51
|
Hu J, Xu J, Li M, Zhang Y, Yi H, Chen J, Dong L, Zhang J, Huang Z. Targeting Lymph Node Sinus Macrophages to Inhibit Lymph Node Metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:650-662. [PMID: 31121477 PMCID: PMC6529739 DOI: 10.1016/j.omtn.2019.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022]
Abstract
Lymph nodes are important peripheral immune organs in which numerous important immune responses occur. During the process of lymphatic metastasis, lymph nodes are also sites through which tumor cells must pass. Therefore, it is essential to develop a drug delivery system that can specifically transfer immunostimulatory medicine into lymph nodes to block lymphatic metastasis. Here, we developed a nucleic acid drug delivery system containing cationic agarose (C-agarose) and CpG oligodeoxynucleotides. C-agarose has a high affinity for Siglec-1 on the surface of lymph node sinus macrophages, which have a high specificity for targeting lymph nodes. Subcutaneous implantation of C-agarose+CpG gel caused the accumulation of CpG in the lymph node sinus macrophages and generated antitumor immune responses in the lymph node. C-agarose+CpG gel treatment decreased the metastasis size in the tumor-draining lymph node (TDLN) and lung metastatic nodules and suppressed tumor growth in both a mouse 4T1 breast cancer model and a B16F10 melanoma model. On this basis, this study proposes a nonsurgical invasive lymph node targeting immunotherapy concept that may provide a new approach for antitumor metastasis.
Collapse
Affiliation(s)
- Junqing Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Jinhao Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Mingyue Li
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Yanping Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Huaiqiang Yi
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Lei Dong
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Junfeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
52
|
Paul SK, Dutta H, Sarkar S, Sethi LN, Ghosh SK. Nanosized Zinc Oxide: Super-Functionalities, Present Scenario of Application, Safety Issues, and Future Prospects in Food Processing and Allied Industries. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sanjib K. Paul
- Department of Agricultural Engineering, Assam University, Silchar, India
| | - Himjyoti Dutta
- Amity Institute of Food Technology, Amity University, Uttar Pradesh, India
| | - Sudipto Sarkar
- Department of Agricultural Engineering, Assam University, Silchar, India
| | | | | |
Collapse
|
53
|
Reichel D, Tripathi M, Perez JM. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019; 3:66-88. [PMID: 30662824 PMCID: PMC6328304 DOI: 10.7150/ntno.30052] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Biological interactions between tumor-associated macrophages (TAMs), cancer cells and other cells within the tumor microenvironment contribute to tumorigenesis, tumor growth, metastasis and therapeutic resistance. TAMs can remodel the tumor microenvironment to reduce growth barriers such as the dense extracellular matrix and shift tumors towards an immunosuppressive microenvironment that protects cancer cells from targeted immune responses. Nanoparticles can interrupt these biological interactions within tumors by altering TAM phenotypes through a process called polarization. Macrophage polarization within tumors can shift TAMs from a growth-promoting phenotype towards a cancer cell-killing phenotype that predicts treatment efficacy. Because many types of nanoparticles have been shown to preferentially accumulate within macrophages following systemic administration, there is considerable interest in identifying nanoparticle effects on TAM polarization, evaluating nanoparticle-induced TAM polarization effects on cancer treatment using drug-loaded nanoparticles and identifying beneficial types of nanoparticles for effective cancer treatment. In this review, the macrophage polarization effects of nanoparticles will be described based on their primary chemical composition. Because of their strong macrophage-polarizing and antitumor effects compared to other types of nanoparticles, the effects of iron oxide nanoparticles on macrophages will be discussed in detail. By comparing the macrophage polarization effects of various nanoparticle treatments reported in the literature, this review aims to both elucidate nanoparticle material effects on macrophage polarization and to provide insight into engineering nanoparticles with more beneficial immunological responses for cancer treatment.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Current Address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
54
|
Musetti S, Huang L. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS NANO 2018; 12:11740-11755. [PMID: 30508378 DOI: 10.1021/acsnano.8b05893] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoscience has long been lauded as a method through which tumor-associated barriers could be overcome. As successful as cancer immunotherapy has been, limitations associated with the tumor microenvironment or side effects of systemic treatment have become more apparent. In this Review, we seek to lay out the therapeutic challenges associated with the tumor microenvironment and the ways in which nanoscience is being applied to remodel the tumor microenvironment and increase the susceptibility of many cancer types to immunotherapy. We detail the nanomedicines on the cutting edge of cancer immunotherapy and how their interactions with the tumor microenvironment make them more effective than systemically administered immunotherapies.
Collapse
Affiliation(s)
- Sara Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
55
|
Jacques E, Ahumada M, Rector B, Yousefalizadeh G, Galaz-Araya C, Recabarren R, Stamplecoskie K, Poblete H, Alarcon EI. Effect of nanosilver surfaces on peptide reactivity towards reactive oxygen species. NANOSCALE 2018; 10:15911-15917. [PMID: 30106074 DOI: 10.1039/c8nr04018d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interaction of a terminal tryptophan residue within collagen mimetic peptides when tethered to nanometric silver surfaces was studied using a combination of steady state spectroscopy, ultrafast spectroscopy, and molecular dynamics experiments. Our findings indicate that the effective interaction between the tryptophan and the metal surface occurs in short-time scales (ps) and it is responsible for improving the colloidal stability of the nanoparticles exposed to free radicals. The extent and efficiency of the interaction depends on factors beyond the peptide length that include conformation and distance from the terminal tryptophan to the metal surface.
Collapse
Affiliation(s)
- Erik Jacques
- Bio-Nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4 W7, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Anticancer efficacy of noble metal nanoparticles relies on reprogramming tumor-associated macrophages through redox pathways and pro-inflammatory cytokine cascades. Cell Mol Immunol 2018; 15:1088-1090. [PMID: 29799021 DOI: 10.1038/s41423-018-0046-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 11/08/2022] Open
|
57
|
Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials 2018; 175:82-92. [PMID: 29803106 DOI: 10.1016/j.biomaterials.2018.05.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Silica based nanoparticles have emerged as a promising vaccine delivery system for cancer immunotherapy, but their bio-degradability, adjuvanticity and the resultant antitumor activity remain to be largely improved. In this study, we report biodegradable glutathione-depletion dendritic mesoporous organosilica nanoparticles (GDMON) with a tetrasulfide-incorporated framework as a novel co-delivery platform in cancer immunotherapy. Functionalized GDMON are capable of co-delivering an antigen protein (ovalbumin) and a toll-like receptor 9 (TLR9) agonist into antigen presenting cells (APCs) and inducing endosome escape. Moreover, decreasing the intracellular glutathione (GSH) level through the -S-S-/GSH redox chemistry increases the ROS generation level both in vitro and in vivo, facilitating cytotoxic T lymphocyte (CTL) proliferation and reducing tumour growth in an aggressive B16-OVA melanoma tumour model. Our results have shown the potential of GDMON as a novel self-adjuvant and co-delivery nanocarrier for cancer vaccine.
Collapse
|
58
|
Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 2018; 201:37-44. [PMID: 29577880 DOI: 10.1016/j.lfs.2018.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Increasing understanding in tumor pathology reveals that tumor microenvironment (TME), which supports tumor progression and poses barriers for available therapies, takes a great responsibility in inefficient treatment and poor prognosis. In recent years, the versatile nanotechnology employed in TME regulation has made great progress. The nanoparticles (NPs) can be tailored as needed to accurately target TME components by distinguishing healthy tissues from malignancy, and to regulate TME to promote tumor regression. Meanwhile, the emerging microRNAs (miRNAs) demonstrate great potentials for TME regulation, but are regrettably restricted by quick degradation. NPs systems enable the successful delivery of miRNA to TME without the limitation, expanding the application of nucleic acid drug. In this review, we summarized recent NPs-based strategies aiming at regulating TME in different ways, including anti-angiogenesis, extracellular matrix (ECM) remodeling, tumor-associated fibroblasts (TAFs) treatment and tumor-associated macrophages (TAMs) treatment, along with the miRNAs-loaded NPs for TME regulation. Catching and utilizing the features of TME for NPs design can contribute to reversing drug-resistance, optimized drug distribution, and eventually more efficient cancer therapy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yujie Su
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
59
|
Nath A, Pal R, Singh LM, Saikia H, Rahaman H, Ghosh SK, Mazumder R, Sengupta M. Gold‑manganese oxide nanocomposite suppresses hypoxia and augments pro-inflammatory cytokines in tumor associated macrophages. Int Immunopharmacol 2018; 57:157-164. [PMID: 29499453 DOI: 10.1016/j.intimp.2018.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment, essentially hypoxic, is sustained by the hypoxia inducing factor (HIF), released from the pro-tumorigenic tumor associated macrophages (TAMs), functionally identical to the M2 phenotype macrophages. Stability of HIF mainly depends on molecular oxygen and an iron-dependent enzyme prolyl hydroxylase, while its activity may be inhibited by high levels of reactive oxygen species and nitric oxide. The present work showcases a novel approach utilizing the anti-tumorigenic potential of a gold-manganese oxide nanocomposite material in the tumor microenvironment that affects tumor hypoxia, exploring the possibility of restoring the immunoregulatory nature of TAMs from their pro-tumorigenic state. Along with the biochemical markers, ELISA and FACS analyses have also confirmed the potential of these nanoparticles in reverting back the M2 phenotype of TAMs to their classically activated M1 phenotype.
Collapse
Affiliation(s)
- Anupam Nath
- Department of Biotechnology, Assam University, Silchar, Assam, India, 788011
| | - Ramkrishna Pal
- Department of Biotechnology, Assam University, Silchar, Assam, India, 788011
| | | | - Himadri Saikia
- Department of Biotechnology, Assam University, Silchar, Assam, India, 788011
| | - Hasimur Rahaman
- Department of Chemistry, Assam University, Silchar, Assam, India, 788011
| | - Sujit Kumar Ghosh
- Department of Chemistry, Assam University, Silchar, Assam, India, 788011
| | - Ritwik Mazumder
- Department of Economics, Assam University, Silchar, Assam, India, 788011
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, Assam, India, 788011.
| |
Collapse
|
60
|
Zou L, Tao Y, Payne G, Do L, Thomas T, Rodriguez J, Dou H. Targeted delivery of nano-PTX to the brain tumor-associated macrophages. Oncotarget 2018; 8:6564-6578. [PMID: 28036254 PMCID: PMC5351653 DOI: 10.18632/oncotarget.14169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Nanoparticles containing mixed lipid monolayer shell, biodegradable polymer core and rabies virus glycoprotein (RVG) peptide as brain targeting ligand, were developed for brain targeted delivery of paclitaxel (PTX) to treat malignant glioma. RVG conjugated PTX loaded NPs (RVG-PTX-NPs) had the desirable size (~140 nm), narrow size distribution and spherical shape. RVG-PTX-NPs showed poor uptake by neurons and selective targeting to the brain tumor associated macrophages (TAMs) with controlled release and tumor specific toxicity. In vivo studies revealed that RVG-PTX-NPs were significant to cross the blood-brain barrier (BBB) and had specific targeting to the brain. Most importantly, RVG-PTX-NPs showed effectiveness for anti-glioma therapy on human glioma of mice model. We concluded that RVG-PTX-NPs provided an effective approach for brain-TAMs targeted delivery for the treatment of glioma.
Collapse
Affiliation(s)
- Lei Zou
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Youhua Tao
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Gregory Payne
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Linh Do
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Tima Thomas
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Juan Rodriguez
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Huanyu Dou
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| |
Collapse
|
61
|
Engin AB, Hayes AW. The impact of immunotoxicity in evaluation of the nanomaterials safety. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318755579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanomedicinal products (NMPs), due to their unique properties, are extensively investigated for their biomedical and pharmaceutical applications. Apart from being carriers of certain drugs, nanoparticles can also interact with both the innate and adaptive immune systems, thus eliciting immune responses. Following administration, their discrete physicochemical properties make each NMP act differently in the organism. Actually, the toxic effects of NMPs, in terms of specific end points, do not necessarily depend on the specific group or structural type of the particle. Furthermore, the nanoformulation may change the pharmacokinetic/toxicokinetic profile of the drug. Unveiling the structure–activity relationship of NMPs would help to clarify their immunomodulatory effects. Therefore, in addition to the current regulatory immunotoxicity testing strategies, development and regulatory approval of nano-sized pharmaceuticals still need to be discussed in order to identify potential gaps in the safety assessment.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Hipodrom, Ankara, Turkey
| | - A Wallace Hayes
- Institute for IntegrativeToxicology, Michigan State University, East Lansing, MI, USA
- College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
62
|
Hegedűs C, Kovács K, Polgár Z, Regdon Z, Szabó É, Robaszkiewicz A, Forman HJ, Martner A, Virág L. Redox control of cancer cell destruction. Redox Biol 2018; 16:59-74. [PMID: 29477046 PMCID: PMC5842284 DOI: 10.1016/j.redox.2018.01.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Redox regulation has been proposed to control various aspects of carcinogenesis, cancer cell growth, metabolism, migration, invasion, metastasis and cancer vascularization. As cancer has many faces, the role of redox control in different cancers and in the numerous cancer-related processes often point in different directions. In this review, we focus on the redox control mechanisms of tumor cell destruction. The review covers the tumor-intrinsic role of oxidants derived from the reduction of oxygen and nitrogen in the control of tumor cell proliferation as well as the roles of oxidants and antioxidant systems in cancer cell death caused by traditional anticancer weapons (chemotherapeutic agents, radiotherapy, photodynamic therapy). Emphasis is also put on the role of oxidants and redox status in the outcome following interactions between cancer cells, cytotoxic lymphocytes and tumor infiltrating macrophages.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
63
|
Shmarakov I, Mukha I, Vityuk N, Borschovetska V, Zhyshchynska N, Grodzyuk G, Eremenko A. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:333. [PMID: 28476089 PMCID: PMC5418356 DOI: 10.1186/s11671-017-2112-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/26/2017] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.
Collapse
Affiliation(s)
- Igor Shmarakov
- Department of Biochemistry and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Kotsuybynskyiy St., 2, Chernivtsi, 58012 Ukraine
| | - Iuliia Mukha
- Laboratory of Photonics of Nanosized Oxide Systems, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov St., 17, Kyiv, 03164 Ukraine
| | - Nadiia Vityuk
- Laboratory of Photonics of Nanosized Oxide Systems, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov St., 17, Kyiv, 03164 Ukraine
| | - Vira Borschovetska
- Department of Biochemistry and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Kotsuybynskyiy St., 2, Chernivtsi, 58012 Ukraine
| | - Nelya Zhyshchynska
- Department of Biochemistry and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Kotsuybynskyiy St., 2, Chernivtsi, 58012 Ukraine
| | - Galyna Grodzyuk
- L.V. Pisarzhevskii Institute of the Physical Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- NanoMedTech LLC, Kyiv, Ukraine
| | - Anna Eremenko
- Laboratory of Photonics of Nanosized Oxide Systems, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov St., 17, Kyiv, 03164 Ukraine
| |
Collapse
|
64
|
Smilowitz HM, Tarmu LJ, Sanders MM, Taylor JA, Choudhary D, Xue C, Dyment NA, Sasso D, Deng X, Hainfeld JF. Biodistribution of gold nanoparticles in BBN-induced muscle-invasive bladder cancer in mice. Int J Nanomedicine 2017; 12:7937-7946. [PMID: 29138560 PMCID: PMC5667800 DOI: 10.2147/ijn.s140977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bladder-sparing options are being developed for muscle-invasive bladder cancer in place of radical cystectomy, including the combination of chemotherapy and radiation therapy. We reasoned that improving the radiotherapy component of chemoradiation could improve the control of locally advanced disease. Previously, we showed that gold nanoparticles (AuNPs) are potent enhancers of radiation therapy. We hypothesized that if AuNPs were to preferentially localize to bladder tumors, they may be used to enhance the radiation component of muscle-invasive bladder tumor therapy. Mice were treated with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) for 17, 20, and 22 weeks - long enough to induce muscle-invasive tumors. Mice were then anesthetized and injected intravenously with 1.9 nm AuNPs of which most were rapidly cleared from the blood and excreted after a 30-50 minute residence time in the bladder. We found AuNPs distributed throughout the bladder wall, but most of the AuNPs were associated with the stroma surrounding the tumor cells or extracellular keratin produced by the tumor cells. There were relatively few AuNPs in the tumor cells themselves. The AuNPs therefore localized to tumor-associated stroma and this tumor specificity might be useful for specific X-ray dose enhancement therapy of muscle-invasive bladder carcinomas.
Collapse
Affiliation(s)
- Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Lauren J Tarmu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
- Department of Human Behavior, College of Southern Nevada, North Las Vegas
- Department of Anthropology, University of Nevada, Las Vegas, NV
| | - Mary Melinda Sanders
- Department of Anatomic Pathology, University of Connecticut Health Center, Farmington, CT
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS
| | | | - Crystal Xue
- George Washington University School of Medicine, Washington, DC
| | - Nathaniel A Dyment
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - Dan Sasso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Xiaomeng Deng
- David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | |
Collapse
|
65
|
Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep 2017; 38:522-528. [PMID: 28586039 DOI: 10.3892/or.2017.5697] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/24/2017] [Indexed: 11/05/2022] Open
Abstract
Hypoxia is a common feature of solid tumors. It is closely related to tumor progression. Exosomal microRNAs derived from cancers are considered to be mediators between cancer cells and the tumor microenvironment. In addition, the number of tumor-associated macrophages (TAMs) in the tumor microenvironment has also been demonstrated to correlate with tumor development. However, the relationship between tumor-secreted exosomes and TAM polarization under hypoxic conditions during tumor progression is not clear. Herein, we demonstrated that hypoxia induces the high expression of microRNA-940 (miR‑940) in exosomes derived from epithelial ovarian cancer (EOC). We also found that miR‑940 is highly expressed in exosomes isolated from ascites of EOC patients. Moreover, the overexpression of miR‑940 in macrophages delivered by exosomes stimulated M2 phenotype polarization, while the M2 subtype macrophages promoted EOC proliferation and migration. These results highlight the function of hypoxia in enhancing the high level of expression of miR‑940 in tumor exosomes taken up by macrophages. We also showed that the tumor-promoting function of miR‑940 is mediated by TAM polarization in EOC. These findings show that tumor-derived exosomal miR‑940 induced by hypoxia plays an important role in stimulating TAM polarization in the progression of EOC.
Collapse
|
66
|
Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 2017; 126:97-108. [PMID: 28501517 DOI: 10.1016/j.phrs.2017.05.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022]
Abstract
Tumor microenvironment (TME) plays a critical role in tumorigenesis, tumor invasion and metastasis. TME is composed of stroma, endothelial cells, pericytes, fibroblasts, smooth muscle cells, and immune cells, which is characterized by hypoxia, acidosis, and high interstitial fluid pressure. Due to the important role of TME, we firstly reviewed the composition of TME and discussed the impact of TME on tumor progression, drug and nanoparticle delivery. Next, we reviewed current strategies developed to modulate TME, including modulating tumor vasculature permeability, tumor associated macrophage phenotypes, tumor associated fibroblasts, tumor stroma components, tumor hypoxia, and multiple interventions simultaneously. Also, potential problems and future directions of TME modulation strategy have been discussed.
Collapse
|
67
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
68
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|