51
|
Amirifar P, Mozdarani H, Yazdani R, Kiaei F, Moeini Shad T, Shahkarami S, Abolhassani H, Delavari S, Sohani M, Rezaei A, Hassanpour G, Akrami SM, Aghamohammadi A. Effect of Class Switch Recombination Defect on the Phenotype of Ataxia-Telangiectasia Patients. Immunol Invest 2020; 50:201-215. [PMID: 32116070 DOI: 10.1080/08820139.2020.1723104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objectives: Ataxia-telangiectasia (A-T) is an autosomal recessive neurodegenerative disorder with multisystem involvement caused by homozygous or compound heterozygous mutations in the ataxia telangiectasia mutated (ATM) gene which encodes a serine/threonine protein kinase. The aims of this study were to investigate class switch recombination (CSR) and to review the clinical and immunologic phenotypes of 3 groups of A-T patients, including A-T patients with CSR defects (CSR-D), A-T patients with selective immunoglobulin A deficiency (IgA-D) and A-T patients with normal Ig level. Methods: In this study, 41 patients with confirmed diagnosis of A-T (16 A-T patients with HIgM, 15 A-T patients with IgA-D, and 10 A-T patients with normal Ig levels) from Iranian immunodeficiency registry center were enrolled. B-cell proliferation, in vitro CSR toward IgE and IgA were compared between three groups as well as G2 radiosensitivity assay. Results: Earliest presentation of telangiectasia was a significant hallmark in A-T patients with CSR-D (p = .036). In this investigation, we found that the frequency of respiratory infection (p = .002), pneumonia (p = .02), otitis media (p = .008), chronic fever (p < .001), autoimmunity (p = .02) and hepatosplenomegaly (p = .03) in A-T patients with HIgM phenotype were significantly higher than the other groups. As expected IgE production stimulation and IgA CSR were perturbed in HIgM patients that were aligned with the higher readiosenstivity scores in this group. Conclusion: A-T patients with HIgM compared to other A-T patients presenting more infections and noninfectious complications, therefore, early detection and careful management of these patients is necessary.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University , Terhran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Fatemeh Kiaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran.,Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN) , Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences , Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences , Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| |
Collapse
|
52
|
Mandola AB, Reid B, Sirror R, Brager R, Dent P, Chakroborty P, Bulman DE, Roifman CM. Ataxia Telangiectasia Diagnosed on Newborn Screening-Case Cohort of 5 Years' Experience. Front Immunol 2019; 10:2940. [PMID: 31921190 PMCID: PMC6932992 DOI: 10.3389/fimmu.2019.02940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022] Open
Abstract
Ataxia telangiectasia (AT) is a genetic condition caused by mutations involving ATM (Ataxia Telangiectasia Mutated). This gene is responsible for the expression of a DNA double stranded break repair kinase, the ATM protein kinase. The syndrome encompasses combined immunodeficiency and various degrees of neurological abnormalities and increased risk of malignancy. Typically, patients present early in life with delay in neurological milestones, but very infrequently, with life threatening infections typical of a profound T cell deficiency. It would therefore be unexpected to identify this condition immediately after birth using T cell receptor excision circle (TREC)-based newborn screening (NBS) for SCID. We sought to evaluate the frequency of AT detected by NBS, and to assess immunity as well as the genetic aberrations associated with this early presentation. Here, we describe the clinical, laboratory, and genetic features of patients diagnosed with AT through the Ontario NBS program for SCID, and followed in our center since its inception in 2013. Four patients were diagnosed with AT as a result of low TRECs on NBS. In each case, whole exome sequencing was diagnostic. All of our patients had compound heterozygous mutations involving the FRAP-ATM-TRRAP (FAT) domain of the ATM gene, which appears critical for kinase activity and is highly sensitive to mutagenesis. Our patients presented with profound lymphopenia involving both B and T cells. The ratio of naïve/memory CD45+RA/RO T cells population was variable. T cell repertoire showed decreased T cell diversity. Two out of four patients had decreased specific antibody response to vaccination and hypogammaglobulinemia requiring IVIG replacement. In two patients, profound decreased responses to phytohemagglutinin stimulation was observed. In the other two patients, the initial robust response declined with time. In summary, the rate of detection of AT through NBS had been surprisingly high at our center. One case was identified per year, while the total rate for SCID has been five new cases per year. This early detection may allow for better prospective evaluation of AT shortly after birth, and may assist in formulating early and more effective interventions both for the neurological as well as the immune abnormalities in this syndrome.
Collapse
Affiliation(s)
- Amarilla B Mandola
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| | - Brenda Reid
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| | - Raga Sirror
- Paediatric Allergy/Immunology, Thunder Bay Regional Health Sciences Center, North Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Rae Brager
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Peter Dent
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Pranesh Chakroborty
- Department of Pediatrics, CHEO Research Institute and Newborn Screening Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Dennis E Bulman
- Department of Pediatrics, CHEO Research Institute and Newborn Screening Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
53
|
Duecker R, Baer PC, Buecker A, Huenecke S, Pfeffermann LM, Modlich U, Bakhtiar S, Bader P, Zielen S, Schubert R. Hematopoietic Stem Cell Transplantation Restores Naïve T-Cell Populations in Atm-Deficient Mice and in Preemptively Treated Patients With Ataxia-Telangiectasia. Front Immunol 2019; 10:2785. [PMID: 31849966 PMCID: PMC6892974 DOI: 10.3389/fimmu.2019.02785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Ataxia-telangiectasia (A-T) is a multisystem disorder with progressive cerebellar ataxia, immunodeficiency, chromosomal instability, and increased cancer susceptibility. Cellular immunodeficiency is based on naïve CD4+ and CD8+ T-cell lymphopenia. Hematopoietic stem cell transplantation (HSCT) offers a potential to cure immunodeficiency and cancer due to restoration of the lymphopoietic system. The aim of this investigation was to analyze the effect of HSCT on naïve CD4+ as well as CD8+ T-cell numbers in A-T. Methods: We analyzed total numbers of peripheral naïve (CD45RA+CD62L+) and memory (CD45RO+CD62L−) CD4+ and CD8+ T-cells of 32 A-T patients. Naïve (CD62LhighCD44low) and memory (CD62LlowCD44high) T-cells were also measured in Atm-deficient mice before and after HSCT with GFP-expressing bone marrow derived hematopoietic stem cells. In addition, we analyzed T-cells in the peripheral blood of two A-T patients after HLA-identic allogeneic HSCT. Results: Like in humans, naïve CD4+ as well as naïve CD8+ lymphocytes were decreased in Atm-deficient mice. HSCT significantly inhibited thymic lymphomas and increased survival time in these animals. Donor cell chimerism increased up to more than 50% 6 months after HSCT accompanied by a significant increase of naïve CD4 and CD8 T-cell subpopulations, but not of memory T-cells. This finding was also identified in the blood of the A-T patients after HSCT. Conclusion: HSCT seems to be a feasible strategy to overcome immunodeficiency and might be a conceivable strategy to avoid T-cell driven cancer in A-T at higher risk for malignancy. Naïve CD4 and CD8 T-cells counts are suitable markers for monitoring immune reconstitution post-HSCT. However, risks and benefits of HSCT in A-T have to be properly weighted.
Collapse
Affiliation(s)
- Ruth Duecker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt, Germany
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt, Germany
| | - Aileen Buecker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Lisa-Marie Pfeffermann
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt, Germany
| | - Ralf Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt, Germany
| |
Collapse
|
54
|
Amirifar P, Yazdani R, Moeini Shad T, Ghanadan A, Abolhassani H, Lavin M, Sotoudeh S, Aghamohammadi A. Cutaneous Granulomatosis and Class Switching Defect as a Presenting Sign in Ataxia-Telangiectasia: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2019; 49:597-610. [DOI: 10.1080/08820139.2019.1692864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Parisa Amirifar
- Medical genetics department, School of Medicine, Tehran University of medical sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Alireza Ghanadan
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Lavin
- Centre for Clinical Research (UQCCR), University of Queensland, Brisbane, Australia
| | - Soheila Sotoudeh
- Department of Dermatology, Children’s Medical Center, Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| |
Collapse
|
55
|
Warren R, Domm W, Yee M, Campbell A, Malone J, Wright T, Mayer-Pröschel M, O'Reilly MA. Ataxia-telangiectasia mutated is required for the development of protective immune memory after influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2019; 317:L591-L601. [PMID: 31509427 PMCID: PMC6879906 DOI: 10.1152/ajplung.00031.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 01/26/2023] Open
Abstract
Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew Campbell
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jane Malone
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Terry Wright
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
56
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
57
|
IJspeert H, van Schouwenburg PA, Pico-Knijnenburg I, Loeffen J, Brugieres L, Driessen GJ, Blattmann C, Suerink M, Januszkiewicz-Lewandowska D, Azizi AA, Seidel MG, Jacobs H, van der Burg M. Repertoire Sequencing of B Cells Elucidates the Role of UNG and Mismatch Repair Proteins in Somatic Hypermutation in Humans. Front Immunol 2019; 10:1913. [PMID: 31507588 PMCID: PMC6718458 DOI: 10.3389/fimmu.2019.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023] Open
Abstract
The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline A van Schouwenburg
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gertjan J Driessen
- Department of Paediatrics, Juliana Children's Hospital, Haga Teaching Hospital, The Hague, Netherlands
| | - Claudia Blattmann
- Department of Pediatric Hematology and Oncology, Palliative Care, Olgahospital Klinikum Stuttgart, Stuttgart, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Marcus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
58
|
Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J Neurosci 2019; 39:6378-6394. [PMID: 31189575 DOI: 10.1523/jneurosci.0774-19.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a PI3K-like kinase best known for its role in the DNA damage response (DDR), especially after double-strand breaks. Mutations in the ATM gene result in a condition known as ataxia-telangiectasia (A-T) that is characterized by cancer predisposition, radiosensitivity, neurodegeneration, sterility, and acquired immune deficiency. We show here that the innate immune system is not spared in A-T. ATM-deficient microglia adopt an active phenotype that includes the overproduction of proinflammatory cytokines that are toxic to cultured neurons and likely contribute to A-T neurodegeneration. Causatively, ATM dysfunction results in the accumulation of DNA in the cytoplasm of microglia as well as a variety of other cell types. In microglia, cytoplasmic DNA primes an antiviral response via the DNA sensor, STING (stimulator of interferon genes). The importance of this response pathway is supported by our finding that inhibition of STING blocks the overproduction of neurotoxic cytokines. Cytosolic DNA also activates the AIM2 (absent in melanoma 2) containing inflammasome and induces proteolytic processing of cytokine precursors such as pro-IL-1β. Our study furthers our understanding of neurodegeneration in A-T and highlights the role of cytosolic DNA in the innate immune response.SIGNIFICANCE STATEMENT Conventionally, the immune deficiencies found in ataxia-telangiectasia (A-T) patients are viewed as defects of the B and T cells of the acquired immune system. In this study, we demonstrate the microglia of the innate immune system are also affected and uncover the mechanism by which this occurs. Loss of ATM (ataxia-telangiectasia mutated) activity leads to a slowing of DNA repair and an accumulation of cytoplasmic fragments of genomic DNA. This ectopic DNA induces the antivirus response, which triggers the production of neurotoxic cytokines. This expands our understanding of the neurodegeneration found in A-T and offers potentially new therapeutic options.
Collapse
|
59
|
Amirifar P, Ranjouri MR, Yazdani R, Abolhassani H, Aghamohammadi A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr Allergy Immunol 2019; 30:277-288. [PMID: 30685876 DOI: 10.1111/pai.13020] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency (PID) disease that is caused by mutations in ataxia-telangiectasia mutated (ATM) gene encoding a serine/threonine protein kinase. A-T patients represent a broad range of clinical manifestations including progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, susceptibility to malignancies, and increased metabolic diseases. This congenital disorder has phenotypic heterogeneity, and the severity of symptoms varies in different patients based on severity of mutations and disease progression. The principal role of nuclear ATM is the coordination of cellular signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoint. The pathogenesis of A-T is not limited to the role of ATM in the DNA damage response (DDR) pathway, and it has other functions mainly in the hematopoietic cells and neurons. ATM adjusts the functions of organelles such as mitochondria and peroxisomes and also regulates angiogenesis and glucose metabolisms. However, ATM has other functions in the cells (especially cell viability) that need further investigations. In this review, we described functions of ATM in the nucleus and cytoplasm, and also its association with some disorder formation such as neurologic, immunologic, vascular, pulmonary, metabolic, and dermatologic complications.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| |
Collapse
|
60
|
Minto H, Mensah KA, Reynolds PR, Meffre E, Rubtsova K, Gelfand EW. A novel ATM mutation associated with elevated atypical lymphocyte populations, hyper-IgM, and cutaneous granulomas. Clin Immunol 2019; 200:55-63. [PMID: 30639167 PMCID: PMC7027322 DOI: 10.1016/j.clim.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Ataxia-Telangiectasia (AT) is an immunodeficiency most often associated with T cell abnormalities. We describe a patient with a hyper-IgM phenotype and immune cell abnormalities that suggest a distinct clinical phenotype. Significant B cell abnormalities with increased unswitched memory B cells, decreased naive transitional B cells, and an elevated frequency of CD19+CD38loCD27-CD10-CD21-/low B cells expressing high levels of T-bet and Fas were demonstrated. The B cells were hyporesponsive to in vitro stimulation through the B cell receptor, Toll like receptors (TLR) 7 and 9, and CD40. T cell homeostasis was also disturbed with a significant increase in γδ T cells, circulating T follicular helper cells (Tfh), and decreased numbers of T regulatory cells. The ATM mutations in this patient are posited to have resulted in the perturbations in the frequencies and distributions of B and T cell subsets, resulting in the phenotype in this patient. KEY MESSAGES: A novel mutation creating a premature stop codon and a nonsense mutation in the ATM gene are postulated to have resulted in the unique clinical picture characterized by abnormal B and T cell populations, lymphocyte subset dysfunction, granuloma formation, and a hyper-IgM phenotype. CAPSULE SUMMARY: A patient presented with ataxia-telangiectasia, cutaneous granulomas, and a hyper-IgM phenotype; a novel combination of mutations in the ATM gene was associated with abnormal distributions, frequencies, and function of T and B lymphocyte subsets.
Collapse
Affiliation(s)
- Heather Minto
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO 80206, United States
| | - Kofi A Mensah
- Department of Immunobiology and Division of Rheumatology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Paul R Reynolds
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO 80206, United States
| | - Eric Meffre
- Department of Immunobiology and Division of Rheumatology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Kira Rubtsova
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, United States
| | - Erwin W Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO 80206, United States.
| |
Collapse
|
61
|
van Schouwenburg PA, IJspeert H, Pico-Knijnenburg I, Dalm VASH, van Hagen PM, van Zessen D, Stubbs AP, Patel SY, van der Burg M. Identification of CVID Patients With Defects in Immune Repertoire Formation or Specification. Front Immunol 2018; 9:2545. [PMID: 30532750 PMCID: PMC6265514 DOI: 10.3389/fimmu.2018.02545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
Common variable immune deficiency disorder (CVID) is the most clinically relevant cause of antibody failure. It is a highly heterogeneous disease with different underlying etiologies. CVID has been associated with a quantitative B cell defect, however, little is known about the quality of B cells present. Here, we studied the naïve and antigen selected B-cell receptor (BCR) repertoire in 33 CVID patients using next generation sequencing, to investigate B cells quality. Analysis for each individual patient revealed whether they have a defect in immune repertoire formation [V(D)J recombination] or specification (somatic hypermutation, subclass distribution, or selection). The naïve BCR repertoire was normal in most of the patients, although alterations in repertoire diversity and the junctions were found in a limited number of patients indicating possible defects in early B-cell development or V(D)J recombination in these patients. In contrast, major differences were found in the antigen selected BCR repertoire. Here, most patients (15/17) showed a reduced frequency of somatic hypermutation (SHM), changes in subclass distribution and/or minor alterations in antigen selection. Together these data show that in our CVID cohort only a small number of patients have a defect in formation of the naïve BCR repertoire, whereas the clear majority of patients have disturbances in their antigen selected repertoire, suggesting a defect in repertoire specification in the germinal centers of these patients. This highlights that CVID patients not only have a quantitative B cell defect, but that also the quality of, especially post germinal center B cells, is impaired.
Collapse
Affiliation(s)
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - David van Zessen
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Smita Y Patel
- Nuffield Department of Clinical Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
62
|
Woelke S, Valesky E, Bakhtiar S, Pommerening H, Pfeffermann LM, Schubert R, Zielen S. Treatment of Granulomas in Patients With Ataxia Telangiectasia. Front Immunol 2018; 9:2000. [PMID: 30279689 PMCID: PMC6153364 DOI: 10.3389/fimmu.2018.02000] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Ataxia telangiectasia (A-T) is a devastating multi-system disorder characterized by progressive cerebellar ataxia, growth retardation, immunodeficiency, chronic pulmonary disease and chromosomal instability. Cutaneous granulomas are a known phenomenon in A-T but extra-dermal manifestation of granulomas at bone and synovia has not been reported so far. The clinical presentation, immunological findings, the long-term course and treatment options of eight patients with severe granulomas will be reported. Methods: From our cohort of 44 classical A-T patients, eight patients aged 2–11 years (18.2%) presented with granulomas. Immunological features of patients with and without granulomas were compared. Five patients suffered from cutaneous manifestation, in two patients we detected a bone and in one a joint involvement. Patients with significant extra-dermal involvement as well as one patient with massive skin manifestation were treated with TNF inhibitors. The patient with granulomas at his finger joint and elbow was treated with hematopoietic stem cell transplantation (HSCT). Results: Interestingly, seven of eight patients with granulomas were total IgA deficient, but there were no differences in IgG and IgM levels. All lymphocytes subsets were equally distributed except patients with granuloma had significantly lower naïve CD8 cells. In patients without treatment, four of eight showed a slow but significant enlargement of the granuloma. Treatment success with TNF inhibitors was variable. In one patient, treatment with TNF inhibitors led to a total remission for 3 years up to now. In two patients, treatment with TNF inhibitors led to a partial regression of granulomas. Treatment interruptions caused deterioration again. Conclusions: Granulomas in A-T progress slowly over years and can lead to significant morbidity.Treatment with TNF inhibitors was safe and in part successful in our patients. Interestingly HSCT leads to complete remission, and indicates that aberrant immune function is responsible for granulomas in A-T patients. What This Study Adds to the Field: Granulomas in A-T progress slowly over years and can lead to significant morbidity. Treatment with TNF inhibitors was safe and in part successful in our patients. AT A GLANCE COMMENTARY: Scientific knowledge on the subject: Little is known about the clinical presentation, course and treatment of granulomas in ataxia telangiectasia (A-T). In addition, this is the first report of extra-dermal manifestation of granulomas at bone and synovia in patients with A-T. What This Study Adds to the Field: Granulomas in A-T progress slowly over years and can lead to significant morbidity. Treatment with TNF inhibitors was safe and in part successful in our patients.
Collapse
Affiliation(s)
- Sandra Woelke
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Eva Valesky
- Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Helena Pommerening
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - L M Pfeffermann
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Stefan Zielen
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
63
|
Pereira CTM, Bichuetti-Silva DC, da Mota NVF, Salomão R, Brunialti MKC, Costa-Carvalho BT. B-cell subsets imbalance and reduced expression of CD40 in ataxia-telangiectasia patients. Allergol Immunopathol (Madr) 2018; 46:438-446. [PMID: 29739685 DOI: 10.1016/j.aller.2017.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a well-known primary immunodeficiency with recurrent sinopulmonary infections and variable abnormalities in both the humoral and cellular immune system. Dysfunctions in immunoglobulin production, reduced number of B cells, and B-cell receptor excision circles copies have been reported. We aimed to understand the immunological mechanisms involving the humoral compartment in AT patients by analysing peripheral blood B cells subsets, B-T lymphocyte cooperation through the expression of CD40 and CD40 ligand (CD40L), and cytokines involved in class-switch recombination production. METHODS We compared the proportion of B-cell subsets, the expression of CD40/CD40L, and the plasma levels of IL-6 and IFN-γ of 18 AT patients and 15 healthy age-sex-matched controls using flow cytometry. RESULTS We found that some steps in peripheral B cell development were altered in AT with a pronounced reduction of cell-surface CD40 expression. The proportions of transitional and naïve-mature B cells were reduced, whereas CD21-low, natural effector memory, IgM-only memory, and IgG atypical memory B cells were present in a higher proportion. CONCLUSIONS These findings revealed a disturbed B-cell homeostasis with unconventional maturation of B lymphocyte memory cells, which can explain the consequent impairment of humoral immunity.
Collapse
Affiliation(s)
- C T M Pereira
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - D C Bichuetti-Silva
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - N V F da Mota
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - R Salomão
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - M K C Brunialti
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - B T Costa-Carvalho
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
64
|
Tesch VK, IJspeert H, Raicht A, Rueda D, Dominguez-Pinilla N, Allende LM, Colas C, Rosenbaum T, Ilencikova D, Baris HN, Nathrath MHM, Suerink M, Januszkiewicz-Lewandowska D, Ragab I, Azizi AA, Wenzel SS, Zschocke J, Schwinger W, Kloor M, Blattmann C, Brugieres L, van der Burg M, Wimmer K, Seidel MG. No Overt Clinical Immunodeficiency Despite Immune Biological Abnormalities in Patients With Constitutional Mismatch Repair Deficiency. Front Immunol 2018; 9:1506. [PMID: 30013564 PMCID: PMC6036136 DOI: 10.3389/fimmu.2018.01506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin class-switch recombination (CSR) and somatic hypermutations (SHMs) are prerequisites for antibody and immunoglobulin receptor maturation and adaptive immune diversity. The mismatch repair (MMR) machinery, consisting of homologs of MutSα, MutLα, and MutSβ (MSH2/MSH6, MLH1/PMS2, and MSH2/MSH3, respectively) and other proteins, is involved in CSR, primarily acting as a backup for nonhomologous end-joining repair of activation-induced cytidine deaminase-induced DNA mismatches and, furthermore, in addition to error-prone polymerases, in the repair of SHM-induced DNA breaks. A varying degree of antibody formation defect, from IgA or selective IgG subclass deficiency to common variable immunodeficiency and hyper-IgM syndrome, has been detected in a small number of patients with constitutional mismatch repair deficiency (CMMRD) due to biallelic loss-of-function mutations in one of the MMR genes (PMS2, MSH6, MLH1, or MSH2). To elucidate the clinical relevance of a presumed primary immunodeficiency (PID) in CMMRD, we systematically collected clinical history and laboratory data of a cohort of 15 consecutive, unrelated patients (10 not previously reported) with homozygous/compound heterozygous mutations in PMS2 (n = 8), MSH6 (n = 5), and MLH1 (n = 2), most of whom manifested with typical malignancies during childhood. Detailed descriptions of their genotypes, phenotypes, and family histories are provided. Importantly, none of the patients showed any clinical warning signs of PID (infections, immune dysregulation, inflammation, failure to thrive, etc.). Furthermore, we could not detect uniform or specific patterns of laboratory abnormalities. The concentration of IgM was increased in 3 out of 12, reduced in 3 out of 12, and normal in 6 out of 12 patients, while concentrations of IgG and IgG subclasses, except IgG4, and of IgA, and specific antibody formation were normal in most. Class-switched B memory cells were reduced in 5 out of 12 patients, and in 9 out of 12 also the CD38hiIgM− plasmablasts were reduced. Furthermore, results of next generation sequencing-based analyses of antigen-selected B-cell receptor rearrangements showed a significantly reduced frequency of SHM and an increased number of rearranged immunoglobulin heavy chain (IGH) transcripts that use IGHG3, IGHG1, and IGHA1 subclasses. T cell subsets and receptor repertoires were unaffected. Together, neither clinical nor routine immunological laboratory parameters were consistently suggestive of PID in these CMMRD patients, but previously shown abnormalities in SHM and rearranged heavy chain transcripts were confirmed.
Collapse
Affiliation(s)
- Victoria K Tesch
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrea Raicht
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Daniel Rueda
- Hereditary Cancer Laboratory, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Department of Pediatric Hematology and Oncology, Virgen de la Salud Hospital, Toledo, Spain.,i+12 Research Institute, University Hospital Doce de Octubre, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | | | | | - Denisa Ilencikova
- Department of Pediatrics, Comenius University Bratislava, Bratislava, Slovakia
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michaela H M Nathrath
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany.,Pediatric Oncology Center, Department of Pediatrics, Technische Universität München, Munich, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Iman Ragab
- Pediatrics Department, Hematology-Oncology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Soeren S Wenzel
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Schwinger
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Medical University Heidelberg, Heidelberg, Germany
| | - Claudia Blattmann
- Department of Hematology, Oncology, and Immunology, Olgahospital Stuttgart, Stuttgart, Germany
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Markus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
65
|
Van Nieuwenhove E, Garcia-Perez JE, Helsen C, Rodriguez PD, van Schouwenburg PA, Dooley J, Schlenner S, van der Burg M, Verhoeyen E, Gijsbers R, Frietze S, Schjerven H, Meyts I, Claessens F, Humblet-Baron S, Wouters C, Liston A. A kindred with mutant IKAROS and autoimmunity. J Allergy Clin Immunol 2018; 142:699-702.e12. [PMID: 29705243 DOI: 10.1016/j.jaci.2018.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Erika Van Nieuwenhove
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Josselyn E Garcia-Perez
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Christine Helsen
- Department of Cellular and Molecular Medicine, KUL - University of Leuven, Leuven, Belgium
| | - Princess D Rodriguez
- Department of Medical Laboratory and Radiation Science, University of Vermont, Burlington, Vt
| | | | - James Dooley
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Els Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Rik Gijsbers
- the Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, Leuven, Belgium
| | - Seth Frietze
- Department of Medical Laboratory and Radiation Science, University of Vermont, Burlington, Vt
| | - Hilde Schjerven
- the Department of Laboratory Medicine, University of California, San Francisco, Calif
| | - Isabelle Meyts
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, KUL - University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology and Immunology, KUL - University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium.
| |
Collapse
|
66
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
67
|
Ghraichy M, Galson JD, Kelly DF, Trück J. B-cell receptor repertoire sequencing in patients with primary immunodeficiency: a review. Immunology 2017; 153:145-160. [PMID: 29140551 DOI: 10.1111/imm.12865] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
The advent of next-generation sequencing (NGS) now allows a detailed assessment of the adaptive immune system in health and disease. In particular, high-throughput B-cell receptor (BCR) repertoire sequencing provides detailed information about the functionality and abnormalities of the B-cell system. However, it is mostly unknown how the BCR repertoire is altered in the context of primary immunodeficiencies (PID) and whether findings are consistent throughout phenotypes and genotypes. We have performed an extensive literature search of the published work on BCR repertoire sequencing in PID patients, including several forms of predominantly antibody disorders and combined immunodeficiencies. It is somewhat surprising that BCR repertoires, even from severe clinical phenotypes, often show only mild abnormalities and that diversity or immunoglobulin gene segment usage is generally preserved to some extent. Despite the great variety of wet laboratory and analytical methods that were used in the different studies, several findings are common to most investigated PIDs, such as the increased usage of gene segments that are associated with self-reactivity. These findings suggest that BCR repertoire characteristics may be used to assess the functionality of the B-cell compartment irrespective of the underlying defect. With the use of NGS approaches, there is now the opportunity to apply BCR repertoire sequencing to multiple patients and explore the PID BCR repertoire in more detail. Ultimately, using BCR repertoire sequencing in translational research could aid the management of PID patients by improving diagnosis, estimating functionality of the immune system and improving assessment of prognosis.
Collapse
Affiliation(s)
- Marie Ghraichy
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Jacob D Galson
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
68
|
T-cell receptor sequencing reveals decreased diversity 18 years after early thymectomy. J Allergy Clin Immunol 2017; 140:1743-1746.e7. [DOI: 10.1016/j.jaci.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
|
69
|
Abstract
Bloom's syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20-80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR.
Collapse
|
70
|
Darrah EJ, Kulinski JM, Mboko WP, Xin G, Malherbe LP, Gauld SB, Cui W, Tarakanova VL. B Cell-Specific Expression of Ataxia-Telangiectasia Mutated Protein Kinase Promotes Chronic Gammaherpesvirus Infection. J Virol 2017; 91:e01103-17. [PMID: 28701397 PMCID: PMC5599758 DOI: 10.1128/jvi.01103-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023] Open
Abstract
Manipulation of host cellular pathways is a strategy employed by gammaherpesviruses, including mouse gammaherpesvirus 68 (MHV68), in order to negotiate a chronic infection. Ataxia-telangiectasia mutated (ATM) plays a unique yet incompletely understood role in gammaherpesvirus infection, as it has both proviral and antiviral effects. Chronic gammaherpesvirus infection is poorly controlled in a host with global ATM insufficiency, whether the host is a mouse or a human. In contrast, ATM facilitates replication, reactivation, and latency establishment of several gammaherpesviruses in vitro, suggesting that ATM is proviral in the context of infected cell cultures. The proviral role of ATM is also evident in vivo, as myeloid-specific ATM expression facilitates MHV68 reactivation during the establishment of viral latency. In order to better understand the complex relationship between host ATM and gammaherpesvirus infection, we depleted ATM specifically in B cells, a cell type critical for chronic gammaherpesvirus infection. B cell-specific ATM deficiency attenuated the establishment of viral latency due to compromised differentiation of ATM-deficient B cells. Further, we found that during long-term infection, peritoneal B-1b, but not related B-1a, B cells display the highest frequency of gammaherpesvirus infection. While ATM expression did not affect gammaherpesvirus tropism for B-1 B cells, B cell-specific ATM expression was necessary to support viral reactivation from peritoneal cells during long-term infection. Thus, our study reveals a role of ATM as a host factor that promotes chronic gammaherpesvirus infection of B cells.IMPORTANCE Gammaherpesviruses infect a majority of the human population and are associated with cancer, including B cell lymphomas. ATM is a unique host kinase that has both proviral and antiviral roles in the context of gammaherpesvirus infection. Further, there is insufficient understanding of the interplay of these roles in vivo during chronic infection. In this study, we show that ATM expression by splenic B cells is required for efficient establishment of gammaherpesvirus latency. We also show that ATM expression by peritoneal B cells is required to facilitate viral reactivation during long-term infection. Thus, our study defines a proviral role of B cell-specific ATM expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph M Kulinski
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wadzanai P Mboko
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laurent P Malherbe
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen B Gauld
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
71
|
van Os NJH, Haaxma CA, van der Flier M, Merkus PJFM, van Deuren M, de Groot IJM, Loeffen J, van de Warrenburg BPC, Willemsen MAAP. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol 2017; 59:680-689. [PMID: 28318010 DOI: 10.1111/dmcn.13424] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 12/29/2022]
Abstract
Ataxia-telangiectasia is a rare, neurodegenerative, and multisystem disease, characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classic ataxia-telangiectasia phenotype, a variant phenotype exists with partly overlapping but some distinctive disease characteristics. This guideline summarizes frequently encountered medical problems in the disease course of patients with classic and variant ataxia-telangiectasia, in the domains of neurology, immunology and infectious diseases, pulmonology, anaesthetic and perioperative risk, oncology, endocrinology, and nutrition. Furthermore, it provides a practical guide with evidence- and expert-based recommendations for the follow-up and treatment of all these different clinical topics.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte A Haaxma
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter J F M Merkus
- Department of Pediatric Pulmonology, Amalia Children's Hospital and Canisius Wilhelmina Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imelda J M de Groot
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Sophia Children's Hospital, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
72
|
Theunissen PMJ, van den Branden A, Van Der Sluijs-Gelling A, De Haas V, Beishuizen A, van Dongen JJM, Van Der Velden VHJ. Understanding the reconstitution of the B-cell compartment in bone marrow and blood after treatment for B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2017; 178:267-278. [PMID: 28542787 DOI: 10.1111/bjh.14685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
A better understanding of the reconstitution of the B-cell compartment during and after treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) will help to assess the immunological status and needs of post-treatment BCP-ALL patients. Using 8-colour flow cytometry and proliferation-assays, we studied the composition and proliferation of both the B-cell precursor (BCP) population in the bone marrow (BM) and mature B-cell population in peripheral blood (PB) during and after BCP-ALL therapy. We found a normal BCP differentiation pattern and a delayed formation of classical CD38dim -naive mature B-cells, natural effector B-cells and memory B-cells in patients after chemotherapy. This B-cell differentiation/maturation pattern was strikingly similar to that during initial B-cell development in healthy infants. Tissue-resident plasma cells appeared to be partly protected from chemotherapy. Also, we found that the fast recovery of naive mature B-cell numbers after chemotherapy was the result of increased de novo BCP generation, rather than enhanced B-cell proliferation in BM or PB. These results indicate that post-treatment BCP-ALL patients will eventually re-establish a B-cell compartment with a composition and B-cell receptor repertoire similar to that in healthy children. Additionally, the formation of a new memory B-cell compartment suggests that revaccination might be beneficial after BCP-ALL therapy.
Collapse
Affiliation(s)
- Prisca M J Theunissen
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Anouk van den Branden
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | - Auke Beishuizen
- Department of Paediatric Haematology and Oncology, Sophia Children's Hospital/Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
73
|
IJspeert H, van Schouwenburg PA, van Zessen D, Pico-Knijnenburg I, Stubbs AP, van der Burg M. Antigen Receptor Galaxy: A User-Friendly, Web-Based Tool for Analysis and Visualization of T and B Cell Receptor Repertoire Data. THE JOURNAL OF IMMUNOLOGY 2017; 198:4156-4165. [PMID: 28416602 DOI: 10.4049/jimmunol.1601921] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and
| | | | - David van Zessen
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and.,Department of Bioinformatics, Erasmus University Medical Center, 3015 CE Rotterdam, the Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus University Medical Center, 3015 CE Rotterdam, the Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and
| |
Collapse
|
74
|
Ataxia-telangiectasia: Immunodeficiency and survival. Clin Immunol 2017; 178:45-55. [PMID: 28126470 DOI: 10.1016/j.clim.2017.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/17/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (AT) is a neurodegenerative disorder characterized by ataxia, telangiectasia, and immunodeficiency. An increased risk of malignancies and respiratory diseases dramatically reduce life expectancy. To better counsel families, develop individual follow-up programs, and select patients for therapeutic trials, more knowledge is needed on factors influencing survival. This retrospective cohort study of 61 AT patients shows that classical AT patients had a shorter survival than variant patients (HR 5.9, 95%CI 2.0-17.7), especially once a malignancy was diagnosed (HR 2.5, 95%CI 1.1-5.5, compared to classical AT patients without malignancy). Patients with the hyper IgM phenotype with hypogammaglobulinemia (AT-HIGM) and patients with an IgG2 deficiency showed decreased survival compared to patients with normal IgG (HR 9.2, 95%CI 3.2-26.5) and patients with normal IgG2 levels (HR 7.8, 95%CI 1.7-36.2), respectively. If high risk treatment trials will become available for AT, those patients with factors indicating the poorest prognosis might be considered for inclusion first.
Collapse
|
75
|
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11:159. [PMID: 27884168 PMCID: PMC5123280 DOI: 10.1186/s13023-016-0543-7] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
DEFINITION OF THE DISEASE Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. EPIDEMIOLOGY The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. CLINICAL DESCRIPTION A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. ETIOLOGY A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. DIAGNOSIS The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene. DIFFERENTIAL DIAGNOSIS There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing. ANTENATAL DIAGNOSIS Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis. GENETIC COUNSELING Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted. MANAGEMENT AND PROGNOSIS Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
Collapse
Affiliation(s)
| | - Jennifer Wright
- The Ataxia Telangiectasia Clinical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Maureen A. Lefton-Greif
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Sharon A. McGrath-Morrow
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Thomas O. Crawford
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Howard M. Lederman
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics, Medicine and Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| |
Collapse
|
76
|
IJspeert H, van Schouwenburg PA, van Zessen D, Pico-Knijnenburg I, Driessen GJ, Stubbs AP, van der Burg M. Evaluation of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and Adults. Front Immunol 2016; 7:410. [PMID: 27799928 PMCID: PMC5066086 DOI: 10.3389/fimmu.2016.00410] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 12/03/2022] Open
Abstract
Upon antigen recognition via their B cell receptor (BR), B cells migrate to the germinal center where they undergo somatic hypermutation (SHM) to increase their affinity for the antigen, and class switch recombination (CSR) to change the effector function of the secreted antibodies. These steps are essential to create an antigen-experienced BR repertoire that efficiently protects the body against pathogens. At the same time, the BR repertoire should be selected to protect against responses to self-antigen or harmless antigens. Insights into the processes of SHM, selection, and CSR can be obtained by studying the antigen-experienced BR repertoire. Currently, a large reference data set of healthy children and adults, which ranges from neonates to the elderly, is not available. In this study, we analyzed the antigen-experienced repertoire of 38 healthy donors (HD), ranging from cord blood to 74 years old, by sequencing IGA and IGG transcripts using next generation sequencing. This resulted in a large, freely available reference data set containing 412,890 IGA and IGG transcripts. We used this data set to study mutation levels, SHM patterns, antigenic selection, and CSR from birth to elderly HD. Only small differences were observed in SHM patterns, while the mutation levels increase in early childhood and stabilize at 6 years of age at around 7%. Furthermore, comparison of the antigen-experienced repertoire with sequences from the naive immune repertoire showed that features associated with autoimmunity such as long CDR3 length and IGHV4-34 usage are reduced in the antigen-experienced repertoire. Moreover, IGA2 and IGG2 usage was increased in HD in higher age categories, while IGG1 usage was decreased. In addition, we studied clonal relationship in the different samples. Clonally related sequences were found with different subclasses. Interestingly, we found transcripts with the same CDR1–CDR3 sequence, but different subclasses. Together, these data suggest that a single antigen can provoke a B-cell response with BR of different subclasses and that, during the course of an immune response, some B cells change their isotype without acquiring additional SHM or can directly switch to different isotypes.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | | | - David van Zessen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Gertjan J Driessen
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
77
|
van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SC, Wells OS, Harakalova M, Chinn IK, Alt A, Vondrova L, Hochstenbach R, van Montfrans JM, Terheggen-Lagro SW, van Lieshout S, van Roosmalen MJ, Renkens I, Duran K, Nijman IJ, Kloosterman WP, Hennekam E, Orange JS, van Hasselt PM, Wheeler DA, Palecek JJ, Lehmann AR, Oliver AW, Pearl LH, Plon SE, Murray JM, van Haaften G. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Invest 2016; 126:2881-92. [PMID: 27427983 PMCID: PMC4966312 DOI: 10.1172/jci82890] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/12/2016] [Indexed: 11/27/2022] Open
Abstract
The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.
Collapse
Affiliation(s)
| | - Marije P. Hennus
- Department of Pediatric Intensive Care, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - Grant A. McGregor
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | | | | | - Owen S. Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | | | - Ivan K. Chinn
- Texas Children’s Hospital, and
- Department of Pediatrics, Baylor College of Medicine, Houston Texas, USA
| | - Aaron Alt
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Lucie Vondrova
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | - Ivo Renkens
- Department of Genetics (Center for Molecular Medicine) and
| | - Karen Duran
- Department of Genetics (Center for Molecular Medicine) and
| | | | | | - Eric Hennekam
- Department of Genetics (Center for Molecular Medicine) and
| | - Jordan S. Orange
- Texas Children’s Hospital, and
- Department of Pediatrics, Baylor College of Medicine, Houston Texas, USA
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, UMCU, Utrecht, Netherlands
| | - David A. Wheeler
- Human Genome Sequencing Center
- Department of Molecular and Human Genetics
| | - Jan J. Palecek
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alan R. Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Antony W. Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Sharon E. Plon
- Human Genome Sequencing Center
- Department of Molecular and Human Genetics
- Texas Children’s Hospital, and
- Department of Pediatrics, Baylor College of Medicine, Houston Texas, USA
| | - Johanne M. Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | | |
Collapse
|
78
|
Bhatt JM, Bush A, van Gerven M, Nissenkorn A, Renke M, Yarlett L, Taylor M, Tonia T, Warris A, Zielen S, Zinna S, Merkus PJFM. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur Respir Rev 2015; 24:565-81. [PMID: 26621971 PMCID: PMC9487625 DOI: 10.1183/16000617.0066-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/05/2022] Open
Abstract
Ataxia telangiectasia (A-T) is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immune dysfunction leading to recurrent upper and lower respiratory infections; aspiration resulting from dysfunctional swallowing due to neurodegenerative deficits; inefficient cough; and interstitial lung disease/pulmonary fibrosis. Malnutrition is a significant comorbidity. The increased radiosensitivity and increased risk of cancer should be borne in mind when requesting radiological investigations. Aggressive proactive monitoring and treatment of these various aspects of lung disease under multidisciplinary expertise in the experience of national multidisciplinary clinics internationally forms the basis of this statement on the management of lung disease in A-T. Neurological management is outwith the scope of this document.
Collapse
Affiliation(s)
- Jayesh M Bhatt
- Nottingham Children's Hospital, UK Paediatric National Clinic, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew Bush
- Imperial College and Royal Brompton Hospital, London, UK
| | - Marjo van Gerven
- Dept of Paediatrics, Division of Respiratory Medicine, Amalia Children's Hospital Radboud, University Medical Centre, Nijmegen, The Netherlands
| | - Andreea Nissenkorn
- Rare Diseases Service and Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Tel HaShomer, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Renke
- Dept of Allergology, Pneumology and Cystic Fibrosis, Children's Hospital, Goethe-University Theodor-Stern Kai, Frankfurt/Main, Germany
| | | | - Malcolm Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Adilia Warris
- Institute of Medical Sciences, University of Aberdeen and the Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Stefan Zielen
- Dept of Allergology, Pneumology and Cystic Fibrosis, Children's Hospital, Goethe-University Theodor-Stern Kai, Frankfurt/Main, Germany
| | - Shairbanu Zinna
- Nottingham Children's Hospital, UK Paediatric National Clinic, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Peter J F M Merkus
- Dept of Paediatrics, Division of Respiratory Medicine, Amalia Children's Hospital Radboud, University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
79
|
Dalm VASH, Driessen GJA, Barendregt BH, van Hagen PM, van der Burg M. The 11q Terminal Deletion Disorder Jacobsen Syndrome is a Syndromic Primary Immunodeficiency. J Clin Immunol 2015; 35:761-8. [PMID: 26566921 PMCID: PMC4659842 DOI: 10.1007/s10875-015-0211-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Jacobsen syndrome (JS) is a rare contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. Clinical features include physical and mental growth retardation, facial dysmorphism, thrombocytopenia, impaired platelet function and pancytopenia. In case reports, recurrent infections and impaired immune cell function compatible with immunodeficiency were described. However, Jacobsen syndrome has not been recognized as an established syndromic primary immunodeficiency. GOAL To evaluate the presence of immunodeficiency in a series of 6 patients with JS. METHODS Medical history of 6 patients with JS was evaluated for recurrent infections. IgG, IgA, IgM and specific antibodies against S. pneumoniae were measured. Response to immunization with a polysaccharide vaccine (Pneumovax) was measured and B and T lymphocyte subset analyses were performed using flowcytometry. RESULTS Five out of 6 patients suffered from recurrent infections. These patients had low IgG levels and impaired response to S. pneumoniae polysaccharide vaccination. Moreover, we also found a significant decrease in the absolute number of memory B cells, suggesting a defective germinal center function. In a number of patients, low numbers of T lymphocytes and NK cells were found. CONCLUSIONS Most patients with JS suffer from combined immunodeficiency in the presence of recurrent infections. Therefore, we consider JS a syndromic primary immunodeficiency. Early detection of immunodeficiency may reduce the frequency and severity of infections. All JS patients should therefore undergo immunological evaluation. Future studies in a larger cohort of patients will more precisely define the pathophysiology of the immunodeficiency in JS.
Collapse
Affiliation(s)
- Virgil A S H Dalm
- Department of Internal Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands. .,Department of Immunology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Gertjan J A Driessen
- Department of Immunology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Pediatric Infectious disease and Immunology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Barbara H Barendregt
- Department of Immunology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Petrus M van Hagen
- Department of Internal Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
80
|
IJspeert H, Wentink M, van Zessen D, Driessen GJ, Dalm VASH, van Hagen MP, Pico-Knijnenburg I, Simons EJ, van Dongen JJM, Stubbs AP, van der Burg M. Strategies for B-cell receptor repertoire analysis in primary immunodeficiencies: from severe combined immunodeficiency to common variable immunodeficiency. Front Immunol 2015; 6:157. [PMID: 25904919 PMCID: PMC4389565 DOI: 10.3389/fimmu.2015.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
The antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective, we describe strategies and considerations for analysis of the naive and antigen-selected B-cell repertoires in primary immunodeficiency patients with a focus on severe combined immunodeficiency and common variable immunodeficiency.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Marjolein Wentink
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - David van Zessen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands ; Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Gertjan J Driessen
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Martin P van Hagen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Erik J Simons
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
81
|
Taylor AMR, Lam Z, Last JI, Byrd PJ. Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet 2015; 87:199-208. [PMID: 25040471 DOI: 10.1111/cge.12453] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/06/2014] [Accepted: 06/30/2014] [Indexed: 01/02/2023]
Abstract
Ataxia telangiectasia (A-T) is a rare recessively inherited disorder resulting in a progressive neurological decline. It is caused by biallelic mutation of the ATM gene that encodes a 370 kDa serine/threonine protein kinase responsible for phosphorylating many target proteins. ATM is activated by auto(trans)phosphorylation in response to DNA double strand breaks and leads to the activation of cell cycle checkpoints and either DNA repair or apoptosis as part of the cellular response to DNA damage. The allelic heterogeneity in A-T is striking. While the majority of mutations are truncating, leading to instability and loss of the ATM protein from the allele, a significant proportion of patients carry one of a small number of mutations that are either missense or leaky splice site mutations resulting in retention of some ATM with activity. The allelic heterogeneity in ATM, therefore, results in an equally striking clinical heterogeneity. There is also locus heterogeneity because mutation of the MRE11 gene can cause an obvious A-T like disorder both clinically and also at the cellular level and mutation of the RNF168 gene results in a much milder clinical phenotype, neurologically, with the major clinical feature being an immunological defect.
Collapse
Affiliation(s)
- A M R Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
82
|
|
83
|
Defective B-cell memory in patients with Down syndrome. J Allergy Clin Immunol 2014; 134:1346-1353.e9. [DOI: 10.1016/j.jaci.2014.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 06/22/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023]
|
84
|
Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol 2014; 34:561-72. [DOI: 10.1007/s10875-014-0044-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
|
85
|
Xu FF, Huang Y, Wang XQ, Qiu YH, Peng YP. Modulation of immune function by glutamatergic neurons in the cerebellar interposed nucleus via hypothalamic and sympathetic pathways. Brain Behav Immun 2014; 38:263-71. [PMID: 24583232 DOI: 10.1016/j.bbi.2014.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/08/2014] [Accepted: 02/15/2014] [Indexed: 11/15/2022] Open
Abstract
Our recent work has shown that the cerebellar interposed nucleus (IN) contains glutamatergic neurons that send axons directly to the hypothalamus. In the present study, we aimed to demonstrate modulation of cellular and humoral immunity by glutamatergic neurons in the cerebellar IN by means of gene interventions of glutaminase (GLS), an enzyme for glutamate synthesis, and to reveal pathways transmitting the immunomodulation. Injection of GLS-shRNA lentiviral vector into bilateral cerebellar IN downregulated GLS expression in the IN. The silencing of GLS gene in the cerebellar IN decreased interleukin (IL)-2 and interferon (IFN)-γ production, B-cell number, and IgM antibody level in response to antigen bovine serum albumin (BSA). On the contrary, injection of GLS lentiviral vector into bilateral cerebellar IN upregulated GLS expression in the IN. The GLS gene overexpression in the IN caused opposite immune effects to the GLS gene knockdown. Simultaneously, the GLS gene silencing in the cerebellar IN reduced and the GLS overexpression elevated glutamate content in the hypothalamus, but they both did not affect glycine and GABA contents in the hypothalamus. In addition, the immune changes caused by the GLS gene interventions in the IN were accompanied by alteration in norepinephrine content in the spleen and mesenteric lymph nodes but not by changes in adrenocortical and thyroid hormone levels in serum. These findings indicate that glutamatergic neurons in the cerebellar IN regulate cellular and humoral immune responses and suggest that such immunoregulation may be conveyed by cerebellar IN-hypothalamic glutamatergic projections and sympathetic nerves that innervate lymphoid tissues.
Collapse
Affiliation(s)
- Fen-Fen Xu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
86
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2013. J Allergy Clin Immunol 2014; 133:967-76. [PMID: 24589342 DOI: 10.1016/j.jaci.2014.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
A significant number of contributions to our understanding of primary immunodeficiencies (PIDs) in pathogenesis, diagnosis, and treatment were published in the Journal in 2013. For example, deficiency of mast cell degranulation caused by signal transducer and activator of transcription 3 deficiency was demonstrated to contribute to the difference in the frequency of severe allergic reactions in patients with autosomal dominant hyper-IgE syndrome compared with that seen in atopic subjects with similar high IgE serum levels. High levels of nonglycosylated IgA were found in patients with Wiskott-Aldrich syndrome, and these abnormal antibodies might contribute to the nephropathy seen in these patients. New described genes causing immunodeficiency included caspase recruitment domain 11 (CARD11), mucosa-associated lymphoid tissue 1 (MALT1) for combined immunodeficiencies, and tetratricopeptide repeat domain 7A (TTC7A) for mutations associated with multiple atresia with combined immunodeficiency. Other observations expand the spectrum of clinical presentation of specific gene defects (eg, adult-onset idiopathic T-cell lymphopenia and early-onset autoimmunity might be due to hypomorphic mutations of the recombination-activating genes). Newborn screening in California established the incidence of severe combined immunodeficiency at 1 in 66,250 live births. The use of hematopoietic stem cell transplantation for PIDs was reviewed, with recommendations to give priority to research oriented to establish the best regimens to improve the safety and efficacy of bone marrow transplantation. These represent only a fraction of significant research done in patients with PIDs that has accelerated the quality of care of these patients. Genetic analysis of patients has demonstrated multiple phenotypic expressions of immune deficiency in patients with nearly identical genotypes, suggesting that additional genetic factors, possibly gene dosage, or environmental factors are responsible for this diversity.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine Texas Children's Hospital, Houston, Tex
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and the Departments of Pediatrics and Pathology, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
87
|
A precocious cerebellar ataxia and frequent Fever episodes in a 16-month-old infant revealing ataxia-telangiectasia syndrome. Case Reports Immunol 2013; 2013:296827. [PMID: 25374739 PMCID: PMC4207493 DOI: 10.1155/2013/296827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022] Open
Abstract
Ataxia-telangiectasia (AT) is the most frequent progressive cerebellar ataxia in infancy and childhood. Immunodeficiency which includes both cellular and humoral arms has variable severity. Since the clinical presentation is extremely variable, a high clinical suspicion will allow an early diagnosis. Serum alpha-fetoprotein is elevated in 80–85% of patients and therefore could be used as a screening tool. Here, we present a case of a 5-year-old female infant who was admitted to our department at the age of 16 months because of gait disorders and febrile episodes that had begun at 5 months after the cessation of breastfeeding. Serum alfa-fetoprotein level was elevated. Other investigations showed leukocytopenia with lymphopenia, reduced IgG2 and IgA levels, and low titers of specific postimmunization antibodies against tetanus toxoid and Haemophilus B polysaccharide. Peripheral lymphocytes subsets showed reduction of T cells with a marked predominance of T cells with a memory phenotype and a corresponding reduction of naïve T cells; NK cells were very increased (41%) with normal activity. The characterization of the ATM gene mutations revealed 2 specific mutations (c.5692C > T/c.7630-2A > C) compatible with AT diagnosis. It was concluded that AT syndrome should be considered in children with precocious signs of cerebellar ataxia and recurrent fever episodes.
Collapse
|