51
|
Tangye SG, Pelham SJ, Deenick EK, Ma CS. Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies. THE JOURNAL OF IMMUNOLOGY 2017; 199:1949-1958. [PMID: 28874415 DOI: 10.4049/jimmunol.1700842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Abstract
Cytokine-mediated intracellular signaling pathways are fundamental for the development, activation, and differentiation of lymphocytes. These distinct processes underlie protection against infectious diseases after natural infection with pathogens or immunization, thereby providing the host with long-lived immunological memory. In contrast, aberrant cytokine signaling can also result in conditions of immune dysregulation, such as early-onset autoimmunity. Thus, balanced signals provided by distinct cytokines, and delivered to specific cell subsets, are critical for immune homeostasis. The essential roles of cytokines in human immunity have been elegantly and repeatedly revealed by the discovery of individuals with mutations in cytokine ligands, receptors, and downstream transcription factors that cause primary immunodeficiency or autoimmune conditions. In this article, we review how the discovery and characterization of such individuals has identified nonredundant, and often highly specialized, functions of specific cytokines and immune cell subsets in human lymphocyte biology, host defense against infections, and immune regulation.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Simon J Pelham
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
52
|
Citrobacter rodentium: a model enteropathogen for understanding the interplay of innate and adaptive components of type 3 immunity. Mucosal Immunol 2017; 10:1108-1117. [PMID: 28612839 PMCID: PMC5969517 DOI: 10.1038/mi.2017.47] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Citrobacter rodentium is a natural murine intestinal pathogen that shares a core set of virulence factors with the related human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). C. rodentium is now the most widely used small animal model for studying the molecular underpinnings of EPEC and EHEC infections in vivo, including: enterocyte attachment; virulence; colonization resistance; and mucosal immunity. In this review, we discuss type 3 immunity in the context of C. rodentium infection and discuss recent publications that use this model to understand how the innate and adaptive components of immunity intersect to mediate host protection against enteric pathogens and maintain homeostasis with the microbiota.
Collapse
|
53
|
Langlais D, Fodil N, Gros P. Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annu Rev Immunol 2017; 35:1-30. [DOI: 10.1146/annurev-immunol-051116-052442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Nassima Fodil
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
54
|
Jandl C, Liu SM, Cañete PF, Warren J, Hughes WE, Vogelzang A, Webster K, Craig ME, Uzel G, Dent A, Stepensky P, Keller B, Warnatz K, Sprent J, King C. IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2. Nat Commun 2017; 8:14647. [PMID: 28303891 PMCID: PMC5357862 DOI: 10.1038/ncomms14647] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
T follicular regulatory (Tfr) cells control the magnitude and specificity of the germinal centre reaction, but how regulation is contained to ensure generation of high-affinity antibody is unknown. Here we show that this balance is maintained by the reciprocal influence of interleukin (IL)-2 and IL-21. The number of IL-2-dependent FoxP3+ regulatory T cells is increased in the peripheral blood of human patients with loss-of-function mutations in the IL-21 receptor (IL-21R). In mice, IL-21:IL-21R interactions influence the phenotype of T follicular cells, reducing the expression of CXCR4 and inhibiting the expansion of Tfr cells after T-cell-dependent immunization. The negative effect of IL-21 on Tfr cells in mice is cell intrinsic and associated with decreased expression of the high affinity IL-2 receptor (CD25). Bcl-6, expressed in abundance in Tfr cells, inhibits CD25 expression and IL-21-mediated inhibition of CD25 is Bcl-6 dependent. These findings identify a mechanism by which IL-21 reinforces humoral immunity by restricting Tfr cell proliferation.
Collapse
Affiliation(s)
- Christoph Jandl
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Sue M. Liu
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Pablo F. Cañete
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Joanna Warren
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - William E. Hughes
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Alexis Vogelzang
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Kylie Webster
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Maria E. Craig
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Locked Bag 4001, Westmead, New South Wales 2145, Australia
- School of Women's and Children's Health, University of New South Wales, High Street, Randwick, Sydney, New South Wales 2031, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Alexander Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, MS 420, Indianapolis, Indiana 46202, USA
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Hospital, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Bärbel Keller
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, Breisacher Strasse 117, 79106 Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, Breisacher Strasse 117, 79106 Freiburg, Germany
| | - Jonathan Sprent
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Cecile King
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| |
Collapse
|
55
|
Azizi G, Ziaee V, Tavakol M, Alinia T, Yazdai R, Mohammadi H, Abolhassani H, Aghamohammadi A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand J Immunol 2017; 85:13-29. [PMID: 27862144 DOI: 10.1111/sji.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a genetically heterogeneous group of immune disorders that affect distinct elements of the immune system. PID patients are more prone to infections and non-infectious complications, particularly autoimmunity. The concomitance of immunodeficiency and autoimmunity appears to be paradoxical and leads to difficulty in the management of autoimmune complications in PID patients. Therefore, management of autoimmunity in patients with PID requires special considerations because dysregulations and dysfunctions of the immune system along with persistent inflammation impair the process of diagnosis and treatment.
Collapse
Affiliation(s)
- G Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - V Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - M Tavakol
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - T Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Yazdai
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
IL-21 Is Positively Associated with Intervertebral Disc Degeneration by Interaction with TNF-α Through the JAK-STAT Signaling Pathway. Inflammation 2017; 40:612-622. [DOI: 10.1007/s10753-017-0508-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
Affiliation(s)
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
58
|
Benbarche S, Strassel C, Angénieux C, Mallo L, Freund M, Gachet C, Lanza F, de la Salle H. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis. Haematologica 2017; 102:637-646. [PMID: 28057742 PMCID: PMC5395104 DOI: 10.3324/haematol.2016.143958] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Gene profiling studies have indicated that in vitro differentiated human megakaryocytes express the receptor for IL-21 (IL-21R), an immunostimulatory cytokine associated with inflammatory disorders and currently under evaluation in cancer therapy. The aim of this study was to investigate whether IL-21 modulates megakaryopoiesis. We first checked the expression of IL-21 receptor on human bone marrow and in vitro differentiated megakaryocytes. We then investigated the effect of IL-21 on the in vitro differentiation of human blood CD34+ progenitors into megakaryocytes. Finally, we analyzed the consequences of hydrodynamic transfection-mediated transient expression of IL-21, on megakaryopoiesis and thrombopoiesis in mice. The IL-21Rα chain was expressed in human bone marrow megakaryocytes and was progressively induced during in vitro differentiation of human peripheral CD34+ progenitors, while the signal transducing γ chain was down-regulated. Consistently, the STAT3 phosphorylation induced by IL-21 diminished during the later stages of megakaryocytic differentiation. In vitro, IL-21 increased the number of colony-forming unit megakaryocytes generated from CD34+ cells and the number of megakaryocytes differentiated from CD34+ progenitors in a JAK3- and STAT3-dependent manner. Forced expression of IL-21 in mice increased the density of bi-potent megakaryocyte progenitors and bone marrow megakaryocytes, and the platelet generation, but increased platelet clearance with a consequent reduction in blood cell counts. Our work suggests that IL-21 regulates megakaryocyte development and platelet homeostasis. Thus, IL-21 may link immune responses to physiological or pathological platelet-dependent processes.
Collapse
Affiliation(s)
- Salima Benbarche
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - Catherine Angénieux
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - Léa Mallo
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - Monique Freund
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| | - Henri de la Salle
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS, F-67000, France
| |
Collapse
|
59
|
Mosli M, Alzahrani A, Showlag S, Alshehri A, Hejazi A, Alnefaie M, Almaymuni A, Abdullahi M, Albeshir M, Alsulais E, Jawa H, Aljahdli E, Bazarah S, Qari Y. A cross-sectional survey of multi-generation inflammatory bowel disease consanguinity and its relationship with disease onset. Saudi J Gastroenterol 2017; 23:337-340. [PMID: 29205186 PMCID: PMC5738795 DOI: 10.4103/sjg.sjg_125_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Background\Aim: Consanguinity influences the phenotypic variations of some hereditary and immune-mediated disorders, including inflammatory bowel disease. This study estimated the prevalence of consanguinity among the ancestors of patients with inflammatory bowel disease and examined the effect of various consanguinity levels on inflammatory bowel disease onset. PATIENTS AND METHODS Patients with inflammatory bowel disease who were seen at two gastroenterology outpatient clinics were consecutively recruited and surveyed for demographics, disease onset, and presence of ancestral consanguinity within three generations. The prevalence of different consanguinity levels was calculated. The association between age at inflammatory bowel disease onset and consanguinity was examined. RESULTS Two hundred seventeen patients were recruited. The mean age, mean age at diagnosis, and mean illness duration were 32.9 ± 13.4, 18.6 ± 11.5, and 8.6 ± 7.7 years, respectively. Of the cohort, 53.5% were women, and 74.2% were native Saudis. Cigarette smoking was reported in 17.1%; 51% had Crohn's disease, while the remaining patients had ulcerative colitis. A family history of inflammatory bowel disease was reported in 29.5% of patients; consanguinity within three generations was reported in 57.6%. Consanguinity in more than one generation was reported in 38.7%; 17.5% had consanguinity in three consecutive generations. There was no association between inflammatory bowel disease onset and multi-generation consanguinity, but there was an association with disease subtype in favor of ulcerative colitis (b coefficient = 7.1 [95% confidence interval = 4.1, 10]). CONCLUSIONS Consanguinity is extremely common among Saudi patients with inflammatory bowel disease but does not seem to influence age at disease onset. Genetic studies are needed to further clarify the effect of consanguinity on disease behavior.
Collapse
Affiliation(s)
- Mahmoud Mosli
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia,Address for correspondence: Dr. Mahmoud Mosli, Department of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail:
| | - Abdulelah Alzahrani
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Showlag Showlag
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Alshehri
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed Hejazi
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Majed Alnefaie
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Adel Almaymuni
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Mubarak Abdullahi
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Mohammed Albeshir
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Eman Alsulais
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Hani Jawa
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Emad Aljahdli
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Salem Bazarah
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Yousif Qari
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
60
|
Kalampokis I, Venturi GM, Poe JC, Dvergsten JA, Sleasman JW, Tedder TF. The Regulatory B Cell Compartment Expands Transiently During Childhood and Is Contracted in Children With Autoimmunity. Arthritis Rheumatol 2017; 69:225-238. [PMID: 27429419 PMCID: PMC5195882 DOI: 10.1002/art.39820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Regulatory B cells that inhibit immune responses through interleukin-10 (IL-10) secretion (B10 cells) have been characterized in adult subjects with autoimmune disease. The aim of this study was to characterize B10 cells in individuals across the entire age range of normal human development and changes in their frequency and numbers in children with autoimmunity. METHODS The phenotype and numbers of B10 cells in blood were examined in healthy individuals and children with autoimmunity, using flow cytometry. B10 cell function was assessed by measuring the effect of B cell-derived IL-10 on interferon-γ (IFNγ) expression by CD4+ T cells. Serum cytokine levels were measured by enzyme-linked immunosorbent assay. RESULTS The frequency of B10 cells transiently increased during childhood, when up to 30% of B cells were competent to produce IL-10, compared with the low frequencies in healthy newborns (3-4%) and adults (7-9%). The surface phenotype of B10 cells in children revealed age-dependent variability. B10 cells from children were distinct from proinflammatory cytokine-producing B cells and down-regulated IFNγ production by CD4+ T cells in vitro. Compared with age-matched healthy controls, children with autoimmunity had lower numbers and frequencies of B10 cells (decreased by 39% and 48%, respectively), higher IFNγ levels, and lower IL-21 levels in serum. IFNγ inhibited, whereas IL-21 promoted, B cell IL-10 competence in vitro. CONCLUSION B10 cells, a functionally defined cell subset with a variable surface phenotype reflective of overall B cell development, transiently expand during childhood. B10 cell frequencies and numbers were decreased in children with autoimmunity, which may be explained in part by alterations in serum IFNγ and IL-21 that differentially regulate B10 cell development.
Collapse
Affiliation(s)
- Ioannis Kalampokis
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - Jonathan C. Poe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - John W. Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
61
|
Timmermans WMC, van Laar JAM, van Hagen PM, van Zelm MC. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunology 2016; 5:e118. [PMID: 28090320 PMCID: PMC5192066 DOI: 10.1038/cti.2016.75] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 12/23/2022] Open
Abstract
Granulomas are clusters of immune cells. These structures can be formed in reaction to infection and display signs of necrosis, such as in tuberculosis. Alternatively, in several immune disorders, such as sarcoidosis, Crohn's disease and common variable immunodeficiency, non-caseating granulomas are formed without an obvious infectious trigger. Despite advances in our understanding of the human immune system, the pathogenesis underlying these non-caseating granulomas in chronic inflammatory diseases is still poorly understood. Here, we review the current knowledge about the immunopathogenesis of granulomas, and we discuss how the involved immune cells can be targeted with novel therapeutics.
Collapse
Affiliation(s)
- Wilhelmina Maria Cornelia Timmermans
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jan Alexander Michael van Laar
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Petrus Martinus van Hagen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno Cornelis van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
62
|
Rizzi M, Lorenzetti R, Fischer K, Staniek J, Janowska I, Troilo A, Strohmeier V, Erlacher M, Kunze M, Bannert B, Kyburz D, Voll RE, Venhoff N, Thiel J. Impact of tofacitinib treatment on human B-cells in vitro and in vivo. J Autoimmun 2016; 77:55-66. [PMID: 27793425 DOI: 10.1016/j.jaut.2016.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
B-cells are pivotal to the pathogenesis of rheumatoid arthritis and tofacitinib, a JAK inhibitor, is effective and safe in its treatment. Tofacitinib interferes with signal transduction via cytokine receptors using the common γ-chain. Despite extensive data on T-lymphocytes, the impact of tofacitinib on B-lymphocytes is poorly understood. In this study we assessed the effect of tofacitinib on B-lymphocyte differentiation and function. Tofacitinib treatment strongly impaired in vitro plasmablast development, immunoglobulin secretion and induction of B-cell fate determining transcription factors, Blimp-1, Xbp-1, and IRF-4, in naïve B-cells. Interestingly, class switch and activation-induced cytidine deaminase (AICDA) induction was only slightly reduced in activated naïve B-cells. The effect of tofacitinib on plasmablast formation, immunoglobulin secretion and proliferation was less profound, when peripheral blood B-cells, including not only naïve but also memory B-cells, were stimulated. In line with these in vitro results, the relative distribution of B-cell populations remained stable in tofacitinib treated patients. Nevertheless, a temporary increase in absolute B-cell numbers was observed 6-8 weeks after start of treatment. In addition, B-cells isolated from tofacitinib treated patients responded rapidly to in vitro activation. We demonstrate that tofacitinib has a direct impact on human naïve B-lymphocytes, independently from its effect on T-lymphocytes, by impairing their development into plasmablasts and immunoglobulin secretion. The major effect of tofacitinib on naïve B-lymphocyte development points to the potential inability of tofacitinib-treated patients to respond to novel antigens, and suggests planning vaccination strategies prior to tofacitinib treatment.
Collapse
Affiliation(s)
- Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathleen Fischer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Clinic for Pediatrics and Juvenile Medicine, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Mirjam Kunze
- Department of Gynaecology, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bettina Bannert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology, University of Basel, Faculty of Medicine, University of Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University of Basel, Faculty of Medicine, University of Basel, Switzerland
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
63
|
Wang Y, Jiang X, Zhu J, Dan Yue, Zhang X, Wang X, You Y, Wang B, Xu Y, Lu C, Sun X, Yoshikai Y. IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice. Sci Rep 2016; 6:31881. [PMID: 27545302 PMCID: PMC4992961 DOI: 10.1038/srep31881] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022] Open
Abstract
Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8(+)CD44(+)IFN-γ(+) T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xuefeng Jiang
- Department of Immunology, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Life Science School, Liaoning University, Shenyang, China
| | - Dan Yue
- Department of Immunology, China Medical University, Shenyang, China
- Laboratory Medicine Department, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Xiaoqing Zhang
- Department of Immunology, China Medical University, Shenyang, China
| | - Xiao Wang
- Department of Immunology, China Medical University, Shenyang, China
| | - Yong You
- Department of Immunology, China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Ying Xu
- Northeast Pharmaceutical Group Co., Ltd, Shenyang, China
| | - Changlong Lu
- Department of Immunology, China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, China
| | - Yasunobu Yoshikai
- Division of Host Defense, Center for Prevention of Infectious Disease, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
64
|
Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh ) cells in normal immune responses and in allergic disorders. Allergy 2016; 71:1086-94. [PMID: 26970097 DOI: 10.1111/all.12878] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Follicular helper T cells (Tfh ) are located within germinal centers of lymph nodes. Cognate interaction between Tfh , B cells, and IL-21 drives B cells to proliferate and differentiate into plasma cells thereby leading to antibody production. Tfh cells and IL-21 are involved in infectious and autoimmune diseases, immunodeficiencies, vaccination, and cancer. Human peripheral blood CXCR5(+) CD4(+) T cells comprise different subsets of Tfh -like cells. Despite the importance of the IgE response in the pathogenesis of allergic disorders, little is known about the role of follicular and blood Tfh cells and IL-21 in human and experimental allergic disease. Here, we review recent advances regarding the phenotypic and functional characteristics of both follicular and blood Tfh cells and of the IL-21/IL-21R system in the context of allergic disorders.
Collapse
Affiliation(s)
- G. Varricchi
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| | - J. Harker
- Inflammation, Repair & Development Section; Faculty of Medicine; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | - F. Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); School of Medicine; University of Naples Federico II; Naples Italy
| | - G. Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); School of Medicine; University of Naples Federico II; Naples Italy
- CNR Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’; Naples Italy
| | - S. R. Durham
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| | - M. H. Shamji
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| |
Collapse
|
65
|
Ma CS, Wong N, Rao G, Nguyen A, Avery DT, Payne K, Torpy J, O'Young P, Deenick E, Bustamante J, Puel A, Okada S, Kobayashi M, Martinez-Barricarte R, Elliott M, Sebnem Kilic S, El Baghdadi J, Minegishi Y, Bousfiha A, Robertson N, Hambleton S, Arkwright PD, French M, Blincoe AK, Hsu P, Campbell DE, Stormon MO, Wong M, Adelstein S, Fulcher DA, Cook MC, Stepensky P, Boztug K, Beier R, Ikincioğullari A, Ziegler JB, Gray P, Picard C, Boisson-Dupuis S, Phan TG, Grimbacher B, Warnatz K, Holland SM, Uzel G, Casanova JL, Tangye SG. Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets. J Exp Med 2016; 213:1589-608. [PMID: 27401342 PMCID: PMC4986526 DOI: 10.1084/jem.20151467] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Tangye and collaborators use a series of mutants to elucidate the pathways required to generate distinct subsets of human effector CD4+ T cells. Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Natalie Wong
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - James Torpy
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Patrick O'Young
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Elissa Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 735-8911, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 735-8911, Japan
| | - Ruben Martinez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney 2006, Australia Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology, Uludag University Medical Faculty, 16059 Görükle, Bursa, Turkey
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohamed V, Hay Riad, 10100 Rabat, Morocco
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Aziz Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, CHU Ibn Rochd, Casablanca, 20100, Morocco
| | - Nic Robertson
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Peter D Arkwright
- University of Manchester, Royal Manchester Children's Hospital, Manchester M13 9WL, England, UK
| | - Martyn French
- Department of Clinical Immunology, Royal Perth Hospital, Perth 6009, Australia School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| | | | - Peter Hsu
- Children's Hospital at Westmead, Westmead 2145, Australia
| | | | | | - Melanie Wong
- Children's Hospital at Westmead, Westmead 2145, Australia
| | - Stephen Adelstein
- Sydney Medical School, University of Sydney, Sydney 2006, Australia Clinical Immunology, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - David A Fulcher
- Department of Immunology, Westmead Hospital, University of Sydney, Westmead 2145, Australia
| | - Matthew C Cook
- Australian National University Medical School, Australian National University, Canberra 0200, Australia John Curtin School of Medical Research, Australian National University, Canberra 0200, Australia Department of Immunology, The Canberra Hospital, Garran 2605, Australia Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah, Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah, Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Rita Beier
- Pediatric Haematology and Oncology, University Hospital Essen, 45147 Essen, Germany
| | - Aydan Ikincioğullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, 06620 Ankara, Turkey
| | - John B Ziegler
- University of New South Wales School of Women's and Children's Health, Randwick 2031, Australia
| | - Paul Gray
- University of New South Wales School of Women's and Children's Health, Randwick 2031, Australia
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Howard Hughes Medical Institute, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| |
Collapse
|
66
|
Boztug H, Hirschmugl T, Holter W, Lakatos K, Kager L, Trapin D, Pickl W, Förster-Waldl E, Boztug K. NF-κB1 Haploinsufficiency Causing Immunodeficiency and EBV-Driven Lymphoproliferation. J Clin Immunol 2016; 36:533-40. [PMID: 27338827 PMCID: PMC4940442 DOI: 10.1007/s10875-016-0306-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/10/2016] [Indexed: 01/29/2023]
Abstract
Purpose NF-κB signaling is critically important for regulation of both innate and adaptive immune responses. While activation of NF-κB has been implicated in malignancies such as leukemia and lymphoma, loss-of-function mutations affecting different NF-κB pathway components have been shown to cause primary immunodeficiency disorders. Recently, haploinsufficiency of NF-κB1 has been described in three families with common variable immunodeficiency (CVID). Methods and Results We studied a patient with recurrent respiratory infections and bacterial parapharyngeal abscess. Immunological investigations revealed normal total B- cell numbers, but hypogammaglobulinemia, decreased frequencies of class-switched B cells and impaired T-cell proliferation. Targeted next-generation sequencing using a custom-designed panel comprising all known PID genes (IUIS 2014 classification) and novel candidate genes identified a novel heterozygous frameshift mutation in the NFKB1 gene leading to a premature stop codon (c.491delG; p.G165A*31). We could show that the mutation leads to reduced phosphorylation of p105 upon stimulation, resulting in decreased protein levels of p50. The further disease course was mainly characterized by two episodes of severe EBV-associated lymphoproliferative disease responsive to rituximab treatment. Due to disease severity, the patient is considered for allogeneic hematopoietic stem cell transplantation. Interestingly, the father carries the same heterozygous NFKB1 mutation and also shows decreased frequencies of memory B cells but has a much milder clinical phenotype, in line with a considerable phenotypic disease heterogeneity. Conclusions Deficiency of NF-κB1 leads to immunodeficiency with a wider phenotypic spectrum of disease manifestation than previously appreciated, including EBV lymphoproliferative diseases as a hitherto unrecognized feature of the disease. Electronic supplementary material The online version of this article (doi:10.1007/s10875-016-0306-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidrun Boztug
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Karoly Lakatos
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Leo Kager
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Kaan Boztug
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria. .,Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria.
| |
Collapse
|
67
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
68
|
Yang DJ, Han B. [Roles of interleukin-21 and its receptor in autoimmune diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:466-471. [PMID: 27165599 PMCID: PMC7390374 DOI: 10.7499/j.issn.1008-8830.2016.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Interleukin-21 (IL-21) is a new member of the interleukin-2 family. It is mainly synthesized and secreted by the activated of CD4(+) T cells and natural killer T cells. IL-21 receptor (IL-21R) is mainly expressed in T cells, B cells, and natural killer (NK) cells. After binding to its receptor, IL-21 can regulate the activation and proliferation of T cells, B cells, and NK cells through activating JAKs-STATs signaling pathways. As a new immunoregulatory factor, IL-21 and its receptor play important roles in the development and progression of various autoimmune diseases. Regulation of the expression levels of IL-21 and IL-21R and blocking of their signal transduction pathways with blockers may be new treatment options for autoimmune diseases.
Collapse
Affiliation(s)
- De-Juan Yang
- Department of pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| | | |
Collapse
|
69
|
Humoral deficiency in three paediatric patients with genetic diseases. Allergol Immunopathol (Madr) 2016; 44:257-62. [PMID: 26947896 DOI: 10.1016/j.aller.2015.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Primary immunodeficiencies (PID) represent a heterogeneous group of genetic disorders characterised by poor or absent function in one or more components of the immune system. Humoral or antibody immunodeficiencies are the most common form of PID, of which common variable immunodeficiency (CVID) is the most frequent symptomatic form. CVID is usually characterised by hypogammaglobulinaemia with poor antibody specificity, and an increased susceptibility to infections, autoimmunity and lymphoproliferation. Fewer than 10% of CVID patients have a known monogenic basis. Several chromosomal abnormalities (chromosome 18q-syndrome, monosomy 22, trisomy 8 and trisomy 21) are currently identified as causes of hypogammaglobulinaemia, and can manifest with recurrent infections and mimic CVID. METHODS Review of clinical charts and laboratory results of paediatric patients followed in the outpatient clinic of PID with a diagnosis of genetic disease and humoral immunodeficiency. RESULTS Three patients with different genetic diseases (19p13.3 deletion, a ring 18 chromosome and Kabuki syndrome), were identified. During follow-up, they developed signs and symptoms suggestive of humoral deficiency mimicking CVID, despite which immunoglobulin levels were quantified with considerable delay with respect to symptoms onset, and specific management was subsequently delayed. CONCLUSIONS Patients with genetic abnormalities and recurrent infections should be evaluated for hypogammaglobulinaemia. An early diagnosis of humoral deficiency can allow treatment optimisation to prevent complications and sequelae.
Collapse
|
70
|
Yuan MJ, Wang T. Advances of the interleukin-21 signaling pathway in immunity and angiogenesis. Biomed Rep 2016; 5:3-6. [PMID: 27330746 DOI: 10.3892/br.2016.665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
Interleukin-21 (IL-21) and its receptor (IL-21R) are broadly expressed on human B cells, activated T cells and other myeloid cells. IL-21 cooperates with IL-6 and transforming growth factor-β to regulate T-cell differentiation. IL-21-mediated human B cell and dendritic cells differentiation requires signal transducer and activator of transcription 3 (STAT3), and also induces B-cell apoptosis dependents on the Toll-like receptor signal. Recently, in vitro and in vivo experiments showed that IL-21/IL-21R regulate angiogenesis through STAT3. IL-21 signaling pathways are complex due to its cooperation with other transcriptional factors, such as interferon regulatory factor 4 and granulocyte-macrophage colony-stimulating factor. The Janus kinase-STAT pathway has been the most extensively studied. With the increase in the understanding of IL-21 biology in the context of each specific disease or pathological condition, IL-21 could be a new therapeutic target for immune-related disease.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Wang
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
71
|
Human T Follicular Helper Cells in Primary Immunodeficiency: Quality Just as Important as Quantity. J Clin Immunol 2016; 36 Suppl 1:40-7. [PMID: 26961358 DOI: 10.1007/s10875-016-0257-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 12/24/2022]
Abstract
T follicular helper (Tfh) cells are a subset of effector CD4(+) T cells specialised to induce Ab production by B cells. This review highlights some of the recent advances in the field of human Tfh cells that have come from the study of primary immunodeficiencies. In particular it is increasingly evident that the quality of the Tfh cells that are generated, is just as important as the quantity.
Collapse
|
72
|
Yazdani R, Abolhassani H, Rezaei N, Azizi G, Hammarström L, Aghamohammadi A. Evaluation of Known Defective Signaling-Associated Molecules in Patients Who Primarily Diagnosed as Common Variable Immunodeficiency. Int Rev Immunol 2016; 35:7-24. [DOI: 10.3109/08830185.2015.1136306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Yazdani R, Fatholahi M, Ganjalikhani-Hakemi M, Abolhassani H, Azizi G, Hamid KM, Rezaei N, Aghamohammadi A. Role of apoptosis in common variable immunodeficiency and selective immunoglobulin A deficiency. Mol Immunol 2016; 71:1-9. [PMID: 26795881 DOI: 10.1016/j.molimm.2015.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
|
74
|
Abstract
IL-21 is a type I cytokine produced by T cells and natural killer T cells that has pleiotropic actions on a wide range of immune and non-immune cell types. Since its discovery in 2000, extensive studies on the biological actions of IL-21 have been performed in vitro and in vivo. Recent reports describing patients with primary immunodeficiency caused by mutations of IL21 or IL21R have further deepened our knowledge of the role of this cytokine in host defense. Elucidation of the molecular mechanisms that mediate IL-21's actions has provided the rationale for targeting IL-21 and IL-21 downstream mediators for therapeutic purposes. The use of next-generation sequencing technology has provided further insights into the complexity of IL-21 signaling and has identified transcription factors and co-factors involved in mediating the actions of this cytokine. In this review, we discuss recent advances in the biology and signaling of IL-21 and how this knowledge can be potentially translated into clinical settings.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| | - Chi-Keung Wan
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| |
Collapse
|
75
|
Jandl C, King C. Cytokines in the Germinal Center Niche. Antibodies (Basel) 2016; 5:antib5010005. [PMID: 31557986 PMCID: PMC6698856 DOI: 10.3390/antib5010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines are small, secreted, glycoproteins that specifically affect the interactions and communications between cells. Cytokines are produced transiently and locally, acting in a paracrine or autocrine manner, and they are extremely potent, ligating high affinity cell surface receptors to elicit changes in gene expression and protein synthesis in the responding cell. Cytokines produced during the differentiation of T follicular helper (Tfh) cells and B cells within the germinal center (GC) niche play an important role in ensuring that the humoral immune response is robust, whilst retaining flexibility, during the generation of affinity matured antibodies. Cytokines produced by B cells, antigen presenting cells and stromal cells are important for the differentiation of Tfh cells and Tfh cell produced cytokines act both in an autocrine fashion to firm Tfh cell differentiation and in a paracrine fashion to support the differentiation of memory B cells and plasma cells. In this review, we discuss the role of cytokines during the GC reaction with a particular focus on the influence of cytokines on Tfh cells.
Collapse
Affiliation(s)
- Christoph Jandl
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Cecile King
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
76
|
Fodil N, Langlais D, Gros P. Primary Immunodeficiencies and Inflammatory Disease: A Growing Genetic Intersection. Trends Immunol 2016; 37:126-140. [PMID: 26791050 DOI: 10.1016/j.it.2015.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/08/2023]
Abstract
Recent advances in genome analysis have provided important insights into the genetic architecture of infectious and inflammatory diseases. The combined analysis of loci detected by genome-wide association studies (GWAS) in 22 inflammatory diseases has revealed a shared genetic core and associated biochemical pathways that play a central role in pathological inflammation. Parallel whole-exome sequencing studies have identified 265 genes mutated in primary immunodeficiencies (PID). Here, we examine the overlap between these two data sets, and find that it consists of genes essential for protection against infections and in which persistent activation causes pathological inflammation. Based on this intersection, we propose that, although strong or inactivating mutations (rare variants) in these genes may cause severe disease (PIDs), their more subtle modulation potentially by common regulatory/coding variants may contribute to chronic inflammation.
Collapse
Affiliation(s)
- Nassima Fodil
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - David Langlais
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada.
| |
Collapse
|
77
|
Increased STAT3 phosphorylation on CD27 + B-cells from common variable immunodeficiency disease patients. Clin Immunol 2015; 161:77-88. [DOI: 10.1016/j.clim.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 01/03/2023]
|
78
|
Bianco AM, Girardelli M, Tommasini A. Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J Gastroenterol 2015; 21:12296-12310. [PMID: 26604638 PMCID: PMC4649114 DOI: 10.3748/wjg.v21.i43.12296] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/13/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic multifactorial disorders. According to a recent study, the number of IBD association loci is increased to 201, of which 37 and 27 loci contribute specifically to the development of Crohn’s disease and ulcerative colitis respectively. Some IBD associated genes are involved in innate immunity, in the autophagy and in the inflammatory response such as NOD2, ATG16L1 and IL23R, while other are implicated in immune mediated disease (STAT3) and in susceptibility to mycobacterium infection (IL12B). In case of early onset of IBD (VEO-IBD) within the 6th year of age, the disease may be caused by mutations in genes responsible for severe monogenic disorders such as the primary immunodeficiency diseases. In this review we discuss how these monogenic disorders through different immune mechanisms can similarly be responsible of VEO-IBD phenotype. Moreover we would highlight how the identification of pathogenic genes by Next Generation Sequencing technologies can allow to obtain a rapid diagnosis and to apply specific therapies.
Collapse
|
79
|
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, Espinosa-Rosales FJ, Hammarström L, Nonoyama S, Quinti I, Routes JM, Tang MLK, Warnatz K. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 4:38-59. [PMID: 26563668 DOI: 10.1016/j.jaip.2015.07.025] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Affiliation(s)
| | - Isil Barlan
- Marmara University Pendik Education and Research Hospital, Istanbul, Turkey
| | - Helen Chapel
- John Radcliffe Hospital and University of Oxford, Oxford, United Kingdom
| | | | | | - M Teresa de la Morena
- Children's Medical Center and University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - John M Routes
- Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, Wis
| | - Mimi L K Tang
- Royal Children's Hospital and Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Klaus Warnatz
- University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
80
|
Kelsen JR, Dawany N, Moran CJ, Petersen BS, Sarmady M, Sasson A, Pauly-Hubbard H, Martinez A, Maurer K, Soong J, Rappaport E, Franke A, Keller A, Winter HS, Mamula P, Piccoli D, Artis D, Sonnenberg GF, Daly M, Sullivan KE, Baldassano RN, Devoto M. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. Gastroenterology 2015; 149:1415-24. [PMID: 26193622 PMCID: PMC4853027 DOI: 10.1053/j.gastro.2015.07.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. METHODS Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. RESULTS Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. CONCLUSIONS In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants.
Collapse
Affiliation(s)
- Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - Noor Dawany
- Department of Biomedical Health Informatics, The Children's Hospital of Philadelphia
| | - Christopher J. Moran
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Massachusetts General Hospital for Children
| | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Germany
| | - Mahdi Sarmady
- Department of Biomedical Health Informatics, The Children's Hospital of Philadelphia
| | - Ariella Sasson
- Department of Biomedical Health Informatics, The Children's Hospital of Philadelphia
| | - Helen Pauly-Hubbard
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - Alejandro Martinez
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - Kelly Maurer
- Division of Immunology and Allergy, The Children's Hospital of Philadelphia
| | - Joanne Soong
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, New York, USA
| | - Eric Rappaport
- Nucleic Acid/PCR Core, The Children's Hospital of Philadelphia
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Saarland University, Germany
| | - Harland S. Winter
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Massachusetts General Hospital for Children
| | - Petar Mamula
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - David Piccoli
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, New York, USA
| | - Gregory F. Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, New York, USA
| | - Mark Daly
- Analytic and Translational Unit Center for Human Genetic Research Department of Medicine, Massachusetts General Hospital,The Broad Institute of MIT and Harvard
| | | | - Robert N. Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Department of Pediatrics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania; Department of Molecular Medicine, University Sapienza, Rome, Italy
| |
Collapse
|
81
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2014. J Allergy Clin Immunol 2015; 135:1132-41. [PMID: 25956014 DOI: 10.1016/j.jaci.2015.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Genetic identification of immunodeficiency syndromes has become more efficient with the availability of whole-exome sequencing, expediting the identification of relevant genes and complementing traditional linkage analysis and homozygosity mapping. New genes defects causing immunodeficiency include phophoglucomutase 3 (PGM3), cytidine 5' triphosphate synthase 1 (CTPS1), nuclear factor κB-inducing kinase (NIK), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10), phosphoinositide-3 kinase regulatory subunit 1 (PIK3R1), IL21, and Jagunal homolog 1 (JAGN1). New case reports expanded the clinical spectrum of gene defects. For example, a specific recombination-activating gene 1 variant protein with partial recombinant activity might produce Omenn syndrome or a common variable immunodeficiency phenotype. Central and peripheral B-cell tolerance was investigated in patients with several primary immunodeficiencies, including common variable immunodeficiency and Wiskott-Aldrich syndrome, to explain the occurrence of autoimmunity and inflammatory disorders. The role of IL-12 and IL-15 in the enhancement of natural killer cell activity was reported. Newborn screening for T-cell deficiency is being implemented in more states and is achieving its goal of defining the true incidence of severe combined immunodeficiency and providing early treatment that offers the highest survival for these patients. Definitive treatment of severe immunodeficiency with both hematopoietic stem cell transplantation and gene therapy was reported to be successful, with increasing definition of conditions needed for optimal outcomes. Progress in HIV infection is directed toward the development of an effective vaccine and the eradication of hidden latent virus reservoirs.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and the Departments of Pediatrics and Pathology, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
82
|
Recent advances in understanding the pathophysiology of primary T cell immunodeficiencies. Trends Mol Med 2015; 21:408-16. [DOI: 10.1016/j.molmed.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
|
83
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|
84
|
Itan Y, Casanova JL. Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front Immunol 2015; 6:142. [PMID: 25883595 PMCID: PMC4381650 DOI: 10.3389/fimmu.2015.00142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/15/2015] [Indexed: 01/06/2023] Open
Abstract
Germline genetic mutations underlie various primary immunodeficiency (PID) diseases. Patients with rare PID diseases (like most non-PID patients and healthy individuals) carry, on average, 20,000 rare and common coding variants detected by high-throughput sequencing. It is thus a major challenge to select only a few candidate disease-causing variants for experimental testing. One of the tools commonly used in the pipeline for estimating a potential PID-candidate gene is to test whether the specific gene is included in the list of genes that were already experimentally validated as PID-causing in previous studies. However, this approach is limited because it cannot detect the PID-causing mutation(s) in the many PID patients carrying causal mutations of as yet unidentified PID-causing genes. In this study, we expanded in silico the list of potential PID-causing candidate genes from 229 to 3,110. We first identified the top 1% of human genes predicted by the human genes connectome to be biologically close to the 229 known PID genes. We then further narrowed down the list of genes by retaining only the most biologically relevant genes, with functionally enriched gene ontology biological categories similar to those for the known PID genes. We validated this prediction by showing that 17 of the 21 novel PID genes published since the last IUIS classification fall into this group of 3,110 genes (p < 10−7). The resulting new extended list of 3,110 predicted PID genes should be useful for the discovery of novel PID genes in patients.
Collapse
Affiliation(s)
- Yuval Itan
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Jean-Laurent Casanova
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA ; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, INSERM U1163 , Paris , France ; Imagine Institute, University Paris Descartes , Paris , France ; Howard Hughes Medical Institute , New York, NY , USA ; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children , Paris , France
| |
Collapse
|
85
|
Tangye SG. Advances in IL-21 biology - enhancing our understanding of human disease. Curr Opin Immunol 2015; 34:107-15. [PMID: 25801685 DOI: 10.1016/j.coi.2015.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Cytokines play critical roles in regulating the development and function of immune cells. Cytokines function by binding specific multimeric receptor complexes and activating intracellular signaling pathways that often involve JAKs and STATs. In addition to contributing to immunity, when production of cytokines is perturbed, they can contribute to disease. IL-21 is a pleiotropic cytokine produced predominantly by CD4(+) T cells and NKT cells. Gene-targeting studies in mice and in vitro analyses of human and murine lymphocytes have revealed central roles of IL-21 in regulating effector functions of T cells, NK cells and B cells. However, recent discoveries of loss-of function mutations in IL21 or IL21R in humans have unveiled unexpected roles for IL-21 in immune regulation. This review will focus on recent advances in IL-21 biology that have highlighted its critical role in normal immunity and how dysregulated IL-21 production can lead to immunodeficiency and autoimmune conditions.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Australia, Darlinghurst, NSW, Australia.
| |
Collapse
|
86
|
Erman B, Bilic I, Hirschmugl T, Salzer E, Çagdas D, Esenboga S, Akcoren Z, Sanal O, Tezcan I, Boztug K. Combined immunodeficiency with CD4 lymphopenia and sclerosing cholangitis caused by a novel loss-of-function mutation affecting IL21R. Haematologica 2015; 100:e216-9. [PMID: 25769540 DOI: 10.3324/haematol.2014.120980] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Baran Erman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria Department of Pediatric Immunology, Hacettepe University of Medicine, Ankara, Turkey
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Deniz Çagdas
- Department of Pediatric Immunology, Hacettepe University of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Department of Pediatric Immunology, Hacettepe University of Medicine, Ankara, Turkey
| | - Zuhal Akcoren
- Department of Pediatric Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozden Sanal
- Department of Pediatric Immunology, Hacettepe University of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Hacettepe University of Medicine, Ankara, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW To summarize our understanding of the biology of T follicular helper (Tfh) cells and how insights into this are being provided by the study of human monogenic immunological diseases. RECENT FINDINGS Antibody production is a key feature of the vertebrate immune system. Antibodies neutralize and clear pathogens, thereby protecting against infectious diseases. Long-lived humoral immunity depends on help provided by Tfh cells, which support the differentiation of antigen-specific B cells into memory and plasma cells. Tfh cells are generated from naïve CD4 T cells following the receipt of inputs from various cell surface receptors. Although genetically modified mice have provided a great understanding of the requirements for generating Tfh cells, it is critical that the requirements for human Tfh cells are also established. This is being achieved by the systematic analysis of humans with monogenic mutations that cause primary immunodeficiencies characterized by impaired humoral immunity following infection or vaccination. SUMMARY The elucidation of the mechanisms that regulate Tfh cell generation, differentiation and function should reveal targets for novel therapeutics that may offer opportunities to manipulate these cells to not only improve humoral immunity in the setting of primary immunodeficiencies but also temper their dysregulation in conditions of antibody-mediated autoimmunity.
Collapse
|
88
|
Willmann KL, Klaver S, Doğu F, Santos-Valente E, Garncarz W, Bilic I, Mace E, Salzer E, Domínguez Conde C, Sic H, Májek P, Banerjee PP, Vladimer GI, Haskoloğlu Ş, Gökalp Bolkent M, Küpesiz A, Condino-Neto A, Colinge J, Superti-Furga G, Pickl WF, van Zelm MC, Eibel H, Orange JS, Ikincioğulları A, Boztuğ K. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun 2014; 5:5360. [PMID: 25406581 PMCID: PMC4263125 DOI: 10.1038/ncomms6360] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022] Open
Abstract
Primary immunodeficiency disorders enable identification of genes with crucial roles in the human immune system. Here we study patients suffering from recurrent bacterial, viral and Cryptosporidium infections, and identify a biallelic mutation in the MAP3K14 gene encoding NIK (NF-κB-inducing kinase). Loss of kinase activity of mutant NIK, predicted by in silico analysis and confirmed by functional assays, leads to defective activation of both canonical and non-canonical NF-κB signalling. Patients with mutated NIK exhibit B-cell lymphopenia, decreased frequencies of class-switched memory B cells and hypogammaglobulinemia due to impaired B-cell survival, and impaired ICOSL expression. Although overall T-cell numbers are normal, both follicular helper and memory T cells are perturbed. Natural killer (NK) cells are decreased and exhibit defective activation, leading to impaired formation of NK-cell immunological synapses. Collectively, our data illustrate the non-redundant role for NIK in human immune responses, demonstrating that loss-of-function mutations in NIK can cause multiple aberrations of lymphoid immunity.
Collapse
Affiliation(s)
- Katharina L. Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Stefanie Klaver
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Figen Doğu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara 06100, Turkey
| | - Elisangela Santos-Valente
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Emily Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Cecilia Domínguez Conde
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Heiko Sic
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg, Freiburg 79180, Germany
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Pinaki P. Banerjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Gregory I. Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Şule Haskoloğlu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara 06100, Turkey
| | - Musa Gökalp Bolkent
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara 06100, Turkey
| | - Alphan Küpesiz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya 07985, Turkey
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Winfried F. Pickl
- Christian Doppler Laboratory for Immunomodulation and Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam 3015GE, The Netherlands
| | - Hermann Eibel
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg, Freiburg 79180, Germany
| | - Jordan S. Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Aydan Ikincioğulları
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara 06100, Turkey
| | - Kaan Boztuğ
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
89
|
Identification of ITK deficiency as a novel genetic cause of idiopathic CD4+ T-cell lymphopenia. Blood 2014; 124:655-7. [PMID: 25061172 DOI: 10.1182/blood-2014-03-564930] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
90
|
Stepensky P, Keller B, Abuzaitoun O, Shaag A, Yaacov B, Unger S, Seidl M, Rizzi M, Weintraub M, Elpeleg O, Warnatz K. Extending the clinical and immunological phenotype of human interleukin-21 receptor deficiency. Haematologica 2014; 100:e72-6. [PMID: 25398835 DOI: 10.3324/haematol.2014.112508] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Baerbel Keller
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Germany
| | | | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Barak Yaacov
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Susanne Unger
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Germany Department of Pathology, University Medical Center Freiburg, Germany
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Germany
| | - Michael Weintraub
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Germany
| |
Collapse
|
91
|
Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, Ouahed J, Wilson DC, Travis SP, Turner D, Klein C, Snapper SB, Muise AM. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 2014; 147:990-1007.e3. [PMID: 25058236 PMCID: PMC5376484 DOI: 10.1053/j.gastro.2014.07.023] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Patients with a diverse spectrum of rare genetic disorders can present with inflammatory bowel disease (monogenic IBD). Patients with these disorders often develop symptoms during infancy or early childhood, along with endoscopic or histological features of Crohn's disease, ulcerative colitis, or IBD unclassified. Defects in interleukin-10 signaling have a Mendelian inheritance pattern with complete penetrance of intestinal inflammation. Several genetic defects that disturb intestinal epithelial barrier function or affect innate and adaptive immune function have incomplete penetrance of the IBD-like phenotype. Several of these monogenic conditions do not respond to conventional therapy and are associated with high morbidity and mortality. Due to the broad spectrum of these extremely rare diseases, a correct diagnosis is frequently a challenge and often delayed. In many cases, these diseases cannot be categorized based on standard histological and immunologic features of IBD. Genetic analysis is required to identify the cause of the disorder and offer the patient appropriate treatment options, which include medical therapy, surgery, or allogeneic hematopoietic stem cell transplantation. In addition, diagnosis based on genetic analysis can lead to genetic counseling for family members of patients. We describe key intestinal, extraintestinal, and laboratory features of 50 genetic variants associated with IBD-like intestinal inflammation. In addition, we provide approaches for identifying patients likely to have these disorders. We also discuss classic approaches to identify these variants in patients, starting with phenotypic and functional assessments that lead to analysis of candidate genes. As a complementary approach, we discuss parallel genetic screening using next-generation sequencing followed by functional confirmation of genetic defects.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, England; Department of Pediatrics, University of Oxford, Oxford, England.
| | - Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, England
| | - Sibylle Koletzko
- Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Neil Shah
- Great Ormond Street Hospital London, London, England; Catholic University, Leuven, Belgium
| | | | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jodie Ouahed
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, Scotland; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Royal Hospital for Sick Children, Edinburgh, Scotland
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, England
| | - Dan Turner
- Pediatric Gastroenterology Unit, Shaare Zedek Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Scott B Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
92
|
Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 2014; 26:454-70. [PMID: 25453225 DOI: 10.1016/j.smim.2014.09.008] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare condition characterized by predisposition to clinical disease caused by weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria, in otherwise healthy individuals with no overt abnormalities in routine hematological and immunological tests. MSMD designation does not recapitulate all the clinical features, as patients are also prone to salmonellosis, candidiasis and tuberculosis, and more rarely to infections with other intramacrophagic bacteria, fungi, or parasites, and even, perhaps, a few viruses. Since 1996, nine MSMD-causing genes, including seven autosomal (IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, ISG15, and IRF8) and two X-linked (NEMO, and CYBB) genes have been discovered. The high level of allelic heterogeneity has already led to the definition of 18 different disorders. The nine gene products are physiologically related, as all are involved in IFN-γ-dependent immunity. These disorders impair the production of (IL12B, IL12RB1, IRF8, ISG15, NEMO) or the response to (IFNGR1, IFNGR2, STAT1, IRF8, CYBB) IFN-γ. These defects account for only about half the known MSMD cases. Patients with MSMD-causing genetic defects may display other infectious diseases, or even remain asymptomatic. Most of these inborn errors do not show complete clinical penetrance for the case-definition phenotype of MSMD. We review here the genetic, immunological, and clinical features of patients with inborn errors of IFN-γ-dependent immunity.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker-Enfants Malades Hospital, Paris, France, EU.
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU
| |
Collapse
|
93
|
Di Fusco D, Izzo R, Figliuzzi MM, Pallone F, Monteleone G. IL-21 as a therapeutic target in inflammatory disorders. Expert Opin Ther Targets 2014; 18:1329-38. [DOI: 10.1517/14728222.2014.945426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|