51
|
Schiff HV, Rivas CM, Pederson WP, Sandoval E, Gillman S, Prisco J, Kume M, Dussor G, Vagner J, Ledford JG, Price TJ, DeFea KA, Boitano S. β-Arrestin-biased proteinase-activated receptor-2 antagonist C781 limits allergen-induced airway hyperresponsiveness and inflammation. Br J Pharmacol 2023; 180:667-680. [PMID: 35735078 PMCID: PMC10311467 DOI: 10.1111/bph.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream β-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized β-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS Our work demonstrates the first biased PAR2 antagonist for β-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.
Collapse
Affiliation(s)
- Hillary V. Schiff
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Candy M. Rivas
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - William P. Pederson
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Estevan Sandoval
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Samuel Gillman
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Joy Prisco
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
| | - Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Center, University of Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Department of Cellular and Molecular Medicine, University of Arizona
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Department of Physiology, University of Arizona
| |
Collapse
|
52
|
Zheng C, Zou Y. Allergen Sensitization in Patients with Skin Diseases in Shanghai, China. J Asthma Allergy 2023; 16:305-313. [PMID: 36970654 PMCID: PMC10038006 DOI: 10.2147/jaa.s402165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Introduction Allergen distribution has obvious geographical characteristics. Understanding local epidemiological data may provide evidence-based strategies for the prevention and management of disease. We investigated the distribution of allergen sensitization in patients with skin diseases in Shanghai, China. Methods Data from tests for serum-specific immunoglobulin E were collected from 714 patients with three skin diseases who visited the Shanghai Skin Disease Hospital from January 2020 to February 2022. The prevalence of 16 allergen species, as well as age, sex, and disease-group differences in allergen sensitization, were investigated. Results Dermatophagoides farinae and Dermatophagoides pteronyssinus were the most common aeroallergen species to cause allergic sensitization in patients with skin diseases, whereas shrimp and crab were the most common food-allergen species. Children were more susceptible to various allergen species. With regard to sex differences, males were sensitized to more allergen species than females. Patients suffering from atopic dermatitis were sensitized to more allergenic species than patients with non-atopic eczema or urticaria. Conclusion Allergen sensitization in patients with skin diseases in Shanghai differed by age, sex, and disease type. Knowing the prevalence of allergen sensitization across age, sex, and disease type may help facilitate diagnostic and intervention efforts, and guide the treatment and management of skin diseases in Shanghai.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Ying Zou, Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Jingan District, Shanghai, 200443, People’s Republic of China, Tel +86-18017336869, Fax +86-21-36803062, Email
| |
Collapse
|
53
|
Structures and Anti-Allergic Activities of Natural Products from Marine Organisms. Mar Drugs 2023; 21:md21030152. [PMID: 36976202 PMCID: PMC10056057 DOI: 10.3390/md21030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, allergic diseases have occurred frequently, affecting more than 20% of the global population. The current first-line treatment of anti-allergic drugs mainly includes topical corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-allergic agents from natural products. High pressure, low temperature, and low/lack of light lead to highly functionalized and diverse functional natural products in the marine environment. This review summarizes the information on anti-allergic secondary metabolites with a variety of chemical structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by MOE to further reveal the potential mechanism for some representative marine anti-allergic natural products to target the H1 receptor. This review may not only provide insight into information about the structures and anti-allergic activities of natural products from marine organisms but also provides a valuable reference for marine natural products with immunomodulatory activities.
Collapse
|
54
|
Moreau A, Gouel-Chéron A, Roland E, McGee K, Plaud B, Blet A. Allergie peranesthésique : revue et guide de bonnes pratiques. ANESTHÉSIE & RÉANIMATION 2023. [DOI: 10.1016/j.anrea.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
55
|
Wang CM, Yang ST, Yang CC, Chiu HY, Lin HY, Tsai ML, Lin HC, Chang YC. Maternal and neonatal risk factors of asthma in children: Nationwide population based study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:182-191. [PMID: 36411206 DOI: 10.1016/j.jmii.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Small population group-based cohorts have found that perinatal factors may contribute to the development of asthma in children. We aimed to investigate maternal and neonatal risk factors for the asthma phenotypes using two databases from the Taiwan's Maternal and Child Health Database (TMCHD) and the National Health Insurance Research Database (NHIRD). METHODS Perinatal data was obtained from 2004 to 2008 in the TMCHD and linked the NHIRD to obtain relevant medical information regarding maternal and neonatal risk factors of three asthma phenotypes which were identified as transient early asthma, persistent asthma, and late-onset asthma. A multivariate logistic regression analysis was conducted to adjust for covariates. RESULTS The percentage of non-asthmatic patients was 77.02% and asthmatic (transient early asthma, late onset asthma, and persistent asthma) patients were 8.96%, 11.64%, and 2.42%, respectively. Maternal risk factors-including Cesarean section, maternal asthma, maternal allergic rhinitis (AR), and premature rupture of membranes-and neonatal risk factors, such as male gender, gestational age 29-37 weeks, ventilator use, antibiotics use, AR, and atopic dermatitis, were associated with the development of these three asthma phenotypes. Twins and a gestational age of 28 weeks or less premature were associated with the development of transient early asthma and persistent asthma, but not late onset asthma. Triplets and above were associated with the development of transient early asthma, but not late onset or persistent asthma. CONCLUSION Various asthma phenotypes have different risk factors; therefore, their distinct risk factors should be identified in order to early diagnosis and treatment.
Collapse
Affiliation(s)
- Chuang-Ming Wang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan.
| | - Shun-Ting Yang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan.
| | - Cheng-Chia Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan.
| | - Hsiao-Yu Chiu
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hsiang-Yu Lin
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Ming-Luen Tsai
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Asia University Hospital, Asia University, Taichung 41354, Taiwan.
| | - Yu-Chia Chang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan; Department of Long Term Care, College of Health and Nursing, National Quemoy University, Kinmen County 892009, Taiwan
| |
Collapse
|
56
|
Li J, Xu Q, Cheng W, Zhao L, Liu S, Gao Z, Xu X, Ye C, You H. Weakly Supervised Collaborative Learning for Airborne Pollen Segmentation and Classification from SEM Images. Life (Basel) 2023; 13:247. [PMID: 36676197 PMCID: PMC9867018 DOI: 10.3390/life13010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Existing pollen identification methods heavily rely on the scale and quality of pollen images. However, there are many impurities in real-world SEM images that should be considered. This paper proposes a collaborative learning method to jointly improve the performance of pollen segmentation and classification in a weakly supervised manner. It first locates pollen regions from the raw images based on the detection model. To improve the classification performance, we segmented the pollen grains through a pre-trained U-Net using unsupervised pollen contour features. The segmented pollen regions were fed into a deep convolutional neural network to obtain the activation maps, which were used to further refine the segmentation masks. In this way, both segmentation and classification models can be collaboratively trained, supervised by just pollen contour features and class-specific information. Extensive experiments on real-world datasets were conducted, and the results prove that our method effectively avoids impurity interference and improves pollen identification accuracy (86.6%) under the limited supervision (around 1000 images with image-level labels).
Collapse
Affiliation(s)
- Jianqiang Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Qinlan Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Wenxiu Cheng
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Linna Zhao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Suqin Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhengkai Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Xi Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Caihua Ye
- Beijing Meteorological Service Center, Beijing 100089, China
| | - Huanling You
- Beijing Meteorological Service Center, Beijing 100089, China
| |
Collapse
|
57
|
Wang X, Zhou N, Zhi Y. Association between exposure to greenness and atopic march in children and adults-A systematic review and meta-analysis. Front Public Health 2023; 10:1097486. [PMID: 36699899 PMCID: PMC9868616 DOI: 10.3389/fpubh.2022.1097486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Allergic diseases are a global public health problem. Food allergy, atopic dermatitis (AD), allergic rhinoconjunctivitis, allergic rhinitis (AR) and asthma represent the natural course of allergic diseases, also known as the "atopic march". In recent years, a large number of studies have been published on the association between greenness exposure and allergic diseases. However, systematic reviews on the association between greenness exposure and multiple allergic diseases or atopic march are lacking. Methods In this study, PubMed, EMBASE, ISI Web of Science, and Scopus were systematically searched. Meta-analyses were performed if at least three studies reported risk estimates for the same outcome and exposure measures. Results Of 2355 records, 48 studies were included for qualitative review. Five birth cohort studies, five cross-sectional studies, and one case-control study were included for asthma meta-analysis, respectively. Four birth cohort studies were included for AR meta-analysis. Our results support that exposure to a greener environment at birth reduces the risk of asthma and AR in childhood. In addition, higher greenness exposure was associated with decreased odds of current asthma in children. Discussion There was a large heterogeneity among the included studies and most of them did not specify the vegetation type and causative allergens. Therefore the study results need to be further validated. In addition, a small number of studies evaluated the association between greenness and food allergy, AD and allergic rhinoconjunctivitis. More research is needed to strengthen our understanding of the association between greenness and allergic diseases.
Collapse
|
58
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
59
|
Schedel M, Leach SM, Strand MJ, Danhorn T, MacBeth M, Faino AV, Lynch AM, Winn VD, Munoz LL, Forsberg SM, Schwartz DA, Gelfand EW, Hauk PJ. Molecular networks in atopic mothers impact the risk of infant atopy. Allergy 2023; 78:244-257. [PMID: 35993851 DOI: 10.1111/all.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.
Collapse
Affiliation(s)
- Michaela Schedel
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pulmonary Medicine, University Medicine Essen-Ruhrlandklinik, Essen, Germany.,Department of Pulmonary Medicine, University Medicine Essen, University Hospital, Essen, Germany
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Matthew J Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Department of Pharmacology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Morgan MacBeth
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anna V Faino
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Biostatistics, Epidemiology and Research Core, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne M Lynch
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Lindsay L Munoz
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Shannon M Forsberg
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Thoracic Oncology, University of Colorado Cancer Center, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erwin W Gelfand
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Pia J Hauk
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Section Allergy/Immunology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
60
|
Hosoya K, Komachi T, Masaki K, Suzaki I, Saeki H, Kanda N, Nozaki M, Kamide Y, Matsuwaki Y, Kobayashi Y, Ogino E, Osada SI, Usukura N, Kurumagawa T, Ninomia J, Asako M, Nakamoto K, Yokoi H, Ohyama M, Tanese K, Kanzaki S, Fukunaga K, Ebisawa M, Okubo K. Barrier Factors of Adherence to Dupilumab Self-Injection for Severe Allergic Disease: A Non-Interventional Open-Label Study. Patient Prefer Adherence 2023; 17:861-872. [PMID: 37009430 PMCID: PMC10064874 DOI: 10.2147/ppa.s389865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE The status of dupilumab self-injection at home is not well understood. We therefore aimed to identify the barriers to adherence to dupilumab self-injection. PATIENTS AND METHODS This non-interventional open-label study was conducted between March 2021 and July 2021. Patients with atopic dermatitis, bronchial asthma, and chronic rhinosinusitis with nasal polyps receiving dupilumab, from 15 sites, were requested to complete a self-administered questionnaire regarding the frequency and effectiveness of dosing as well as their use and satisfaction with dupilumab. Barriers to adherence were assessed using the Adherence Starts with Knowledge-12. RESULTS We included 331 patients who used dupilumab for atopic dermatitis (n = 164), chronic rhinosinusitis with nasal polyps (n = 102), and bronchial asthma (n = 65). The median efficacy of dupilumab scored 9.3 on the visual analog scale. Overall, 85.5% of the patients self-injected dupilumab, and 70.7% perfectly complied with the established injection dates. The pre-filled pen was significantly superior to the conventional syringe in terms of usability, operability, ease of pushing the plunger, and patient satisfaction. However, the pre-filled pen caused more pain during self-injection than did the syringe. Multivariate logistic regression analysis showed that adherence decreased with longer dupilumab treatment duration (p = 0.017) and was not associated with age, sex, underlying disease, or device type. There was a difference in responses related to "inconvenience/forgetfulness" between the good and poor adherence groups. CONCLUSION The pre-filled dupilumab pen was superior to the syringe in terms of usability, operability, ease of pushing the plunger, and satisfaction. Repetitive instructions are recommended for preventing poor adherence to dupilumab self-injection.
Collapse
Affiliation(s)
- Kei Hosoya
- Nippon Medical School, Musashi Kosugi Hospital, Kanagawa, Japan
- Correspondence: Kei Hosoya, Nippon Medical School, Musashi Kosugi Hospital, 1-383 Kosugimachi, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan, Tel +81-44-733-5181, Fax +81-44-711-8713, Email
| | - Taro Komachi
- Department of Otolaryngology, Nippon Medical School, Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | | | - Isao Suzaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Showa University, School of Medicine, Tokyo, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nihon Medical School, Tokyo, Japan
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School, Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | | | - Yosuke Kamide
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center for Allergy and Rheumatology, Kanagawa, Japan
| | | | | | | | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan
| | - Norihiro Usukura
- Department of Otolaryngology, Head and Neck Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | | | | | - Mikiya Asako
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hidenori Yokoi
- Department of Otolaryngology, Head and Neck Surgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Keio Allergy Center, Keio University Hospital, Tokyo, Japan
| | - Sho Kanzaki
- Keio Allergy Center, Keio University Hospital, Tokyo, Japan
| | | | - Motohiro Ebisawa
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center for Allergy and Rheumatology, Kanagawa, Japan
| | - Kimihiro Okubo
- Department of Otolaryngology, Head and Neck Surgery, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
61
|
Bacillus subtilis Provides Long-Term Protection in a Murine Model of Allergic Lung Disease by Influencing Bacterial Composition. ALLERGIES 2022. [DOI: 10.3390/allergies3010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Probiotics are an attractive target for reducing the incidence of allergic disease. Bacillus subtilis is a gut-associated probiotic bacteria that can suppress allergic lung disease; however, it is not clear for how long this protection lasts. We exposed C57Bl/6 mice to B. subtilis via oral gavage and challenged them with intranasal house-dust mite for up to 8 weeks. We found that B. subtilis treatment was able to provide protection from eosinophil infiltration of the airways for 3 weeks. This loss of protection correlated with an increase in the eosinophil chemoattractant CCL24. Additionally, we demonstrate that B. subtilis treatment altered the bacterial composition by increasing the phylum Bacteroidetes and Verrucomicorbiota. The phylum Verrucomicorbiota was reduced in B. subtilis-treated mice at 8 weeks when protection was lost. These results support B. subtilis as a prophylactic for preventing the production of allergic lung disease and highlights that protection can last up to 3 weeks. This work also expands our understanding of how B. subtilis mediates protection and that in addition to modifying the immune system it is also altering the host microbiota.
Collapse
|
62
|
Zhao LN, Li JQ, Cheng WX, Liu SQ, Gao ZK, Xu X, Ye CH, You HL. Simulation Palynologists for Pollinosis Prevention: A Progressive Learning of Pollen Localization and Classification for Whole Slide Images. BIOLOGY 2022; 11:biology11121841. [PMID: 36552349 PMCID: PMC9775008 DOI: 10.3390/biology11121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Existing API approaches usually independently leverage detection or classification models to distinguish allergic pollens from Whole Slide Images (WSIs). However, palynologists tend to identify pollen grains in a progressive learning manner instead of the above one-stage straightforward way. They generally focus on two pivotal problems during pollen identification. (1) Localization: where are the pollen grains located? (2) Classification: which categories do these pollen grains belong to? To perfectly mimic the manual observation process of the palynologists, we propose a progressive method integrating pollen localization and classification to achieve allergic pollen identification from WSIs. Specifically, data preprocessing is first used to cut WSIs into specific patches and filter out blank background patches. Subsequently, we present the multi-scale detection model to locate coarse-grained pollen regions (targeting at "pollen localization problem") and the multi-classifiers combination to determine the fine-grained category of allergic pollens (targeting at "pollen classification problem"). Extensive experimental results have demonstrated the feasibility and effectiveness of our proposed method.
Collapse
Affiliation(s)
- Lin-Na Zhao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jian-Qiang Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Wen-Xiu Cheng
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Su-Qin Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Zheng-Kai Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Xi Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Correspondence:
| | - Cai-Hua Ye
- Beijing Meteorological Service Center, Beijing 100089, China
| | - Huan-Ling You
- Beijing Meteorological Service Center, Beijing 100089, China
| |
Collapse
|
63
|
Chernikova DA, Zhao MY, Jacobs JP. Microbiome Therapeutics for Food Allergy. Nutrients 2022; 14:5155. [PMID: 36501184 PMCID: PMC9738594 DOI: 10.3390/nu14235155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022] Open
Abstract
The prevalence of food allergies continues to rise, and with limited existing therapeutic options there is a growing need for new and innovative treatments. Food allergies are, in a large part, related to environmental influences on immune tolerance in early life, and represent a significant therapeutic challenge. An expanding body of evidence on molecular mechanisms in murine models and microbiome associations in humans have highlighted the critical role of gut dysbiosis in the pathogenesis of food allergies. As such, the gut microbiome is a rational target for novel strategies aimed at preventing and treating food allergies, and new methods of modifying the gastrointestinal microbiome to combat immune dysregulation represent promising avenues for translation to future clinical practice. In this review, we discuss the intersection between the gut microbiome and the development of food allergies, with particular focus on microbiome therapeutic strategies. These emerging microbiome approaches to food allergies are subject to continued investigation and include dietary interventions, pre- and probiotics, microbiota metabolism-based interventions, and targeted live biotherapeutics. This exciting frontier may reveal disease-modifying food allergy treatments, and deserves careful study through ongoing clinical trials.
Collapse
Affiliation(s)
- Diana A. Chernikova
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Y. Zhao
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
64
|
D'Auria E, Acunzo M, Salvatore S, Grazi R, Agosti M, Vandenplas Y, Zuccotti G. Biotics in atopic diseases: state of the art and future perspectives. Minerva Pediatr (Torino) 2022; 74:688-702. [PMID: 36149096 DOI: 10.23736/s2724-5276.22.07010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prevalence of allergic diseases has growing in recent decades, being a significant burden for patients and their families. Different environmental factors, acting in early life, can significantly affect the timing and diversity of bacterial colonization and the immune system development. Growing evidence points to a correlation between early life microbial perturbation and development of allergic diseases. Besides, changes in the microbiota in one body site may influence other microbiota communities at distance by different mechanisms, including microbial-derived metabolites, mainly the short chain fatty acids (SCFA). Hence, there has been an increasing interest on the role of "biotics" (probiotics, prebiotics, symbiotics and postbiotics) in shaping dysbiosis and modulating allergic risk. Systemic type 2 inflammation is emerging as a common pathogenetic pathway of allergic diseases, intertwining communication with the gut mcirobiota. The aim of this review was to provide an update overview of the current knowledge of biotics in prevention and treatment of allergic diseases, also addressing research gaps which need to be filled.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Salvatore
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Roberta Grazi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Massimo Agosti
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Yvan Vandenplas
- KidZ Health Castle, Free University of Brussels, Brussels, Belgium
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
65
|
Topalušić I, Stipić Marković A, Artuković M, Dodig S, Bucić L, Lugović Mihić L. Divergent Trends in the Prevalence of Children's Asthma, Rhinitis and Atopic Dermatitis and Environmental Influences in the Urban Setting of Zagreb, Croatia. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121788. [PMID: 36553232 PMCID: PMC9777289 DOI: 10.3390/children9121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies have reported that the allergy epidemic in developed countries has reached its plateau, while a rise is expected in developing ones. Our aim was to compare the prevalence of allergic diseases among schoolchildren from the city of Zagreb, Croatia after sixteen years. METHODS Symptoms of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) and risk factors were assessed using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. An allergic profile was determined by a skin prick test. RESULTS The prevalence of current, ever-in-a-lifetime and diagnosed AR of 35.7%, 42.5% and 14.9% and AD of 18.1%, 37.1% and 31.1% demonstrated a significant increase. The asthma prevalence has remained unchanged. The allergen sensitivity rate has remained similar, but pollens have become dominant. Mould and dog exposure are risks for asthma (OR 14.505, OR 2.033). Exposure to cat allergens is protective in AR (OR 0.277). Parental history of allergies is a risk factor in all conditions. CONCLUSION Over sixteen years, the prevalence of AR and AD, but not of asthma, have increased. The proportion of atopy has remained high. The AR/AD symptom rise is probably a consequence of increased pollen sensitisation united with high particulate matter concentrations. The stable asthma trend could be a result of decreasing exposures to indoor allergens.
Collapse
Affiliation(s)
- Iva Topalušić
- Division of Pulmology, Immunology, Allergology and Rheumatology, Department of Paediatrics, University Children’s Hospital Zagreb, 10 000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-98-1857-599
| | - Asja Stipić Marković
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10 000 Zagreb, Croatia
| | - Marinko Artuković
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10 000 Zagreb, Croatia
| | - Slavica Dodig
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Lovro Bucić
- Division for Environmental Health, Croatian Institute for Public Health, 10 000 Zagreb, Croatia
| | - Liborija Lugović Mihić
- Department of Dematology, School of Dental Medicine, Clinical Hospital Center Sisters of Mercy, 10 000 Zagreb, Croatia
| |
Collapse
|
66
|
Fan X, Zang T, Dai J, Wu N, Hope C, Bai J, Liu Y. The associations of maternal and children's gut microbiota with the development of atopic dermatitis for children aged 2 years. Front Immunol 2022; 13:1038876. [PMID: 36466879 PMCID: PMC9714546 DOI: 10.3389/fimmu.2022.1038876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND It is critical to investigate the underlying pathophysiological mechanisms in the development of atopic dermatitis. The microbiota hypothesis suggested that the development of allergic diseases may be attributed to the gut microbiota of mother-offspring pairs. The purpose of this study was to investigate the relationship among maternal-offspring gut microbiota and the subsequent development of atopic dermatitis in infants and toddlers at 2 years old. METHODS A total of 36 maternal-offspring pairs were enrolled and followed up to 2 years postpartum in central China. Demographic information and stool samples were collected perinatally from pregnant mothers and again postpartum from their respective offspring at the following time intervals: time of birth, 6 months, 1 year and 2 years. Stool samples were sequenced with the 16S Illumina MiSeq platform. Logistic regression analysis was used to explore the differences in gut microbiota between the atopic dermatitis group and control group. RESULTS Our results showed that mothers of infants and toddlers with atopic dermatitis had higher abundance of Candidatus_Stoquefichus and Pseudomonas in pregnancy and that infants and toddlers with atopic dermatitis had higher abundance of Eubacterium_xylanophilum_group at birth, Ruminococcus_gauvreauii_group at 1 year and UCG-002 at 2 years, and lower abundance of Gemella and Veillonella at 2 years. Additionally, the results demonstrated a lower abundance of Prevotella in mothers of infants and toddlers with atopic dermatitis compared to mothers of the control group, although no statistical difference was found in the subsequent analysis. CONCLUSION The results of this study support that gut microbiota status among mother-offspring pairs appears to be associated with the pathophysiological development of pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Jiamiao Dai
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Chloe Hope
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
67
|
Cheng R, Zhang Y, Yang Y, Ren L, Li J, Wang Y, Shen X, He F. Maternal gestational Bifidobacterium bifidum TMC3115 treatment shapes construction of offspring gut microbiota and development of immune system and induces immune tolerance to food allergen. Front Cell Infect Microbiol 2022; 12:1045109. [PMID: 36452299 PMCID: PMC9701730 DOI: 10.3389/fcimb.2022.1045109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2024] Open
Abstract
In this study we aimed to determine whether treatment with maternal Bifidobacterium bifidum TMC3115 could affect the composition of the gut microbiota and the development of the immune system and intestinal tract of offspring, and protect the offspring from IgE-mediated allergic disease. Pregnant BALB/c mice were gavaged with TMC3115 until delivery. Offspring were sensitized with ovalbumin from postnatal days 21 to 49. After maternal treatment with TMC3115, the microbiota of the offspring's feces, intestinal contents, and stomach contents (a proxy for breast milk) at the newborn and weaning stages exhibited the most change, and levels of immunoglobulin in the sera and stomach contents and of splenic cytokines, as well as the mRNA levels of colonic intestinal development indicators were all significantly altered in offspring at different stages. After sensitization with ovalbumin, there were no significant changes in the levels of serum IgE or ovalbumin-specific IgE/IgG1 in the TMC3115 group; however, IgM, the expression of intestinal development indicators, and the production of fecal short chain fatty acid (SCFA) were significantly increased, as were the relative abundances of Lactobacillus and the Lachnospiraceae NK4A136 group. Our results suggested that maternal treatment with TMC3115 could have a profound modulatory effect on the composition of the gut microbiota and the development of the immune system and intestinal tissue in offspring at different stages of development, and may induce immune tolerance to allergens in ovalbumin-stimulated offspring by modulating the gut microbiota and SCFA production.
Collapse
Affiliation(s)
- Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Ren
- Department of Research and Development, Hebei Inatural Bio-tech Co., Ltd, Shijiazhuang, Hebei, China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimei Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
68
|
SÜLEYMAN A, GULER N. Is anaphylaxis with egg a risk factor for propofol sensitivity? GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.21.04673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
69
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
70
|
Benamar M, Harb H, Chen Q, Wang M, Chan TMF, Fong J, Phipatanakul W, Cunningham A, Ertem D, Petty CR, Mousavi AJ, Sioutas C, Crestani E, Chatila TA. A common IL-4 receptor variant promotes asthma severity via a T reg cell GRB2-IL-6-Notch4 circuit. Allergy 2022; 77:3377-3387. [PMID: 35841382 PMCID: PMC9617759 DOI: 10.1111/all.15444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The mechanisms by which genetic and environmental factors interact to promote asthma remain unclear. Both the IL-4 receptor alpha chain R576 (IL-4RαR576) variant and Notch4 license asthmatic lung inflammation by allergens and ambient pollutant particles by subverting lung regulatory T (Treg ) cells in an IL-6-dependent manner. OBJECTIVE We examined the interaction between IL-4RαR576 and Notch4 in promoting asthmatic inflammation. METHODS Peripheral blood mononuclear cells (PBMCs) of asthmatics were analyzed for T helper type 2 cytokine production and Notch4 expression on Treg cells as a function of IL4RR576 allele. The capacity of IL-4RαR576 to upregulate Notch4 expression on Treg cells to promote severe allergic airway inflammation was further analyzed in genetic mouse models. RESULTS Asthmatics carrying the IL4RR576 allele had increased Notch4 expression on their circulating Treg cells as a function of disease severity and serum IL-6. Mice harboring the Il4raR576 allele exhibited increased Notch4-dependent allergic airway inflammation that was inhibited upon Treg cell-specific Notch4 deletion or treatment with an anti-Notch4 antibody. Signaling via IL-4RαR576 upregulated the expression in lung Treg cells of Notch4 and its downstream mediators Yap1 and beta-catenin, leading to exacerbated lung inflammation. This upregulation was dependent on growth factor receptor-bound protein 2 (GRB2) and IL-6 receptor. CONCLUSION These results identify an IL-4RαR576-regulated GRB2-IL-6-Notch4 circuit that promotes asthma severity by subverting lung Treg cell function.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Hani Harb
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
- Institute for Medical Microbiology and Virology, Technical
University Dresden, Germany
| | - Qian Chen
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Muyun Wang
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Tsz Man Fion Chan
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Jason Fong
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Amparito Cunningham
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Deniz Ertem
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Carter R. Petty
- Institutional Centers for Clinical and Translational
Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Amirhosein J. Mousavi
- Department of Civil and Environmental Engineering,
University of Southern California, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering,
University of Southern California, CA, USA
| | - Elena Crestani
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital,
Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston,
MA, USA
| |
Collapse
|
71
|
Melén E, Koppelman GH, Vicedo-Cabrera AM, Andersen ZJ, Bunyavanich S. Allergies to food and airborne allergens in children and adolescents: role of epigenetics in a changing environment. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:810-819. [PMID: 35985346 DOI: 10.1016/s2352-4642(22)00215-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases affect millions of children and adolescents worldwide. In this Review, we focus on allergies to food and airborne allergens and provide examples of prevalence trends during a time when climate change is of increasing concern. Profound environmental changes have affected natural systems in terms of biodiversity loss, air pollution, and climate. We discuss the potential links between these changes and allergic diseases in children, and the clinical implications. Several exposures of relevance for allergic disease also correlate with epigenetic changes such as DNA methylation. We propose that epigenetics could be a promising tool by which exposures and hazards related to a changing environment can be captured. Epigenetics might also provide promising biomarkers and help to elucidate the mechanisms related to allergic disease initiation and progress.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology and Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, Netherlands
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | | | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
72
|
|
73
|
Tong S, Beggs PJ, Davies JM, Jiang F, Kinney PL, Liu S, Yin Y, Ebi KL. Compound impacts of climate change, urbanization and biodiversity loss on allergic disease. Int J Epidemiol 2022:6760684. [PMID: 36228124 DOI: 10.1093/ije/dyac197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Centre Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Fan Jiang
- Department of Child Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, USA
| |
Collapse
|
74
|
Pfaar O, Ankermann T, Augustin M, Bubel P, Böing S, Brehler R, Eng PA, Fischer PJ, Gerstlauer M, Hamelmann E, Jakob T, Kleine-Tebbe J, Kopp MV, Lau S, Mülleneisen N, Müller C, Nemat K, Pfützner W, Saloga J, Strömer K, Schmid-Grendelmeier P, Schuster A, Sturm GJ, Taube C, Szépfalusi Z, Vogelberg C, Wagenmann M, Wehrmann W, Werfel T, Wöhrl S, Worm M, Wedi B. Guideline on allergen immunotherapy in IgE-mediated allergic diseases: S2K Guideline of the German Society of Allergology and Clinical Immunology (DGAKI), Society of Pediatric Allergology and Environmental Medicine (GPA), Medical Association of German Allergologists (AeDA), Austrian Society of Allergology and Immunology (ÖGAI), Swiss Society for Allergology and Immunology (SSAI), German Dermatological Society (DDG), German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), German Society of Pediatrics and Adolescent Medicine (DGKJ), Society of Pediatric Pulmonology (GPP), German Respiratory Society (DGP), German Professional Association of Otolaryngologists (BVHNO), German Association of Paediatric and Adolescent Care Specialists (BVKJ), Federal Association of Pneumologists, Sleep and Respiratory Physicians (BdP), Professional Association of German Dermatologists (BVDD). Allergol Select 2022; 6:167-232. [PMID: 36178453 PMCID: PMC9513845 DOI: 10.5414/alx02331e] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg
| | | | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg, Hamburg
| | | | - Sebastian Böing
- Specialized Practice in Pneumology, Allergology and Sleep Medicine, Düsseldorf/Meerbusch
| | - Randolf Brehler
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Peter A. Eng
- Section of Pediatric Pulmonology and Allergy Children’s Hospital, Aarau, Switzerland
| | - Peter J. Fischer
- Practice for Pediatric and Adolescent Medicine m.S. Allergology and Pediatric Pneumology, Schwäbisch Gmünd
| | - Michael Gerstlauer
- Paediatric Pulmonology and Allergology, University Medical Center Augsburg, Augsburg
| | - Eckard Hamelmann
- Department of Paediatrics, Children‘s Center Bethel, University Bielefeld, Bielefeld
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic & Research Center, Berlin, Germany
| | - Matthias Volkmar Kopp
- Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Susanne Lau
- Charité Universitätsmedizin Berlin, Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin
| | | | - Christoph Müller
- Medical Center – University of Freiburg, Center for Pediatrics, Department of General Pediatrics, Adolescent Medicine and Neonatology, Freiburg
| | - Katja Nemat
- Pediatric Pneumology and Allergology (medical practice), Children’s Center Dresden-Friedrichstadt (Kid), Dresden
- University AllergyCenter Dresden, University Hospital Dresden (UKD), Dresden
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, University Clinic, Philipps-Universität Marburg, Marburg
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz
| | | | | | - Antje Schuster
- Department of Pediatrics, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Gunter Johannes Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Allergy Outpatient Clinic Reumannplatz, Vienna, Austria
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen – Ruhrlandklinik, Essen, Germany
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christian Vogelberg
- Department of Pediatric Pneumology and Allergology, University Hospital Carl Gustav Carus Dresden, Technical, University Dresden, Dresden
| | - Martin Wagenmann
- Department of Otorhinolaryngology (HNO-Klinik), Düsseldorf University Hospital (UKD), Düsseldorf
| | | | - Thomas Werfel
- Department of Dermatology & Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Margitta Worm
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology and Allergy, Berlin
| | - Bettina Wedi
- Department of Dermatology & Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
75
|
Kelly MS, Bunyavanich S, Phipatanakul W, Lai PS. The Environmental Microbiome, Allergic Disease, and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2206-2217.e1. [PMID: 35750322 PMCID: PMC9704440 DOI: 10.1016/j.jaip.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 04/26/2023]
Abstract
The environmental microbiome represents the entirety of the microbes and their metabolites that we encounter in our environments. A growing body of evidence supports the role of the environmental microbiome in risk for and severity of allergic diseases and asthma. The environmental microbiome represents a ubiquitous, lifelong exposure to non-self antigens. During the critical window between birth and 1 year of life, interactions between our early immune system and the environmental microbiome have 2 consequences: our individual microbiome is populated by environmental microbes, and our immune system is trained regarding which antigens to tolerate. During this time, a diversity of exposures appears largely protective, dramatically decreasing the risk of developing allergic diseases and asthma. As we grow older, our interactions with the environmental microbiome change. While it continues to exert influence over the composition of the human microbiome, the environmental microbiome becomes increasingly a source for antigenic stimulation and infection. The same microbial exposure protective against disease development may exacerbate disease severity. Although much has been learned about the importance of the environmental microbiome in allergic disease, much more remains to be understood about these complicated interactions between our environment, our microbiome, our immune system, and disease.
Collapse
Affiliation(s)
- Michael S Kelly
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Peggy S Lai
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Mass; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
76
|
Reichherzer A, Wargocki P, Mayer F, Norrefeldt V, Herbig B. Increased self-reported sensitivity to environmental stimuli and its effects on perception of air quality and well-being. Int J Hyg Environ Health 2022; 246:114045. [DOI: 10.1016/j.ijheh.2022.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
|
77
|
Prenzel F, Treudler R, Lipek T, vom Hove M, Kage P, Kuhs S, Kaiser T, Bastl M, Bumberger J, Genuneit J, Hornick T, Klotz S, Zarnowski J, Boege M, Zebralla V, Simon JC, Dunker S. Invasive Growth of Ailanthus altissima Trees is Associated with a High Rate of Sensitization in Atopic Patients. J Asthma Allergy 2022; 15:1217-1226. [PMID: 36071746 PMCID: PMC9443999 DOI: 10.2147/jaa.s373177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Freerk Prenzel
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Pediatrics, Leipzig, Germany
| | - Regina Treudler
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Dermatology, Venerology and Allergy, Leipzig, Germany
| | - Tobias Lipek
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Pediatrics, Leipzig, Germany
| | - Maike vom Hove
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Pediatrics, Leipzig, Germany
| | - Paula Kage
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Dermatology, Venerology and Allergy, Leipzig, Germany
| | - Simone Kuhs
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig, Germany
| | - Thorsten Kaiser
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig, Germany
| | - Maximilian Bastl
- Medical University of Vienna, Department of Otorhinolaryngology, Vienna, Austria
| | - Jan Bumberger
- Helmholtz-Centre for Environmental Research (UFZ), Department Monitoring and Exploration Technologies, Leipzig, Germany
- Helmholtz-Centre for Environmental Research (UFZ), Research Data Management, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle, Jena, Leipzig, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
- German Center for Child and Youth Health, Leipzig/ Dresden, Dresden, Germany
| | - Thomas Hornick
- German Centre for Integrative Biodiversity Research (iDiv) Halle, Jena, Leipzig, Germany
- Helmholtz-Centre for Environmental Research (UFZ), Department Physiological Diversity, Leipzig, Germany
| | - Stefan Klotz
- German Centre for Integrative Biodiversity Research (iDiv) Halle, Jena, Leipzig, Germany
- Helmholtz-Centre for Environmental Research (UFZ), Department Community Ecology, Halle, Germany
| | - Julia Zarnowski
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Dermatology, Venerology and Allergy, Leipzig, Germany
| | - Maren Boege
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Otorhinolaryngology, Head and Neck Surgery, Leipzig, Germany
| | - Veit Zebralla
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Otorhinolaryngology, Head and Neck Surgery, Leipzig, Germany
| | - Jan-Christoph Simon
- Leipziger Interdisciplinary Center for Allergy (LICA), Comprehensive Allergy Center, Leipzig, Germany
- University of Leipzig, Medical Center, Department of Dermatology, Venerology and Allergy, Leipzig, Germany
| | - Susanne Dunker
- German Centre for Integrative Biodiversity Research (iDiv) Halle, Jena, Leipzig, Germany
- Helmholtz-Centre for Environmental Research (UFZ), Department Physiological Diversity, Leipzig, Germany
- Correspondence: Susanne Dunker, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, Tel +49 341 9733170, Email
| |
Collapse
|
78
|
Somoza ML, Pérez-Sánchez N, Torres-Rojas I, Martín-Pedraza L, Blanca-López N, Victorio Puche L, Abel Fernández González E, López Sánchez JD, Fernández-Sánchez J, Fernández-Caldas E, Villalba M, Ruano FJ, Cornejo-García JA, Canto G, Blanca M. Sensitisation to Pollen Allergens in Children and Adolescents of Different Ancestry Born and Living in the Same Area. J Asthma Allergy 2022; 15:1359-1367. [PMID: 36189188 PMCID: PMC9525024 DOI: 10.2147/jaa.s370279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Allergy can start at early ages, with genetic and environmental factors contributing to its development. Aim The study aimed to describe the pattern of sensitisation and allergy in children and adolescents of Spanish versus Moroccan ancestry but born in the same rural area of Spain. Methods Participants were children and adolescents (3–19 years) of Spanish or Moroccan descent, born in Blanca, Murcia (Spain). A detailed questionnaire was completed, and skin prick tests were performed to assess reactions to the most prevalent pollen allergens (O. europaea, P. pratense, S. kali, C. arizonica, P. acerifolia, A. vulgaris and P. judaica) plus molecular components Ole e 1 and Ole e 7. The association with ancestry was verified by studying participants’ parents. Results The study included 693 participants: 48% were aged 3–9 years and 52%, 10–19 years; 80% were of Spanish descent and 20% of Moroccan descent. Sensitisation to Olea europaea, Phleum pratense, Salsola kali and Cupressus arizonica were slightly higher in the Spanish group. The only significant differences were observed in sensitisation to Ole e 1 (p=0.02). Rhinitis, conjunctivitis, and rhinitis plus asthma were significantly higher in the Spanish group (p=0.03, p=0.02, p=0.007, respectively). The sensitisation pattern differed between Spanish and Moroccan parents, and between Moroccan parents and their children, but not between Spanish parents and their children. Conclusion Both environment and ancestry may influence sensitisation and symptoms. Although the environment seems to have a stronger influence, other factors may contribute to the differences in prevalence and in the clinical entities in people of Spanish versus Moroccan descent.
Collapse
Affiliation(s)
- Maria Luisa Somoza
- Allergy Department, Infanta Leonor University Hospital, Madrid, Spain
- Correspondence: Maria Luisa Somoza, Email
| | - Natalia Pérez-Sánchez
- Allergy Department, Hospital Regional Universitario de Málaga, Málaga-IBIMA (FIMABIS), Málaga, Spain
| | | | - Laura Martín-Pedraza
- Allergy Department, Fundación para la Investigación e Innovación Biomédica (FIIB) de los Hospitales Universitarios Infanta Leonor y Sureste, Madrid, Spain
| | | | | | | | | | - Javier Fernández-Sánchez
- Allergy Department, General University Hospital of Alicante- ISABIAL, Alicante, Spain
- Clinical Medicine Department, Miguel Hernandez University, Alicante, Spain
| | - Enrique Fernández-Caldas
- R&D Department, Inmunotek Laboratories, Madrid, Spain
- Division of Allergy and Immunology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Gabriela Canto
- Allergy Department, Infanta Leonor University Hospital, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Blanca
- Allergy Department, Fundación para la Investigación e Innovación Biomédica (FIIB) de los Hospitales Universitarios Infanta Leonor y Sureste, Madrid, Spain
| |
Collapse
|
79
|
(R)Evolution in Allergic Rhinitis Add-On Therapy: From Probiotics to Postbiotics and Parabiotics. J Clin Med 2022; 11:jcm11175154. [PMID: 36079081 PMCID: PMC9456659 DOI: 10.3390/jcm11175154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Starting from the “Hygiene Hypothesis” to the “Microflora hypothesis” we provided an overview of the symbiotic and dynamic equilibrium between microbiota and the immune system, focusing on the role of dysbiosis in atopic march, particularly on allergic rhinitis. The advent of deep sequencing technologies and metabolomics allowed us to better characterize the microbiota diversity between individuals and body sites. Each body site, with its own specific environmental niches, shapes the microbiota conditioning colonization and its metabolic functionalities. The analysis of the metabolic pathways provides a mechanistic explanation of the remote mode of communication with systems, organs, and microflora of other body sites, including the ecosystem of the upper respiratory tract. This axis may have a role in the development of respiratory allergic disease. Notably, the microbiota is significant in the development and maintenance of barrier function; influences hematopoiesis and innate immunity; and shows its critical roles in Th1, Th2, and Treg production, which are necessary to maintain immunological balance and promote tolerance, taking part in every single step of the inflammatory cascade. These are microbial biotherapy foundations, starting from probiotics up to postbiotics and parabiotics, in a still-ongoing process. When considering the various determinants that can shape microbiota, there are several factors to consider: genetic factors, environment, mode of delivery, exposure to antibiotics, and other allergy-unrelated diseases. These factors hinder the engraftment of probiotic strains but may be upgradable with postbiotic and parabiotic administration directly on molecular targets. Supplementation with postbiotics and parabiotics could represent a very exciting perspective of treatment, bypassing probiotic limitations. At present, this avenue remains theoretical and to be explored, but it will certainly be a fascinating path to follow.
Collapse
|
80
|
Polinski KJ, Bell GA, Trinh MH, Sundaram R, Mendola P, Robinson SL, Bell EM, Adeyeye T, Lin TC, Yeung EH. Maternal obesity, gestational weight gain, and offspring asthma and atopy. Ann Allergy Asthma Immunol 2022; 129:199-204.e3. [PMID: 35552010 PMCID: PMC9329274 DOI: 10.1016/j.anai.2022.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Maternal obesity may affect offspring asthma and atopic disease risk by altering fetal immune system development. However, few studies evaluate gestational weight gain (GWG). OBJECTIVE To evaluate relationships between maternal body mass index (BMI), GWG, and persistent wheeze, eczema, allergy, and asthma risk in offspring through middle childhood. METHODS A total of 5939 children from Upstate KIDS, a population-based longitudinal cohort of children born in upstate New York (2008-2019) were included in the analysis. Persistent wheeze or asthma, eczema, and allergy were maternally reported at multiple study time points throughout early and middle childhood. Poisson regression models with robust SEs were used to estimate adjusted risk ratios (aRRs) and 95% confidence intervals (CIs) for offspring atopic outcomes by maternal prepregnancy BMI and GWG. RESULTS Prepregnancy BMI was associated with increased risk of persistent wheeze by 3 years of age even after adjustments for maternal atopy (class I obesity: aRR, 1.58; 95% CI, 1.13-2.20; class II or III obesity: aRR, 1.69; 95% CI, 1.22-2.35). Associations with reported asthma in middle childhood did not reach statistical significance. Furthermore, no associations were found between prepregnancy BMI and atopic outcomes in either early or middle childhood. GWG was not associated with higher risk of early childhood persistent wheeze or middle childhood asthma. CONCLUSION Maternal prepregnancy BMI was associated with increased risk of offspring wheeze, whereas excessive GWG was generally not associated with childhood asthma or atopy.
Collapse
Affiliation(s)
- Kristen J Polinski
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Griffith A Bell
- Ariadne Labs, Boston, Massachusetts; Departments of Health Policy and Management and of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Mai-Han Trinh
- Departments of Health Policy and Management and of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Rajeshwari Sundaram
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, University at Buffalo, State University of New York, Buffalo, New York
| | - Sonia L Robinson
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York
| | - Temilayo Adeyeye
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York
| | | | - Edwina H Yeung
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
81
|
Candeias J, Zimmermann EJ, Bisig C, Gawlitta N, Oeder S, Gröger T, Zimmermann R, Schmidt-Weber CB, Buters J. The priming effect of diesel exhaust on native pollen exposure at the air-liquid interface. ENVIRONMENTAL RESEARCH 2022; 211:112968. [PMID: 35240115 DOI: 10.1016/j.envres.2022.112968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Pollen related allergic diseases have been increasing for decades. The reasons for this increase are unknown, but environmental pollution like diesel exhaust seem to play a role. While previous studies explored the effects of pollen extracts, we studied here for the first time priming effects of diesel exhaust on native pollen exposure using a novel experimental setup. METHODS Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR. RESULTS Bronchial epithelial cells exposed to native pollen showed the highest transcriptomic changes after about 24 h. About 3157 genes were significantly up- or down-regulated for all time points combined. After pre-exposure to diesel exhaust the maximum reaction to pollen had shifted to about 2.5 h after exposure, plus the reaction to pollen was desensitised as only 560 genes were differentially regulated. Only 97 genes were affected synergistically. Of these, enrichment analysis showed that genes involved in immune and inflammatory response were involved. CONCLUSION Diesel exhaust seems to prime cells to react more rapidly to native pollen exposure, especially inflammation related genes, a factor known to facilitate the development of allergic sensitization. The marker genes here detected could guide studies in humans when investigating whether modern and outdoor diesel exhaust exposure is still detrimental for the development of allergic disease.
Collapse
Affiliation(s)
- Joana Candeias
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Carsten B Schmidt-Weber
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
| | - Jeroen Buters
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany.
| |
Collapse
|
82
|
Amor DALM, Santos LN, Silva ES, de Santana MBR, Belitardo EMMDA, Sena FDA, Pontes-de-Carvalho L, Figueiredo CA, Alcântara-Neves NM. Toxocara canis extract fractions promote mainly the production of Th1 and regulatory cytokines by human leukocytes in vitro. Acta Trop 2022; 234:106579. [PMID: 35843307 DOI: 10.1016/j.actatropica.2022.106579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 01/15/2023]
Abstract
Helminths possibly down-modulate immune responses to airborne allergens through the induction of a regulatory network. The identification of helminths bioactive molecules is highly desirable, given their immunomodulatory potential which could be used in immunotherapies for allergy and autoimmune diseases. To investigate the immunoregulatory potential of the adult Toxocara canis crude extract and ten protein fractions of its extract, human peripheral blood mononuclear cells (PBMC) from 10 allergic and 9 non-allergic individuals were cultivated, in vitro, in the presence or absence of these antigens, and their supernatants were evaluated for cytokine production (TGF-β, IL-10, IL-12, TNF-α, IL-6, IL-5, IL13, and IL-17). To determine the cell viability, the PBMC were cultivated for 24 h in the presence of the antigens and, following, they were subjected to a cytotoxicity assay. The viability of the PBMC was not affected by incubation with the T. canis antigens. As some fractions stimulated the production of immunoregulatory (TGF-β and/or IL-10), IL-12 and Th1 (TNF-α) cytokines, without stimulating Th2 cytokines (IL-5 and IL13) and IL-17, it was proposed that they would be potential candidates for further studies, especially involving the purification and characterization of specific proteins, which could be tested separately to evaluate their specific role as adjuvants in immunotherapy for inflammatory diseases.
Collapse
Affiliation(s)
- Dra Ana Lúcia Moreno Amor
- Laboratório de Parasitologia, Centro de Ciências da Saúde, Universidade Federal do Recôncavo da Bahia, Avenida Carlos Amaral, 1015 - Cajueiro, Santo Antônio de Jesus, Bahia 44430-622, Brazil.
| | | | - Eduardo Santos Silva
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | - Flávia de Araújo Sena
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Camila A Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
83
|
Platts-Mills TAE, Boyd KK, Medernach JG. Can we alter the course of allergic disease? Ann Allergy Asthma Immunol 2022; 129:271-273. [PMID: 35843517 DOI: 10.1016/j.anai.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Affiliation(s)
| | - Kelly K Boyd
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia
| | - Jonathan G Medernach
- Division of Pediatric Gastroenterology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
84
|
Probiotics in Children with Asthma. CHILDREN 2022; 9:children9070978. [PMID: 35883962 PMCID: PMC9316460 DOI: 10.3390/children9070978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022]
Abstract
A type-2 immune response usually sustains wheezing and asthma in children. In addition, dysbiosis of digestive and respiratory tracts is detectable in patients with wheezing and asthma. Probiotics may rebalance immune response, repair dysbiosis, and mitigate airway inflammation. As a result, probiotics may prevent asthma and wheezing relapse. There is evidence that some probiotic strains may improve asthma outcomes in children. In this context, the PROPAM study provided evidence that two specific strains significantly prevented asthma exacerbations and wheezing episodes. Therefore, oral probiotics could be used as add-on asthma therapy in managing children with asthma, but the choice should be based on documented evidence.
Collapse
|
85
|
Jorgensen R, Raghunath R, Gao H, Olson E, Ng PKW, Gangur V. A Mouse-Based Method to Monitor Wheat Allergens in Novel Wheat Lines and Varieties Created by Crossbreeding: Proof-of-Concept Using Durum and A. tauschii Wheats. Int J Mol Sci 2022; 23:ijms23126505. [PMID: 35742949 PMCID: PMC9224339 DOI: 10.3390/ijms23126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat allergies are potentially life-threatening because of the high risk of anaphylaxis. Wheats belong to four genotypes represented in thousands of lines and varieties. Monitoring changes to wheat allergens is critical to prevent inadvertent ntroduction of hyper-allergenic varieties via breeding. However, validated methods for this purpose are unavailable at present. As a proof-of-concept study, we tested the hypothesis that salt-soluble wheat allergens in our mouse model will be identical to those reported for humans. Groups of Balb/cJ mice were rendered allergic to durum wheat salt-soluble protein extract (SSPE). Using blood from allergic mice, a mini hyper-IgE plasma bank was created and used in optimizing an IgE Western blotting (IEWB) to identify IgE binding allergens. The LC-MS/MS was used to sequence the allergenic bands. An ancient Aegilops tauschii wheat was grown in our greenhouse and extracted SSPE. Using the optimized IEWB method followed by sequencing, the cross-reacting allergens in A. tauschii wheat were identified. Database analysis showed all but 2 of the durum wheat allergens and all A. tauschii wheat allergens identified in this model had been reported as human allergens. Thus, this model may be used to identify and monitor potential changes to salt-soluble wheat allergens caused by breeding.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Rajsri Raghunath
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Haoran Gao
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Eric Olson
- Wheat Breeding & Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Venu Gangur
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
- Correspondence: ; Tel.: +1-517-353-3330
| |
Collapse
|
86
|
Bacterial Species Associated with Highly Allergenic Plant Pollen Yield a High Level of Endotoxins and Induce Chemokine and Cytokine Release from Human A549 Cells. Inflammation 2022; 45:2186-2201. [PMID: 35668156 DOI: 10.1007/s10753-022-01684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Sensitization to pollen allergens has been increasing in Europe every year. Most studies in this field are related to climate change, phenology, allergens associated with different pollens, and allergic disorders. As a plant microhabitat, pollen is colonized by diverse microorganisms, including endotoxin-producing bacteria which may contribute to pollen allergy (pollinosis). Therefore, bacteria isolated from high allergenic and low allergenic plant pollen, as well as the pollen itself with all microbial inhabitants, were used to assess the effect of the pollen by measuring the endotoxins lipopolysaccharides (LPS) and lipoteichoic acid (LTA) concentrations and their effect on chemokine and cytokine release from transwell cultured epithelial A549 cells as a model of epithelial lung barrier. High allergenic pollen showed a significantly higher level of bacterial endotoxins; interestingly, the endotoxin level found in the bacterial isolates from high allergenic pollen was significantly higher compared to that of bacteria from low allergenic pollen. Moreover, bacterial LPS concentrations across different pollen species positively correlated with the LPS concentration across their corresponding bacterial isolates. Selected bacterial isolates from hazel pollen (HA5, HA13, and HA7) co-cultured with A549 cells induced a potent concentration-dependent release of the chemokine interleukin-8 and monocyte chemotactic protein-1 as well as the cytokine TNF-alpha and interleukin-2 to both apical and basal compartments of the transwell model. This study clearly shows the role of bacteria and bacterial endotoxins in the pollen allergy as well as seasonal allergic rhinitis.
Collapse
|
87
|
Sugiura Y, Matsuura Y, Katsuzaki H, Kakinuma M, Amano H, Usui M, Tanaka R, Matsushita T, Miyata M. The Immunomodulating Effect of Phlorotannins from a Brown Alga, Eisenia nipponica, on Mice Stimulated with Ovalbumin through T Cell Regulation. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:307-316. [PMID: 35633415 DOI: 10.1007/s11130-022-00974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The immunomodulating effect of phlorotannin was investigated in mice stimulated by ovalbumin. When analyzing the main components of phlorotannin concentrate (PTC) from Eisenia nipponica, seven phlorotannins [eckol, 6,6'-bieckol, 6,8'-bieckol, 8,8'-bieckol, dieckol, phlorofucofuroeckol (PFF)-A, and PFF-B] were detected. These phlorotannins accounted for approximately 80% of PTC. Oral administration of PTC to mice daily for 21 days reduced serum immunoglobulin E (IgE) and total IgG1 levels attributable to Th2 cells. The production of splenic cytokines [interleukin (IL)-10 and transforming growth factor-β1] and Treg cell-mediated expression of forkhead box protein P3 mRNA were significantly increased whereas the production of inflammatory cytokines (interferon-γ, IL-4, IL-5, and IL-17) by Th1, Th2, and Th17 cells was markedly suppressed. IL-21 production and basic leucine zipper ATF-like transcription factor mRNA expression attributable to follicular helper T (Tfh) cells were also suppressed. Flow cytometric analyses demonstrated increased number of Treg cells despite a decrease in the total T cell population. An increase in total B cells was also observed by the flow cytometric analyses in addition to increases in IL-10 production, which activates B cells. In contrast, the significantly suppressed production of inflammatory cytokines and moderate increase in Treg cell subpopulation indicated a direct impact of PTC on inflammatory lymphocytes (Th1, Th2, Th17, and Tfh). Thus, PTC may exert antiallergic effects by immunomodulation of T cells and inactivation of inflammatory lymphocyte.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan.
| | - Yuta Matsuura
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Minami-ise, Mie, Japan
| | | | - Makoto Kakinuma
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Hideomi Amano
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Masakatsu Usui
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Ryusuke Tanaka
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Teruo Matsushita
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| |
Collapse
|
88
|
Yazici D, Ogulur I, Kucukkase O, Li M, Rinaldi AO, Pat Y, Wallimann A, Wawrocki S, Sozener ZC, Buyuktiryaki B, Sackesen C, Akdis M, Mitamura Y, Akdis C. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. ALLERGO JOURNAL 2022. [DOI: 10.1007/s15007-022-5033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
90
|
Jeong KT, Do JH, Lee SH, Lee JK, Chang WS. Association of heat shock protein 8 with atopic march in a murine experimental model. PeerJ 2022; 10:e13247. [PMID: 35462760 PMCID: PMC9029368 DOI: 10.7717/peerj.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Atopic march (AM), a unique characteristic of allergic diseases, refers to the sequential progression of atopic dermatitis (AD) in infants to allergic asthma and allergic rhinitis in children and young adults, respectively. Although there are several studies on AM, the establishment of an AM murine model to expand our understanding of the underlying mechanism and to identify the potential biomarkers is yet to be achieved. In this study, an improved murine model was established by applying a method to minimize skin irritation in inducing AD, and it was used to perform integrated analyses to discover candidate biomarkers. Methods To induce atopic dermatitis, 2,4-dinitrochlorobenzene (DNCB) was applied to the ear skin once a week, and this was continued for 5 weeks. From the second application of DNCB, Dermatophagoides pteronyssinus (Dp) extract was applied topically 2 days after each DNCB application; this was continued for 4 weeks. Dp sensitization and intranasal challenges were then performed for 4 weeks to develop conditions mimicking AM. Results Exacerbated airway inflammation and allergic responses observed in the AM-induced group suggested successful AM development in our model. Two-dimensional gel electrophoresis (2-DE) and mass spectrometry analysis identified 753 candidate proteins from 124 2-DE spots differentially expressed among the experimental groups. Functional analyses, such as Gene Ontology (GO) annotation and protein-protein interaction (PPI) analysis were conducted to investigate the relationship among the candidate proteins. Seventy-two GO terms were significant between the two groups; heat shock protein 8 (Hspa8) was found to be included in six of the top 10 GO terms. Hspa8 scored high on the PPI parameters as well. Conclusion We established an improved murine model for AM and proposed Hspa8 as a candidate biomarker for AM.
Collapse
|
91
|
Díaz-Perales A, Escribese MM, Garrido-Arandia M, Obeso D, Izquierdo-Alvarez E, Tome-Amat J, Barber D. The Role of Sphingolipids in Allergic Disorders. FRONTIERS IN ALLERGY 2022; 2:675557. [PMID: 35386967 PMCID: PMC8974723 DOI: 10.3389/falgy.2021.675557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria M Escribese
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Obeso
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Elena Izquierdo-Alvarez
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Domingo Barber
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
92
|
Li R, Chen Y, Zhao A, Huang L, Long Z, Kang W, Yin Y, Tong S, Guo Y, Li S. Exploring genetic association of insomnia with allergic disease and asthma: a bidirectional Mendelian randomization study. Respir Res 2022; 23:84. [PMID: 35392909 PMCID: PMC8991606 DOI: 10.1186/s12931-022-02009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Insomnia is highly prevalent among patients with allergic disease and asthma; however, few studies have investigated their causal relationship. We aim to explore the causal association between insomnia and allergic disease/asthma by performing bidirectional Mendelian randomization (MR) study. Methods Instrumental variables were constructed using single nucleotide polymorphisms (SNPs). Summary statistics for insomnia, allergic disease, and asthma were obtained from four large-scale genome-wide association studies (GWAS) of European ancestry. The pleiotropy analysis was applied by using the MR-Egger intercept test and the MR pleiotropy residual sum and outlier (MR-PRESSO) test. MR analyses were conducted by using inverse variance weighted (IVW), weighted median, and MR-Egger method. Results Based on the multiplicative random effects IVW method, the MR analysis showed that genetically predicted insomnia was causally associated with an increased risk of allergic disease [odds ratio (OR) = 1.054, 95% confidence interval (CI) = 1.031–1.078, P = 3.817 × 10–06], asthma (OR = 1.043, 95% CI = 1.010–1.077, P = 9.811 × 10–03), moderate-severe asthma (OR = 1.168, 95% CI = 1.069–1.277, P = 6.234 × 10–04), and adult-onset asthma (OR = 1.086, 95% CI = 1.037–1.138, P = 4.922 × 10–04). In bidirectional analyses, we did not find evidence supporting the reverse causality relations. Conclusions Our MR study suggested that genetically predicted insomnia was the risk factor for allergic disease and asthma. Improving sleep quality could be one of the cornerstones in the prevention of allergic disease and asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02009-6.
Collapse
Affiliation(s)
- Rong Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Zichong Long
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Wenhui Kang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shilu Tong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China.,Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.,School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Yongmei Guo
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, China. .,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
93
|
Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the Microbiome, Environment, and Genetics to Mucosal Type 2 Immunity and Anaphylaxis in a Murine Food Allergy Model. FRONTIERS IN ALLERGY 2022; 3:851993. [PMID: 35769569 PMCID: PMC9234882 DOI: 10.3389/falgy.2022.851993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
There is heterogeneity inherent in the immune responses of individual mice in murine models of food allergy, including anaphylaxis, similar to the clinical heterogeneity observed in humans with food allergies to a defined food. One major driver of this heterogeneity may be differences in the microbiome between sensitized individuals. Our laboratory and others have reported that disruption of the microbiome (dysbiosis) by broad spectrum antibiotics and/or yeast colonization can alter systemic immunity and favor the development of mucosal Type 2 immunity to aeroallergens. Our objective was to use a well-characterized murine model (Balb/c mice) of food allergies (chicken egg ovalbumin, OVA) and determine if antibiotic-mediated dysbiosis (including C. albicans colonization) could enhance the manifestation of food allergies. Furthermore, we sought to identify elements of the microbiome and host response that were associated with this heterogeneity in the anaphylactic reaction between individual food allergen-sensitized mice. In our dataset, the intensity of the anaphylactic reactions was most strongly associated with a disrupted microbiome that included colonization by C. albicans, loss of a specific Lachnoclostridium species (tentatively, Lachnoclostridium YL32), development of a highly polarized Type 2 response in the intestinal mucosa and underlying tissue, and activation of mucosal mast cells. Serum levels of allergen-specific IgE were not predictive of the response and a complete absence of a microbiome did not fully recapitulate the response. Conventionalization of germ-free mice resulted in Akkermansia muciniphila outgrowth and a higher degree of heterogeneity in the allergic response. C57BL/6 mice remained resistant even under the same dysbiosis-inducing antibiotic regimens, while changes in the microbiome markedly altered the reactivity of Balb/c mice to OVA, as noted above. Strikingly, we also observed that genetically identical mice from different rooms in our vivarium develop different levels of a Type 2 response, as well as anaphylactic reactions. The intestinal microbiome in these mice also differed between rooms. Thus, our data recapitulate the heterogeneity in anaphylactic reactions, ranging from severe to none, seen in patients that have circulating levels of food allergen-reactive IgE and support the concept that alterations in the microbiome can be one factor underlying this heterogeneity.
Collapse
Affiliation(s)
- Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher A. Brown
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute for Research on Innovation and Science (IRIS), Institute for Social Research (ISR), University of Michigan, Ann Arbor, MI, United States
| | - Roderick A. McDonald
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Gary B. Huffnagle
| |
Collapse
|
94
|
Role of Damage-Associated Molecular Patterns (DAMPs/Alarmins) in Severe Ocular Allergic Diseases. Cells 2022; 11:cells11061051. [PMID: 35326502 PMCID: PMC8946931 DOI: 10.3390/cells11061051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Severe ocular allergic diseases, such as atopic keratoconjunctivitis and vernal keratoconjunctivitis, cause severe allergic inflammation in the conjunctiva and corneal epithelial damage, resulting in visual disturbances. The involvement of damage (danger)-associated molecular patterns (DAMPs/alarmins) in the pathogenesis of these diseases has been recognized. Alarmins released from damaged corneal epithelial cells or eosinophils play a critical role in the induction of corneal lesions, vicious loop of corneal injury, and exacerbation of conjunctival allergic inflammation. Alarmins in the conjunctiva also play an essential role in the development of both allergic inflammation, based on the acquired immune system, and type 2 inflammation by innate immune responses in the ocular surface. Therefore, alarmins may be a potentially important therapeutic target in severe refractory ocular allergic diseases.
Collapse
|
95
|
Xu J, Ye Y, Ji J, Sun J, Wang JS, Sun X. Untargeted Metabolomic Profiling Reveals Changes in Gut Microbiota and Mechanisms of Its Regulation of Allergy in OVA-Sensitive BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3344-3356. [PMID: 35232013 DOI: 10.1021/acs.jafc.1c07482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gut microbiota plays an important role in the regulation of food allergy. However, the interactions between the gut flora and immune system are not well studied. Here, we obtained ovalbumin (OVA)-sensitive BALB/c mice, combined with serum untargeted metabolomics to investigate the mechanisms of the interactions. The serum metabolomics results showed that 17 serum metabolites were downregulated, enriched in the aminoacyl-tRNA biosynthesis pathway, whereas indole-3-propionic acid (IPA) was increased. Six operational taxonomic units (OTUs) at the family level were altered and correlated with immune endpoints. Combined metabolomic and microbiomic analyses revealed that IPA levels were correlated with differential bacterial OTUs and a positive correlation with Treg in splenic lymphocytes. These results suggest that the regulatory effects of intestinal flora on allergic responses may be achieved by metabolizing tryptophan to produce indole derivatives and the aminoacyl-tRNA biosynthesis pathway. The formation of OVA tolerance in mice may be related to the enrichment of Peptostreptococcaceae, Ruminococcaceae, and Lactobacillaceae.
Collapse
Affiliation(s)
- Jiayuan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
96
|
Lin TL, Wu CY, Fan YH, Chang YL, Ho HJ, Chen YJ. Association between early life laxative exposure and risk of allergic diseases A nationwide matched cohort study. Ann Allergy Asthma Immunol 2022; 128:291-298.e3. [PMID: 34998978 DOI: 10.1016/j.anai.2021.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The early life microbiome can shape human immunity. Recent studies have revealed gut dysbiosis after laxative administration. OBJECTIVE To investigate the impact of infantile laxative exposure on subsequent allergic diseases. METHODS This nationwide matched cohort study was conducted using Taiwan's National Health Insurance Research Database for the period 1997 to 2013. A total of 32,986 patients who had complete information of maternal history and delivery modes were identified. We included 291 children having laxatives for at least 7 days within the first 6 months of life and 1164 reference children not receiving laxatives, matching by sex, propensity score, number of hospital visits, and maternal age at delivery. Demographic characteristics and maternal factors were compared, and cumulative incidences of allergic diseases were calculated. Cox proportional hazard model was used to evaluate associations. RESULTS The 5-year cumulative incidence of allergic diseases in the laxative cohort was significantly higher than that in the reference cohort (49.81% vs 41.68%; P = .01). Early life laxative exposure (adjusted hazard ratio, 1.61; 95% confidence interval, 1.32-1.97) was independently associated with allergic disease development. Other independent risk factors included preterm, male sex, maternal allergic diseases, and prenatal laxative use. Multivariable stratified analyses verified the association between early life laxative exposure and subsequent allergic disease development in all subgroups of children, including those born to mothers without allergic diseases or prenatal laxative use. CONCLUSION Early life laxative exposure is associated with allergic disease development.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chun-Ying Wu
- Institute of Biomedical Informatics and Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan; National Institute of Cancer Research and Institute of Population Health Science, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Hsuan Fan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ling Chang
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics and Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Chen
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
97
|
González‐Rodríguez MI, Nurminen N, Kummola L, Laitinen OH, Oikarinen S, Parajuli A, Salomaa T, Mäkelä I, Roslund MI, Sinkkonen A, Hyöty H, Junttila IS. Effect of inactivated nature‐derived microbial composition on mouse immune system. Immun Inflamm Dis 2022; 10:e579. [PMID: 34873877 PMCID: PMC8926502 DOI: 10.1002/iid3.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction The hygiene hypothesis suggests that decrease in early life infections due to increased societal‐level hygiene standards subjects one to allergic and autoimmune diseases. In this report, we have studied the effect of sterilized forest soil and plant‐based material on mouse immune system and gut microbiome. Methods Inbred C57Bl/6 mice maintained in normal sterile environment were subjected to autoclaved forest soil‐derived powder in their bedding for 1 h a day for 3 weeks. Immune response was measured by immune cell flow cytometry, serum cytokine enzyme‐linked immunoassay (ELISA) and quantitative polymerase chain reaction (qPCR) analysis. Furthermore, the mouse gut microbiome was analyzed by sequencing. Results When compared to control mice, mice treated with soil‐derived powder had decreased level of pro‐inflammatory cytokines namely interleukin (IL)−17F and IL‐21 in the serum. Furthermore, splenocytes from mice treated with soil‐derived powder expressed less IL‐1b, IL‐5, IL‐6, IL‐13, and tumor necrosis factor (TNF) upon cell activation. Gut microbiome appeared to be stabilized by the treatment. Conclusions These results provide insights on the effect of biodiversity on murine immune system in sterile environment. Subjecting mice to soil‐based plant and microbe structures appears to elicit immune response that could be beneficial, for example, in type 2 inflammation‐related diseases, that is, allergic diseases.
Collapse
Affiliation(s)
| | - Noora Nurminen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Anirudra Parajuli
- Department of Medicine, Karolinska Institutet Center for infectious medicine (CIM) Huddinge Sweden
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Iida Mäkelä
- Department of Garden Technologies, Horticulture Technologies Natural Resources Institute Finland Finland
| | - Marja I. Roslund
- Ecosystems and Environment Research Programme University of Helsinki Helsinki Finland
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies Natural Resources Institute Finland Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | - Ilkka S. Junttila
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | | |
Collapse
|
98
|
Modulating Oxidative Stress in B Cells Promotes Immunotherapy in Food Allergy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3605977. [PMID: 35096267 PMCID: PMC8799367 DOI: 10.1155/2022/3605977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022]
Abstract
Allergen-specific immunotherapy (SIT) is the mainstay in the treatment of allergic diseases; its therapeutic efficacy is to be improved. Bacterial flagellin (FGN) has immune regulatory functions. This study investigates the role of FGN in promoting immunotherapy efficacy through modulating oxidative stress in regulatory B cells (Bregs). Blood samples were collected from patients with food allergy (FA) and healthy control (HC) subjects. CD19+ CD5+ Bregs were purified from blood samples by flow cytometry cell sorting. A murine FA model was developed with ovalbumin as the specific antigen. The results showed that peripheral Bregs from FA patients showed lower TLR5-related signals and higher apoptotic activities. The peripheral Breg frequency was negatively correlated with serum FGN levels in FA patients. Exposure to a specific antigen in culture induced antigen-specific Breg apoptosis that was counteracted by the presence of FGN. FGN diminished specific antigen-induced oxidative stress in Bregs. The STAT3/MAPKp38/NF-κB signal pathway was involved in the FGN/TLR5 signal-promoted superoxide dismutase expression in Bregs. Administration of FGN promotes the SIT efficacy in suppressing experimental FA. In summary, administration of FGN promotes SIT efficacy on FA, suggesting that the combination of FGN and SIT can be a novel therapy that has the translational potential to be employed in the treatment of allergic diseases.
Collapse
|
99
|
Trompette A, Pernot J, Perdijk O, Alqahtani RAA, Domingo JS, Camacho-Muñoz D, Wong NC, Kendall AC, Wiederkehr A, Nicod LP, Nicolaou A, von Garnier C, Ubags NDJ, Marsland BJ. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol 2022; 15:908-926. [PMID: 35672452 PMCID: PMC9385498 DOI: 10.1038/s41385-022-00524-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
Barrier integrity is central to the maintenance of healthy immunological homeostasis. Impaired skin barrier function is linked with enhanced allergen sensitization and the development of diseases such as atopic dermatitis (AD), which can precede the development of other allergic disorders, for example, food allergies and asthma. Epidemiological evidence indicates that children suffering from allergies have lower levels of dietary fibre-derived short-chain fatty acids (SCFA). Using an experimental model of AD-like skin inflammation, we report that a fermentable fibre-rich diet alleviates systemic allergen sensitization and disease severity. The gut-skin axis underpins this phenomenon through SCFA production, particularly butyrate, which strengthens skin barrier function by altering mitochondrial metabolism of epidermal keratinocytes and the production of key structural components. Our results demonstrate that dietary fibre and SCFA improve epidermal barrier integrity, ultimately limiting early allergen sensitization and disease development.The Graphical Abstract was designed using Servier Medical Art images ( https://smart.servier.com ).
Collapse
Affiliation(s)
- Aurélien Trompette
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Julie Pernot
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olaf Perdijk
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Rayed Ali A. Alqahtani
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Jaime Santo Domingo
- grid.5333.60000000121839049Nestlé Institute of Health, EPFL innovation Park, Lausanne, Switzerland
| | - Dolores Camacho-Muñoz
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Nicholas C. Wong
- grid.1002.30000 0004 1936 7857Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Alexandra C. Kendall
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Andreas Wiederkehr
- grid.5333.60000000121839049Nestlé Institute of Health, EPFL innovation Park, Lausanne, Switzerland
| | - Laurent P. Nicod
- Pneumologie, Clinic Cecil from Hirslanden, Lausanne, Switzerland
| | - Anna Nicolaou
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Christophe von Garnier
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki D. J. Ubags
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Benjamin J. Marsland
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC Australia
| |
Collapse
|
100
|
Tong S, Bambrick H, Beggs PJ, Chen L, Hu Y, Ma W, Steffen W, Tan J. Current and future threats to human health in the Anthropocene. ENVIRONMENT INTERNATIONAL 2022; 158:106892. [PMID: 34583096 DOI: 10.1016/j.envint.2021.106892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
It has been widely recognised that the threats to human health from global environmental changes (GECs) are increasing in the Anthropocene epoch, and urgent actions are required to tackle these pressing challenges. A scoping review was conducted to provide an overview of the nine planetary boundaries and the threats to population health posed by human activities that are exceeding these boundaries in the Anthropocene. The research progress and key knowledge gaps were identified in this emerging field. Over the past three decades, there has been a great deal of research progress on health risks from climate change, land-use change and urbanisation, biodiversity loss and other GECs. However, several significant challenges remain, including the misperception of the relationship between human and nature; assessment of the compounding risks of GECs; strategies to reduce and prevent the potential health impacts of GECs; and uncertainties in fulfilling the commitments to the Paris Agreement. Confronting these challenges will require rigorous scientific research that is well-coordinated across different disciplines and various sectors. It is imperative for the international community to work together to develop informed policies to avert crises and ensure a safe and sustainable planet for the present and future generations.
Collapse
Affiliation(s)
- Shilu Tong
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
| | - Hilary Bambrick
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Paul J Beggs
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | | | - Yabin Hu
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Will Steffen
- The Australian National University, Canberra, Australia
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| |
Collapse
|