51
|
Maes B, Smole U, Vanderkerken M, Deswarte K, Van Moorleghem J, Vergote K, Vanheerswynghels M, De Wolf C, De Prijck S, Debeuf N, Pavie B, Toussaint W, Janssens S, Savvides S, Lambrecht BN, Hammad H. The STE20 kinase TAOK3 controls the development house dust mite-induced asthma in mice. J Allergy Clin Immunol 2021; 149:1413-1427.e2. [PMID: 34506849 DOI: 10.1016/j.jaci.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Savvas Savvides
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
52
|
Ishii T, Murakami Y, Narita T, Nunokawa H, Miyake K, Nagase T, Yamashita N. Myeloid differentiation protein-2 has a protective role in house dust mite-mediated asthmatic characteristics with the proinflammatory regulation of airway epithelial cells and dendritic cells. Clin Exp Allergy 2021; 52:149-161. [PMID: 34418187 DOI: 10.1111/cea.14002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myeloid differentiation protein-2 (MD-2) is a lipopolysaccharide-binding protein involved in lipopolysaccharide signalling via Toll-like receptor 4 (TLR4). TLR4 plays an essential role in HDM-mediated allergic airway inflammation. Moreover, MD-2 is structurally similar to Der f 2, a major allergen from house dust mite (HDM). OBJECTIVES We aimed to clarify the role of MD-2 in the pathogenesis of HDM-mediated allergic airway inflammation. METHODS Wild-type (WT), TLR4 knockout and MD-2 knockout mice were subjected to intranasal instillation of HDM extract, and asthmatic features were evaluated. We also evaluated gene sets regulated by MD-2 in HDM-treated airway epithelial cells and examined the function of dendritic cells from lymph nodes and from lungs. RESULTS Aggravated allergic airway inflammation with increased airway hyperresponsiveness was observed in MD-2 knockout mice compared with WT and TLR4 knockout mice. Global gene expression analysis revealed an MD-2 regulated proinflammatory response and reconstituted TLR4 signalling in airway epithelial cells. The ability of dendritic cells to evoke an allergic immune response was enhanced in MD-2 knockout mice. CONCLUSIONS & CLINICAL RELEVANCE MD-2 plays a protective role in HDM-induced airway allergy with the proinflammatory regulation of airway epithelial cells and dendritic cells. MD-2 may serve as a therapeutic target in the treatment of asthma.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Murakami
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Tomoya Narita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Hiroki Nunokawa
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naomi Yamashita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
53
|
Kim G, Hong M, Kashif A, Hong Y, Park BS, Mun JY, Choi H, Lee JS, Yang EJ, Woo RS, Lee SJ, Yang M, Kim IS. Der f 38 Is a Novel TLR4-Binding Allergen Related to Allergy Pathogenesis from Dermatophagoides farinae. Int J Mol Sci 2021; 22:ijms22168440. [PMID: 34445142 PMCID: PMC8395149 DOI: 10.3390/ijms22168440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
It is difficult to treat allergic diseases including asthma completely because its pathogenesis remains unclear. House dust mite (HDM) is a critical allergen and Toll-like receptor (TLR) 4 is a member of the toll-like receptor family, which plays an important role in allergic diseases. The purpose of this study was to characterize a novel allergen, Der f 38 binding to TLR4, and unveil its role as an inducer of allergy. Der f 38 expression was detected in the body and feces of Dermatophagoides farinae (DF). Electron microscopy revealed that it was located in the granule layer, the epithelium layer, and microvilli of the posterior midgut. The skin prick test showed that 60% of allergic subjects were Der f 38-positive. Der f 38 enhanced surface 203c expression in basophils of Der f 38-positive allergic subjects. By analysis of the model structure of Der p 38, the expected epitope sites are exposed on the exterior side. In animal experiments, Der f 38 triggered an infiltration of inflammatory cells. Intranasal (IN) administration of Der f 38 increased neutrophils in the lung. Intraperitoneal (IP) and IN injections of Der f 38 induced both eosinophils and neutrophils. Increased total IgE level and histopathological features were found in BALB/c mice treated with Der f 38 by IP and IN injections. TLR4 knockout (KO) BALB/c mice exhibited less inflammation and IgE level in the sera compared to wild type (WT) mice. Der f 38 directly binds to TLR4 using biolayer interferometry. Der f 38 suppressed the apoptosis of neutrophils and eosinophils by downregulating proteins in the proapoptotic pathway including caspase 9, caspase 3, and BAX and upregulating proteins in the anti-apoptotic pathway including BCL-2 and MCL-1. These findings might shed light on the pathogenic mechanisms of allergy to HDM.
Collapse
Affiliation(s)
- Geunyeong Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Minhwa Hong
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Ayesha Kashif
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Yujin Hong
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
| | - Beom-Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Korea;
| | - Ji-Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Hyosun Choi
- Nanobioimaging Center, National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Korea;
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Korea;
| | - Eun-Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Soo-Jin Lee
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Minseo Yang
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Korea;
| | - In-Sik Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu 11759, Korea; (G.K.); (M.H.); (A.K.); (Y.H.)
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Korea;
- Correspondence:
| |
Collapse
|
54
|
Ogi K, Ramezanpour M, Liu S, Ferdoush Tuli J, Bennett C, Suzuki M, Fujieda S, Psaltis AJ, Wormald PJ, Vreugde S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:692049. [PMID: 35387029 PMCID: PMC8974687 DOI: 10.3389/falgy.2021.692049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background:Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air–liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sha Liu
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Jannatul Ferdoush Tuli
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Catherine Bennett
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Masanobu Suzuki
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Alkis James Psaltis
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- *Correspondence: Sarah Vreugde
| |
Collapse
|
55
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
56
|
Alfaro-Arnedo E, López IP, Piñeiro-Hermida S, Ucero ÁC, González-Barcala FJ, Salgado FJ, Pichel JG. IGF1R as a Potential Pharmacological Target in Allergic Asthma. Biomedicines 2021; 9:biomedicines9080912. [PMID: 34440118 PMCID: PMC8389607 DOI: 10.3390/biomedicines9080912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Asthma is a chronic lung disease characterized by reversible airflow obstruction, airway hyperresponsiveness (AHR), mucus overproduction and inflammation. Although Insulin-like growth factor 1 receptor (IGF1R) was found to be involved in asthma, its pharmacological inhibition has not previously been investigated in this pathology. We aimed to determine if therapeutic targeting of IGF1R ameliorates allergic airway inflammation in a murine model of asthma. Methods: C57BL/6J mice were challenged by house dust mite (HDM) extract or PBS for four weeks and therapeutically treated with the IGF1R tyrosine kinase inhibitor (TKI) NVP-ADW742 (NVP) once allergic phenotype was established. Results: Lungs of HDM-challenged mice exhibited a significant increase in phospho-IGF1R levels, incremented AHR, airway remodeling, eosinophilia and allergic inflammation, as well as altered pulmonary surfactant expression, all of being these parameters counteracted by NVP treatment. HDM-challenged lungs also displayed augmented expression of the IGF1R signaling mediator p-ERK1/2, which was greatly reduced upon treatment with NVP. Conclusions: Our results demonstrate that IGF1R could be considered a potential pharmacological target in murine HDM-induced asthma and a candidate biomarker in allergic asthma.
Collapse
Affiliation(s)
- Elvira Alfaro-Arnedo
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
| | - Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain;
| | - Álvaro C. Ucero
- Thoracic Oncology, Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Francisco J. González-Barcala
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
- Spanish Biomedical Research Networking Centre-CIBERES, 15706 Santiago de Compostela, Spain
| | - Francisco J. Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
- Spanish Biomedical Research Networking Centre-CIBERES, 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-638-056-014
| |
Collapse
|
57
|
Kuchibhotla VNS, Starkey MR, Reid AT, Heijink IH, Nawijn MC, Hansbro PM, Knight DA. Inhibition of β-Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice. Front Physiol 2021; 12:690531. [PMID: 34385933 PMCID: PMC8353457 DOI: 10.3389/fphys.2021.690531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
Excessive mucus production is a major feature of allergic asthma. Disruption of epithelial junctions by allergens such as house dust mite (HDM) results in the activation of β-catenin signaling, which has been reported to stimulate goblet cell differentiation. β-catenin interacts with various co-activators including CREB binding protein (CBP) and p300, thereby regulating the expression of genes involved in cell proliferation and differentiation, respectively. We specifically investigated the role of the β-catenin/CBP signaling pathway in goblet cell metaplasia in a HDM-induced allergic airway disease model in mice using ICG-001, a small molecule inhibitor that blocks the binding of CBP to β-catenin. Female 6- 8-week-old BALB/c mice were sensitized to HDM/saline on days 0, 1, and 2, followed by intranasal challenge with HDM/saline with or without subcutaneous ICG-001/vehicle treatment from days 14 to 17, and samples harvested 24 h after the last challenge/treatment. Differential inflammatory cells in bronchoalveolar lavage (BAL) fluid were enumerated. Alcian blue (AB)/Periodic acid–Schiff (PAS) staining was used to identify goblet cells/mucus production, and airway hyperresponsiveness (AHR) was assessed using invasive plethysmography. Exposure to HDM induced airway inflammation, goblet cell metaplasia and increased AHR, with increased airway resistance in response to the non-specific spasmogen methacholine. Inhibition of the β-catenin/CBP pathway using treatment with ICG-001 significantly attenuated the HDM-induced goblet cell metaplasia and infiltration of macrophages, but had no effect on eosinophils, neutrophils, lymphocytes or AHR. Increased β-catenin/CBP signaling may promote HDM-induced goblet cell metaplasia in mice.
Collapse
Affiliation(s)
- Virinchi N S Kuchibhotla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre GrowUpWell and Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Andrew T Reid
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Irene H Heijink
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Providence Health Care Research Institute, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
58
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
59
|
CD52-targeted depletion by Alemtuzumab ameliorates allergic airway hyperreactivity and lung inflammation. Mucosal Immunol 2021; 14:899-911. [PMID: 33731828 PMCID: PMC8225558 DOI: 10.1038/s41385-021-00388-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic inflammatory disorder associated with airway hyperreactivity (AHR) whose global prevalence is increasing at an alarming rate. Group 2 innate lymphoid cells (ILC2s) and T helper 2 (TH2) cells are producers of type 2 cytokines, which may contribute to development of AHR. In this study, we explore the potential of CD52-targeted depletion of type 2 immune cells for treating allergic AHR. Here we show that anti-CD52 therapy can prevent and remarkably reverse established IL-33-induced AHR by reducing airway resistance and alleviating lung inflammation. We further show that CD52 depletion prevents and treats allergic AHR induced by clinically relevant allergens such as Alternaria alternata and house dust mite. Importantly, we leverage various humanized mice models of AHR to show new therapeutic applications for Alemtuzumab, an anti-CD52 depleting antibody that is currently FDA approved for treatment of multiple sclerosis. Our results demonstrate that CD52 depletion is a viable therapeutic option for reduction of pulmonary inflammation, abrogation of eosinophilia, improvement of lung function, and thus treatment of allergic AHR. Taken together, our data suggest that anti-CD52 depleting monoclonal antibodies, such as Alemtuzumab, can serve as viable therapeutic drugs for amelioration of TH2- and ILC2-dependent AHR.
Collapse
|
60
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
61
|
Piñeiro‐Hermida S, Martínez P, Blasco MA. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell 2021; 20:e13352. [PMID: 33942458 PMCID: PMC8135011 DOI: 10.1111/acel.13352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well-established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild-type and telomerase-deficient mice with short telomeres (third-generation (G3 Tert-/- mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild-type mice in which we induced a telomere dysfunction by the administration of 6-thio-2´-deoxyguanosine (6-thio-dG). Following HDM exposure, G3 Tert-/- and 6-thio-dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert-/- and 6-thio-dG treated wild-type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert-/- and 6-thio-dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert-/- and 6-thio-dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen-induced airway inflammation.
Collapse
Affiliation(s)
- Sergio Piñeiro‐Hermida
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| | - Paula Martínez
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| |
Collapse
|
62
|
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, Trudeau JB, Cook-Mills JM, Wenzel S, Milstien S, Spiegel S. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol 2021; 147:1936-1948.e9. [PMID: 33130063 PMCID: PMC8081742 DOI: 10.1016/j.jaci.2020.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Briana N James
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Ky
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Ky
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Joseph C Lownik
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - John B Trudeau
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana School of Medicine, Indianapolis, Ind
| | - Sally Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
63
|
Nesvorna M, Pekar S, Shcherbachenko E, Molva V, Erban T, Green SJ, Klimov PB, Hubert J. Microbiome variation during culture growth of the European house dust mite, Dermatophagoides pteronyssinus. FEMS Microbiol Ecol 2021; 97:6155062. [PMID: 33674831 DOI: 10.1093/femsec/fiab039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
In culture, the house dust mite, Dermatophagoides pteronyssinus, shows different growth patterns, but the composition and changes in the associated microbial community during mite culture growth are poorly known. In this study, we analyzed temporal changes in microbial communities including 'internal' communities (inside mites, ingested) and 'environmental' communities (from culture environment). Microbial community structure was correlated with guanine content (a nitrogenous waste product of mites) and mite population density. Both internal and environmental microbial communities were remarkably consistent between biological replicates from the same culture age group and were composed of relatively few dominant taxa-11 bacterial and 3 fungal operational taxonomic units (OTUs). Significant changes over time in microbial community structure in the bulk culture environment and in internal mite samples were observed. The yeast, Saccharomyces cerevisiae, a main component of the mite diet, gradually disappeared during mite culture growth and was replaced by fungi from the genera Aspergillus and Candida in both 'internal' and 'environmental' samples. In environmental samples, bacteria from the genus Lactobacillus and S. cerevisiae were negatively correlated, and Aspergillus and Candida positively correlated, with guanine content. The relative abundance of bacteria from the genus Kocuria increased with mite density but declined with increasing guanine content. The relative abundance of bacteria from the genus Virgibacillus was negatively correlated with mite density in 'internal' samples. Gram-positive bacteria dominated bacterial microbiomes at all time points in our experiments, indicating a more limited possibility for vaccine contamination by bacterial endotoxins (heat-stable lipopolysaccharides produced mostly by Gram-negative bacteria) in our experimental cultures.
Collapse
Affiliation(s)
- Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czechia
| | | | - Vit Molva
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stefan J Green
- Rush University, Department of Internal Medicine, Division of Infectious Diseases, Rush Medical College, 600 S. Paulina St. Chicago, Illinois 60612, USA
| | - Pavel B Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI 48109, USA.,Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague 6-Suchdol, Czechia
| |
Collapse
|
64
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
65
|
Park D, Kwak DW, Kim JH. Leukotriene B 4 receptors contribute to house dust mite-induced eosinophilic airway inflammation via T H2 cytokine production. BMB Rep 2021. [PMID: 33612149 PMCID: PMC8016659 DOI: 10.5483/bmbrep.2021.54.3.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Previous studies have reported that the receptors of LTB4, BLT1, and BLT2 play mediatory roles in the allergic airway inflammation induced by ovalbumin (OVA). However, considering that house dust mites (HDMs) are the most prevalent allergen and well-known risk factor for asthmatic allergies, we are interested in elucidating the contributory roles of BLT1/2 in HDM-induced allergic airway inflammation. Our aim in this study was to investigate whether BLT1/2 play any roles in HDM-induced allergic airway inflammation. In this study, we observed that the levels of ligands for BLT1/2 [LTB4 and 12(S)-HETE (12(S)-hydroxyeicosatetraenoic acid)] were significantly increased in bronchoalveolar lavage fluid (BALF) after HDM challenge. Block-ade of BLT1 or BLT2 as well as of 5-lipoxygenase (5-LO) or 12-lipoxygenase (12-LO) markedly suppressed the production of TH2 cytokines (IL-4, IL-5, and IL-13) and alleviated lung inflammation and mucus secretion in an HDM-induced eosinophilic airway-inflammation mouse model. Together, these results indicate that the 5-/12-LO-BLT1/2 cascade plays a role in HDM-induced airway inflammation by mediating the production of TH2 cytokines. Our findings suggest that BLT1/2 may be a potential therapeutic target for patients with HDM-induced allergic asthma.
Collapse
Affiliation(s)
- Donghwan Park
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Dong-Wook Kwak
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jae-Hong Kim
- Department of Life Sciences, College of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
66
|
Zhang X, Zhang M, Li L, Chen W, Zhou W, Gao J. IRAK-M knockout promotes allergic airway inflammation, but not airway hyperresponsiveness, in house dust mite-induced experimental asthma model. J Thorac Dis 2021; 13:1413-1426. [PMID: 33841934 PMCID: PMC8024803 DOI: 10.21037/jtd-20-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background IL-1 receptor associated-kinase (IRAK)-M, expressed by airway epithelium and macrophages, was shown to regulate acute and chronic airway inflammation exhibiting a biphasic response in an OVA-based animal model. House dust mite (HDM) is a common real-life aeroallergen highly relevant to asthma pathogenesis. The role of IRAK-M in HDM-induced asthma remains unknown. This study was aimed to investigate the effect of IRAK-M on allergic airway inflammation induced by HDM using IRAK-M knockout (KO) mice and the potential underlying mechanisms. Methods IRAK-M KO and wild-type (WT) mice were sensitized and challenged with HDM. The differences in airway inflammation were evaluated 24 hours after the last challenge between the two genotypes of mice using a number of cellular and molecular biological techniques. In vitro mechanistic investigation was also involved. Results Lung expression of IRAK-M was significantly upregulated by HDM in the WT mice. Compared with the WT controls, HDM-treated IRAK-M KO mice showed exacerbated infiltration of inflammatory cells, particularly Th2 cells, in the airways and mucus overproduction, higher epithelial mediators IL-25, IL-33 and TSLP and Th2 cytokines in bronchoalveolar lavage (BAL) fluid. Lung IRAK-M KO macrophages expressed higher percentage of costimulatory molecules OX40L and CD 80 and exhibited enhanced antigen uptake. However, IRAK-M KO didn’t impact the airway hyperreactivity (AHR) indirectly induced by HDM. Conclusions The findings indicate that IRAK-M protects allergic airway inflammation, not AHR, by modifying activation and antigen uptake of lung macrophages following HDM stimulation. Optimal regulation of IRAK-M might indicate an intriguing therapeutic avenue for allergic airway inflammation.
Collapse
Affiliation(s)
- Xudong Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingqiang Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lun Li
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Chen
- Departments of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wexun Zhou
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinming Gao
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
67
|
Seumois G, Ramírez-Suástegui C, Schmiedel BJ, Liang S, Peters B, Sette A, Vijayanand P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol 2021; 5:5/48/eaba6087. [PMID: 32532832 DOI: 10.1126/sciimmunol.aba6087] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
CD4+ T helper (TH) cells and regulatory T (Treg) cells that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and nonasthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous and certain subsets are quantitatively and qualitatively different in individuals with HDM-reactive asthma. The number of interleukin-9 (IL-9)-expressing HDM-reactive TH cells is greater in asthmatics with HDM allergy compared with nonasthmatics with HDM allergy, and this IL-9-expressing TH subset displays enhanced pathogenic properties. More HDM-reactive TH and Treg cells expressing the interferon response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, tumor necrosis factor-related apoptosis-inducing ligand, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Collapse
Affiliation(s)
- Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | - Shu Liang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Clinical and Experimental Sciences, National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
68
|
Ait Yahia S, Audousset C, Alvarez-Simon D, Vorng H, Togbe D, Marquillies P, Delacre M, Rose S, Bouscayrol H, Rifflet A, Quesniaux V, Boneca IG, Chamaillard M, Tsicopoulos A. NOD1 sensing of house dust mite-derived microbiota promotes allergic experimental asthma. J Allergy Clin Immunol 2021; 148:394-406. [PMID: 33508265 DOI: 10.1016/j.jaci.2020.12.649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma severity has been linked to exposure to gram-negative bacteria from the environment that are recognized by NOD1 receptor and are present in house dust mite (HDM) extracts. NOD1 polymorphism has been associated with asthma. OBJECTIVE We sought to evaluate whether either host or HDM-derived microbiota may contribute to NOD1-dependent disease severity. METHODS A model of HDM-induced experimental asthma was used and the effect of NOD1 deficiency was evaluated. Contribution of host microbiota was evaluated by fecal transplantation. Contribution of HDM-derived microbiota was assessed by 16S ribosomal RNA sequencing, mass spectrometry analysis, and peptidoglycan depletion of the extracts. RESULTS In this model, loss of the bacterial sensor NOD1 and its adaptor RIPK2 improved asthma features. Such inhibitory effect was not related to dysbiosis caused by NOD1 deficiency, as shown by fecal transplantation of Nod1-deficient microbiota to wild-type germ-free mice. The 16S ribosomal RNA gene sequencing and mass spectrometry analysis of HDM allergen, revealed the presence of some muropeptides from gram-negative bacteria that belong to the Bartonellaceae family. While such HDM-associated muropeptides were found to activate NOD1 signaling in epithelial cells, peptidoglycan-depleted HDM had a decreased ability to instigate asthma in vivo. CONCLUSIONS These data show that NOD1-dependent sensing of HDM-associated gram-negative bacteria aggravates the severity of experimental asthma, suggesting that inhibiting the NOD1 signaling pathway may be a therapeutic approach to treating asthma.
Collapse
Affiliation(s)
- Saliha Ait Yahia
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Camille Audousset
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Daniel Alvarez-Simon
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Han Vorng
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Philippe Marquillies
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Myriam Delacre
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Stéphanie Rose
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Hélène Bouscayrol
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Paris, France; Institut National de la Santé et de la Recherche Médicale, Équipe Avenir, Paris, France
| | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Paris, France; Institut National de la Santé et de la Recherche Médicale, Équipe Avenir, Paris, France
| | - Mathias Chamaillard
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France.
| |
Collapse
|
69
|
Bradley KL, Stokes CA, Marciniak SJ, Parker LC, Condliffe AM. Role of unfolded proteins in lung disease. Thorax 2021; 76:92-99. [PMID: 33077618 PMCID: PMC7803888 DOI: 10.1136/thoraxjnl-2019-213738] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Clare A Stokes
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | | | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| |
Collapse
|
70
|
Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunol 2021; 14:282-295. [PMID: 33184475 PMCID: PMC7658438 DOI: 10.1038/s41385-020-00356-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 02/04/2023]
Abstract
Airway macrophages (AMs) play key roles in the maintenance of lung immune tolerance. Tissue tailored, highly specialised and strategically positioned, AMs are critical sentinels of lung homoeostasis. In the last decade, there has been a revolution in our understanding of how metabolism underlies key macrophage functions. While these initial observations were made during steady state or using in vitro polarised macrophages, recent studies have indicated that during many chronic lung diseases (CLDs), AMs adapt their metabolic profile to fit their local niche. By generating reactive oxygen species (ROS) for pathogen defence, utilising aerobic glycolysis to rapidly generate cytokines, and employing mitochondrial respiration to fuel inflammatory responses, AMs utilise metabolic reprogramming for host defence, although these changes may also support chronic pathology. This review focuses on how metabolic alterations underlie AM phenotype and function during CLDs. Particular emphasis is given to how our new understanding of AM metabolic plasticity may be exploited to develop AM-focused therapies.
Collapse
|
71
|
Zou X, Hu H, Huang Z, Liao C, Huang L, Luo W, Jiang M, Sun B. Serum levels of specific immunoglobulin E to Dermatophagoides pteronyssinus allergen components in patients with allergic rhinitis or/and asthma. Allergy Asthma Proc 2021; 42:e40-e46. [PMID: 33404400 DOI: 10.2500/aap.2021.42.200105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: House-dust mites (HDM) allergen is one of the most important allergens in southern China; however, studies on the Dermatophagoides pteronyssinus components are relatively lacking. Objective: This study analyzed the molecular components of D. pteronyssinus in patients with allergic asthma (AS) and/or allergic rhinitis (AR) sensitized to D. pteronyssinus, and aimed to improve HDM immunotherapy in southern China. Methods: Allergen component-resolved diagnosis detection technology was used to detect the serum levels of specific immunoglobulin E (sIgE) to D. pteronyssinus allergen components (Der p 1, 2, 3, 5, 7, 10, and 23) in patients who were sensitized to D. pteronyssinus and with AR (n = 106), AS (n = 144), or AR combined with AS (n = 134). Results: The highest positive rates of D. pteronyssinus components were Der p 1 (94.8%), followed by Der p 2 (77.6%), Der p 23 (62.5%), Der p 7 (34.6%), Der p 5 (17.7%), Der p 10 (12.2%), and Der p 3 (2.6%). Patients with AR+AS had the highest positive rates to Der p 2 (85.8%), Der p 23 (62.7%), Der p 7 (40.3%), Der p 5 (25.0%), and Der p 10 (16.4%). Der p 1 had the highest positive rate in patients with AR (95.3%). The Der p 3 positive rate in patients with AS (6.0%) was higher than that in patients with AR (0.0%, χ² = 6.872, p < 0.05) and patients with AR+AS (0.7%, χ² = 6.063, p < 0.05) Among the patients with AR+AS, 19.1% were co-sensitized to Der p 1, Der p 2, Der p 23, and Der p 7. Interestingly, only one patient with AR was exclusively sensitized to Der p 23. An optimal scale analysis showed that Der p 5, Der p 23, and Der p 7 had strong connection (Cronbach α = 93.7%). Conclusion: Der p 1 and Der p 2 were the main sensitization components of D. pteronyssinus, and patients with AS+AR had the highest positive rate for five of seven D. pteronyssinus allergen components. This research can provide suggestions for personalized HDM-specific immunotherapy in southern China.
Collapse
|
72
|
Abu Khweek A, Kim E, Joldrichsen MR, Amer AO, Boyaka PN. Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma. Front Immunol 2020; 11:534501. [PMID: 33424827 PMCID: PMC7793902 DOI: 10.3389/fimmu.2020.534501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
The prevalence of asthma has been rising steadily for several decades, and continues to be a major public health and global economic burden due to both direct and indirect costs. Asthma is defined as chronic heterogeneous inflammatory diseases characterized by airway obstruction, mucus production and bronchospasm. Different endotypes of asthma are being recognized based on the distinct pathophysiology, genetic predisposition, age, prognosis, and response to remedies. Mucosal innate response to environmental triggers such as pollen, cigarette smoke, fragrances, viral infection, and house dust mite (HDM) are now recognized to play an important role in allergic asthma. HDM are the most pervasive allergens that co-habitat with us, as they are ubiquitous in-house dusts, mattress and bedsheets, and feed on a diet of exfoliated human skin flakes. Dermatophagoides pteronyssinus, is one among several HDM identified up to date. During the last decade, extensive studies have been fundamental in elucidating the interactions between HDM allergens, the host immune systems and airways. Moreover, the paradigm in the field of HDM-mediated allergy has been shifted away from being solely a Th2-geared to a complex response orchestrated via extensive crosstalk between the epithelium, professional antigen presenting cells (APCs) and components of the adaptive immunity. In fact, HDM have several lessons to teach us about their allergenicity, the complex interactions that stimulate innate immunity in initiating and perpetuating the lung inflammation. Herein, we review main allergens of Dermatophagoides pteronyssinus and their interactions with immunological sentinels that promote allergic sensitization and activation of innate immunity, which is critical for the development of the Th2 biased adaptive immunity to HDM allergens and development of allergic asthma.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Marisa R Joldrichsen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Prosper N Boyaka
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
73
|
Durrington HJ, Krakowiak K, Meijer P, Begley N, Maidstone R, Goosey L, Gibbs JE, Blaikley JF, Gregory LG, Lloyd CM, Loudon ASI, Ray DW. Circadian asthma airway responses are gated by REV-ERBα. Eur Respir J 2020; 56:13993003.02407-2019. [PMID: 32586876 PMCID: PMC7613655 DOI: 10.1183/13993003.02407-2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/06/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND The circadian clock powerfully regulates inflammation and the clock protein REV-ERBα is known to play a key role as a repressor of the inflammatory response. Asthma is an inflammatory disease of the airways with a strong time of day rhythm. Airway hyper-responsiveness (AHR) is a dominant feature of asthma; however, it is not known if this is under clock control. OBJECTIVES To determine if allergy-mediated AHR is gated by the clock protein REV-ERBα. METHODS After exposure to the intra-nasal house dust mite (HDM) allergen challenge model at either dawn or dusk, AHR to methacholine was measured invasively in mice. MAIN RESULTS Wild-type (WT) mice show markedly different time of day AHR responses (maximal at dusk/start of the active phase), both in vivo and ex vivo, in precision cut lung slices. Time of day effects on AHR were abolished in mice lacking the clock gene Rev-erbα, indicating that such effects on asthma response are likely to be mediated via the circadian clock. We suggest that muscarinic receptors one (Chrm 1) and three (Chrm 3) may play a role in this pathway. CONCLUSIONS We identify a novel circuit regulating a core process in asthma, potentially involving circadian control of muscarinic receptor expression, in a REV-ERBα dependent fashion. CLINICAL IMPLICATION These insights suggest the importance of considering the timing of drug administration in clinic trials and in clinical practice (chronotherapy).
Collapse
Affiliation(s)
- Hannah J Durrington
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Wythenshawe Hospital, University Hospital of South Manchester, Manchester University NHS Foundation Trust (MFT), Manchester, UK
| | - Karolina Krakowiak
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter Meijer
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nicola Begley
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert Maidstone
- Division of Informatics, Imaging and Data Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laurence Goosey
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Julie E Gibbs
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - John F Blaikley
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Wythenshawe Hospital, University Hospital of South Manchester, Manchester University NHS Foundation Trust (MFT), Manchester, UK
| | - Lisa G Gregory
- National Heart and Lung Institute, Imperial College, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College, London, UK
| | - Andrew S I Loudon
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David W Ray
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
74
|
Pinkerton JW, Kim RY, Koeninger L, Armbruster NS, Hansbro NG, Brown AC, Jayaraman R, Shen S, Malek N, Cooper MA, Nordkild P, Horvat JC, Jensen BAH, Wehkamp J, Hansbro PM. Human β-defensin-2 suppresses key features of asthma in murine models of allergic airways disease. Clin Exp Allergy 2020; 51:120-131. [PMID: 33098152 DOI: 10.1111/cea.13766] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma is an airway inflammatory disease and a major health problem worldwide. Anti-inflammatory steroids and bronchodilators are the gold-standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy. OBJECTIVE To elucidate the therapeutic potential of human β-defensins (hBD), such as hBD2 mild to moderate and severe asthma. METHODS We investigated the role of hBD2 in a steroid-sensitive, house dust mite-induced allergic airways disease (AAD) model and a steroid-insensitive model combining ovalbumin-induced AAD with C muridarum (Cmu) respiratory infection. RESULTS In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma-related cytokines IL-9 and IL-13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid-sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper-responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge. CONCLUSIONS AND CLINICAL RELEVANCE These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid-resistant asthma.
Collapse
Affiliation(s)
- James W Pinkerton
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Louis Koeninger
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | | | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ranjith Jayaraman
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Sijie Shen
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Nisar Malek
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | - Peter Nordkild
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Benjamin A H Jensen
- Section for Human Genomics and Metagenomics in Metabolism, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Wehkamp
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle, & Hunter Medical Research Institute, Newcastle, NSW, Australia.,Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
75
|
Takahashi K, Yanuma N, Hirokawa M, Miyajima M, Ogawa M, Osada H, Sugita K, Kondo H, Ohmori K. Presence of the house dust mite allergen in the gastrointestinal tract of dogs with chronic enteropathy: A potential inducer of interleukin-1β. Vet Immunol Immunopathol 2020; 230:110150. [PMID: 33190867 DOI: 10.1016/j.vetimm.2020.110150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
House dust mite (HDM) is an environmental allergen ubiquitously present indoors, causing allergic inflammation in dogs. However, it is unclear whether HDM allergens can be detected in the gastrointestinal (GI) tract of dogs. In addition, although expression of interleukin (IL)-1β is increased in the intestinal mucosa of dogs with chronic enteropathy (CE), the role of HDM allergens in the production of IL-1β has not been evaluated. The objectives of this study were to determine the presence of HDM allergens in the GI tract of dogs and to elucidate the effect of HDM on IL-1β expression in canine macrophages. HDM allergen, Dermatophagoides pteronyssinus (Der p) 1, was quantified in the gastric and duodenal fluids and the duodenal and colonic mucosae of dogs with CE and healthy laboratory dogs, and faeces of dogs with CE, healthy laboratory dogs and healthy client-owned dogs. Gene expression and protein levels of IL-1β were measured in HDM-stimulated canine peripheral macrophages from healthy laboratory dogs. Der p 1 was detected in the gastric and duodenal fluids of dogs with CE and healthy laboratory dogs, and faeces of all dogs examined. Der p 1 levels in the duodenal and colonic mucosae were significantly higher in dogs with CE than in healthy laboratory dogs. HDM increased both gene expression and protein levels of IL-1β in canine macrophages. These findings demonstrate the presence of HDM allergens in the GI tract of dogs and the possible involvement of HDM allergens in the pathogenesis of CE by promoting IL-1β expression in macrophages.
Collapse
Affiliation(s)
- Kaho Takahashi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Nanako Yanuma
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Marin Hirokawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Masaki Miyajima
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Misato Ogawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hironari Osada
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Koji Sugita
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan; Sugita Animal Hospital, 3-55-10 Shinshiraoka, Shiraoka, Saitama, 349-0212, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Keitaro Ohmori
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
76
|
A critical regulation of Th2 cell responses by RORα in allergic asthma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1326-1335. [PMID: 33165810 DOI: 10.1007/s11427-020-1825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the lung and the airway, which is characterized by aberrant type 2 immune responses to otherwise unharmful aeroallergens. While the central role of Th2 cells and type 2 cytokines in the pathogenesis of allergic asthma is well documented, the regulation and plasticity of Th2 cells remain incompletely understood. By using an animal model of allergic asthma in IL-4-reporter mice, we found that Th2 cells in the lung expressed higher levels of Rora than those in the lymph nodes, and that treatment with an RORα agonist SR1078 resulted in diminished Th2 cell responses in vivo. To determine the T cell-intrinsic role of RORα in allergic asthma in vivo, we established T cell-specific RORα-deficient (Cd4creRoraf/f) mice. Upon intranasal allergen challenges, Cd4creRoraf/f mice exhibited a significantly increased Th2 cells in the lungs and the airway and showed an enhanced eosinophilic inflammation compared to littermate control mice. Studies with Foxp3YFP-creRoraf/f mice and CD8+ T cell depletion showed that the increased Th2 cell responses in the Cd4creRoraf/f mice were independent of Treg cells and CD8+ T cells. Our findings demonstrate a critical regulatory role of RORα in Th2 cells, which suggest that RORα agonists could be effective for the treatment of allergic diseases.
Collapse
|
77
|
Miki H, Pei H, Gracias DT, Linden J, Croft M. Clearance of apoptotic cells by lung alveolar macrophages prevents development of house dust mite-induced asthmatic lung inflammation. J Allergy Clin Immunol 2020; 147:1087-1092.e3. [PMID: 33065121 DOI: 10.1016/j.jaci.2020.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Poor clearance of apoptotic cells has been suggested to contribute to severe asthma, but whether uptake of apoptotic cells by lung phagocytes might dampen house dust mite (HDM)-induced lung inflammation has not been shown. OBJECTIVES This study investigated whether apoptotic cell engulfment in the murine lung impacts the development of allergen-induced asthmatic airway inflammation and which immune modulating mechanisms were activated. METHODS Apoptotic cells were infused into the lungs of mice challenged with HDM allergen and lung inflammation, expression of suppressive molecules, and induction of regulatory T cells were monitored. Additionally, an adenosine receptor agonist was tested to study the mechanism of suppression elicited by apoptotic cells. RESULTS Apoptotic cell uptake by lung alveolar macrophages suppressed HDM-driven allergic asthma. This was associated with promoting the regulatory T cell-inducing molecule retinoic acid, inhibiting inflammatory cytokine production, and making macrophages more susceptible to receiving suppressive signals from adenosine. Correspondingly, adenosine receptor agonist treatment also limited HDM-driven allergic airway inflammation through an action on alveolar macrophages. CONCLUSIONS These data provide insight into the mechanisms by which lung macrophages dampen allergen-induced airway inflammation. They suggest that targeting lung macrophages to increase their phagocytic capacity, enhance their ability to make retinoic acid, dampen their capacity to make inflammatory cytokines, and increase their responsiveness to adenosine, could be useful to suppress allergic responses.
Collapse
Affiliation(s)
- Haruka Miki
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Hong Pei
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Donald Tom Gracias
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Joel Linden
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Michael Croft
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
78
|
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.
Collapse
|
79
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
80
|
Zhang R, Trower J, Wu T. Degradation of bacterial permeability family member A1 (BPIFA1) by house dust mite (HDM) cysteine protease Der p 1 abrogates immune modulator function. Int J Biol Macromol 2020; 164:4022-4031. [PMID: 32890564 PMCID: PMC7467078 DOI: 10.1016/j.ijbiomac.2020.08.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, PR China
| | - Jessika Trower
- Department of Pharmaceutical Sciences, 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA
| | - Tongde Wu
- Department of Pharmaceutical Sciences, 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA; Biomanufacturing Research Institute & Technology Enterprise (BRITE), 302 East Lawson Street, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
81
|
Ramos-Ramírez P, Noreby M, Liu J, Ji J, Abdillahi SM, Olsson H, Dahlén SE, Nilsson G, Adner M. A new house dust mite-driven and mast cell-activated model of asthma in the guinea pig. Clin Exp Allergy 2020; 50:1184-1195. [PMID: 32691918 DOI: 10.1111/cea.13713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Animal models are extensively used to study underlying mechanisms in asthma. Guinea pigs share anatomical, pharmacological and physiological features with human airways and may enable the development of a pre-clinical in vivo model that closely resembles asthma. OBJECTIVES To develop an asthma model in guinea pigs using the allergen house dust mite (HDM). METHODS Guinea pigs were intranasally sensitized to HDM which was followed by HDM challenges once weekly for five weeks. Antigen-induced bronchoconstriction (AIB) was evaluated as alterations in Rn (Newtonian resistance), G (tissue damping) and H (tissue elastance) at the first challenge with forced oscillation technique (FOT), and changes in respiratory pattern upon each HDM challenge were assessed as enhanced pause (Penh) using whole-body plethysmography. Airway responsiveness to methacholine was measured one day after the last challenge by FOT. Inflammatory cells and cytokines were quantified in bronchoalveolar lavage fluid, and HDM-specific immunoglobulins were measured in serum by ELISA. Airway pathology was evaluated by conventional histology. RESULTS The first HDM challenge after the sensitization generated a marked increase in Rn and G, which was abolished by pharmacological inhibition of histamine, leukotrienes and prostanoids. Repeated weekly challenges of HDM caused increase of Penh and a marked increase in airway hyperresponsiveness for all three lung parameters (Rn , G and H) and eosinophilia. Levels of IgE, IgG1 , IgG2 and IL-13 were elevated in HDM-treated guinea pigs. HDM exposure induced infiltration of inflammatory cells into the airways with a pronounced increase of mast cells. Subepithelial collagen deposition, airway wall thickness and goblet cell hyperplasia were induced by repeated HDM challenge. CONCLUSION AND CLINICAL RELEVANCE Repeated intranasal HDM administration induces mast cell activation and hyperplasia together with an asthma-like pathophysiology in guinea pigs. This model may be suitable for mechanistic investigations of asthma, including evaluation of the role of mast cells.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Malin Noreby
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Jie Ji
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suado M Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), AstraZeneca, Gothenburg, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| |
Collapse
|
82
|
Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11. Immunol Rev 2020; 297:39-52. [PMID: 32737894 PMCID: PMC7496135 DOI: 10.1111/imr.12910] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury, thus mounting regulated immune response. Inflammasomes are highly sophisticated and effective orchestrators of innate immunity. These oligomerized multiprotein complexes are at the center of various innate immune pathways, including modulation of the cytoskeleton, production and maturation of cytokines, and control of bacterial growth and cell death. Inflammasome assembly often results in caspase‐1 activation, which is an inflammatory caspase that is involved in pyroptotic cell death and release of inflammatory cytokines in response to pathogen patterns and endogenous danger stimuli. However, the nature of stimuli and inflammasome components are diverse. Caspase‐1 activation mediated release of mature IL‐1β and IL‐18 in response to canonical stimuli initiated by NOD‐like receptor (NLR), and apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC). On the other hand, caspase‐11 delineates a non‐canonical inflammasome that promotes pyroptotic cell death and non‐pyroptotic functions in response to non‐canonical stimuli. Caspase‐11 in mice and its homologues in humans (caspase‐4/5) belong to caspase‐1 family of cysteine proteases, and play a role in inflammation. Knockout mice provided new genetic tools to study inflammatory caspases and revealed the role of caspase‐11 in mediating septic shock in response to lethal doses of lipopolysaccharide (LPS). Recognition of LPS mediates caspase‐11 activation, which promotes a myriad of downstream effects that include pyroptotic and non‐pyroptotic effector functions. Therefore, the physiological functions of caspase‐11 are much broader than its previously established roles in apoptosis and cytokine maturation. Inflammation induced by exogenous or endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. Consequently, the existence of sophisticated mechanisms that tightly regulate the specificity and sensitivity of inflammasome pathways provides a fine‐tuning balance between adequate immune response and minimal tissue damage. In this review, we summarize effector functions of caspase‐11.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Disease Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
83
|
Gunerka P, Gala K, Banach M, Dominowski J, Hucz-Kalitowska J, Mulewski K, Hajnal A, Mikus EG, Smuga D, Zagozda M, Dubiel K, Pieczykolan J, Zygmunt BM, Wieczorek M. Preclinical characterization of CPL302-253, a selective inhibitor of PI3Kδ, as the candidate for the inhalatory treatment and prevention of Asthma. PLoS One 2020; 15:e0236159. [PMID: 32702053 PMCID: PMC7377474 DOI: 10.1371/journal.pone.0236159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a common chronic inflammatory disease. Although effective asthma therapies are available, part of asthmatic population do not respond to these treatment options. In this work we present the result of development of CPL302-253 molecule, a selective PI3Kδ inhibitor. This molecule is intended to be a preclinical candidate for dry powder inhalation in asthma treatment. Studies we performed showed that this molecule is safe and effective PI3Kδ inhibitor that can impact many immune functions. We developed a short, 15-day HDM induced asthma mouse model, in which we showed that CPL302-253 is able to block inflammatory processes leading to asthma development in vivo.
Collapse
Affiliation(s)
- Paweł Gunerka
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Kamila Gala
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Martyna Banach
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Jakub Dominowski
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Joanna Hucz-Kalitowska
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Krzysztof Mulewski
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Agnes Hajnal
- LabMagister Training and Science Ltd., Budapest, Hungary
| | - Endre G. Mikus
- LabMagister Training and Science Ltd., Budapest, Hungary
| | - Damian Smuga
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Marcin Zagozda
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Krzysztof Dubiel
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Jerzy Pieczykolan
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Beata M. Zygmunt
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
- * E-mail:
| | - Maciej Wieczorek
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| |
Collapse
|
84
|
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev 2020; 100:983-1017. [PMID: 31917651 PMCID: PMC7474260 DOI: 10.1152/physrev.00023.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
While the term asthma has long been known to describe heterogeneous groupings of patients, only recently have data evolved which enable a molecular understanding of the clinical differences. The evolution of transcriptomics (and other 'omics platforms) and improved statistical analyses in combination with large clinical cohorts opened the door for molecular characterization of pathobiologic processes associated with a range of asthma patients. When linked with data from animal models and clinical trials of targeted biologic therapies, emerging distinctions arose between patients with and without elevations in type 2 immune and inflammatory pathways, leading to the confirmation of a broad categorization of type 2-Hi asthma. Differences in the ratios, sources, and location of type 2 cytokines and their relation to additional immune pathway activation appear to distinguish several different (sub)molecular phenotypes, and perhaps endotypes of type 2-Hi asthma, which respond differently to broad and targeted anti-inflammatory therapies. Asthma in the absence of type 2 inflammation is much less well defined, without clear biomarkers, but is generally linked with poor responses to corticosteroids. Integration of "big data" from large cohorts, over time, using machine learning approaches, combined with validation and iterative learning in animal (and human) model systems is needed to identify the biomarkers and tightly defined molecular phenotypes/endotypes required to fulfill the promise of precision medicine.
Collapse
Affiliation(s)
- Anuradha Ray
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Matthew Camiolo
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Anne Fitzpatrick
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Marc Gauthier
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
85
|
Ghiamati Yazdi F, Zakeri A, van Ark I, Leusink-Muis T, Braber S, Soleimanian-Zad S, Folkerts G. Crude Turmeric Extract Improves the Suppressive Effects of Lactobacillus rhamnosus GG on Allergic Inflammation in a Murine Model of House Dust Mite-Induced Asthma. Front Immunol 2020; 11:1092. [PMID: 32582180 PMCID: PMC7287160 DOI: 10.3389/fimmu.2020.01092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
There is a strong correlation between dysregulation of the gastrointestinal microbiota and development of allergic diseases. The most prevalent therapies for relieving asthma symptoms are associated with serious side effects, and therefore novel approaches are needed. Our objective was to elucidate whether oral administration of Lactobacillus rhamnosus GG (LGG) as a probiotic or turmeric powder (TP) as a prebiotic or both as a synbiotic mitigate allergic inflammation including lung function, airway inflammatory cell infiltration, Th2 cytokines/chemokine in a murine model of house dust mite (HDM)-induced asthma. BALB/c mice were intranasally sensitized and challenged with HDM received TP (20 mg/Kg mouse), or/and LGG (105 or 107 cfu/ml), or both orally. Interestingly, the synbiotic intervention (HDM-TP-LGG E7) specifically suppress the developement of airway hyperresponsiveness in response to methacholine. Besides, our synbiotic, TP, and LGG strongly down-regulated eosinophilia, IL-5, CCL17, IL-13. In terms of T cell response, CD4+ Th2 cells and CD4+ Th17 population were reduced in the splenocytes of the treatment groups compared to control. The synbiotic group not only elevated CD25+Foxp3+Treg frequency compared to asthmatic group, but also increased T reg cells compared to the probiotic group. The synbiotic also indicated the superior effect in suppressing Th2 cells compared to probiotic. Although, TP and LGG alone displayed suppressive effects, this study showed that the combination therapy consisting of TP and LGG (synbiotic) is more effective in some of the parameters than either of the treatments alone. This novel synbiotic, might be considered as a potential food-based drug for translational medicine and can possibly be used along with corticosteroid treatment.
Collapse
Affiliation(s)
- Fariba Ghiamati Yazdi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
86
|
Hashem T, Kammala AK, Thaxton K, Griffin RM, Mullany K, Panettieri RA, Subramanian H, Das R. CD2 Regulates Pathogenesis of Asthma Induced by House Dust Mice Extract. Front Immunol 2020; 11:881. [PMID: 32477356 PMCID: PMC7235426 DOI: 10.3389/fimmu.2020.00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
Characteristic of allergic asthma, CD4+Th2 lymphocytes secrete Th2 cytokines, interleukin (IL)-4, IL-13, and IL-5 that mediate the inflammatory immune response. Surface expression of CD2 and its ligand, CD58, is increased on the monocytes and eosinophils of asthma patients, which correlate with elevated serum IgE levels, suggesting that CD2 may contribute to allergic airway inflammation. Using a murine model of asthma, we observed that house dust mice extract (HDME)-exposed Balb/c mice have increased airway hyperresponsiveness (AHR), lung inflammation, goblet cell hyperplasia, and elevated levels of Th2 cytokines in the lungs, as well as increased serum IgE levels as compared to the control mice. In contrast, with the exception of serum IgE levels, all the other parameters were significantly reduced in HDME-treated Cd2 -/- mice. Interestingly, Il13 but not Il4 or Il5 gene expression in the lungs was dramatically decreased in HDME-exposed Cd2 -/- mice. Of note, the gene expression of IL-13 downstream targets (Muc5b and Muc5ac) and high affinity IL-13Rα2 were upregulated in the lungs of HDME-exposed Balb/c mice but were significantly reduced in HDME-exposed Cd2 -/- mice. Consistently, gene expression of microRNAs regulating mucin production, inflammation, airway smooth muscle cell proliferation and IL-13 transcripts were increased in the lungs of HDME-exposed Cd2 -/- mice. Given the established role of IL-13 in promoting goblet cell hyperplasia, lung inflammation and AHR in allergic asthma, our studies reveal a unique role for CD2 in the regulation of Th2-associated allergic asthma.
Collapse
Affiliation(s)
- Tanwir Hashem
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Ananth K Kammala
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Kanedra Thaxton
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Ryan M Griffin
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kellie Mullany
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, United States
| | - Hariharan Subramanian
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
87
|
Yasuda Y, Nagano T, Kobayashi K, Nishimura Y. Group 2 Innate Lymphoid Cells and the House Dust Mite-Induced Asthma Mouse Model. Cells 2020; 9:E1178. [PMID: 32397396 PMCID: PMC7290734 DOI: 10.3390/cells9051178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Asthma is an important issue not only in health but also in economics worldwide. Therefore, asthma animal models have been frequently used to understand the pathogenesis of asthma. Recently, in addition to acquired immunity, innate immunity has also been thought to be involved in asthma. Among innate immune cells, group 2 innate lymphoid cells (ILC2s) have been considered to be crucial for eosinophilic airway inflammation by releasing T helper 2 cytokines. Moreover, house dust mites (HDMs) belonging to group 1 act on airway epithelial cells not only as allergens but also as cysteine proteases. The production of interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP) from airway epithelial cells was induced by the protease activity of HDMs. These cytokines activate ILC2s, and activated ILC2s produce IL-5, IL-9, IL-13, and amphiregulin. Hence, the HDM-induced asthma mouse model greatly contributes to understanding asthma pathogenesis. In this review, we highlight the relationship between ILC2s and the HDM in the asthma mouse model to help researchers and clinicians not only choose a proper asthma mouse model but also to understand the molecular mechanisms underlying HDM-induced asthma.
Collapse
Affiliation(s)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Kobe, Hyogo 650-0017, Japan; (Y.Y.); (K.K.); (Y.N.)
| | | | | |
Collapse
|
88
|
Miao K, Zhang L, Pan T, Wang Y. Update on the role of endoplasmic reticulum stress in asthma. Am J Transl Res 2020; 12:1168-1183. [PMID: 32355534 PMCID: PMC7191165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Asthma has long attracted extensive attention because of its recurring symptoms of reversible airflow obstruction, airway hyperresponsiveness (AHR) and airway inflammation. Although accumulating evidence has enabled gradual increases in understanding of the pathogenesis of asthma, many questions regarding the mechanisms underlying asthma onset and progression remain unanswered. Recent advances delineating the potential functions of endoplasmic reticulum (ER) stress in meeting the need for an airway hypersensitivity response have revealed critical roles of unfolded protein response (UPR) pathways in asthma. In this review, we highlight the roles of ER stress and UPR activation in the etiology, pathogenesis and treatment of asthma and discuss whether the related mechanisms could be targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
89
|
Alviani C, Roberts G, Mitchell F, Martin J, Zolkipli Z, Michaelis LJ, Vijayanand P, Kurukulaaratchy R, Arshad SH. Primary prevention of asthma in high-risk children using HDM SLIT: Assessment at age 6 years. J Allergy Clin Immunol 2020; 145:1711-1713. [PMID: 32059981 DOI: 10.1016/j.jaci.2020.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Cherry Alviani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom; The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, United Kingdom
| | - Graham Roberts
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Human Development in Health, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Frances Mitchell
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, United Kingdom
| | - Jane Martin
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Zaraquiza Zolkipli
- Department of Allergy, Addenbrookes NHS Foundation Trust, Cambridge, United Kingdom
| | - Louise J Michaelis
- Department of Immunology, Infectious Diseases and Allergy, Great North Childrens' Hospital, Newcastle upon Tyne, United Kingdom
| | | | - Ramesh Kurukulaaratchy
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom; The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, United Kingdom
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom; The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, United Kingdom.
| |
Collapse
|
90
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020; 9:145-147. [PMID: 31951320 PMCID: PMC7194746 DOI: 10.1002/sctm.20-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
|
91
|
Rekima A, Bonnart C, Macchiaverni P, Metcalfe J, Tulic MK, Halloin N, Rekima S, Genuneit J, Zanelli S, Medeiros S, Palmer DJ, Prescott S, Verhasselt V. A role for early oral exposure to house dust mite allergens through breast milk in IgE-mediated food allergy susceptibility. J Allergy Clin Immunol 2020; 145:1416-1429.e11. [PMID: 31954775 DOI: 10.1016/j.jaci.2019.12.912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Successful prevention of food allergy requires the identification of the factors adversely affecting the capacity to develop oral tolerance to food antigen in early life. OBJECTIVES This study sought to determine whether oral exposure to Dermatophagoides pteronyssinus through breast milk affects gut mucosal immunity with long-term effects on IgE-mediated food allergy susceptibility. METHODS Gut immunity was explored in 2-week-old mice breast-fed by mothers exposed to D pteronyssinus, protease-inactivated D pteronyssinus, or to PBS during lactation. We further analyzed oral tolerance to a bystander food allergen, ovalbumin (OVA). In a proof-of-concept study, Der p 1 and OVA levels were determined in 100 human breast milk samples and the association with prevalence of IgE-mediated egg allergy at 1 year was assessed. RESULTS Increased permeability, IL-33 levels, type 2 innate lymphoid cell activation, and Th2 cell differentiation were found in gut mucosa of mice nursed by mothers exposed to D pteronyssinus compared with PBS. This pro-Th2 gut mucosal environment inhibited the induction of antigen-specific FoxP3 regulatory T cells and the prevention of food allergy by OVA exposure through breast milk. In contrast, protease-inactivated D pteronyssinus had no effect on offspring gut mucosal immunity. Based on the presence of Der p 1 and/or OVA in human breast milk, we identified groups of lactating mothers, which mirror the ones found in mice to be responsible for different egg allergy risk. CONCLUSIONS This study highlights an unpredicted potential risk factor for the development of food allergy, that is, D pteronyssinus allergens in breast milk, which disrupt gut immune homeostasis and prevents oral tolerance induction to bystander food antigen through their protease activity.
Collapse
Affiliation(s)
- Akila Rekima
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Chrystelle Bonnart
- Institut National de la Santé et de la Recherche Médicale, U1220, Toulouse, France
| | | | - Jessica Metcalfe
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Meri K Tulic
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Institut National de la Santé et de la Recherche Médicale, U1065, Mediterranean Centre for Molecular Medicine, Team 12, Nice, France; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Nicolas Halloin
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samah Rekima
- Institut Biologie Valrose, Université Côte d'Azur, Institut National de la Santé et de la Recherche Medicale, Centre National de la Recherche Scientifique, Nice, France
| | - Jon Genuneit
- inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Pediatric Epidemiology, Department of Pediatrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Samantha Zanelli
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samara Medeiros
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debra J Palmer
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Susan Prescott
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Perth Childrens Hospital, Perth, Australia; School of Medicine, University of Western Australia, Crawley, Australia
| | - Valerie Verhasselt
- School of Molecular Sciences, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ.
| |
Collapse
|
92
|
Miki H, Tahara-Hanaoka S, Almeida MS, Hitomi K, Shibagaki S, Kanemaru K, Lin YH, Iwata K, Miyake S, Shibayama S, Sumida T, Shibuya K, Shibuya A. Allergin-1 Immunoreceptor Suppresses House Dust Mite-Induced Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 204:753-762. [PMID: 31900344 DOI: 10.4049/jimmunol.1900180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023]
Abstract
House dust mite (HDM) allergens are leading causes of allergic asthma characterized by Th2 responses. The lung-resident CD11b+ dendritic cells (DCs) play a key role in Th2 cell development in HDM-induced allergic asthma. However, the regulatory mechanism of HDM-induced CD11b+ DC activation remains incompletely understood. In this study, we demonstrate that mice deficient in an inhibitory immunoreceptor, Allergin-1, showed exacerbated HDM-induced airway eosinophilia and serum IgE elevation. By using bone marrow-chimeric mice that were sensitized with adoptively transferred HDM-stimulated wild-type or Allergin-1-deficient CD11b+ bone marrow-derived cultured DCs (BMDCs), followed by challenge with HDM, we show that Allergin-1 on the BMDCs suppressed HDM-induced allergic airway inflammation. We also show that Allergin-1 suppressed HDM-induced PGE2 production from CD11b+ BMDCs by inhibiting Syk tyrosine kinase activation through recruitment of SHP-1, subsequently leading to negative regulation of Th2 responses. These results suggest that Allergin-1 plays an important role in regulation of HDM-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Haruka Miki
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine, Faculty of Medicine, Tsukuba Advanced Research Alliance, R&D Center for Innovative Drug Discovery, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoko Tahara-Hanaoka
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mariana Silva Almeida
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaori Hitomi
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shohei Shibagaki
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazumasa Kanemaru
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu-Hsien Lin
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; and
| | - Kanako Iwata
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shota Miyake
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shiro Shibayama
- Research Center of Immunology, Tsukuba Institute, Ono Pharmaceutical Co., Ltd., Tsukuba, Ibaraki 300-4247, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, Tsukuba Advanced Research Alliance, R&D Center for Innovative Drug Discovery, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
93
|
Kanemaru K, Noguchi E, Tahara-Hanaoka S, Mizuno S, Tateno H, Denda-Nagai K, Irimura T, Matsuda H, Sugiyama F, Takahashi S, Shibuya K, Shibuya A. Clec10a regulates mite-induced dermatitis. Sci Immunol 2019; 4:4/42/eaax6908. [DOI: 10.1126/sciimmunol.aax6908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
House dust mite (HDM) is a major allergen that causes allergic diseases such as atopic dermatitis. However, the regulatory mechanisms of HDM-induced immune responses are incompletely understood. NC/Nga mice are an inbred strain that is more susceptible to HDM and develops more severe dermatitis than other strains. Using whole-exome sequencing, we found that NC/Nga mice carry a stop-gain mutation inClec10a, which encodes a C-type lectin receptor, Clec10a (MGL1/CD301a). The repair of this gene mutation using the CRISPR-Cas9 system ameliorated HDM-induced dermatitis, indicating that the Clec10a mutation is responsible for hypersensitivity to HDM in NC/Nga mice. Similarly,Clec10a−/−mice on the C57BL/6J background showed exacerbated HDM-induced dermatitis. Clec10a expressed on skin macrophages inhibits HDM-induced Toll-like receptor 4 (TLR4)–mediated inflammatory cytokine production through the inhibitory immunoreceptor tyrosine activating motif in its cytoplasmic portion. We identified asialoglycoprotein receptor 1 (Asgr1) as a functional homolog of mouse Clec10a in humans. Moreover, we found that a mucin-like molecule in HDM is a ligand for mouse Clec10a and human Asgr1. Skin application of the ligand ameliorated a TLR4 ligand-induced dermatitis in mice. Our findings suggest that Clec10a in mice and Asgr1 in humans play an important role in skin homeostasis against inflammation associated with HDM-induced dermatitis.
Collapse
|
94
|
Castro LL, Kitoko JZ, Xisto DG, Olsen PC, Guedes HLM, Morales MM, Lopes-Pacheco M, Cruz FF, Rocco PRM. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl Med 2019; 9:250-260. [PMID: 31746562 PMCID: PMC6988761 DOI: 10.1002/sctm.19-0120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
In experimental house dust mite (HDM)‐induced allergic asthma, therapeutic administration of a single dose of adipose tissue‐derived mesenchymal stromal cells (MSCs) ameliorates lung inflammation but is unable to reverse remodeling. We hypothesized that multiple doses of MSCs might exert better therapeutic effects by reducing lung inflammation and remodeling but might also result in immunosuppressive effects in experimental asthma. HDM was administered intranasally in C57BL/6 mice. After the last HDM challenge, mice received two or three doses of MSCs (105 cells per day) or saline intravenously. An additional cohort of mice received dexamethasone as a positive control for immunosuppression. Two and three doses of MSCs reduced lung inflammation, levels of interleukin (IL)‐4, IL‐13, and eotaxin; total leukocyte, CD4+ T‐cell, and eosinophil counts in bronchoalveolar lavage fluid; and total leukocyte counts in bone marrow, spleen, and mediastinal lymph nodes. Two and three doses of MSCs also reduced collagen fiber content and transforming growth factor‐β levels in lung tissue; however, the three‐dose regimen was more effective, and reduced these parameters to control levels, while also decreasing α‐actin content in lung tissue. Two and three doses of MSCs improved lung mechanics. Dexamethasone, two and three doses of MSCs similarly increased galectin levels, but only the three‐dose regimen increased CD39 levels in the thymus. Dexamethasone and the three‐dose, but not the two‐dose regimen, also increased levels of programmed death receptor‐1 and IL‐10, while reducing CD4+CD8low cell percentage in the thymus. In conclusion, multiple doses of MSCs reduced lung inflammation and remodeling while causing immunosuppression in HDM‐induced allergic asthma.
Collapse
Affiliation(s)
- Ligia L Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L M Guedes
- Laboratory of Glycobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
95
|
SQ house dust mite sublingual immunotherapy for the treatment of adults with house dust mite-induced allergic rhinitis. Expert Rev Clin Immunol 2019; 15:1127-1133. [PMID: 31584839 DOI: 10.1080/1744666x.2020.1676731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Allergic rhinitis (AR) is one of the most common chronic conditions affecting both children and adults. The house dust mites (HDM) account for a substantial part of the overall sources of allergens. In patients where allergen avoidance and symptom-relieving pharmacotherapy do not provide adequate disease control, specific allergen immunotherapy (AIT) is indicated. While subcutaneous injection (SCIT) is considered as a time-consuming and invasive treatment regimen, sublingual allergy immunotherapy (SLIT) appears as more convenient treatment strategy.Areas covered: This Drug Profile reviews the clinical data behind the development of the SQ HDM SLIT-tablet, including both the early studies and the pivotal studies, which formed the basis for regulatory approval in Europe, Japan, and the U.S.Expert opinion: The clinical trials behind the development of the SQ HDM-SLIT have demonstrated that the tablet provides a safe, well-tolerated and robust efficacy in the treatment of HDM-induced allergic rhinoconjunctivitis. Further, studies show that the SQ HDM SLIT-tablet is a cost-effective treatment option compared with SCIT.
Collapse
|
96
|
Patel DF, Peiró T, Shoemark A, Akthar S, Walker SA, Grabiec AM, Jackson PL, Hussell T, Gaggar A, Xu X, Trevor JL, Li J, Steele C, Tavernier G, Blalock JE, Niven RM, Gregory LG, Simpson A, Lloyd CM, Snelgrove RJ. An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness. Sci Transl Med 2019; 10:10/455/eaaq0693. [PMID: 30135247 DOI: 10.1126/scitranslmed.aaq0693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
It is anticipated that bioactive fragments of the extracellular matrix (matrikines) can influence the development and progression of chronic diseases. The enzyme leukotriene A4 hydrolase (LTA4H) mediates opposing proinflammatory and anti-inflammatory activities, through the generation of leukotriene B4 (LTB4) and degradation of proneutrophilic matrikine Pro-Gly-Pro (PGP), respectively. We show that abrogation of LTB4 signaling ameliorated inflammation and airway hyperresponsiveness (AHR) in a murine asthma model, yet global loss of LTA4H exacerbated AHR, despite the absence of LTB4 This exacerbated AHR was attributable to a neutrophil-independent capacity of PGP to promote pathological airway epithelial remodeling. Thus, we demonstrate a disconnect between airway inflammation and AHR and the ability of a matrikine to promote an epithelial remodeling phenotype that negatively affects lung function. Subsequently, we show that substantial quantities of PGP are detectable in the sputum of moderate-severe asthmatics in two distinct cohorts of patients. These studies have implications for our understanding of remodeling phenotypes in asthma and may rationalize the failure of LTA4H inhibitors in the clinic.
Collapse
Affiliation(s)
- Dhiren F Patel
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Teresa Peiró
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,Departamento de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46115, Spain
| | - Amelia Shoemark
- Royal Brompton and Harefield National Health Service (NHS) Trust, London SW3 6NP, UK
| | - Samia Akthar
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Simone A Walker
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Patricia L Jackson
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Jennifer L Trevor
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Jindong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Chad Steele
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gael Tavernier
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.,Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, Gregory Fleming James Cystic Fibrosis Centre and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert M Niven
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.,Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Lisa G Gregory
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.,Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Clare M Lloyd
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Robert J Snelgrove
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
97
|
Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Maréchal P, Perin F, Schyns J, Rocks N, Toussaint M, Cataldo D, Johnston SL, Bureau F, Marichal T. Locally instructed CXCR4 hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol 2019; 20:1444-1455. [PMID: 31591573 PMCID: PMC6859073 DOI: 10.1038/s41590-019-0496-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Low exposure to microbial products, respiratory viral infections and air pollution is a major risk factor for allergic asthma, yet the mechanistic links between such conditions and host susceptibility to type 2 allergic disorders remain unclear. Through the use of single-cell RNA sequencing (scRNA-seq), we characterized lung neutrophils in mice exposed to a pro-allergic, low dose of lipopolysaccharides (LPSlo) or a protective, high dose of LPS (LPShi) before exposure to house dust mite (HDM). Unlike exposure to LPShi, exposure to LPSlo instructed recruited neutrophils to upregulate the expression of the chemokine receptor CXCR4 and to release neutrophil extracellular traps (NETs). The LPSlo-induced neutrophils and NETs potentiated the uptake of HDM by CD11b+Ly-6C+ dendritic cells (DCs) and type 2 allergic airway inflammation in response to HDM. NETs derived from CXCR4hi neutrophils were also needed to mediate allergic asthma triggered by infection with influenza virus or exposure to ozone. Our study indicates that apparently unrelated environmental risk factors can shape recruited lung neutrophils to promote the initiation of allergic asthma.
Collapse
Affiliation(s)
- Coraline Radermecker
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liege, Belgium.,Laboratory of Immunophysiology, GIGA Institute, Liege University, Liege, Belgium.,Faculty of Veterinary Medicine, Liege University, Liege, Belgium
| | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liege, Belgium.,Faculty of Veterinary Medicine, Liege University, Liege, Belgium
| | - Céline Vanwinge
- Laboratory of Tumor and Development Biology, GIGA Institute, Liege University, Liege, Belgium
| | - Cecilia Ruscitti
- Laboratory of Immunophysiology, GIGA Institute, Liege University, Liege, Belgium.,Faculty of Veterinary Medicine, Liege University, Liege, Belgium
| | - Pauline Maréchal
- Laboratory of Immunophysiology, GIGA Institute, Liege University, Liege, Belgium.,Faculty of Veterinary Medicine, Liege University, Liege, Belgium
| | - Fabienne Perin
- Laboratory of Tumor and Development Biology, GIGA Institute, Liege University, Liege, Belgium
| | - Joey Schyns
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liege, Belgium.,Laboratory of Immunophysiology, GIGA Institute, Liege University, Liege, Belgium.,Faculty of Veterinary Medicine, Liege University, Liege, Belgium
| | - Natacha Rocks
- Laboratory of Tumor and Development Biology, GIGA Institute, Liege University, Liege, Belgium
| | - Marie Toussaint
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA Institute, Liege University, Liege, Belgium
| | - Sebastian L Johnston
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Imperial College Healthcare National Health Service Trust, London, UK
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liege, Belgium. .,Faculty of Veterinary Medicine, Liege University, Liege, Belgium. .,Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium.
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liege, Belgium. .,Laboratory of Immunophysiology, GIGA Institute, Liege University, Liege, Belgium. .,Faculty of Veterinary Medicine, Liege University, Liege, Belgium. .,Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium.
| |
Collapse
|
98
|
Su KW, Chiu CY, Tsai MH, Liao SL, Chen LC, Hua MC, Yao TC, Huang JL, Yeh KW. Asymptomatic toddlers with house dust mite sensitization at risk of asthma and abnormal lung functions at age 7 years. World Allergy Organ J 2019; 12:100056. [PMID: 31641404 PMCID: PMC6796766 DOI: 10.1016/j.waojou.2019.100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the predictive value of asymptomatic early house dust mite sensitization on allergic outcomes and pulmonary functions in 7-year olds. Study design The Prediction of Allergies in Taiwanese Children (PATCH) birth cohort study recruited healthy newborns at birth. At age 1.5–2 years, a Dermatophagoides pteronyssinus-specific immunoglobulin E level ≥ 0.35 kU/L was defined as early sensitization. At age 7 years, allergic outcomes were evaluated by pediatric allergists and pulmonologists, and fractional exhaled nitric oxide and pulmonary functions were measured. Results At age 1.5–2 years, 28.0% of toddlers were sensitized to D. pteronyssinus. Among them, 68.2% had no allergic symptoms at that time. At age 7 years, the children with early sensitization had higher risks of asthma (OR = 13.4, 95% CI, 1.2 to 153.0; P = 0.037), allergic rhinitis (OR = 10.2, 95% CI, 2.1 to 49.6; P = 0.004), and atopic dermatitis (OR = 38.5, 95% CI, 2.1 to 696.4; P = 0.014). Notably, even the asymptomatic toddlers with early D. pteronyssinus sensitization had higher probabilities of asthma (12.5% vs. 1.7%, P = 0.040), allergic rhinitis (83.3% vs. 43.1%, P = 0.009), and atopic dermatitis (20.8% vs. 0.0%, P < 0.001) at age 7 years. The asymptomatic toddlers with early sensitization also had higher exhaled nitric oxide levels and higher prevalence of airway hyperresponsiveness at age 7 years. Conclusion Asymptomatic toddlers with early house dust mite sensitization have higher risks of developing asthma, allergic rhinitis, atopic dermatitis, and abnormal lung functions at age 7 years.
Collapse
Key Words
- ATS, American Thoracic Society
- Birth cohort
- CI, Confidence interval
- ERS, European Respiratory Society
- FEV1, Forced expiratory volume in the first second
- FVC, Forced vital capacity
- FeNO, Fractional exhaled nitric oxide
- HDM, House dust mite
- House dust mite
- IQR, Interquartile range
- ISAAC, International Study of Asthma and Allergies in Childhood
- IgE, Immunoglobulin E
- OR, Odds ratio
- PATCH, Prediction of Allergies in Taiwanese Children
- PC20, Provocative concentrations causing a 20% fall in forced expiratory volume in the first second
- Pediatric asthma
- Pulmonary function
Collapse
Affiliation(s)
- Kuan-Wen Su
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Yung Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Division of Pediatric Pulmonology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Sui-Lin Liao
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Li-Chen Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Man-Chin Hua
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Tsung-Chieh Yao
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Long Huang
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
99
|
Klimov P, Molva V, Nesvorna M, Pekar S, Shcherbachenko E, Erban T, Hubert J. Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiol Ecol 2019; 95:5581497. [DOI: 10.1093/femsec/fiz153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
ABSTRACTThe variation in house dust mite microbial communities is important because various microorganisms modulate the production of allergens by their mite hosts and/or contaminate immunotherapeutic extracts. Temporal changes in mite microbiomes and the mite culture environment occurring at different stages of mite culture development are particularly understudied in this system. Here, we analyzed the dynamics of microbial communities during the culture growth of Dermatophagoides farinae. Changes in microbiomes were related to three key variables: the mite population density, microbial microcosm respiration and concentration of guanine (the mite nitrogenous waste metabolite). Mite populations exhibited the following phases: exponential growth, plateau and exponential decline. The intracellular bacterium Cardinium and the yeast Saccharomyces cerevisiae prevailed in the internal mite microbiomes, and the bacterium Lactobacillus fermentum was prevalent in the mite diet. The reduction in the mite population size during the late phases of culture development was related to the changes in their microbial profiles: the intracellular bacterium Cardinium was replaced by Staphylococcus, Oceanobacillus and Virgibacillus, and S. cerevisiae was replaced by the antagonistic fungi Aspergillus penicillioides and Candida. Increases in the guanine content were positively correlated with increases in the Staphylococcus and A. penicillioides profiles in the culture environment. Our results show that the mite microbiome exhibits strong, dynamic alterations in its profiles across different mite culture growth stages.
Collapse
Affiliation(s)
- Pavel Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI 48109, USA
- Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| | - Vit Molva
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, CZ-12800 Prague 2, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 267/2, CZ-61137 Brno, Czechia
| | | | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| |
Collapse
|
100
|
Claudio E, Wang H, Kamenyeva O, Tang W, Ha HL, Siebenlist U. IL-25 Orchestrates Activation of Th Cells via Conventional Dendritic Cells in Tissue to Exacerbate Chronic House Dust Mite-Induced Asthma Pathology. THE JOURNAL OF IMMUNOLOGY 2019; 203:2319-2327. [PMID: 31511356 DOI: 10.4049/jimmunol.1900254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
Abstract
House dust mite (HDM) extract is a common trigger of asthma in humans. Chronic exposure to HDM also induces asthma-like pathology in mice. Allergic responses to HDM and other allergens are linked to release of IL-25, IL-33, and TSLP by epithelial cells; these cytokines, especially IL-33, target innate lymphoid cells type 2 to produce type 2 cytokines. To what extent and by what mechanisms IL-25 contributes to chronic HDM-induced pathology is not well understood. In humans, elevated levels of IL-25 appear to be associated with cases of uncontrolled asthma and exacerbated attacks. In this article, we demonstrate that blockade of IL-25 signaling in either lung conventional dendritic cells or in T cells resulted in similar decreases in production of IL-13 and IL-9 by T cells, reduced mast cell accumulation and tissue remodeling, and improved lung function but had only modest effects on eosinophilia. Stimulation of conventional dendritic cells by IL-25 promoted proximal accumulation of Th cells, and stimulation of Th cells by IL-25 locally promoted IL-13 and IL-9 production. IL-25 made notable contributions to chronic HDM-induced allergic asthma pathology by facilitating clustering and cross-stimulation of different cell types in tissue. Therapeutic targeting of IL-25 in combination with other treatments may be beneficial.
Collapse
Affiliation(s)
- Estefania Claudio
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongshan Wang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Olena Kamenyeva
- Biologic Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wanhu Tang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hye-Lin Ha
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ulrich Siebenlist
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|