51
|
Visser M, van der Stoep N, Gruis N. Progress report on the major clinical advances in patient-oriented research into familial melanoma (2013-2018). Fam Cancer 2019; 18:267-271. [PMID: 30659395 DOI: 10.1007/s10689-018-00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mijke Visser
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
52
|
CDKN2A germline alterations in melanoma patients with personal or familial history of pancreatic cancer. Melanoma Res 2019; 28:246-249. [PMID: 29543703 DOI: 10.1097/cmr.0000000000000442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CDKN2A germline mutations increase the risk of melanoma development and are present in 20 and 10% of familial and multiple melanoma cases, respectively. Pancreatic cancer has been associated with CDKN2A in some populations and, accordingly, its presence in first-degree or second-degree relatives of a melanoma patient is considered as a criterion for genetic testing. In this study, we show that in an area with low melanoma incidence, CDKN2A germline mutations in patients with melanoma and personal or family history of pancreatic cancer are mainly present in the setting of familial or multiple melanoma cases. In addition, a relatively young age (≤52 years) at pancreatic diagnosis is an additional single criterion that might also be considered.
Collapse
|
53
|
Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC. Familial Melanoma: Diagnostic and Management Implications. Dermatol Pract Concept 2019; 9:10-16. [PMID: 30775140 PMCID: PMC6368081 DOI: 10.5826/dpc.0901a03] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background An estimated 5%-10% of all cutaneous melanoma cases occur in families. This review describes susceptibility genes currently known to be involved in melanoma predisposition, genetic testing of familial melanoma patients, and management implications. Results CDKN2A is the major high-penetrance susceptibility gene with germline mutations identified in 20%-40% of melanoma families. A positive CDKN2A mutation status has been associated with a high number of affected family members, multiple primary melanomas, pancreatic cancer, and early age at melanoma onset. Mutations in the other melanoma predisposition genes-CDK4, BAP1, TERT, POT1, ACD, TERF2IP, and MITF-are rare, overall contributing to explain a further 10% of familial clustering of melanoma. The underlying genetic susceptibility remains indeed unexplained for half of melanoma families. Genetic testing for melanoma is currently recommended only for CDKN2A and CDK4, and, at this time, the role of multigene panel testing remains under debate. Individuals from melanoma families must receive genetic counseling to be informed about the inclusion criteria for genetic testing, the probability of an inconclusive result, the genetic risk for melanoma and other cancers, and the debatable role of medical management. They should be counseled focusing primarily on recommendations on appropriate lifestyle, encouraging skin self-examination, and regular dermatological screening. Conclusions Genetic testing for high-penetrance melanoma susceptibility genes is recommended in melanoma families after selection of the appropriate candidates and adequate counseling of the patient. All patients and relatives from melanoma kindreds, irrespective of their mutation status, should be encouraged to adhere to a correct ultraviolet exposure, skin self-examination, and surveillance by physicians.
Collapse
Affiliation(s)
- Mariarita Rossi
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | | | - Ludovica Cardelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Valeria Ciciarelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Lucia Di Nardo
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy.,Institute of Dermatology, Catholic University, Rome, Italy
| | | |
Collapse
|
54
|
Swetter SM, Tsao H, Bichakjian CK, Curiel-Lewandrowski C, Elder DE, Gershenwald JE, Guild V, Grant-Kels JM, Halpern AC, Johnson TM, Sober AJ, Thompson JA, Wisco OJ, Wyatt S, Hu S, Lamina T. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol 2018; 80:208-250. [PMID: 30392755 DOI: 10.1016/j.jaad.2018.08.055] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
The incidence of primary cutaneous melanoma continues to increase each year. Melanoma accounts for the majority of skin cancer-related deaths, but treatment is usually curative following early detection of disease. In this American Academy of Dermatology clinical practice guideline, updated treatment recommendations are provided for patients with primary cutaneous melanoma (American Joint Committee on Cancer stages 0-IIC and pathologic stage III by virtue of a positive sentinel lymph node biopsy). Biopsy techniques for a lesion that is clinically suggestive of melanoma are reviewed, as are recommendations for the histopathologic interpretation of cutaneous melanoma. The use of laboratory, molecular, and imaging tests is examined in the initial work-up of patients with newly diagnosed melanoma and for follow-up of asymptomatic patients. With regard to treatment of primary cutaneous melanoma, recommendations for surgical margins and the concepts of staged excision (including Mohs micrographic surgery) and nonsurgical treatments for melanoma in situ, lentigo maligna type (including topical imiquimod and radiation therapy), are updated. The role of sentinel lymph node biopsy as a staging technique for cutaneous melanoma is described, with recommendations for its use in clinical practice. Finally, current data regarding pregnancy and melanoma, genetic testing for familial melanoma, and management of dermatologic toxicities related to novel targeted agents and immunotherapies for patients with advanced disease are summarized.
Collapse
Affiliation(s)
- Susan M Swetter
- Department of Dermatology, Stanford University Medical Center and Cancer Institute, Stanford, California; Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Wellman Center for Photomedicine, Boston, Massachusetts
| | - Christopher K Bichakjian
- Department of Dermatology, University of Michigan Health System, Ann Arbor, Michigan; Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Clara Curiel-Lewandrowski
- Division of Dermatology, University of Arizona, Tucson, Arizona; University of Arizona Cancer Center, Tucson, Arizona
| | - David E Elder
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut; Department of Pathology, University of Connecticut Health Center, Farmington, Connecticut; Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Allan C Halpern
- Department of Dermatology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Timothy M Johnson
- Department of Dermatology, University of Michigan Health System, Ann Arbor, Michigan; Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Arthur J Sober
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - John A Thompson
- Division of Oncology, University of Washington, Seattle, Washington; Seattle Cancer Care Alliance, Seattle, Washington
| | - Oliver J Wisco
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon
| | | | - Shasa Hu
- Department of Dermatology, University of Miami Health System, Miami, Florida
| | - Toyin Lamina
- American Academy of Dermatology, Rosemont, Illinois
| |
Collapse
|
55
|
Brand R, Borazanci E, Speare V, Dudley B, Karloski E, Peters MLB, Stobie L, Bahary N, Zeh H, Zureikat A, Hogg M, Lee K, Tsung A, Rhee J, Ohr J, Sun W, Lee J, Moser AJ, DeLeonardis K, Krejdovsky J, Dalton E, LaDuca H, Dolinsky J, Colvin A, Lim C, Black MH, Tung N. Prospective study of germline genetic testing in incident cases of pancreatic adenocarcinoma. Cancer 2018; 124:3520-3527. [PMID: 30067863 DOI: 10.1002/cncr.31628] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The objective of this study was to investigate the prevalence of pathogenic germline variants (PGVs) in 32 cancer susceptibility genes in individuals with newly diagnosed pancreatic ductal adenocarcinoma (PDAC). A key secondary objective was to evaluate how often PGVs would have been undetected with existing genetic testing criteria. METHODS From May 2016 through May 2017, this multicenter cohort study enrolled consecutive patients aged 18 to 89 years with histologically confirmed PDAC diagnosed within the previous 12 weeks. Demographics, medical histories, and 3-generation pedigrees were collected from participants who provided samples for germline DNA analysis. RESULTS Four hundred nineteen patients were deemed eligible, 302 were enrolled, and 298 were included in the final cohort. Clinically actionable variants were reported in 29 PDAC patients (9.7%), with 23 (7.7%) having a PGV associated with an increased risk for PDAC. Six of 23 individuals (26%) with PDAC-associated gene mutations did not meet currently established genetic testing criteria. According to guideline-based genetic testing, only 11 of the 23 PGVs (48%) in known PDAC genes would have been detected. Six additional patients (2%) had PGVs associated with an increased risk for other cancers. CONCLUSIONS These findings support the significant prevalence of PGVs associated with PDAC and the limitations of current paradigms for selecting patients for genetic testing, and they thereby lend support for universal germline multigene genetic testing in this population.
Collapse
Affiliation(s)
- Randall Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | - Beth Dudley
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eve Karloski
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Lindsey Stobie
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert Zeh
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melissa Hogg
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John Rhee
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Ohr
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Weijing Sun
- Division of Medical Oncology, University of Kansas, Kansas City, Kansas
| | - James Lee
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - A James Moser
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | - Nadine Tung
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
56
|
Young EL, Thompson BA, Neklason DW, Firpo MA, Werner T, Bell R, Berger J, Fraser A, Gammon A, Koptiuch C, Kohlmann WK, Neumayer L, Goldgar DE, Mulvihill SJ, Cannon-Albright LA, Tavtigian SV. Pancreatic cancer as a sentinel for hereditary cancer predisposition. BMC Cancer 2018; 18:697. [PMID: 29945567 PMCID: PMC6020441 DOI: 10.1186/s12885-018-4573-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genes associated with hereditary breast and ovarian cancer (HBOC) and colorectal cancer (CRC) predisposition have been shown to play a role in pancreatic cancer susceptibility. Growing evidence suggests that pancreatic cancer may be useful as a sentinel cancer to identify families that could benefit from HBOC or CRC surveillance, but to date pancreatic cancer is only considered an indication for genetic testing in the context of additional family history. METHODS Preliminary data generated at the Huntsman Cancer Hospital (HCH) included variants identified on a custom 34-gene panel or 59-gene panel including both known HBOC and CRC genes for respective sets of 66 and 147 pancreatic cancer cases, unselected for family history. Given the strength of preliminary data and corresponding literature, 61 sequential pancreatic cancer cases underwent a custom 14-gene clinical panel. Sequencing data from HCH pancreatic cancer cases, pancreatic cancer cases of the Cancer Genome Atlas (TCGA), and an unselected pancreatic cancer screen from the Mayo Clinic were combined in a meta-analysis to estimate the proportion of carriers with pathogenic and high probability of pathogenic variants of uncertain significance (HiP-VUS). RESULTS Approximately 8.6% of unselected pancreatic cancer cases at the HCH carried a variant with potential HBOC or CRC screening recommendations. A meta-analysis of unselected pancreatic cancer cases revealed that approximately 11.5% carry a pathogenic variant or HiP-VUS. CONCLUSION With the inclusion of both HBOC and CRC susceptibility genes in a panel test, unselected pancreatic cancer cases act as a useful sentinel cancer to identify asymptomatic at-risk relatives who could benefit from relevant HBOC and CRC surveillance measures.
Collapse
Affiliation(s)
- Erin L. Young
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Bryony A. Thompson
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Deborah W. Neklason
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States
| | - Matthew A. Firpo
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, United States
| | - Theresa Werner
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, United States
| | - Russell Bell
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Justin Berger
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Alison Fraser
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Amanda Gammon
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Cathryn Koptiuch
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Wendy K. Kohlmann
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Leigh Neumayer
- Department of Surgery and Arizona Cancer Center, University of Arizona, Tucson, United States
| | - David E. Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, United States
| | - Sean J. Mulvihill
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, United States
| | - Lisa A. Cannon-Albright
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, United States
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
57
|
de Sá BCS, Moredo LF, Gomes EE, de Araújo ESS, Duprat JP. Hereditary melanoma: a five-year study of Brazilian patients in a cancer referral center - phenotypic characteristics of probands and pathological features of primary tumors. An Bras Dermatol 2018; 93:337-340. [PMID: 29924249 PMCID: PMC6001076 DOI: 10.1590/abd1806-4841.20186201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Approximately five to 10% of all melanomas occur in families with hereditary predisposition and the main high-risk melanoma susceptibility gene is the CDKN2A. OBJECTIVES To describe, after a five-years study, the clinical data of patients (probands) from familial melanoma kindreds, and the pathological characteristics of their melanoma. METHODS The inclusion criteria were melanoma patients with a family history of melanoma or pancreatic cancer (first- or second-degree relatives) or patients with multiple primary melanomas (MPM). RESULTS A total of 124 probands were studied, where 64 were considered familial cases and 60 MPM. Mean age at diagnosis was 50 years. Our results show that the following characteristics were prevalent: skin phototype I/II (89.5%), sunburn during childhood (85.5%), total number of nevi ≥50 (56.5%), Breslow thickness ≤1.0mm (70.2%), tumors located on the trunk (53.2%) and superficial spreading melanomas (70.2%). STUDY LIMITATIONS Analyses of probands' relatives will be demonstrated in future publication. CONCLUSIONS Our findings are in agreement with previous familial melanomas reports. Fifteen new melanomas in 11 patients were diagnosed during follow up, all of which were ≤1.0 mm. This is the largest dataset of Brazilian melanoma prone kindreds to date, thus providing a complete database for future genetic studies.
Collapse
Affiliation(s)
| | | | - Elimar Elias Gomes
- Skin Cancer Department, AC Camargo Cancer Center, São
Paulo (SP), Brazil
| | | | | |
Collapse
|
58
|
Genome-wide linkage analysis in Spanish melanoma-prone families identifies a new familial melanoma susceptibility locus at 11q. Eur J Hum Genet 2018; 26:1188-1193. [PMID: 29706638 DOI: 10.1038/s41431-018-0149-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
The main genetic factors for familial melanoma remain unknown in >75% of families. CDKN2A is mutated in around 20% of melanoma-prone families. Other high-risk melanoma susceptibility genes explain <3% of families studied to date. We performed the first genome-wide linkage analysis in CDKN2A-negative Spanish melanoma-prone families to identify novel melanoma susceptibility loci. We included 68 individuals from 2, 3, and 6 families with 2, 3, and at least 4 melanoma cases. We detected a locus with significant linkage evidence at 11q14.1-q14.3, with a maximum het-TLOD of 3.449 (rs12285365:A>G), using evidence from multiple pedigrees. The genes contained by the subregion with the strongest linkage evidence were: DLG2, PRSS23, FZD4, and TMEM135. We also detected several regions with suggestive linkage evidence (TLOD >1.9) (1q, 6p, 7p, 11q, 12p, 13q) including the region previously detected in melanoma-prone families from Sweden at 3q29. The family-specific analysis revealed three loci with suggestive linkage evidence for family #1: 1q31.1-q32.1 (max. TLOD 2.447), 6p24.3-p22.3 (max. TLOD 2.409), and 11q13.3-q21 (max. TLOD 2.654). Future next-generation sequencing studies of these regions may allow the identification of new melanoma susceptibility genetic factors.
Collapse
|
59
|
Potjer TP, Helgadottir H, Leenheer M, van der Stoep N, Gruis NA, Höiom V, Olsson H, van Doorn R, Vasen HFA, van Asperen CJ, Dekkers OM, Hes FJ. CM-Score: a validated scoring system to predict CDKN2A germline mutations in melanoma families from Northern Europe. J Med Genet 2018; 55:661-668. [PMID: 29661971 DOI: 10.1136/jmedgenet-2017-105205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several factors have been reported that influence the probability of a germline CDKN2A mutation in a melanoma family. Our goal was to create a scoring system to estimate this probability, based on a set of clinical features present in the patient and his or her family. METHODS Five clinical features and their association with CDKN2A mutations were investigated in a training cohort of 1227 Dutch melanoma families (13.7% with CDKN2A mutation) using multivariate logistic regression. Predefined features included number of family members with melanoma and with multiple primary melanomas, median age at diagnosis and presence of pancreatic cancer or upper airway cancer in a family member. Based on these five features, a scoring system (CDKN2A Mutation(CM)-Score) was developed and subsequently validated in a combined Swedish and Dutch familial melanoma cohort (n=421 families; 9.0% with CDKN2A mutation). RESULTS All five features were significantly associated (p<0.05) with a CDKN2A mutation. At a CM-Score of 16 out of 49 possible points, the threshold of 10% mutation probability is approximated (9.9%; 95% CI 9.8 to 10.1). This probability further increased to >90% for families with ≥36 points. A CM-Score under 16 points was associated with a low mutation probability (≤4%). CM-Score performed well in both the training cohort (area under the curve (AUC) 0.89; 95% CI 0.86 to 0.92) and the external validation cohort (AUC 0.94; 95% CI 0.90 to 0.98). CONCLUSION We developed a practical scoring system to predict CDKN2A mutation status among melanoma-prone families. We suggest that CDKN2A analysis should be recommended to families with a CM-Score of ≥16 points.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hildur Helgadottir
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mirjam Leenheer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans F A Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
60
|
Aspinwall LG, Stump TK, Taber JM, Drummond DM, Kohlmann W, Champine M, Leachman SA. Genetic test reporting of CDKN2A provides informational and motivational benefits for managing melanoma risk. Transl Behav Med 2018; 8:29-43. [PMID: 29385581 PMCID: PMC6065541 DOI: 10.1093/tbm/ibx011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A CDKN2A/p16 mutation confers 28%-67% lifetime melanoma risk, a risk that may be moderated by ultraviolet radiation exposure. The aim of this study was to test whether melanoma genetic counseling and test disclosure conferred unique informational, motivational, or emotional benefits compared to family history-based counseling. Participants included were 114 unaffected members of melanoma-prone families, ages 16-69, 51.8% men, 65.8% with minor children or grandchildren. Carriers (n = 28) and noncarriers (n = 41) from families with a CDKN2A mutation were compared to no-test controls (n = 45) from melanoma-prone families without an identifiable CDKN2A mutation. All participants received equivalent counseling about melanoma risk and management; only CDKN2A participants received genetic test results. Using newly developed inventories, participants rated perceived costs and benefits for managing their own and their children's or grandchildren's melanoma risk 1 month and 1 year after counseling. Propensity scores controlled for baseline family differences. Compared to no-test controls, participants who received test results (carriers and noncarriers) reported feeling significantly more informed and prepared to manage their risk, and carriers reported greater motivation to reduce sun exposure. All groups reported low negative emotions about melanoma risk. Parents reported high levels of preparedness to manage children's risk regardless of group. Carrier parents reported greater (but moderate) worry about their children's risk than no-test control parents. Women, older, and more educated respondents reported greater informational and motivational benefits regardless of group. Genetic test results were perceived as more informative and motivating for personal sun protection efforts than equivalent counseling based on family history alone.
Collapse
Affiliation(s)
- Lisa G Aspinwall
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Tammy K Stump
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M Taber
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | | | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Marjan Champine
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
61
|
Bruno W, Martinuzzi C, Dalmasso B, Andreotti V, Pastorino L, Cabiddu F, Gualco M, Spagnolo F, Ballestrero A, Queirolo P, Grillo F, Mastracci L, Ghiorzo P. Combining molecular and immunohistochemical analyses of key drivers in primary melanomas: interplay between germline and somatic variations. Oncotarget 2018; 9:5691-5702. [PMID: 29464027 PMCID: PMC5814167 DOI: 10.18632/oncotarget.23204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
Due to the high mutational somatic burden of Cutaneous Malignant Melanoma (CMM) a thorough profiling of the driver mutations and their interplay is necessary to explain the timing of tumorigenesis or for the identification of actionable genetic events. The aim of this study was to establish the mutation rate of some of the key drivers in melanoma tumorigenesis combining molecular analyses and/or immunohistochemistry in 93 primary CMMs from an Italian cohort also characterized for germline status, and to investigate an interplay between germline and somatic variants. BRAF mutations were present in 68% of cases, while CDKN2A germline mutations were found in 16 % and p16 loss in tissue was found in 63%. TERT promoter somatic mutations were detected in 38% of cases while the TERT -245T>C polymorphism was found in 51% of cases. NRAS mutations were found in 39% of BRAF negative or undetermined cases. NF1 was expressed in all cases analysed. MC1R variations were both considered as a dichotomous variable or scored. While a positive, although not significant association between CDKN2A germline mutations, but not MC1R variants, and BRAF somatic mutation was found, we did not observe other associations between germline and somatic events. A yet undescribed inverse correlation between TERT -245T>C polymorphism and the presence of BRAF mutation was found. It is possible to hypothesize that -245T>C polymorphism could be included in those genotypes which may influence the occurrence of BRAF mutations. Further studies are needed to investigate the role of -245T>C polymorphism as a germline predictor of BRAF somatic mutation status.
Collapse
Affiliation(s)
- William Bruno
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Virginia Andreotti
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Marina Gualco
- Pathology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences, Pathology Unit, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences, Pathology Unit, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
62
|
La Starza R, Pierini T, Pastorino L, Albi E, Matteucci C, Crescenzi B, Sportoletti P, Covarelli P, Falzetti F, Roti G, Ascani S, Mecucci C. Cytogenetic/mutation profile of chronic lymphocytic leukemia/malignant melanoma collision tumors of the skin. Mol Cytogenet 2018; 11:6. [PMID: 29371889 PMCID: PMC5771154 DOI: 10.1186/s13039-017-0353-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background Collision tumors are rare entities that consist of two histologically distinct tumor types arising in the same anatomic site. An association between chronic lymphocytic leukemia (CLL) and malignant melanoma (MM) has been already described. Up to now, they have been documented only at positive regional lymph nodes while we focused on collision tumor in a skin lesion. Case presentation We characterized the genomic profile of a skin CLL/MM collision tumor in a patient with a 9-years story of CLL. Typical high-grade genomic biomarkers featured the CLL: the immunoglobulin heavy variable genes were unmutated; a clonal del(11q), involving ATM and BIRC3, was present in the peripheral blood (PB) and skin lesion, while a subclonal large del(13q)/D13S319-RB1 was detected only in the PB. Interestingly, the del(13q) clone, increased from 10% to 46% from diagnosis to relapse. NOTCH1, SF3B1, and TP53 were wild type. The MM lesion carried a BRAFV600E and a TERT promoter mutation. As the family story was consistent with a genetic predisposition to cancer, we performed mutational analysis of genes involved in familial melanoma and CLL, and of BRCA1 and BRCA2. No germinal mutation known to predispose to CLL, MM, or breast cancer was found. Interestingly, conventional cytogenetic detected a constitutional t(12;17)(p13;p13). Conclusions Our data are consistent with distinct genetic landscape of the two tumors which were characterized by specific disease-related abnormalities. CLL cells carried poor prognostic imbalances, i.e. large deletions of the long arm of chromosomes 11 and 13, while in MM cells two functionally linked mutations, i.e. BRAFV600E and a TERT promoter occurred. Although, known germline variations predisposing to MM and/or CLL were ruled out, genetic counseling suggested the proband family was at high risk for MM.
Collapse
Affiliation(s)
- Roberta La Starza
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Tiziana Pierini
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Lorenza Pastorino
- 2Department of Internal Medicine and Medical Specialties (DiMI), University of Genova and IRCCS AOU San Martino-IST, Viale Benedetto XV n.6, 16132 Genova, Italy
| | - Elisa Albi
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Caterina Matteucci
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Barbara Crescenzi
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Paolo Sportoletti
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Piero Covarelli
- 3Department of Surgery, University of Perugia, Piazzale Menghini n.1, 06132 Perugia, Italy
| | - Franca Falzetti
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| | - Giovanni Roti
- 4C.S. Ematology and Center of bone marrow transplants, University and Hospital of Parma, Via Gramsci n.14, Parma, 43126 Italy
| | - Stefano Ascani
- 5Institute of Pathology, University of Perugia and Hospital S. Maria di Terni, Viale Tristano di Joannuccio n.1, 05100 Perugia, Italy
| | - Cristina Mecucci
- 1Molecular Medicine Laboratory, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Hospital S. Maria della Misericordia, Piazzale Menghini n.9, 06132 Perugia, Italy
| |
Collapse
|
63
|
Delaunay J, Martin L, Bressac-de Paillerets B, Duru G, Ingster O, Thomas L. Improvement of Genetic Testing for Cutaneous Melanoma in Countries With Low to Moderate Incidence: The Rule of 2 vs the Rule of 3. JAMA Dermatol 2017; 153:1122-1129. [PMID: 28903138 DOI: 10.1001/jamadermatol.2017.2926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Genetic testing for melanoma-prone mutation in France, a country with low to moderate incidence of melanoma, is proposed in cases with 2 invasive cutaneous melanomas and/or related cancers in the same patient, or in first- or second-degree relatives (rule of 2). In preclinical studies, these rules led to disclosure of mutation(s) in more than 10% of these families, the threshold widely accepted to justify genetic testing for cancers. Objective To reconsider these criteria in a general population testing of patients. Design, Setting, and Participants This was a retrospective study, performed from 2004 to 2015 at Angers and Lyons University Hospitals, of a cohort of 1032 patients who underwent genetic testing. Main Outcomes and Measures Frequency of mutation in high (CDKN2A, CDK4, and BAP1) and intermediate (MITF) susceptibility genes; statistical effect of histologic subtype, age, dysplastic nevi syndrome, and associated cancers on mutation rate; and evaluation of cases with anamnestic uncertainty. Results The mutation rate was 67 of 1032 patients (6.5%). Their mean (SD) age was 54.5 (14.2) years [range, 18-89 years], and 543 (52.6%) were men. It increased to 38 of 408 patients (9.3%) when applying a rule of 3 (those with ≥3 primary melanomas or genetically related cancers) (P = .68) and to 27 of 150 patients (18.0%) with a rule of 4 (4 primary melanomas or related cancer) (P < .001). The impact of age at first melanoma was observed only in those younger than 40 years, with a rate of 32 of 263 (12.1%) (P = .12) for the rule of 2 and 22 of 121 (18.2%) (P = .001) for the rule of 3. Use of the rule of 2 in patients younger than 40 years reduced the number of missed CDKN2A-mutated-families when applying the rule of 3 from 14 of 43 to 7 of 43. Anamnestic uncertainty, found in 88 families (8.5%), if excluded, would have led us to withdraw of only 21 cases (23.8%), and only 1 mutation would have been missed. Conclusions and Relevance We propose using the rule of 3 to recommend genetic testing in France and countries with low to moderate incidence of melanoma, except in families and patients with a first melanoma occurrence before age 40 years in whom the rule of 2 could be maintained.
Collapse
Affiliation(s)
| | - Ludovic Martin
- Service de Dermatologie, CHU d'Angers, Angers CEDEX, France
| | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Université Paris-Saclay, Département de Biologie et Pathologie Médicales, Villejuif, France.,INSERM U1186, Université Paris-Saclay, Villejuif, France
| | - Gerard Duru
- Equipe d'accueil 4129, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Luc Thomas
- Service de Dermatologie Centre Hospitalier, Lyon Sud, France.,Université Claude Bernard Lyon 1-Santé, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR5286, Lyon France
| |
Collapse
|
64
|
Wu YP, Mays D, Kohlmann W, Tercyak KP. Pediatric Predispositional Genetic Risk Communication: Potential Utility for Prevention and Control of Melanoma Risk as an Exemplar. J Genet Couns 2017; 26:887-893. [PMID: 28547663 PMCID: PMC5702278 DOI: 10.1007/s10897-017-0105-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
Predispositional genetic testing among minor children is intensely debated due to the potential benefits and harms of providing this type of genetic information to children and their families. Existing guidelines on pediatric genetic testing state that predispositional testing could be appropriate for minors if preventive services exist that mitigate children's risk for or severity of the health condition in question. We use the example of hereditary melanoma to illustrate the rationale for and potential application of genetic risk communication for an adult-onset cancer to a pediatric population where childhood behaviors may reduce risk of disease later in life. We draw from the adult melanoma genetic risk communication and pediatric health behavior change literatures to suggest ways in which genetic test reporting and complementary education could be delivered to children who carry a hereditary risk for melanoma and their families in order to foster children's engagement in melanoma preventive behaviors. Genetic discoveries will continue to yield new opportunities to provide predispositional genetic risk information to unaffected individuals, including children, and could be delivered within programs that provide personalized and translational approaches to cancer prevention.
Collapse
Affiliation(s)
- Yelena P Wu
- Division of Public Health, Department of Family & Preventive Medicine, University of Utah, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA.
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
| | - Darren Mays
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | | | - Kenneth P Tercyak
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| |
Collapse
|
65
|
Helgadottir H, Tuominen R, Olsson H, Hansson J, Höiom V. Cancer risks and survival in patients with multiple primary melanomas: Association with family history of melanoma and germline CDKN2A mutation status. J Am Acad Dermatol 2017; 77:893-901. [PMID: 28818438 DOI: 10.1016/j.jaad.2017.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Worse outcomes have been noted in patients with multiple primary melanomas (MPMs) than in patients with single primary melanomas. OBJECTIVE We investigated how family history of melanoma and germline CDKN2A mutation status of MPM patients affects risks of developing subsequent melanomas and other cancers and survival outcomes. METHODS Comprehensive data on cancer diagnoses and deaths of MPM patients, their first-degree relatives, and matched controls were obtained through Swedish national health care and population registries. RESULTS Familial MPM cases with germline CDKN2A mutations were youngest at the diagnosis of their second melanoma (median age 42 years) and had among the MPM cohorts the highest relative risks (RR) compared to controls of developing >2 melanomas (RR 238.4, 95% CI 74.8-759.9). CDKN2A mutated MPM cases and their first-degree relatives were the only cohorts with increased risks of nonskin cancers compared to controls (RR 3.6, 95% CI 1.9-147.1 and RR 3.2, 95% CI 1.9-5.6, respectively). In addition, CDKN2A mutated MPM cases had worse survival compared with both cases with familial (HR 3.0, 95% CI 1.3-8.1) and sporadic wild-type MPM (HR 2.63, 95% CI 1.3-5.4). LIMITATIONS Our study examined outcomes in subgroups of MPM patients, which affected the sample size of the study groups. CONCLUSION This study demonstrates that CDKN2A mutation status and family history of melanoma significantly affects outcomes of MPM patients.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Rainer Tuominen
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Childhood skin cancers are relatively rare and may indicate an underlying genetic disorder. The increasing elucidation of genetic pathways is changing the diagnosis and management of genetic skin cancer susceptibility syndromes. In this review, we provide an overview of genetic conditions that predispose to skin cancer development in childhood and signs that providers should assess when evaluating affected individuals. RECENT FINDINGS In basal cell nevus syndrome (BCNS), the patched2 (PTCH2) and suppressor of fused (SUFU) genes have been implicated in disease pathogenesis. The sonic hedgehog (SHH) pathway inhibitor vismodegib was shown in a placebo-controlled phase III randomized trial to reduce the tumor burden in patients with BCNS. Epidermolysis bullosa (EB) has been classified into four major types and more than 30 subtypes based partly on specific mutations, and best clinical practice guidelines for the management of cutaneous squamous cell carcinoma in EB have been developed. Oculocutaneous albinism (OCA) has been associated with new mutations in genes named OCA5, OCA6, and OCA7, bringing to the total number of culprit genes to seven (OCA1-OCA7). SUMMARY Advances in our understanding of genetic conditions that predispose to childhood skin cancer include new disease classification systems, management guidelines, and treatment options.
Collapse
|
67
|
Pejkova S, Dzokic G, Tudzarova-Gjorgova S, Panov S. Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma. ACTA ACUST UNITED AC 2017; 37:89-97. [PMID: 27883322 DOI: 10.1515/prilozi-2016-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant skin melanoma is a tumor deriving from transformed skin melanocytes as a result of complex interactions between genetic and environmental factors. This melanoma has a potential to metastasize early and very often it is resistant to the existing modalities of the systemic therapy. As in any other neoplasms, certain types of melanoma may skip certain stages of progression. The progression from one stage to another is accompanied by specific biological changes. Several key changes in the melanoma tumorogenesis influence the regulation of the cell proliferation and vitality, including the RAS-RAF-ERK, PI3K-AKT, and p16INK4/CDK4/RB pathways. A key role in the dissreguarity of the RAS-RAF-ERK (MAPK) pathway in the malignant melanoma development have been demonstrated by many studies. To date, the molecular genetic alterations during melanoma development have been partially known. In the pathogenesis of the malignant melanoma, there are mutations of various genes such as NRAS, BRAF, and PTEN and mutations and deletions of CDKN2A. In the past years, great advance has been made in the insights of the molecular aspects of the melanoma pathogenesis. However, this field yet poses a challenge to discover new details about the melanoma molecular characteristics. The research results are focused towards the improvement of the melanoma patients prognosis by introducing personalized targeted therapy.
Collapse
|
68
|
Borroni RG, Manganoni AM, Grassi S, Grasso M, Diegoli M, Giorgianni C, Favalli V, Pavoni L, Cespa M, Arbustini E. Genetic counselling and high-penetrance susceptibility gene analysis reveal the novel CDKN2A p.D84V (c.251A>T) mutation in melanoma-prone families from Italy. Melanoma Res 2017; 27:97-103. [PMID: 28060055 DOI: 10.1097/cmr.0000000000000324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic susceptibility to primary cutaneous melanoma (PCM) may account for up to 12% of PCMs, presenting as the familial atypical mole/multiple melanoma syndrome (FAMMM), an autosomal dominant condition with incomplete penetrance and variable expressivity, characterized by PCM in at least two relatives and/or more than one PCMs in the same patient. To identify individuals at high genetic risk of PCM, from 1 January 2012 to 31 December 2015, we offered genetic counselling and molecular analysis of the two high-penetrance FAMMM susceptibility genes, cyclin-dependent kinase inhibitor 2A (CDKN2A) and cyclin-dependent kinase 4 (CDK4), to 92 consecutive, unrelated patients with FAMMM. Age at diagnosis and number of PCMs were obtained from medical records; the number of PCMs and affected relatives were recorded for each family. The diagnostic work-up consisted of genetic counselling and cascade genetic testing in patients and further extension to relatives of those identified as mutation carriers. All exons and exon/intron boundaries of CDKN2A and CDK4 genes were screened by direct bidirectional sequencing. We identified CDKN2A mutations in 19 of the 92 unrelated patients (20.6%) and in 14 additional, clinically healthy relatives. Eleven of these latter subsequently underwent excision of dysplastic nevi, but none developed PCM during a median follow-up of 37.3 months. In three patients from unrelated families, the novel CDKN2A p.D84V (c.251A>T) mutation was observed, associated with PCM in each pedigree. Genetic screening of FAMMM patients and their relatives can contribute towards specific primary and secondary prevention programmes for individuals at high genetic risk of PCM. The novel CDKN2A p.D84V (c.251A>T) mutation adds to the known mutations associated with FAMMM.
Collapse
Affiliation(s)
- Riccardo G Borroni
- aLaboratori Sperimentali di Ricerca, Area Trapiantologica bDepartment of Dermatology, Fondazione IRCCS Policlinico San Matteo cDepartment of Dermatology dDepartment of Molecular Medicine, University of Pavia, Pavia eDepartment of Dermatology, A.O. Spedali Civili, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Grander LC, Cabral F, Lisboa AP, Vale G, Barcaui CB, Maceira JMP. Multiple cutaneous melanomas associated with gastric and brain metastases. An Bras Dermatol 2017; 91:98-100. [PMID: 28300909 PMCID: PMC5325008 DOI: 10.1590/abd1806-4841.20164374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
The occurrence of multiple primary melanomas in a single individual is rare. Most
commonly, malignant melanocytic lesions subsequent to the initial diagnosis of
melanoma are secondary cutaneous metastases. We report a patient with
gastrointestinal bleeding from gastric metastasis of cutaneous melanoma. During
clinical evaluation and staging, we discovered a brain metastasis associated
with 3 synchronous primary cutaneous melanomas. We suggest the research on the
mutation in the cyclin-dependent kinase inhibitor 2A (CDKN2A) (INK4a) in such
cases. We also emphasize the importance of clinical examination and dermoscopy
of the entire tegument, even after a malignant melanocytic lesion is
identified.
Collapse
Affiliation(s)
| | - Fernanda Cabral
- Universidade do Estado do Rio de Janeiro (UERJ) - Rio de Janeiro (RJ), Brazil
| | | | | | | | - Juan Manuel Pineiro Maceira
- Universidade do Estado do Rio de Janeiro (UERJ) - Rio de Janeiro (RJ), Brazil.,Universidade Federal do Rio de Janeiro (UFRJ) - Rio de Janeiro (RJ), Brazil
| |
Collapse
|
70
|
Leachman SA, Lucero OM, Sampson JE, Cassidy P, Bruno W, Queirolo P, Ghiorzo P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev 2017; 36:77-90. [PMID: 28283772 PMCID: PMC5385190 DOI: 10.1007/s10555-017-9661-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several distinct melanoma syndromes have been defined, and genetic tests are available for the associated causative genes. Guidelines for melanoma genetic testing have been published as an informal "rule of twos and threes," but these guidelines apply to CDKN2A testing and are not intended for the more recently described non-CDKN2A melanoma syndromes. In order to develop an approach for the full spectrum of hereditary melanoma patients, we have separated melanoma syndromes into two types: "melanoma dominant" and "melanoma subordinate." Syndromes in which melanoma is a predominant cancer type are considered melanoma dominant, although other cancers, such as mesothelioma or pancreatic cancers, may also be observed. These syndromes are associated with defects in CDKN2A, CDK4, BAP1, MITF, and POT1. Melanoma-subordinate syndromes have an increased but lower risk of melanoma than that of other cancer(s) seen in the syndrome, such as breast and ovarian cancer or Cowden syndrome. Many of these melanoma-subordinate syndromes are associated with well-established predisposition genes (e.g., BRCA1/2, PTEN). It is likely that these predisposition genes are responsible for the increased susceptibility to melanoma as well but with lower penetrance than that observed for the dominant cancer(s) in those syndromes. In this review, we describe our extension of the "rule of twos and threes" for melanoma genetic testing. This algorithm incorporates an understanding of the spectrum of cancers and genes seen in association with melanoma to create a more comprehensive and tailored approach to genetic testing.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Olivia M Lucero
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jone E Sampson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Pamela Cassidy
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy.
| |
Collapse
|
71
|
Johnson MM, Leachman SA, Aspinwall LG, Cranmer LD, Curiel-Lewandrowski C, Sondak VK, Stemwedel CE, Swetter SM, Vetto J, Bowles T, Dellavalle RP, Geskin LJ, Grossman D, Grossmann KF, Hawkes JE, Jeter JM, Kim CC, Kirkwood JM, Mangold AR, Meyskens F, Ming ME, Nelson KC, Piepkorn M, Pollack BP, Robinson JK, Sober AJ, Trotter S, Venna SS, Agarwala S, Alani R, Averbook B, Bar A, Becevic M, Box N, E Carson W, Cassidy PB, Chen SC, Chu EY, Ellis DL, Ferris LK, Fisher DE, Kendra K, Lawson DH, Leming PD, Margolin KA, Markovic S, Martini MC, Miller D, Sahni D, Sharfman WH, Stein J, Stratigos AJ, Tarhini A, Taylor MH, Wisco OJ, Wong MK. Skin cancer screening: recommendations for data-driven screening guidelines and a review of the US Preventive Services Task Force controversy. Melanoma Manag 2017; 4:13-37. [PMID: 28758010 PMCID: PMC5480135 DOI: 10.2217/mmt-2016-0022] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
Melanoma is usually apparent on the skin and readily detected by trained medical providers using a routine total body skin examination, yet this malignancy is responsible for the majority of skin cancer-related deaths. Currently, there is no national consensus on skin cancer screening in the USA, but dermatologists and primary care providers are routinely confronted with making the decision about when to recommend total body skin examinations and at what interval. The objectives of this paper are: to propose rational, risk-based, data-driven guidelines commensurate with the US Preventive Services Task Force screening guidelines for other disorders; to compare our proposed guidelines to recommendations made by other national and international organizations; and to review the US Preventive Services Task Force's 2016 Draft Recommendation Statement on skin cancer screening.
Collapse
Affiliation(s)
- Mariah M Johnson
- Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | | | | | | | | | | | - Susan M Swetter
- Stanford University Medical Center & VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - John Vetto
- Oregon Health & Science University, Portland, OR, USA
| | - Tawnya Bowles
- Intermountain Healthcare & University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Kelly C Nelson
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Brian P Pollack
- Emory University & Atlanta VA Medical Center, Atlanta, GA, USA
| | - June K Robinson
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | | | | | - Sanjiv Agarwala
- St Luke's University Hospital & Temple University, Bethlehem, PA, USA
| | | | | | - Anna Bar
- Oregon Health & Science University, Portland, OR, USA
| | | | - Neil Box
- University of Colorado, Aurora, CO, USA
| | | | | | - Suephy C Chen
- Emory University & Atlanta VA Medical Center, Atlanta, GA, USA
| | - Emily Y Chu
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - David E Fisher
- Harvard Medical School & Massachusetts General Hospital, Charlestown, MA, USA
| | - Kari Kendra
- The Ohio State University, Columbus, OH, USA
| | - David H Lawson
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | | | - Mary C Martini
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Debbie Miller
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | - Alexander J Stratigos
- Department of Dermatology, University of Athens, Andreas Sygros Hospital, Athens, Greece
| | | | | | | | - Michael K Wong
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
72
|
Villacis RAR, Basso TR, Canto LM, Pinheiro M, Santiago KM, Giacomazzi J, de Paula CAA, Carraro DM, Ashton-Prolla P, Achatz MI, Rogatto SR. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J Mol Med (Berl) 2017; 95:523-533. [PMID: 28093616 DOI: 10.1007/s00109-017-1507-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
Multiple primary tumors (MPT) have been described in carriers of inherited cancer predisposition genes. However, the genetic etiology of a large proportion of MPT cases remains unclear. We reviewed 267 patients with hereditary cancer predisposition syndromes (HCPS) that underwent genetic counseling and selected 22 patients with MPT to perform genomic analysis (CytoScan HD Array, Affymetrix) aiming to identify new alterations related to a high risk of developing MPT. Twenty patients had a positive family history of cancer and 11 met phenotypic criteria for HCPS. Genetic testing for each of the genes associated with these syndromes revealed negative results for pathogenic mutations. Seventeen rare germline copy number variations (CNVs) covering 40 genes were identified in 11 patients, including an EPCAM/MSH2 deletion in one Lynch syndrome patient. An enrichment analysis revealed a significant number of genes (where the CNVs are mapped) associated with carcinogenesis and/or related to functions implicated with tumor development, such as proliferation and cell survival. An interaction network analysis highlighted the importance of TP53 pathway in cancer emergence. A high number of germline copy-neutral loss of heterozygosity (cnLOH) was identified in nine cases, particularly in two patients. Eighteen genes were covered by both rare CNVs and cnLOH, including 14 related to tumorigenesis and seven genes (ABCC1, KDM4C, KIAA0430, MYH11, NDE1, PIWIL2, and ULK2) specifically associated with cellular growth and proliferation. Overall, we identified 14 cases with rare CNVs and/or cnLOH that may contribute to the risk of MPT development. KEY MESSAGE CNVs may explain the risk of hereditary cancer syndromes in MPT patients. CNVs affecting genes related to cancer are candidates to be involved in MPT risk. EPCAM/MSH2 deletions should be investigated in patients suspected to have LS. Gene enrichment related to the TP53 network is associated with MPT development. cnLOH and CNVs contribute to the risk of MPT development.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Tatiane R Basso
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Luisa M Canto
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Maísa Pinheiro
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Karina M Santiago
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Juliana Giacomazzi
- Department of Genetics, Federal University of Rio Grande do Sul (UFRGS) and Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cláudia A A de Paula
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Dirce M Carraro
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Patrícia Ashton-Prolla
- Department of Genetics, Federal University of Rio Grande do Sul (UFRGS) and Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, MD, USA
| | - Silvia R Rogatto
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil. .,Department of Clinical Genetics, Vejle Sygehus, Kabbeltoft 25, 7100, Vejle, Denmark. .,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
73
|
Di Lorenzo S, Fanale D, Corradino B, Caló V, Rinaldi G, Bazan V, Giordano A, Cordova A, Russo A. Absence of germline CDKN2A mutation in Sicilian patients with familial malignant melanoma: Could it be a population-specific genetic signature? Cancer Biol Ther 2016; 17:83-90. [PMID: 26650572 DOI: 10.1080/15384047.2015.1108494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Germline CDKN2A mutations have been described in 25% to 40% of melanoma families from several countries. Sicilian population is genetically different from the people of Europe and Northern Italy because of its historical background, therefore familial melanoma could be due to genes different from high-penetrance CDKN2A gene. Four hundred patients with cutaneous melanoma were observed in a 6-years period at the Plastic Surgery Unit of the University of Palermo. Forty-eight patients have met the criteria of the Italian Society of Human Genetics (SIGU) for the diagnosis of familial melanoma and were screened for CDKN2A and CDK4 mutations. Mutation testing revealed that none of the families carried mutations in CDK4 and only one patient harboured the rare CDKN2A p.R87W mutation. Unlike other studies, we have not found high mutation rate of CDKN2A in patients affected by familial melanoma or multiple melanoma. This difference could be attributed to different factors, including the genetic heterogeneity of the Sicilian population. It is likely that, as in the Australian people, the inheritance of familial melanoma in this island of the Mediterranean Sea is due to intermediate/low-penetrance susceptibility genes, which, together with environmental factors (as latitude and sun exposure), could determine the occurrence of melanoma.
Collapse
Affiliation(s)
- Sara Di Lorenzo
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Daniele Fanale
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Bartolo Corradino
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Valentina Caló
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Gaetana Rinaldi
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Viviana Bazan
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Antonio Giordano
- c Sbarro Institute for Cancer Research and Molecular Medicine, Temple University , Philadelphia , PA 19122 , USA
| | - Adriana Cordova
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Antonio Russo
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| |
Collapse
|
74
|
Sargen MR, Merrill SL, Chu EY, Nathanson KL. CDKN2A mutations with p14 loss predisposing to multiple nerve sheath tumours, melanoma, dysplastic naevi and internal malignancies: a case series and review of the literature. Br J Dermatol 2016; 175:785-9. [PMID: 26876133 DOI: 10.1111/bjd.14485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
An inherited germline mutation in CDKN2A is the most common cause of familial atypical multiple mole melanoma (FAMMM) syndrome. Although it is well known that CDKN2A mutations confer an increased risk for melanoma and pancreatic carcinoma, the association with an increased risk for nerve sheath tumours and other tumour types is under-recognized. We report a family with a missense mutation (c.151-1G>C) at the acceptor splice site of intron 1 of CDKN2A, resulting in loss of function of both tumour suppressor proteins p16(INK) (4) and p14(ARF) . This mutation is associated with a clinical phenotype of FAMMM syndrome in which patients develop numerous benign and malignant mutations, brain tumours, sarcomas and other solid tumours, in addition to melanoma and dysplastic naevi. Our proband initially presented with multiple nerve sheath tumours, leading to diagnostic confusion with Neurofibromatosis type 1. Loss of p14 expression results in increased MDM2-mediated degradation of the tumour suppressor protein p53, and predisposes mutation carriers to multiple benign and malignant neoplasms. This article highlights the importance of considering CDKN2A mutations in patients with dysplastic naevi, melanoma and multiple nerve sheath tumours, specifically those with histological features of both neurofibromas and schwannomas. We also present a discussion of medical management for patients with this high-risk cancer susceptibility syndrome.
Collapse
Affiliation(s)
- M R Sargen
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, 30322, U.S.A
| | - S L Merrill
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - E Y Chu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - K L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, U.S.A.
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, U.S.A.
| |
Collapse
|
75
|
Mangas C, Potrony M, Mainetti C, Bianchi E, Carrozza Merlani P, Mancarella Eberhardt A, Maspoli-Postizzi E, Marazza G, Marcollo-Pini A, Pelloni F, Sessa C, Simona B, Puig-Butillé JA, Badenas C, Puig S. Genetic susceptibility to cutaneous melanoma in southern Switzerland: role of CDKN2A, MC1R and MITF. Br J Dermatol 2016; 175:1030-1037. [PMID: 27473757 DOI: 10.1111/bjd.14897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nearly 10% of all cases of cutaneous melanoma (CM) occur in patients with a personal or family history of the disease. OBJECTIVES To obtain information about genetic predisposition to CM in Ticino, the southern region of Switzerland, a zone with moderate-to-high CM incidence. METHODS We identified germline mutations in highly CM-associated genes (CDKN2A and CDK4) and low/medium-penetrance variants (MC1R and MITF) in patients with multiple primary CMs or individuals with one or more CM and a positive family history for CM or pancreatic cancer among first- or second-degree relatives. Healthy blood donors (n = 146) were included as a control group. RESULTS From July 2010 to July 2012, 57 patients (41 pedigrees) were included. Twenty-six were melanoma-prone families (with at least two cases) and 15 had multiple CMs. Pancreatic cancer was found in six families. The CDKN2A mutation p.V126D was identified in seven patients (four families) with a founder effect, whereas CDKN2A A148T was detected in seven cases (five families) and seven healthy donors (odds ratio 2·76, 95% confidence interval 0·83-9·20). At least one MC1R melanoma-associated polymorphism was detected in 32 patients (78%) and 97 healthy donors (66%), with more than one polymorphism in 12 patients (29%) and 25 healthy donors (17%). The MITF variant p.E318K was identified in four patients from three additional pedigrees (7%) and one healthy control (0·7%). CONCLUSIONS Inclusion criteria for the Ticino population for genetic assessment should follow the rule of two (two affected individuals in a family or a patient with multiple CMs), as we detected a CDKN2A mutation in almost 10% of our pedigrees (four of 41), MITF p.E318K in 7% (three of 41) and a higher number of MC1R variants than in the control population.
Collapse
Affiliation(s)
- C Mangas
- Dermatologia Ente Ospedaliero Cantonale (EOC), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland. ,
| | - M Potrony
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - C Mainetti
- Dermatologia Ente Ospedaliero Cantonale (EOC), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | - E Bianchi
- Private Dermatology Practice, Lugano, Switzerland
| | | | | | | | - G Marazza
- Dermatologia Ente Ospedaliero Cantonale (EOC), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | | | - F Pelloni
- Private Dermatology Practice, Lugano, Switzerland
| | - C Sessa
- Istituto Oncologico della Svizzera Italiana (IOSI), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | - B Simona
- Private Dermatology Practice, Locarno, Switzerland
| | - J A Puig-Butillé
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic of Barcelona, Spain
| | - C Badenas
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic of Barcelona, Spain
| | - S Puig
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
76
|
Wu YP, Aspinwall LG, Conn BM, Stump T, Grahmann B, Leachman SA. A systematic review of interventions to improve adherence to melanoma preventive behaviors for individuals at elevated risk. Prev Med 2016; 88:153-67. [PMID: 27090434 PMCID: PMC4902721 DOI: 10.1016/j.ypmed.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES To examine the effectiveness of behavioral interventions for melanoma prevention targeted to individuals at elevated risk due to personal and/or family history. METHODS Through literature searches in 5 search databases (through July 2014), 20 articles describing 14 unique interventions focused on melanoma prevention among individuals at elevated risk for the disease were identified. Interventions targeting only patients undergoing active treatment for melanoma were excluded. RESULTS The average study quality was moderate. The majority of interventions (6 out of 9, 66% of studies) led to improvements in one or more photoprotective behaviors, particularly for improvements in use of protective clothing (3 out of 5, 60% of studies), and frequency and/or thoroughness of skin self-examinations (9 out of 12, 75%). Fewer interventions (5 out of 14, 36%) targeted uptake of total body skin examinations (60% led to improvements). Also, fewer interventions targeted all three preventive behaviors (5 out of 14, 36%). CONCLUSIONS Findings suggest that future interventions should aim to improve adherence across multiple preventive behaviors, over a longer time period (past 8months post-intervention), and target high-risk children. Studies should include adequate sample sizes to investigate moderators and mediators of intervention effectiveness. Interventions may be strengthened by new techniques, such as incorporating family members (e.g., to improve thoroughness of skin self-examinations) and eHealth technology.
Collapse
Affiliation(s)
- Yelena P Wu
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah, USA; Huntsman Cancer Institute, USA.
| | - Lisa G Aspinwall
- Huntsman Cancer Institute, USA; Department of Psychology, University of Utah, USA
| | - Bridgid M Conn
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Children's Hospital Los Angeles, USA
| | - Tammy Stump
- Department of Psychology, University of Utah, USA
| | - Bridget Grahmann
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah, USA
| | - Sancy A Leachman
- Huntsman Cancer Institute, USA; Department of Dermatology, Oregon Health & Science University, USA
| |
Collapse
|
77
|
Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol 2016; 74:395-407; quiz 408-10. [PMID: 26892650 DOI: 10.1016/j.jaad.2015.08.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022]
Abstract
Malignant melanoma is considered the most lethal skin cancer if it is not detected and treated during its early stages. About 10% of melanoma patients report a family history of melanoma; however, individuals with features of true hereditary melanoma (ie, unilateral lineage, multigenerational, multiple primary lesions, and early onset of disease) are in fact quite rare. Although many new loci have been implicated in hereditary melanoma, CDKN2A mutations remain the most common. Familial melanoma in the presence of multiple atypical nevi should raise suspicion for a germline CDKN2A mutation. These patients have a high risk of developing multiple primary melanomas and internal organ malignancies, especially pancreatic cancer; therefore, a multidisciplinary approach is necessary in many cases. The value of dermoscopic examination and total body photography performed at regular intervals has been suggested by a number of studies, and should therefore be considered for these patients and their first-degree relatives. In addition, genetic counseling with the possibility of testing can be a valuable adjunct for familial melanoma patients. This must be performed with care, however, and only by qualified individuals trained in cancer risk analysis.
Collapse
Affiliation(s)
- Efthymia Soura
- 1st Department of Dermatology, University Clinic, "Andreas Sygros" Hospital, Athens, Greece
| | - Philip J Eliades
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; Tufts University School of Medicine, Boston, Massachusetts
| | - Kristen Shannon
- Melanoma Genetics Program/MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Alexander J Stratigos
- 1st Department of Dermatology, University Clinic, "Andreas Sygros" Hospital, Athens, Greece
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; Melanoma Genetics Program/MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
78
|
Ransohoff KJ, Jaju PD, Jaju PD, Tang JY, Carbone M, Leachman S, Sarin KY. Familial skin cancer syndromes: Increased melanoma risk. J Am Acad Dermatol 2016; 74:423-34; quiz 435-6. [PMID: 26892652 DOI: 10.1016/j.jaad.2015.09.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/19/2015] [Indexed: 12/20/2022]
Abstract
Phenotypic traits, such as red hair and freckling, increase melanoma risk by 2- to 3-fold. In addition, approximately 10% of melanomas are caused by inherited germline mutations that increase melanoma risk from 4- to >1000-fold. This review highlights the key genes responsible for inherited melanoma, with an emphasis on when a patient should undergo genetic testing. Many genetic syndromes associated with increased melanoma risk are also associated with an increased risk of other cancers. Identification of these high-risk patients is essential for preventive behavior reinforcement, genetic counseling, and ensuring other required cancer screenings.
Collapse
Affiliation(s)
| | | | - Prajaka D Jaju
- Department of Dermatology, Stanford University Medical Center, Stanford, California
| | - Jean Y Tang
- Department of Dermatology, Stanford University Medical Center, Stanford, California
| | - Michele Carbone
- Department of Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Sancy Leachman
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University Medical Center, Stanford, California.
| |
Collapse
|
79
|
Müller C, Wendt J, Rauscher S, Burgstaller-Muehlbacher S, Sunder-Plassmann R, Scheurecker C, Richtig E, Fae I, Fischer G, Pehamberger H, Okamoto I. Characterization of patients at high risk of melanoma in Austria. Br J Dermatol 2016; 174:1308-17. [PMID: 26800492 DOI: 10.1111/bjd.14407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Risk of melanoma is determined by genetic and exogenous factors. Only a few studies have included both characteristics in a comprehensive multivariable analysis. OBJECTIVES To find determinants of patients at high risk of melanoma in Austria, including phenotype, genotype and lifestyle characteristics in comprehensive analyses. METHODS In total, 1668 patients with melanoma from the M3 case-control study were studied. Overall, 567 participants were sequenced for CDKN2A, 232 for CDK4, 123 for MITF encoding the variant E318K and 964 for MC1R. RESULTS Patients with melanoma with a positive family history (n = 190, 11·6%), multiple primary melanomas (n = 261, 15·7%) and younger age (< 50 years, n = 675, 40·5%) were defined as being at high risk. All other patients with melanoma were defined as the reference group. We found significant differences between those two groups and between the high-risk subgroups (positive family history, multiple primary melanomas and younger age). Pigmentation phenotype was associated with the high-risk group in general (childhood freckling, odds ratio 1·46, P = 0·007; blond/reddish hair colour, odds ratio 1·43, P = 0·011). Patients with a positive family history and patients with early-onset disease were similar regarding both their phenotypic characteristics and external factors. Established high-risk mutations in CDKN2A were found in cases with a positive family history (n = 12) or multiple melanomas (n = 2). Moreover, we found three patients carrying the MITF p.E318K variant, two with a CDK4 variant and seven with nonsynonymous MC1R variants with undescribed biological significance, of which four were predicted as damaging. CONCLUSIONS Austrian patients could represent a reservoir for novel genetic variants. Further investigation of populations in Central and Eastern Europe might reveal more novel and disease-relevant variants.
Collapse
Affiliation(s)
- C Müller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - J Wendt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - S Rauscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - R Sunder-Plassmann
- Clinical Institute for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - C Scheurecker
- Department of Dermatology and Venereology, General Hospital Linz, Linz, Austria
| | - E Richtig
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - I Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - G Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - H Pehamberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - I Okamoto
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
80
|
Fidalgo F, Rodrigues TC, Silva AG, Facure L, de Sá BCS, Duprat JP, Achatz MI, Rosenberg C, Carraro DM, Krepischi ACV. Role of rare germline copy number variation in melanoma-prone patients. Future Oncol 2016; 12:1345-57. [PMID: 27020340 DOI: 10.2217/fon.16.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This work evaluates a possible causative role for germline copy number variants (CNVs) in melanoma predisposition. PATIENTS & METHODS A total of 41 melanoma-prone Brazilian patients were investigated for CNVs using 850K single nucleotide polymorphism arrays. RESULTS Ten rare CNVs were identified in nine patients, comprising 54 known genes, mostly related to cancer. In silico analyses revealed gene enrichment for cellular development and growth, and proliferation, highlighting five genes directly associated with the melanoma phenotype (ANGPT1, IDH1, PDE5A, HIST1H1B and GCNT2). CONCLUSION Patients harboring rare CNVs exhibited a decreased age of disease onset, in addition to an overall higher skin cancer predisposition. Our findings suggest that rare CNVs contribute to melanoma susceptibility, and should be taken into account when investigating cancer risk factors.
Collapse
Affiliation(s)
- Felipe Fidalgo
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Tatiane Cristina Rodrigues
- Department of Genetics & Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
| | - Amanda Gonçalves Silva
- Department of Genetics & Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
| | - Luciana Facure
- Department of Skin Cancer, AC Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | - Carla Rosenberg
- Department of Genetics & Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
| | | | | |
Collapse
|
81
|
Arron ST, Raymond AK, Yanik EL, Castenson D, McCulloch CE, Clarke CA, Paddock LE, Niu X, Engels EA. Melanoma Outcomes in Transplant Recipients With Pretransplant Melanoma. Dermatol Surg 2016; 42:157-66. [PMID: 26818209 PMCID: PMC6263147 DOI: 10.1097/dss.0000000000000602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND There are limited data on outcomes in transplant recipients with a history of pretransplant melanoma. OBJECTIVE To determine whether pretransplant melanoma is associated with differences in survival or posttransplant melanoma risk. MATERIALS AND METHODS We evaluated the outcomes of 185,039 US transplant recipients from the Transplant Cancer Match Study. We also evaluated the impact of transplantation on 141,441 patients with melanoma identified in cancer registries. RESULTS There were 336 transplant recipients (0.18%) with pretransplant melanoma; they had increased risk of melanoma-specific mortality (hazard ratio [HR], 27; 95% confidence interval [CI], 11-64, p < .0001), overall mortality (HR, 1.3; 95% CI, 1.0-1.5, p = .02), and incident melanoma (HR, 5.4; 95% CI, 2.9-9.8, p < .0001) after transplant, compared with recipients without pretransplant melanoma. The 10-year absolute risk difference was 2.97% for melanoma-specific mortality, 3.68% for incident melanoma, and 14.32% for overall mortality. Among the 141,441 patients with melanoma in the general population, 68 (0.05%) subsequently received a transplant. Transplantation increased melanoma-specific mortality, but not significantly (HR, 1.7; 95% CI, 0.61-4.5, p = .32). CONCLUSION Pretransplant melanoma is associated with increased melanoma-specific mortality, overall mortality, and incident melanoma after transplant. Nonetheless, the rarity of melanoma-related events supports the current practice for listing transplant candidates with a history of melanoma.
Collapse
Affiliation(s)
- Sarah T. Arron
- Department of Dermatology University of California, San Francisco, San Francisco, California
| | - Amanda K. Raymond
- Department of Dermatology University of California, San Francisco, San Francisco, California
| | - Elizabeth L. Yanik
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Charles E. McCulloch
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California
| | | | - Lisa E. Paddock
- Rutgers School of Public Health, Piscataway, New Jersey
- Cancer Epidemiology Services, New Jersey Department of Health, Trenton, New Jersey
| | - Xiaoling Niu
- Cancer Epidemiology Services, New Jersey Department of Health, Trenton, New Jersey
| | - Eric A. Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
82
|
Bruno W, Pastorino L, Ghiorzo P, Andreotti V, Martinuzzi C, Menin C, Elefanti L, Stagni C, Vecchiato A, Rodolfo M, Maurichi A, Manoukian S, De Giorgi V, Savarese I, Gensini F, Borgognoni L, Testori A, Spadola G, Mandalà M, Imberti G, Savoia P, Astrua C, Ronco AM, Farnetti A, Tibiletti MG, Lombardo M, Palmieri G, Ayala F, Ascierto P, Ghigliotti G, Muggianu M, Spagnolo F, Picasso V, Tanda ET, Queirolo P, Bianchi-Scarrà G. Multiple primary melanomas (MPMs) and criteria for genetic assessment: MultiMEL, a multicenter study of the Italian Melanoma Intergroup. J Am Acad Dermatol 2016; 74:325-332. [PMID: 26775776 DOI: 10.1016/j.jaad.2015.09.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Multiple primary melanoma (MPM), in concert with a positive family history, is a predictor of cyclin-dependent kinase (CDK) inhibitor 2A (CDKN2A) germline mutations. A rule regarding the presence of either 2 or 3 or more cancer events (melanoma and pancreatic cancer) in low or high melanoma incidence populations, respectively, has been established to select patients for genetic referral. OBJECTIVE We sought to determine the CDKN2A/CDK4/microphthalmia-associated transcription factor mutation rate among Italian patients with MPM to appropriately direct genetic counseling regardless of family history. METHODS In all, 587 patients with MPM and an equal number with single primary melanomas and control subjects were consecutively enrolled at the participating centers and tested for CDKN2A, CDK4, and microphthalmia-associated transcription factor. RESULTS CDKN2A germline mutations were found in 19% of patients with MPM versus 4.4% of patients with single primary melanoma. In familial MPM cases the mutation rate varied from 36.6% to 58.8%, whereas in sporadic MPM cases it varied from 8.2% to 17.6% in patients with 2 and 3 or more melanomas, respectively. The microphthalmia-associated transcription factor E318K mutation accounted for 3% of MPM cases altogether. LIMITATIONS The study was hospital based, not population based. Rare novel susceptibility genes were not tested. CONCLUSION Italian patients who developed 2 melanomas, even in situ, should be referred for genetic counseling even in the absence of family history.
Collapse
Affiliation(s)
- William Bruno
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Lorenza Pastorino
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.
| | - Paola Ghiorzo
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Virginia Andreotti
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Claudia Martinuzzi
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy
| | - Camilla Stagni
- Section of Oncology and Immunology, Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Antonella Vecchiato
- Melanoma and Soft Tissue Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Monica Rodolfo
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Andrea Maurichi
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Siranoush Manoukian
- Medical Genetics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Imma Savarese
- Department of Dermatology, University of Florence, Florence, Italy
| | - Francesca Gensini
- Unit of Medical Genetics, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, Regional Melanoma Referral Center, Santa Maria Annunziata Hospital, Florence, Italy
| | - Alessandro Testori
- Division of Dermatoncological Surgery, European Institute of Oncology, Milan, Italy
| | - Giuseppe Spadola
- Division of Dermatoncological Surgery, European Institute of Oncology, Milan, Italy
| | - Mario Mandalà
- Medical Oncology Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Paola Savoia
- Department of Medical Sciences, Dermatology Section, University of Turin, Turin, Italy
| | - Chiara Astrua
- Department of Medical Sciences, Dermatology Section, University of Turin, Turin, Italy
| | - Anna Maria Ronco
- Dermatoncological Surgery Unit, Presidio Sanitario Gradenigo, Turin, Italy
| | | | | | | | - Giuseppe Palmieri
- Cancer Genetics Unit, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Fabrizio Ayala
- Department of Melanoma, National Cancer Institute Pascale Foundation, Naples, Italy
| | - Paolo Ascierto
- Department of Melanoma, National Cancer Institute Pascale Foundation, Naples, Italy
| | - Giovanni Ghigliotti
- Dermatology Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Marisa Muggianu
- Department of Plastic and Reconstructive Surgery, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesco Spagnolo
- Department of Plastic and Reconstructive Surgery, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Virginia Picasso
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale dei Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale dei Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale dei Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Giovanna Bianchi-Scarrà
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
83
|
Wu YP, Aspinwall LG, Michaelis TC, Stump T, Kohlmann WG, Leachman SA. Discussion of photoprotection, screening, and risk behaviors with children and grandchildren after melanoma genetic testing. J Community Genet 2016; 7:21-31. [PMID: 26099287 PMCID: PMC4715817 DOI: 10.1007/s12687-015-0243-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
The purpose of the current study was to examine changes in frequency of discussion about melanoma preventive behaviors among adults who received melanoma genetic test reporting and counseling and their children and grandchildren, correspondence of frequency of discussion with intentions, and content of discussions. Participants received CDKN2A/p16 testing and counseling (N = 24, 46 % p16-positive). Discussions about preventive behaviors were assessed before testing and 1 and 6 months post-testing. Intentions to discuss preventive behaviors and perceived preparedness to discuss risk were assessed post-testing. Open-ended questions assessed content of reported discussions. Discussion of preventive behaviors declined following test reporting, with more rapid decline reported by noncarriers. There was a large gap between the percentage of participants who intended to discuss preventive behaviors and who then reported discussions 1 and 6 months after counseling. Participants felt prepared to discuss melanoma risk but also suggested resources to facilitate discussions. Genetic test reporting and counseling alone did not sustain discussions about preventive behaviors for a hereditary cancer with children and grandchildren. The gap between intentions to have discussions and reported discussions has implications for augmentation of counseling to support at-risk families' discussions about preventive behaviors.
Collapse
Affiliation(s)
- Yelena P Wu
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA.
- Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA.
| | - Lisa G Aspinwall
- Department of Psychology, University of Utah, 380 South 1530 East, Salt Lake City, UT, 84112, USA
| | - Timothy C Michaelis
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA
| | - Tammy Stump
- Department of Psychology, University of Utah, 380 South 1530 East, Salt Lake City, UT, 84112, USA
| | - Wendy G Kohlmann
- Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health and Science University, 3303 Southwest Bond Avenue, Portland, OR, 97239, USA
| |
Collapse
|
84
|
Characterization of individuals at high risk of developing melanoma in Latin America: bases for genetic counseling in melanoma. Genet Med 2015; 18:727-36. [PMID: 26681309 PMCID: PMC4940430 DOI: 10.1038/gim.2015.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Purpose: CDKN2A is the main high-risk melanoma-susceptibility gene, but it has been poorly assessed in Latin America. We sought to analyze CDKN2A and MC1R in patients from Latin America with familial and sporadic multiple primary melanoma (SMP) and compare the data with those for patients from Spain to establish bases for melanoma genetic counseling in Latin America. Genet Med18 7, 727–736. Methods: CDKN2A and MC1R were sequenced in 186 Latin American patients from Argentina, Brazil, Chile, Mexico, and Uruguay, and in 904 Spanish patients. Clinical and phenotypic data were obtained. Genet Med18 7, 727–736. Results: Overall, 24 and 14% of melanoma-prone families in Latin America and Spain, respectively, had mutations in CDKN2A. Latin American families had CDKN2A mutations more frequently (P = 0.014) than Spanish ones. Of patients with SMP, 10% of those from Latin America and 8.5% of those from Spain had mutations in CDKN2A (P = 0.623). The most recurrent CDKN2A mutations were c.-34G>T and p.G101W. Latin American patients had fairer hair (P = 0.016) and skin (P < 0.001) and a higher prevalence of MC1R variants (P = 0.003) compared with Spanish patients. Genet Med18 7, 727–736. Conclusion: The inclusion criteria for genetic counseling of melanoma in Latin America may be the same criteria used in Spain, as suggested in areas with low to medium incidence, SMP with at least two melanomas, or families with at least two cases among first- or second-degree relatives. Genet Med18 7, 727–736.
Collapse
|
85
|
Potrony M, Badenas C, Aguilera P, Puig-Butille JA, Carrera C, Malvehy J, Puig S. Update in genetic susceptibility in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:210. [PMID: 26488006 DOI: 10.3978/j.issn.2305-5839.2015.08.11] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanoma is the most deadly of the common skin cancers and its incidence is rapidly increasing. Approximately 10% of cases occur in a familial context. To date, cyclin-dependent kinase inhibitor 2A (CDKN2A), which was identified as the first melanoma susceptibility gene more than 20 years ago, is the main high-risk gene for melanoma. A few years later cyclin-dependent kinase 4 (CDK4) was also identified as a melanoma susceptibility gene. The technologic advances have allowed the identification of new genes involved in melanoma susceptibility: Breast cancer 1 (BRCA1) associated protein 1 (BAP1), CXC genes, telomerase reverse transcriptase (TERT), protection of telomeres 1 (POT1), ACD and TERF2IP, the latter four being involved in telomere maintenance. Furthermore variants in melanocortin 1 receptor (MC1R) and microphthalmia-associated transcription factor (MITF) give a moderately increased risk to develop melanoma. Melanoma genetic counseling is offered to families in order to better understand the disease and the genetic susceptibility of developing it. Genetic counseling often implies genetic testing, although patients can benefit from genetic counseling even when they do not fulfill the criteria for these tests. Genetic testing for melanoma predisposition mutations can be used in clinical practice under adequate selection criteria and giving a valid test interpretation and genetic counseling to the individual.
Collapse
Affiliation(s)
- Miriam Potrony
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Celia Badenas
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Paula Aguilera
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joan Anton Puig-Butille
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Cristina Carrera
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Malvehy
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Susana Puig
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
86
|
Burgstaller-Muehlbacher S, Marko M, Müller C, Wendt J, Pehamberger H, Okamoto I. Novel CDKN2A mutations in Austrian melanoma patients. Melanoma Res 2015; 25:412-20. [PMID: 26225579 DOI: 10.1097/cmr.0000000000000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CDKN2A is the most prominent familial melanoma gene, with mutations occurring in up to 40% of the families. Numerous mutations in the gene are known, several of them representing regional founder mutations. We sought to determine, for the first time, germline mutations in CDKN2A in Austria to identify novel mutations. In total, 700 individuals (136 patients with a positive family history and 164 with at least two primary melanomas as the high-risk groups; 200 with single primary melanomas; and 200 healthy individuals as the control groups) were Sanger sequenced for CDKN2A exon 1α, 1β, and 2. The 136 patients with affected relatives were also sequenced for CDK4 exon 2. We found the disease-associated mutations p.R24P (8×), p.N71T (1×), p.G101W (1×), and p.V126D (1×) in the group with affected relatives and p.R24P (2×) in the group with several primary melanomas. Furthermore, we discovered four mutations of unknown significance, two of which were novel: p.A34V and c.151-4 G>C, respectively. Computational effect prediction suggested p.A34V as conferring a high risk for melanoma, whereas c.151-4 G>C, although being predicted as a splice site mutation by MutationTaster, could not functionally be confirmed to alter splicing. Moreover, computational effect prediction confirmed accumulation of high-penetrance mutations in high-risk groups, whereas mutations of unknown significance were distributed across all groups. p.R24P is the most common high-risk mutation in Austria. In addition, we discovered two new mutations in Austrian melanoma patients, p.A34V and c.151-4 G>C, respectively.
Collapse
|
87
|
Gironi LC, Colombo E, Farinelli P, Giorgione R, Bozzola C, Ogliara P, Pasini B. Germline CDKN2A mutations in childhood melanoma: a case of melanoma-pancreatic cancer syndrome. Int J Dermatol 2015; 54:e553-5. [PMID: 26381259 DOI: 10.1111/ijd.12933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Cristina Gironi
- Dermatology Clinic, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy.
| | - Enrico Colombo
- Dermatology Clinic, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Pamela Farinelli
- Dermatology Clinic, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Roberto Giorgione
- Dermatology Clinic, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Cristina Bozzola
- Pathology Unit, Department of Health Sciences, University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Paola Ogliara
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
88
|
Palmieri G, Colombino M, Casula M, Budroni M, Manca A, Sini MC, Lissia A, Stanganelli I, Ascierto PA, Cossu A. Epidemiological and genetic factors underlying melanoma development in Italy. Melanoma Manag 2015; 2:149-163. [PMID: 30190844 PMCID: PMC6094587 DOI: 10.2217/mmt.15.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among human cancers, melanoma remains one of the malignancies with an ever-growing incidence in white populations. Recent advances in biological and immunological therapeutic approaches as well as increased efforts for secondary prevention are contributing to improve the survival rates. It is likely that a significant fall in mortality rates for melanoma will be achieved by further increase of the early detection through a more accurate selection of the higher-risk individuals (i.e., carriers of predisposing genetic alterations). A similar scenario occurs in Italy. In the present review, we have considered data on incidence, survival and mortality rates of melanoma in Italian population, including evaluation of the main risk factors and genetic mutations underlying disease susceptibility.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Maria Colombino
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Milena Casula
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Mario Budroni
- Department of Pathology, Hospital-University Health Unit (AOU), Sassari, Italy
| | - Antonella Manca
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Maria Cristina Sini
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Amelia Lissia
- Department of Pathology, Hospital-University Health Unit (AOU), Sassari, Italy
| | - Ignazio Stanganelli
- Skin Cancer Unit, Istituto Scientifico Romagnolo Tumori (IRST), Meldola, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori (INT), Fondazione G. Pascale, Naples, Italy
| | - Antonio Cossu
- Department of Pathology, Hospital-University Health Unit (AOU), Sassari, Italy
| |
Collapse
|
89
|
Sargen MR, Kanetsky PA, Newton-Bishop J, Hayward NK, Mann GJ, Gruis NA, Tucker MA, Goldstein AM, Bianchi-Scarra G, Puig S, Elder DE. Histologic features of melanoma associated with CDKN2A genotype. J Am Acad Dermatol 2015; 72:496-507.e7. [PMID: 25592620 PMCID: PMC4333073 DOI: 10.1016/j.jaad.2014.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inherited susceptibility genes have been associated with histopathologic characteristics of tumors. OBJECTIVE We sought to identify associations between histology of melanomas and CDKN2A genotype. METHODS This was a case-control study design comparing 28 histopathologic tumor features among individuals with sporadic melanomas (N = 81) and cases from melanoma families with (N = 123) and without (N = 120) CDKN2A germline mutations. RESULTS Compared with CDKN2A(-) cases, mutation carriers tended to have histologic features of superficial spreading melanoma subtype including higher pigmentation (Ptrend = .02) and increased pagetoid scatter (Ptrend = .07) after adjusting for age at diagnosis, sex, and American Joint Committee on Cancer thickness category. Similar associations were observed when comparing mutation carriers with a combined group of CDKN2A(-) (wild type) and sporadic melanomas. The presence of spindle cell morphology in the vertical growth phase was also an important predictor of genotype. Of the 15 cases with this phenotype, none were observed to harbor a CDKN2A mutation. LIMITATIONS Our study examined rare mutations and may have been underpowered to detect small, but biologically significant associations between histology and genotype. CONCLUSION Familial melanomas with CDKN2A mutations preferentially express a histologic phenotype of dense pigmentation, high pagetoid scatter, and a non-spindle cell morphology in the vertical growth phase.
Collapse
Affiliation(s)
- Michael R Sargen
- Department of Dermatology, Emory University Hospital, Atlanta, Georgia.
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, United Kingdom
| | - Nicholas K Hayward
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Australia
| | - Graham J Mann
- University of Sydney at Westmead Millennium Institute and Melanoma Institute Australia, Sydney, Australia
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Giovanna Bianchi-Scarra
- Department of Internal Medicine and Medical Specialties (Di.M.I.) University of Genoa, Genetics of Rare Cancers, Istituto Di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino -IST, Genoa, Italy
| | - Susana Puig
- Hospital Clinic of Barcelona, University of Barcelona, Institut de Recerca Biomédica August Pi I Sunyer, Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - David E Elder
- Department of Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
90
|
ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015; 110:223-62; quiz 263. [PMID: 25645574 PMCID: PMC4695986 DOI: 10.1038/ajg.2014.435] [Citation(s) in RCA: 1082] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer.
Collapse
|
91
|
Kottschade LA, Grotz TE, Dronca RS, Salomao DR, Pulido JS, Wasif N, Jakub JW, Bagaria SP, Kumar R, Kaur JS, Morita SY, Moran SL, Nguyen JT, Nguyen EC, Hand JL, Erickson LA, Brewer JD, Baum CL, Miller RC, Swanson DL, Lowe V, Markovic SN. Rare presentations of primary melanoma and special populations: a systematic review. Am J Clin Oncol 2014; 37:635-641. [PMID: 23563206 PMCID: PMC4349521 DOI: 10.1097/coc.0b013e3182868e82] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A subset of patients with melanoma present in rare and unique clinical circumstances requiring specific considerations with respect to diagnostic and therapeutic interventions. Herein, we present our review of patients with: (1) primary mucosal melanoma of the head and neck, gastrointestinal, and genitourinary tracts; (2) primary melanoma of the eye; (3) desmoplastic melanoma; (4) subungual melanoma; (5) melanoma in special populations: children, nonwhites, as well as a discussion of familial melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Riten Kumar
- Department of Pediatric Hematology/Oncology-Hospital for Sick Children, Toronto
| | | | - Shane Y. Morita
- The Queen’s Medical Center/Queen’s Cancer Center-University of Hawaii/John A Burns School of Medicine
| | | | | | | | - Jennifer L. Hand
- Department of Dermatology-Mayo Clinic
- Department of Pediatrics-Mayo Clinic
- Department of Medical Genetics-Mayo Clinic
| | | | | | | | | | | | - Val Lowe
- Department of Radiology-Mayo Clinic
| | - Svetomir N. Markovic
- Department of Oncology- Mayo Clinic
- Department of Hematology-Mayo Clinic
- Department of Immunology-Mayo Clinic
| |
Collapse
|
92
|
Harland M, Cust AE, Badenas C, Chang YM, Holland EA, Aguilera P, Aitken JF, Armstrong BK, Barrett JH, Carrera C, Chan M, Gascoyne J, Giles GG, Agha-Hamilton C, Hopper JL, Jenkins MA, Kanetsky PA, Kefford RF, Kolm I, Lowery J, Malvehy J, Ogbah Z, Puig-Butille JA, Orihuela-Segalés J, Randerson-Moor JA, Schmid H, Taylor CF, Whitaker L, Bishop DT, Mann GJ, Newton-Bishop JA, Puig S. Prevalence and predictors of germline CDKN2A mutations for melanoma cases from Australia, Spain and the United Kingdom. Hered Cancer Clin Pract 2014; 12:20. [PMID: 25780468 PMCID: PMC4361137 DOI: 10.1186/1897-4287-12-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations in the CDKN2A and CDK4 genes predispose to melanoma. From three case-control studies of cutaneous melanoma, we estimated the prevalence and predictors of these mutations for people from regions with widely differing latitudes and melanoma incidence. METHODS Population-based cases and controls from the United Kingdom (1586 cases, 499 controls) and Australia (596 early-onset cases, 476 controls), and a hospital-based series from Spain (747 cases, 109 controls), were screened for variants in all exons of CDKN2A and the p16INK4A binding domain of CDK4. RESULTS The prevalence of mutations for people with melanoma was similar across regions: 2.3%, 2.5% and 2.0% for Australia, Spain and the United Kingdom respectively. The strongest predictors of carrying a mutation were having multiple primaries (odds ratio (OR) = 5.4, 95% confidence interval (CI: 2.5, 11.6) for 2 primaries and OR = 32.4 (95% CI: 14.7, 71.2) for 3 or more compared with 1 primary only); and family history (OR = 3.8; 95% CI:1.89, 7.5) for 1 affected first- or second-degree relative and OR = 23.2 (95% CI: 11.3, 47.6) for 2 or more compared with no affected relatives). Only 1.1% of melanoma cases with neither a family history nor multiple primaries had mutations. CONCLUSIONS There is a low probability (<2%) of detecting a germline CDKN2A mutation in people with melanoma except for those with a strong family history of melanoma (≥2 affected relatives, 25%), three or more primary melanomas (29%), or more than one primary melanoma who also have other affected relatives (27%).
Collapse
Affiliation(s)
- Mark Harland
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Anne E Cust
- />Cancer Epidemiology and Services Research (CESR), Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Celia Badenas
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- />Centro Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Yu-Mei Chang
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Elizabeth A Holland
- />Westmead Institute for Cancer Research and Melanoma Institute, Australia, University of Sydney at Westmead Millennium Institute, Sydney, Australia
| | - Paula Aguilera
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- />Centro Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Joanne F Aitken
- />Viertel Centre for Research in Cancer Control, The Cancer Council Queensland, Spring Hill, Brisbane, Australia
| | - Bruce K Armstrong
- />Cancer Epidemiology and Services Research (CESR), Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jennifer H Barrett
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Cristina Carrera
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- />Centro Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - May Chan
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Joanne Gascoyne
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Graham G Giles
- />Centre for Epidemiology & Biostatistics, School of Population Health, University of Melbourne, Melbourne, Australia
- />Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Chantelle Agha-Hamilton
- />Westmead Institute for Cancer Research and Melanoma Institute, Australia, University of Sydney at Westmead Millennium Institute, Sydney, Australia
| | - John L Hopper
- />Centre for Epidemiology & Biostatistics, School of Population Health, University of Melbourne, Melbourne, Australia
| | - Mark A Jenkins
- />Centre for Epidemiology & Biostatistics, School of Population Health, University of Melbourne, Melbourne, Australia
| | - Peter A Kanetsky
- />Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Richard F Kefford
- />Westmead Institute for Cancer Research and Melanoma Institute, Australia, University of Sydney at Westmead Millennium Institute, Sydney, Australia
| | - Isabel Kolm
- />Westmead Institute for Cancer Research and Melanoma Institute, Australia, University of Sydney at Westmead Millennium Institute, Sydney, Australia
| | - Johanna Lowery
- />Genomics Facility, Leeds Cancer Research UK Centre, University of Leeds, Leeds, UK
| | - Josep Malvehy
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- />Centro Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Zighereda Ogbah
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan-Anton Puig-Butille
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- />Centro Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | | | - Juliette A Randerson-Moor
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Helen Schmid
- />Westmead Institute for Cancer Research and Melanoma Institute, Australia, University of Sydney at Westmead Millennium Institute, Sydney, Australia
| | - Claire F Taylor
- />Genomics Facility, Leeds Cancer Research UK Centre, University of Leeds, Leeds, UK
| | - Linda Whitaker
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - D Timothy Bishop
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Graham J Mann
- />Westmead Institute for Cancer Research and Melanoma Institute, Australia, University of Sydney at Westmead Millennium Institute, Sydney, Australia
| | - Julia A Newton-Bishop
- />Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, UK
| | - Susana Puig
- />Dermatology Department and Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- />Centro Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
93
|
Aspinwall LG, Taber JM, Kohlmann W, Leaf SL, Leachman SA. Unaffected family members report improvements in daily routine sun protection 2 years following melanoma genetic testing. Genet Med 2014; 16:846-53. [PMID: 24763292 PMCID: PMC4209010 DOI: 10.1038/gim.2014.37] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Reducing ultraviolet radiation exposure may decrease melanoma risk in the hereditary melanoma setting. It is unknown whether genetic counseling and test reporting of CDKN2A/p16 mutation status promote long-term compliance with photoprotection recommendations, especially in unaffected mutation carriers. METHODS This study evaluated changes 2 years following melanoma genetic testing in self-reported practice of sun protection (sunscreen, photoprotective clothing, and ultraviolet radiation avoidance) among 37 members of two CDKN2A/p16 kindreds (10 unaffected carriers, 11 affected carriers, and 16 unaffected noncarriers; response rate = 64.9% of eligible participants). RESULTS Multivariate profile analysis indicated that all three participant groups reported increased daily routine practice of sun protection 2 years following melanoma genetic testing (P < 0.02), with 96.9% reporting that at least one sun protection behavior was part of their daily routine, up from 78.1% at baseline (P < 0.015). Unaffected carriers (P < 0.024) and unaffected noncarriers (P < 0.027) reported significantly more frequent use of photoprotective clothing. Affected carriers maintained adherence to all sun protection behaviors. Reported sunburns in the past 6 months decreased significantly (P < 0.018). CONCLUSION Members of high-risk families reported increased daily routine sun protection and decreased sunburns 2 years following melanoma genetic testing, with no net decline in sun protection following negative test results. Thus, genetic testing and counseling may motivate sustained improvements in prevention behaviors.
Collapse
|
94
|
Ghiorzo P. Genetic predisposition to pancreatic cancer. World J Gastroenterol 2014; 20:10778-10789. [PMID: 25152581 PMCID: PMC4138458 DOI: 10.3748/wjg.v20.i31.10778] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/08/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PC) is the most deadly of the common cancers. Owing to its rapid progression and almost certain fatal outcome, identifying individuals at risk and detecting early lesions are crucial to improve outcome. Genetic risk factors are believed to play a major role. Approximately 10% of PC is estimated to have familial inheritance. Several germline mutations have been found to be involved in hereditary forms of PC, including both familial PC (FPC) and PC as one of the manifestations of a hereditary cancer syndrome or other hereditary conditions. Although most of the susceptibility genes for FPC have yet to be identified, next-generation sequencing studies are likely to provide important insights. The risk of PC in FPC is sufficiently high to recommend screening of high-risk individuals; thus, defining such individuals appropriately is the key. Candidate genes have been described and patients considered for screening programs under research protocols should first be tested for presence of germline mutations in the BRCA2, PALB2 and ATM genes. In specific PC populations, including in Italy, hereditary cancer predisposition genes such as CDKN2A also explain a considerable fraction of FPC.
Collapse
|
95
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
96
|
Potrony M, Puig-Butillé JA, Aguilera P, Badenas C, Carrera C, Malvehy J, Puig S. Increased prevalence of lung, breast, and pancreatic cancers in addition to melanoma risk in families bearing the cyclin-dependent kinase inhibitor 2A mutation: implications for genetic counseling. J Am Acad Dermatol 2014; 71:888-95. [PMID: 25064638 DOI: 10.1016/j.jaad.2014.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 05/30/2014] [Accepted: 06/22/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A (CDKN2A) is the major high-risk susceptibility gene for melanoma. OBJECTIVE We sought to evaluate the effect of CDKN2A mutations in Spanish patients with a high risk of developing melanoma and the association with clinical and family history features. METHODS A cross-sectional study design was used to analyze the CDKN2A impact in 702 Spanish patients with a high risk of developing melanoma. RESULTS The CDKN2A mutation prevalence was 8.5% in patients with sporadic multiple primary melanoma and 14.1% in familial melanoma. Number of cases in the family, number of primary melanomas, and age of onset were associated with the presence of CDKN2A mutation. Having a CDKN2A mutation in the family increased the prevalence of other cancers (prevalence ratio [PR] 2.99, P=.012) and prevalence of pancreatic (PR 2.97, P=.006), lung (PR 3.04, P<.001), and breast (PR 2.19, P=.018) cancers but not nephrourologic or colon cancer. LIMITATIONS Smoking status was not assessed in the individuals with lung cancer. CONCLUSIONS Melanoma-prone families with mutations in CDKN2A have an increased prevalence of a broad spectrum of cancers including lung, pancreatic, and breast cancer. This information should be included in genetic counseling and cancer prevention programs for CDKN2A mutation carriers.
Collapse
Affiliation(s)
- Miriam Potrony
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Dermatology Department, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Biochemical and Molecular Genetics Service, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Paula Aguilera
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Dermatology Department, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Celia Badenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Biochemical and Molecular Genetics Service, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina Carrera
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Dermatology Department, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Malvehy
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Dermatology Department, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red de Enfermedades Raras ISCIII, Barcelona, Spain; Dermatology Department, Melanoma Unit, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
97
|
Aspinwall LG, Taber JM, Kohlmann W, Leaf SL, Leachman SA. Perceived risk following melanoma genetic testing: a 2-year prospective study distinguishing subjective estimates from recall. J Genet Couns 2014; 23:421-37. [PMID: 24322567 PMCID: PMC4028391 DOI: 10.1007/s10897-013-9676-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/21/2013] [Indexed: 12/20/2022]
Abstract
A major goal of predictive genetic testing is to alert people to their risk before illness onset; however, little is known about how risk perceptions change following genetic testing and whether information is recalled accurately over time. In the United States, a CDKN2A/p16 mutation confers 76 % lifetime risk of melanoma. Following genetic counseling and test reporting, subjective risk estimates and recall of counselor-provided risk estimates were assessed 5 times over the next 2 years among 60 adult members of 2 extended CDKN2A/p16 kindreds. No sustained changes from baseline in risk perceptions were reported. Unaffected carriers (n = 15) consistently reported significantly lower subjective risk estimates (46 %) than they were actually given (76 %, p < 0.001) or recalled having been given (60 %, p < 0.001). Noncarriers' (n = 27) risk estimates decreased following results disclosure, but rebounded, with both subjective and recalled estimates subsequently exceeding what they were told by the counselor (both ps < 0.001). Affected carriers' (n = 18) risk estimates for developing a new melanoma corresponded well to counselor-provided information (p = 0.362). For all 3 patient groups, results were consistent across multiple risk measures and remained similar when demographic, phenotypic, and baseline behavioral contributors to melanoma risk were statistically controlled. These findings are consistent with other studies of risk perception, but additional studies of more diverse populations are needed to understand the reasons behind both the persistence of initial risk estimates and their divergence from information provided by the counselor during genetic counseling. Additionally, determining whether holding subjective risk perceptions that differ from counselor-provided information ultimately affects adherence to management recommendations will help guide the presentation of risk information in genetic counseling practice.
Collapse
Affiliation(s)
- Lisa G Aspinwall
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT, 84112-0251, USA,
| | | | | | | | | |
Collapse
|
98
|
Abstract
Families that have several relatives with melanoma, multiple primary melanomas in one individual, younger than average ages of melanoma onset, and/or the presence of both pancreatic cancer and melanoma may be suggestive of a hereditary melanoma syndrome and are candidates for genetic counseling and risk assessment. Genetic counseling for hereditary melanoma presents many complexities. Only a minority of hereditary melanoma cases have been attributed to a single genetic factor, CDKN2A. Both the frequency and the penetrance of CDKN2A mutations has been shown to be dependent on multiple factors. The clinical utility of genetic testing for hereditary melanoma families is debatable because CDKN2A status may not impact medical management in patients with melanoma. No standard medical management guidelines exist for families with CDKN2A mutations; however, family history of melanoma and pancreatic cancer may warrant further discussion. Clinicians should discuss the clinical and psychological implications before genetic testing. Genetic counseling and pretest education regarding melanoma risk factors provides an opportunity to increase knowledge and understanding of melanoma risk, while addressing psychological risks and concerns.
Collapse
|
99
|
Aguilera P, Malvehy J, Carrera C, Palou J, Puig-Butillé JA, Alòs L, Badenas C, Puig S. Clinical and Histopathological Characteristics between Familial and Sporadic Melanoma in Barcelona, Spain. ACTA ACUST UNITED AC 2014; 5:231. [PMID: 25893138 PMCID: PMC4399806 DOI: 10.4172/2155-9554.1000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background About 6 to 14% of melanoma cases occur in a familial setting. Germline mutations in CDKN2A are detected in 20 to 40% of melanoma families. Objective To characterise the clinical and histopathological characteristics of familial melanoma thus providing more information to clinicians and contribute to the understanding of the genetic-environment interplay in the pathogenesis of melanoma. Methods Clinical, histological and immunohistochemical characteristics of 62 familial melanomas were compared with 127 sporadic melanomas. Results variables associated with familial melanoma were earlier age at diagnosis (OR 1.036; 95% CI 1.017–1.055), lower Breslow thickness (OR 1.288; 95% CI 1.013–1.683) and in situ melanomas (OR 2.645; 95% CI 1.211–5.778). Variables associated with CDKN2A mutation carriers were earlier age at diagnosis (OR 1.060; 95% CI 1.016–1.105), in situ melanomas (OR 6.961; 95% CI 1.895–25.567), the presence of multiple melanomas (OR 8.920; 95% CI 2.399–33.166) and the immunopositivity of the tumours for cytoplasmic survivin (OR 9.072; 95% CI 1.025–85.010). Conclusions Familial melanoma was significantly associated with the earlier age of onset, lower Breslow thickness and with a higher number of in situ melanomas; and also carriers of CDKN2A mutations were associated with a higher risk of multiple melanomas and cytoplasmic survivin immunostaining.
Collapse
Affiliation(s)
- Paula Aguilera
- Dermatology Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain ; CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain ; CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Palou
- Dermatology Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain ; Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Llúcia Alòs
- Pathology Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Celia Badenas
- CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain ; Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain ; CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
100
|
Abstract
Familial melanoma accounts for approximately a tenth of all melanoma cases. The most commonly known melanoma susceptibility gene is the highly penetrant CDKN2A (p16INK4a) locus, which is transmitted in an autosomal dominant fashion and accounts for approximately 20-50 % of familial melanoma cases. Mutated p16INK4a shows impaired capacity to inhibit the cyclin D1-CDK4 complex, allowing for unchecked cell cycle progression. Mutations in the second protein coded by CDKN2A, p14ARF, are much less common and result in proteasomal degradation of p53 with subsequent accumulation of DNA damage as the cell progresses through the cell cycle without a functional p53-mediated DNA damage response. Mutations in CDK4 that impair the inhibitory interaction with p16INK4a also increase melanoma risk but these mutations are extremely rare. Genes of the melanin biosynthetic pathway, including MC1R and MITF, have also been implicated in melanomagenesis. MC1R variants were traditionally thought to increase risk for melanoma secondary to intensified UV-mediated DNA damage in the setting of absent photoprotective eumelanin. Accumulation of pheomelanin, which appears to have a carcinogenic effect regardless of UV exposure, may be a more likely mechanism. Impaired SUMOylation of the E318K variant of MITF results in increased transcription of genes that confer melanocytes with a pro-malignant phenotype. Mutations in the tumor suppressor BAP1 enhance the metastatic potential of uveal melanoma and predispose to cutaneous/ocular melanoma, atypical melanocytic tumors, and other internal malignancies (COMMON syndrome). Genome-wide association studies have identified numerous low-risk alleles. Although several melanoma susceptibility genes have been identified, risk assessment tools have been developed only for the most common gene implicated with hereditary melanoma, CDKN2A. MelaPRO, a validated model that relies on Mendelian inheritance and Bayesian probability theories, estimates carrier probability for CDKN2A and future risk of melanoma taking into account a patient's family and past medical history of melanoma. Genetic testing for CDKN2A mutations is currently available but the Melanoma Genetics Consortium recommends offering such testing to patients only in the context of research protocols because clinical utility is uncertain.
Collapse
|