015; 10:e0124391. [PMID: 25874713 PMCID: PMC4395384 DOI: 10.1371/journal.pone.0124391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Myeloid cells, which include monocytes, macrophages, and granulocytes, are important innate immune cells, but the mechanism and downstream effect of their cell death on the immune system is not completely clear. Necroptosis is an alternate form of cell death that can be triggered when death receptor-mediated apoptosis is blocked, for example, in stimulated Fas-associated Death Domain (FADD) deficient cells. We report here that mice deficient for FADD in myeloid cells (mFADD-/-) exhibit systemic inflammation with elevated inflammatory cytokines and increased levels of myeloid and B cell populations while their dendritic and T cell numbers are normal. These phenotypes were abolished when RIP3 deficiency was introduced, suggesting that systemic inflammation is caused by RIP3-dependent necroptotic and/or inflammatory activity. We further found that loss of MyD88 can rescue the systemic inflammation observed in these mice. These phenotypes are surprisingly similar to that of dendritic cell (DC)-specific FADD deficient mice with the exception that DC numbers are normal in mFADD-/- mice. Together these data support the notion that innate immune cells are constantly being stimulated through the MyD88-dependent pathway and aberrations in their cell death machinery can result in systemic effects on the immune system.
Collapse
Affiliation(s)
- Suruchi N Schock
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Jennifer A Young
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Tina H He
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Yuefang Sun
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| |
Collapse
|
74
|
Homeostatic NF-κB Signaling in Steady-State Migratory Dendritic Cells Regulates Immune Homeostasis and Tolerance. Immunity 2015; 42:627-39. [DOI: 10.1016/j.immuni.2015.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 12/23/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
|
75
|
Quan S, Kim HJ, Dukala D, Sheng JR, Soliven B. Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy. THE JOURNAL OF IMMUNOLOGY 2015; 194:4175-84. [PMID: 25825437 DOI: 10.4049/jimmunol.1401766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knockout NOD mice mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy, and is mediated by myelin protein zero (P0)-reactive Th1 cells. In this study, we focused on the effect of B7-2 deletion on the function of dendritic cells (DCs) within the context of SAP. We found that development of SAP was associated with a preponderance or increase of CD11b(+) DCs in peripheral lymph nodes and sciatic nerves. B7-2 deletion led to altered immunophenotypic properties that differ between CD11b(+) DCs and CD8α(+) DCs. Both DC subsets from B7-2 knockout NOD mice exhibited impaired capacity to capture fluorophore-labeled myelin P0, but diminished Ag-presenting function was observed only in CD11b(+) DCs. Clinical assessment, electrophysiologic studies, and splenocyte proliferation studies revealed that absence of B7-2 on DCs was sufficient to cause impaired ability to induce tolerance to P0, which could be overcome by preconditioning with IL-10. Tolerance induction by Ag-pulsed wild-type NOD DCs was dependent on IL-10 and was associated with increased CD4(+) regulatory T cells, whereas tolerance induction by IL-10-conditioned B7-2-deficient DCs was associated with increased percentages of both regulatory T cells and B10 cells in the spleen. We conclude that B7-2 deletion has an impact on the distribution of DC subsets in lymphoid organs and alters the expression of costimulatory molecules, but functional consequences are not uniform across DC subsets. Defective tolerance induction in the absence of B7-2 can be restored by preconditioning of DCs with IL-10.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Hye-Jung Kim
- Department of Neurology, University of Chicago, Chicago, IL 60637; and Department of Pathology, Inje University School of Medicine, Busan 614-735, Korea
| | - Danuta Dukala
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Jian Rong Sheng
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Betty Soliven
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| |
Collapse
|
76
|
Mok MY. Tolerogenic dendritic cells: role and therapeutic implications in systemic lupus erythematosus. Int J Rheum Dis 2014; 18:250-9. [DOI: 10.1111/1756-185x.12532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mo Yin Mok
- Division of Rheumatology & Clinical Immunology Department of Medicine Queen Mary Hospital The University of Hong Kong Hong Kong China
| |
Collapse
|
77
|
Bieber K, Autenrieth SE. Insights how monocytes and dendritic cells contribute and regulate immune defense against microbial pathogens. Immunobiology 2014; 220:215-26. [PMID: 25468558 DOI: 10.1016/j.imbio.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. Beside neutrophils, monocytes and dendritic cells (DCs) have been recently identified as important sentinels and effectors in combating microbial pathogens. In the steady state mononuclear phagocytes like monocytes and DCs patrol the blood and the tissues. Mammalian monocytes contribute to antimicrobial defense by supplying tissues with macrophage and DC precursors. DCs recognize pathogens and are essential in presenting antigens to initiate antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. Both, monocytes and DCs play distinct roles in the shaping of immune response. In this review we will focus on the contributions of monocytes and lymphoid organ DCs to immune defense against microbial pathogens in the mouse and their dynamic regulation from steady state to infection.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
78
|
Scheffler JM, Sparber F, Tripp CH, Herrmann C, Humenberger A, Blitz J, Romani N, Stoitzner P, Huber LA. LAMTOR2 regulates dendritic cell homeostasis through FLT3-dependent mTOR signalling. Nat Commun 2014; 5:5138. [PMID: 25336251 PMCID: PMC4220488 DOI: 10.1038/ncomms6138] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/03/2014] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinase Flt3 and its ligand are crucial for dendritic cell (DC) homeostasis by activating downstream effectors including mammalian target of Rapamycin (mTOR) signalling. LAMTOR2 is a member of the Ragulator/LAMTOR complex known to regulate mTOR and extracellular signal-regulated kinase activation on the late endosome as well as endosomal biogenesis. Here we show in mice that conditional ablation of LAMTOR2 in DCs results in a severe disturbance of the DC compartment caused by accumulation of Flt3 on the cell surface. This results in an increased downstream activation of the AKT/mTOR signalling pathway and subsequently to a massive expansion of conventional DCs and plasmacytoid DCs in ageing mice. Finally, we can revert the symptoms in vivo by inhibiting the activation of Flt3 and its downstream target mTOR. LAMTOR2 is involved in mTOR and ERK signalling and plays a role in immunity, but its function in dendritic cells (DCs) is not clear. Here the authors show that deletion of LAMTOR2 in DCs results in increased mTOR signalling, accumulation of Flt3 on the cell surface and excessive DC proliferation in ageing mice.
Collapse
Affiliation(s)
- Julia M Scheffler
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innrain 80-82, Innsbruck A6020, Austria
| | - Florian Sparber
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck A6020, Austria
| | - Christoph H Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck A6020, Austria
| | - Caroline Herrmann
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innrain 80-82, Innsbruck A6020, Austria
| | | | - Johanna Blitz
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innrain 80-82, Innsbruck A6020, Austria
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck A6020, Austria
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck A6020, Austria
| | - Lukas A Huber
- 1] Biocenter, Division of Cell Biology, Innsbruck Medical University, Innrain 80-82, Innsbruck A6020, Austria [2] Austrian Drug Screening Institute (ADSI), Innsbruck A6020, Austria
| |
Collapse
|
79
|
Sage AP, Murphy D, Maffia P, Masters LM, Sabir SR, Baker LL, Cambrook H, Finigan AJ, Ait-Oufella H, Grassia G, Harrison JE, Ludewig B, Reith W, Hansson GK, Reizis B, Hugues S, Mallat Z. MHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. Circulation 2014; 130:1363-73. [PMID: 25223984 DOI: 10.1161/circulationaha.114.011090] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive. METHODS AND RESULTS Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis. Selective pDC deficiency in vivo was achieved using CD11c-Cre × Tcf4(-/flox) bone marrow transplanted into Ldlr(-/-) mice. Compared with control Ldlr(-/-) chimeric mice, CD11c-Cre × Tcf4(-/flox) mice had reduced atherosclerosis levels. To begin to understand the mechanisms by which pDCs regulate atherosclerosis, we studied chimeric Ldlr(-/-) mice with selective MHCII deficiency on pDCs. Significantly, these mice also developed reduced atherosclerosis compared with controls without reductions in pDC numbers or changes in conventional DCs. MHCII-deficient pDCs showed defective stimulation of apolipoprotein B100-specific CD4(+) T cells in response to native low-density lipoprotein, whereas production of interferon-α was not affected. Finally, the atheroprotective effect of selective MHCII deficiency in pDCs was associated with significant reductions of proatherogenic T cell-derived interferon-γ and lesional T cell infiltration, and was abrogated in CD4(+) T cell-depleted animals. CONCLUSIONS This study supports a proatherogenic role for pDCs in murine atherosclerosis and identifies a critical role for MHCII-restricted antigen presentation by pDCs in driving proatherogenic T cell immunity.
Collapse
Affiliation(s)
- Andrew P Sage
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Deirdre Murphy
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Pasquale Maffia
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Leanne M Masters
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Suleman R Sabir
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Lauren L Baker
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Helen Cambrook
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Alison J Finigan
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Hafid Ait-Oufella
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Gianluca Grassia
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - James E Harrison
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Burkhard Ludewig
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Walter Reith
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Göran K Hansson
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Boris Reizis
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Stéphanie Hugues
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.).
| |
Collapse
|
80
|
Hargadon KM. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology. Int Rev Immunol 2014; 35:85-115. [DOI: 10.3109/08830185.2014.952413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
81
|
Role and therapeutic value of dendritic cells in central nervous system autoimmunity. Cell Death Differ 2014; 22:215-24. [PMID: 25168240 DOI: 10.1038/cdd.2014.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.
Collapse
|
82
|
Host-derived CD8⁺ dendritic cells protect against acute graft-versus-host disease after experimental allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2014; 20:1696-704. [PMID: 25132527 DOI: 10.1016/j.bbmt.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
Abstract
Graft-versus-host disease (GVHD) is a frequent life-threatening complication after allogeneic hematopoietic stem cell transplantation (HSCT) and induced by donor-derived T cells that become activated by host antigen-presenting cells. To address the relevance of host dendritic cell (DC) populations in this disease, we used mouse strains deficient in CD11c(+) or CD8α(+) DC populations in a model of acute GVHD where bone marrow and T cells from BALB/c donors were transplanted into C57BL/6 hosts. Surprisingly, a strong increase in GVHD-related mortality was observed in the absence of CD11c(+) cells. Likewise, Batf3-deficient (Batf3(-/-)) mice that lack CD8α(+) DCs also displayed a strongly increased GVHD-related mortality. In the absence of CD8α(+) DCs, we detected an increased activation of the remaining DC populations after HSCT, leading to an enhanced priming of allogeneic T cells. Importantly, this was associated with reduced numbers of regulatory T cells and transforming growth factor-β levels, indicating an aggravated failure of peripheral tolerance mechanisms after HSCT in the absence of CD8α(+) DCs. In summary, our results indicate a critical role of CD8α(+) DCs as important inducers of regulatory T cell-mediated tolerance to control DC activation and T cell priming in the initiation phase of GVHD.
Collapse
|
83
|
Mayer CT, Ghorbani P, Kühl AA, Stüve P, Hegemann M, Berod L, Gershwin ME, Sparwasser T. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity. Eur J Immunol 2014; 44:2990-3002. [PMID: 25042334 DOI: 10.1002/eji.201344315] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/03/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Foxp3 specifies the Treg cell lineage and is indispensable for immune tolerance. Accordingly, rare Foxp3 mutations cause lethal autoimmunity. The mechanisms precipitating more prevalent human autoimmune diseases are poorly understood, but involve a combination of genetic and environmental factors. Many autoimmune diseases associate with a partial Treg-cell dysfunction, yet mouse models reflecting such complex pathophysiological processes are rare. Around 95% of Foxp3(+) Treg cells can be specifically depleted in bacterial artifical chromosome (BAC)-transgenic Depletion of REGulatory T cells (DEREG) mice through diphtheria toxin (DT) treatment. However, Treg-cell depletion fails to cause autoimmunity in adult DEREG mice for unclear reasons. By crossing Foxp3(GFP) knock-in mice to DEREG mice, we introduced additional genetic susceptibility that does not affect untreated mice. Strikingly, DT treatment of DEREG × Foxp3(GFP) mice rapidly causes autoimmunity characterized by blepharitis, tissue damage, and autoantibody production. This inflammatory disease is associated with augmented T-cell activation, increased Th2 cytokine production and myeloproliferation, and is caused by defective Treg-cell homeostasis, preventing few DT-insensitive Treg cells from repopulating the niche after Treg-cell depletion. Our study provides important insights into self-tolerance. We further highlight DEREG × Foxp3(GFP) mice as a model to investigate the role of environmental factors in precipitating autoimmunity. This may help to better understand and treat human autoimmunity.
Collapse
Affiliation(s)
- Christian T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Classical dendritic cells (cDCs) form a critical interface between innate and adaptive immunity. As myeloid immune cell sentinels, cDCs are specialized in the sensing of pathogen challenges and cancer. They translate the latter for T cells into peptide form. Moreover, cDCs provide additional critical information on the original antigen context to trigger a diverse spectrum of appropriate protective responses. Here we review recent progress in our understanding of cDC subsets in mice. We will discuss cDC subset ontogeny and transcription factor dependencies, as well as emerging functional specializations within the cDC compartment in lymphoid and nonlymphoid tissues.
Collapse
Affiliation(s)
- Alexander Mildner
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
85
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
86
|
García-Vallejo JJ, Ilarregui JM, Kalay H, Chamorro S, Koning N, Unger WW, Ambrosini M, Montserrat V, Fernandes RJ, Bruijns SCM, van Weering JRT, Paauw NJ, O'Toole T, van Horssen J, van der Valk P, Nazmi K, Bolscher JGM, Bajramovic J, Dijkstra CD, 't Hart BA, van Kooyk Y. CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG. ACTA ACUST UNITED AC 2014; 211:1465-83. [PMID: 24935259 PMCID: PMC4076586 DOI: 10.1084/jem.20122192] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human myelin oligodendrocyte glycoprotein is decorated with fucosylated N-glycans that are recognized by DC-SIGN+ DCs and microglia that control immune homeostasis. Myelin oligodendrocyte glycoprotein (MOG), a constituent of central nervous system myelin, is an important autoantigen in the neuroinflammatory disease multiple sclerosis (MS). However, its function remains unknown. Here, we show that, in healthy human myelin, MOG is decorated with fucosylated N-glycans that support recognition by the C-type lectin receptor (CLR) DC-specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN) on microglia and DCs. The interaction of MOG with DC-SIGN in the context of simultaneous TLR4 activation resulted in enhanced IL-10 secretion and decreased T cell proliferation in a DC-SIGN-, glycosylation-, and Raf1-dependent manner. Exposure of oligodendrocytes to proinflammatory factors resulted in the down-regulation of fucosyltransferase expression, reflected by altered glycosylation at the MS lesion site. Indeed, removal of fucose on myelin reduced DC-SIGN–dependent homeostatic control, and resulted in inflammasome activation, increased T cell proliferation, and differentiation toward a Th17-prone phenotype. These data demonstrate a new role for myelin glycosylation in the control of immune homeostasis in the healthy human brain through the MOG–DC-SIGN homeostatic regulatory axis, which is comprised by inflammatory insults that affect glycosylation. This phenomenon should be considered as a basis to restore immune tolerance in MS.
Collapse
Affiliation(s)
- J J García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - J M Ilarregui
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - H Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - S Chamorro
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - N Koning
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - W W Unger
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - M Ambrosini
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - V Montserrat
- Division of Cell Biology, Dutch Cancer Institute, 1066X Amsterdam, Netherlands
| | - R J Fernandes
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - S C M Bruijns
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - J R T van Weering
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam; and Department of Pathology, VU University Amsterdam, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - N J Paauw
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - T O'Toole
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - J van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam; and Department of Pathology, VU University Amsterdam, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - P van der Valk
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam; and Department of Pathology, VU University Amsterdam, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - K Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam, VU University, 1081LA Amsterdam, Netherlands
| | - J G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam, VU University, 1081LA Amsterdam, Netherlands
| | - J Bajramovic
- Alternatives Unit and Dept. Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, Netherlands
| | - C D Dijkstra
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| | - B A 't Hart
- Alternatives Unit and Dept. Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, Netherlands Department Neuroscience, University Medical Center, University of Groningen, 9713GZ Groningen, Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081HV Amsterdam, Netherlands
| |
Collapse
|
87
|
Spidale NA, Wang B, Tisch R. Cutting edge: Antigen-specific thymocyte feedback regulates homeostatic thymic conventional dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2014; 193:21-5. [PMID: 24890722 DOI: 10.4049/jimmunol.1400321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thymic dendritic cells (DC) mediate self-tolerance by presenting self-peptides to and depleting autoreactive thymocytes. Despite a significant role in negative selection, the events regulating thymic DC maturation and function under steady-state conditions are poorly understood. We report that cross-talk with thymocytes regulates thymic conventional DC (cDC) numbers, phenotype, and function. In mice lacking TCR-expressing thymocytes, thymic cDC were reduced and exhibited a less mature phenotype. Furthermore, thymic cDC in TCR-transgenic mice lacking cognate Ag expression in the thymus were also immature; notably, however, thymic cDC maturation was re-established by an Ag-specific cognate interaction with CD4+ or CD8+ single-positive thymocytes (SP). Blockade of CD40L during Ag-specific interactions with CD4 SP, but not CD8 SP, limited the effect on cDC maturation. Together, these novel findings demonstrate that homeostatic maturation and function of thymic cDC are regulated by feedback delivered by CD4 SP and CD8 SP via distinct mechanisms during a cognate Ag-specific interaction.
Collapse
Affiliation(s)
- Nicholas A Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; and
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; and
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
88
|
Zernecke A. Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead. SCIENTIFICA 2014; 2014:952625. [PMID: 24818041 PMCID: PMC4003768 DOI: 10.1155/2014/952625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
89
|
Probst HC, Muth S, Schild H. Regulation of the tolerogenic function of steady-state DCs. Eur J Immunol 2014; 44:927-33. [PMID: 24652744 DOI: 10.1002/eji.201343862] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/13/2013] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are master regulators of T-cell responses. After sensing pathogen-derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4(+) and CD8(+) T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T-cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC-activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self-tolerance yet allow for adequate T-cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady-state DCs.
Collapse
Affiliation(s)
- Hans Christian Probst
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Research Center for Immunology (FZI), Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
90
|
Jiao J, Dragomir AC, Kocabayoglu P, Rahman AH, Chow A, Hashimoto D, Leboeuf M, Kraus T, Moran T, Carrasco-Avino G, Friedman SL, Merad M, Aloman C. Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. THE JOURNAL OF IMMUNOLOGY 2014; 192:3374-82. [PMID: 24591364 DOI: 10.4049/jimmunol.1300237] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils are the most abundant cell type in the immune system and play an important role in the innate immune response. Using a diverse range of mouse models with either defective dendritic cell (DC) development or conditional DC depletion, we provide in vivo evidence indicating that conventional DCs play an important role in the regulation of neutrophil homeostasis. Flk2, Flt3L, and Batf3 knockout mice, which have defects in DC development, have increased numbers of liver neutrophils in the steady state. Conversely, neutrophil frequency is reduced in DC-specific PTEN knockout mice, which have an expansion of CD8(+) and CD103(+) DCs. In chimeric CD11c-DTR mice, conventional DC depletion results in a systemic increase of neutrophils in peripheral organs in the absence of histological inflammation or an increase in proinflammatory cytokines. This effect is also present in splenectomized chimeric CD11c-DTR mice and is absent in chimeric mice with 50% normal bone marrow. In chimeric CD11c-DTR mice, diphtheria toxin treatment results in enhanced neutrophil trafficking from the bone marrow into circulation and increased neutrophil recruitment. Moreover, there is an increased expression of chemokines/cytokines involved in neutrophil homeostasis and reduced neutrophil apoptosis. These data underscore the role of the DC pool in regulating the neutrophil compartment in nonlymphoid organs.
Collapse
Affiliation(s)
- Jingjing Jiao
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hopp AK, Rupp A, Lukacs-Kornek V. Self-antigen presentation by dendritic cells in autoimmunity. Front Immunol 2014; 5:55. [PMID: 24592266 PMCID: PMC3923158 DOI: 10.3389/fimmu.2014.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Anne Rupp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
92
|
Chopin M, Nutt SL. Establishing and maintaining the Langerhans cell network. Semin Cell Dev Biol 2014; 41:23-9. [PMID: 24513231 DOI: 10.1016/j.semcdb.2014.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 01/30/2023]
Abstract
Langerhans cells (LCs) are the unique antigen-presenting cell of the epidermis. LCs have long been depicted in textbooks as the archetypical dendritic cell that alerts the immune system upon pathogen induced skin barrier breakage, however recent findings argue instead for a more tolerogenic function. While the LCs that populate the epidermis in steady-state arise from progenitors that seed the skin during embryogenesis, it is now apparent that a second pathway generating LCs from a bone marrow derived progenitor is active in inflammatory settings. This review emphasizes the determinants underpinning the establishment of the LC network in steady-state and under inflammatory conditions, as well as the transcriptional machinery governing their differentiation. The dual origin of LCs raises important questions about the functional differences between these subsets in balancing the epidermal immune response between immunity and tolerance.
Collapse
Affiliation(s)
- Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
93
|
Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY, Cools N, Schrijvers DM. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: Can the unattainable dream turn into reality? Autoimmun Rev 2014; 13:138-50. [DOI: 10.1016/j.autrev.2013.09.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023]
|
94
|
Karmaus PWF, Chi H. Genetic dissection of dendritic cell homeostasis and function: lessons from cell type-specific gene ablation. Cell Mol Life Sci 2013; 71:1893-906. [PMID: 24366237 DOI: 10.1007/s00018-013-1534-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous cell population of great importance in the immune system. The emergence of new genetic technology utilizing the CD11c promoter and Cre recombinase has facilitated the dissection of functional significance and molecular regulation of DCs in immune responses and homeostasis in vivo. For the first time, this strategy allows observation of the effects of DC-specific gene deletion on immune system function in an intact organism. In this review, we present the latest findings from studies using the Cre recombinase system for cell type-specific deletion of key molecules that mediate DC homeostasis and function. Our focus is on the molecular pathways that orchestrate DC life span, migration, antigen presentation, pattern recognition, and cytokine production and signaling.
Collapse
Affiliation(s)
- Peer W F Karmaus
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | | |
Collapse
|
95
|
Ghadially H, Horani A, Glasner A, Elboim M, Gazit R, Shoseyov D, Mandelboim O. NKp46 regulates allergic responses. Eur J Immunol 2013; 43:3006-16. [PMID: 23878025 PMCID: PMC3867659 DOI: 10.1002/eji.201343388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/23/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022]
Abstract
Natural killer (NK) cells are cytotoxic cells that are able to rapidly kill viruses, tumor cells, parasites, bacteria, and even cells considered "self". The activity of NK cells is controlled by a fine balance of inhibitory and activating signals mediated by a complex set of different receptors. However, the function of NK cells is not restricted only to the killing of target cells, NK cells also possess other properties such as the secretion of proangiogenic factors during pregnancy. Here, we demonstrate another unique NK-cell activity, namely the regulation of T-cell mediated allergic responses, which is dependent on the NK-cell specific receptor NKp46 (Ncr1 in mice). Using mice in which the Ncr1 gene has been replaced with a green fluorescent protein, we demonstrate reduced delayed-type hypersensitivity and airway hypersensitivity. Interestingly, we show that this reduction in airway hypersensitivity is due to differences in the stimulation of T cells resulting in an altered cytokine profile.
Collapse
Affiliation(s)
- Hormas Ghadially
- The Lautenberg Center for General and Tumor Immunology,
The Hebrew University Hadassah Medical SchoolJerusalem, Israel
| | - Amjad Horani
- Department of Pediatrics, The Hebrew University Hadassah
Medical SchoolJerusalem, Israel
- Department of Pediatrics, Division of Allergy, Immunology
and Pulmonary Medicine, Washington UniversitySt Louis, MO, USA
| | - Ariella Glasner
- The Lautenberg Center for General and Tumor Immunology,
The Hebrew University Hadassah Medical SchoolJerusalem, Israel
| | - Moran Elboim
- The Lautenberg Center for General and Tumor Immunology,
The Hebrew University Hadassah Medical SchoolJerusalem, Israel
| | - Roi Gazit
- The Lautenberg Center for General and Tumor Immunology,
The Hebrew University Hadassah Medical SchoolJerusalem, Israel
| | - David Shoseyov
- Department of Pediatrics, The Hebrew University Hadassah
Medical SchoolJerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology,
The Hebrew University Hadassah Medical SchoolJerusalem, Israel
| |
Collapse
|
96
|
Dendritic cell-based approaches for therapeutic immune regulation in solid-organ transplantation. J Transplant 2013; 2013:761429. [PMID: 24307940 PMCID: PMC3824554 DOI: 10.1155/2013/761429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
To avoid immune rejection, allograft recipients require drug-based immunosuppression, which has significant toxicity. An emerging approach is adoptive transfer of immunoregulatory cells. While mature dendritic cells (DCs) present donor antigen to the immune system, triggering rejection, regulatory DCs interact with regulatory T cells to promote immune tolerance. Intravenous injection of immature DCs of either donor or host origin at the time of transplantation have prolonged allograft survival in solid-organ transplant models. DCs can be treated with pharmacological agents before injection, which may attenuate their maturation in vivo. Recent data suggest that injected immunosuppressive DCs may inhibit allograft rejection, not by themselves, but through conventional DCs of the host. Genetically engineered DCs have also been tested. Two clinical trials in type-1 diabetes and rheumatoid arthritis have been carried out, and other trials, including one trial in kidney transplantation, are in progress or are imminent.
Collapse
|
97
|
Ramos MI, Tak PP, Lebre MC. Fms-like tyrosine kinase 3 ligand-dependent dendritic cells in autoimmune inflammation. Autoimmun Rev 2013; 13:117-24. [PMID: 24113138 DOI: 10.1016/j.autrev.2013.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are specialized in capture, processing and presentation of antigens to T cells. Depending on the type of DC and its activation state, the interaction of DCs with naive T cells can lead to different types of immune response, or to T-cell tolerance. The existence of many specialized subtypes of DCs with particular functions has raised the need to distinguish DCs formed in steady-state from those produced during an inflammatory response. In patients with autoimmune disease and in experimental animal models of autoimmunity, DCs show abnormalities in both numbers and activation state, expressing immunogenic levels of co-stimulatory molecules and pro-inflammatory cytokines. Initial in vitro studies of cytokines in DC development revealed distinct and important roles for the receptor tyrosine kinases, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF, also called CSF1) and fms-like tyrosine kinase 3 ligand (Flt3L) in the generation of DCs. Flt3L is critical for instructing DC generation throughout different organs and regulates DC development from Flt3(+) lymphoid and myeloid-committed progenitors to DCs in vivo. The aim of this review is to provide an overview of the role of Flt3L-dependent DCs in the immunopathogenesis of autoimmunity and chronic inflammation and its potential as therapeutic targets.
Collapse
Affiliation(s)
- M I Ramos
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
98
|
Darrasse-Jèze G, Podsypanina K. How numbers, nature, and immune status of foxp3(+) regulatory T-cells shape the early immunological events in tumor development. Front Immunol 2013; 4:292. [PMID: 24133490 PMCID: PMC3784046 DOI: 10.3389/fimmu.2013.00292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022] Open
Abstract
The influence of CD4(+)CD25(+)Foxp3(+) regulatory T-cells (Tregs) on cancer progression has been demonstrated in a large number of preclinical models and confirmed in several types of malignancies. Neoplastic processes trigger an increase of Treg numbers in draining lymph nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses. Treg-depletion before or early in tumor development may lead to complete tumor eradication and extends survival of mice and humans. However this strategy is ineffective in established tumors, highlighting the critical role of the early Treg-tumor encounters. In this review, after discussing old and new concepts of immunological tumor tolerance, we focus on the nature (thymus-derived vs. peripherally derived) and status (naïve or activated/memory) of the regulatory T-cells at tumor emergence. The recent discoveries in this field suggest that the activation status of Tregs and effector T-cells (Teffs) at the first encounter with the tumor are essential to shape the fate and speed of the immune response across a variety of tumor models. The relative timing of activation/recruitment of anti-tumor cells vs. tolerogenic cells at tumor emergence appears to be crucial in the identification of tumor cells as friend or foe, which has broad implications for the design of cancer immunotherapies.
Collapse
Affiliation(s)
- Guillaume Darrasse-Jèze
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Unité 1013, Institut National de la Santé et de le Recherche Médicale, Hôpital Necker , Paris , France ; Immunoregulation and Immunopathology Team, INEM , Paris , France
| | | |
Collapse
|
99
|
Yeung MY, McGrath MM, Nakayama M, Shimizu T, Boenisch O, Magee CN, Abdoli R, Akiba H, Ueno T, Turka LA, Najafian N. Interruption of dendritic cell-mediated TIM-4 signaling induces regulatory T cells and promotes skin allograft survival. THE JOURNAL OF IMMUNOLOGY 2013; 191:4447-55. [PMID: 24038092 DOI: 10.4049/jimmunol.1300992] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DCs) are the central architects of the immune response, inducing inflammatory or tolerogenic immunity, dependent on their activation status. As such, DCs are highly attractive therapeutic targets and may hold the potential to control detrimental immune responses. TIM-4, expressed on APCs, has complex functions in vivo, acting both as a costimulatory molecule and a phosphatidylserine receptor. The effect of TIM-4 costimulation on T cell activation remains unclear. In this study, we demonstrate that Ab blockade of DC-expressed TIM-4 leads to increased induction of induced regulatory T cells (iTregs) from naive CD4(+) T cells, both in vitro and in vivo. iTreg induction occurs through suppression of IL-4/STAT6/Gata3-induced Th2 differentiation. In addition, blockade of TIM-4 on previously activated DCs still leads to increased iTreg induction. iTregs induced under TIM-4 blockade have equivalent potency to control and, upon adoptive transfer, significantly prolong skin allograft survival in vivo. In RAG(-/-) recipients of skin allografts adoptively transferred with CD4(+) T cells, we show that TIM-4 blockade in vivo is associated with a 3-fold prolongation in allograft survival. Furthermore, in this mouse model of skin transplantation, increased induction of allospecific iTregs and a reduction in T effector responses were observed, with decreased Th1 and Th2 responses. This enhanced allograft survival and protolerogenic skewing of the alloresponse is critically dependent on conversion of naive CD4(+) to Tregs in vivo. Collectively, these studies identify blockade of DC-expressed TIM-4 as a novel strategy that holds the capacity to induce regulatory immunity in vivo.
Collapse
Affiliation(s)
- Melissa Y Yeung
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02445
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
PURPOSE OF REVIEW Autoimmune diseases are the result of an imbalanced immune regulatory network. Tolerogenic dendritic cells (tolDCs) are key players of this network by inducing and maintaining both central and peripheral tolerance. Therefore, ex vivo generated tolDCs are considered as therapeutic vaccines to re-establish (antigen-specific) tolerance in autoimmune disorders. RECENT FINDINGS TolDCs represent a heterogeneous group of dendritic cells that reside in different tissues and maintain tolerance by inducing anergy or apoptosis of autoreactive T cells, phenotypic skewing and induction of different types of regulatory T cells (Tregs). Both experimental animal models of autoimmune diseases and in vitro experiments with ex vivo generated human tolDCs have demonstrated their potency in re-establishing antigen-specific tolerance. The identified key mechanisms are induction of antigen-specific T cell anergy and/or promoting Tregs. SUMMARY TolDCs represent an interesting strategy to re-establish antigen-specific tolerance and thus are considered as a treatment option for autoimmune diseases. First clinical trials are on the way. However, several technical and conceptual difficulties exist, ranging from the choice of antigen(s), dendritic cell generation protocols, to application regimens. This review discusses the state of this therapeutic concept including chances, perils and pitfalls.
Collapse
|