51
|
The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev 2017; 16:612-619. [PMID: 28428121 DOI: 10.1016/j.autrev.2017.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.
Collapse
|
52
|
Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13:217-233. [PMID: 28275260 DOI: 10.1038/nrrheum.2017.22] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
TNF blockers are highly efficacious at dampening inflammation and reducing symptoms in rheumatic diseases such as rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and also in nonrheumatic syndromes such as inflammatory bowel disease. As TNF belongs to a superfamily of 19 structurally related proteins that have both proinflammatory and anti-inflammatory activity, reagents that disrupt the interaction between proinflammatory TNF family cytokines and their receptors, or agonize the anti-inflammatory receptors, are being considered for the treatment of rheumatic diseases. Biologic agents that block B cell activating factor (BAFF) and receptor activator of nuclear factor-κB ligand (RANKL) have been approved for the treatment of systemic lupus erythematosus and osteoporosis, respectively. In this Review, we focus on additional members of the TNF superfamily that could be relevant for the pathogenesis of rheumatic disease, including those that can strongly promote activity of immune cells or increase activity of tissue cells, as well as those that promote death pathways and might limit inflammation. We examine preclinical mouse and human data linking these molecules to the control of damage in the joints, muscle, bone or other tissues, and discuss their potential as targets for future therapy of rheumatic diseases.
Collapse
|
53
|
Magro-Checa C, Zirkzee EJ, Huizinga TW, Steup-Beekman GM. Management of Neuropsychiatric Systemic Lupus Erythematosus: Current Approaches and Future Perspectives. Drugs 2016; 76:459-83. [PMID: 26809245 PMCID: PMC4791452 DOI: 10.1007/s40265-015-0534-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a generic definition referring to a series of neurological and psychiatric symptoms directly related to systemic lupus erythematosus (SLE). NPSLE includes heterogeneous and rare neuropsychiatric (NP) manifestations involving both the central and peripheral nervous system. Due to the lack of a gold standard, the attribution of NP symptoms to SLE represents a clinical challenge that obligates the strict exclusion of any other potential cause. In the acute setting, management of these patients does not differ from other non-SLE subjects presenting with the same NP manifestation. Afterwards, an individualized therapeutic strategy, depending on the presenting manifestation and severity of symptoms, must be started. Clinical trials in NPSLE are scarce and most of the data are extracted from case series and case reports. High-dose glucocorticoids and intravenous cyclophosphamide remain the cornerstone for patients with severe symptoms that are thought to reflect inflammation or an underlying autoimmune process. Rituximab, intravenous immunoglobulins, or plasmapheresis may be used if response is not achieved. When patients present with mild to moderate NP manifestations, or when maintenance therapy is warranted, azathioprine and mycophenolate may be considered. When symptoms are thought to reflect a thrombotic underlying process, anticoagulation and antiplatelet agents are the mainstay of therapy, especially if antiphospholipid antibodies or antiphospholipid syndrome are present. Recent trials on SLE using new biologicals, based on newly understood SLE mechanisms, have shown promising results. Based on what we currently know about its pathogenesis, it is tempting to speculate how these new therapies may affect the management of NPSLE patients. This article provides a comprehensive and critical review of the literature on the epidemiology, pathophysiology, diagnosis, and management of NPSLE. We describe the most common pharmacological treatments used in NPSLE, based on both a literature search and our expert opinion. The extent to which new drugs in the advanced development of SLE, or the blockade of new targets, may impact future treatment of NPSLE will also be discussed.
Collapse
Affiliation(s)
- César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Elisabeth J Zirkzee
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
54
|
Distinctive gene expression profile in women with history of postpartum depression. Genomics 2016; 109:1-8. [PMID: 27816578 DOI: 10.1016/j.ygeno.2016.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022]
Abstract
Postpartum depression (PPD) is a disease which incorporates a variety of depressive states differing in nature and severity. To assist in the understanding of the pathogenesis of the disease, we aimed to ascertain a molecular mechanism underlying PPD development. We applied microarray technology to characterize gene expression of euthymic women with a history of PPD and compared the results with healthy controls. Our study demonstrated that women who considered euthymic on a clinical level, in fact, had an altered molecular profile when compared to participants with no PPD history. We identified nine genes significantly distinguished expression in post- depressive women; they may serve as a diagnostic tool for the detection of a predisposition to PPD. Our findings contribute significantly to the understanding of PPD etiology and its pathogenesis, offer a plausible explanation for the risk of the PPD recurrence, and may also contribute to clinical treatment.
Collapse
|
55
|
Chalmers SA, Wen J, Shum J, Doerner J, Herlitz L, Putterman C. CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin Immunol 2016; 185:100-108. [PMID: 27570219 DOI: 10.1016/j.clim.2016.08.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/27/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that can affect multiple end organs. Kidney and brain are two of the organs most commonly involved in SLE. Past studies have suggested the importance of macrophages in the pathogenesis of lupus nephritis (LN). Furthermore, as the immune effectors of the brain, microglia have been implicated in pathways leading to neuropsychiatric SLE (NPSLE). We depleted macrophages and microglia using GW2580, a small colony stimulating factor-1 receptor (CSF-1R) kinase inhibitor, in MRL-lpr/lpr (MRL/lpr) mice, a classic murine lupus model that displays features of both LN and NPSLE. Treatment was initiated before the onset of disease, and mice were followed for the development of LN and neurobehavioral dysfunction throughout the study. Treatment with GW2580 significantly ameliorated kidney disease, as evidenced by decreased proteinuria, BUN, and improved renal histopathology, despite equivalent levels of IgG and C3 deposition in the kidneys of treated and control mice. We were able to confirm macrophage depletion within the kidney via IBA-1 staining. Furthermore, we observed specific improvement in the depression-like behavioral deficit of MRL/lpr mice with GW2580 treatment. Circulating antibody and autoantibody levels were, however, not affected. These results provide additional support for the role of macrophages as a potentially valuable therapeutic target in SLE. Inhibiting CSF-1 receptor signaling would be more targeted than current immunosuppressive therapies, and may hold promise for the treatment of renal and neuropsychiatric end organ disease manifestations.
Collapse
Affiliation(s)
- Samantha A Chalmers
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, USA
| | - Jing Wen
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, USA
| | - Justine Shum
- Montefiore Medical Center, Department of Medicine, Bronx, NY, USA
| | - Jessica Doerner
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, USA
| | - Leal Herlitz
- Cleveland Clinic, Department of Pathology, Cleveland, OH, USA
| | - Chaim Putterman
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, USA; Albert Einstein College of Medicine, Division of Rheumatology, Bronx, NY, USA.
| |
Collapse
|
56
|
The diagnosis and clinical management of the neuropsychiatric manifestations of lupus. J Autoimmun 2016; 74:41-72. [PMID: 27427403 DOI: 10.1016/j.jaut.2016.06.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023]
Abstract
Neuropsychiatric (NP) involvement in Systemic Lupus Erythematosus (SLE), can be a severe and troubling manifestation of the disease that heavily impacts patient's health, quality of life and disease outcome. It is one of the most complex expressions of SLE which can affect central, peripheral and autonomous nervous system. Complex interrelated pathogenetic mechanisms, including genetic factors, vasculopathy, vascular occlusion, neuroendocrine-immune imbalance, tissue and neuronal damage mediated by autoantibodies, inflammatory mediators, blood brain barrier dysfunction and direct neuronal cell death can be all involved. About NPSLE a number of issues are still matter of debate: from classification and burden of NPSLE to attribution and diagnosis. The role of neuroimaging and new methods of investigation still remain pivotal and rapidly evolving as well as is the increasing knowledge in the pathogenesis. Overall, two main pathogenetic pathways have been recognized yielding different clinical phenotypes: a predominant ischemic-vascular one involving large and small blood vessels, mediated by aPL, immune complexes and leuko-agglutination which it is manifested with more frequent focal NP clinical pictures and a predominantly inflammatory-neurotoxic one mediated by complement activation, increased permeability of the BBB, intrathecal migration of autoantibodies, local production of immune complexes and pro-inflammatory cytokines and other inflammatory mediators usually appearing as diffuse NP manifestations. In the attempt to depict a journey throughout NPSLE from diagnosis to a reasoned therapeutic approach, classification, epidemiology, attribution, risk factors, diagnostic challenges, neuroimaging techniques and pathogenesis will be considered in this narrative review based on the most relevant and recent published data.
Collapse
|
57
|
Wen J, Stock AD, Chalmers SA, Putterman C. The role of B cells and autoantibodies in neuropsychiatric lupus. Autoimmun Rev 2016; 15:890-5. [PMID: 27389531 DOI: 10.1016/j.autrev.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/05/2016] [Indexed: 01/22/2023]
Abstract
The central nervous system manifestations of SLE (neuropsychiatric lupus, NPSLE) occur frequently, though are often difficult to diagnose and treat. Symptoms of NPSLE can be quite diverse, including chronic cognitive and emotional manifestations, as well as acute presentations, such as stroke and seizures. Although the pathogenesis of NPSLE has yet to be well characterized, B-cell mediated damage is believed to be an important contributor. B-cells and autoantibodies may traverse the blood brain barrier promoting an inflammatory environment consisting of glia activation, neurodegeneration, and consequent averse behavioral outcomes. This review will evaluate the various suggested roles of B-cells and autoantibodies in NPSLE, as well as therapeutic modalities targeting these pathogenic mediators.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ariel D Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samantha A Chalmers
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
58
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-β1 Signaling Pathway. Mediators Inflamm 2016; 2016:8986451. [PMID: 27365897 PMCID: PMC4913011 DOI: 10.1155/2016/8986451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023] Open
Abstract
This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used for in vivo experiments and human proximal tubular cells (HK2 cells) were used for in vitro experiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, and α-SMA proteins. In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2, α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway.
Collapse
|
59
|
Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C. Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun 2016; 54:27-37. [PMID: 26721417 PMCID: PMC4828298 DOI: 10.1016/j.bbi.2015.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022] Open
Abstract
Fn14, the sole known signaling receptor for the TNF family member TWEAK, is inducibly expressed in the central nervous system (CNS) in endothelial cells, astrocytes, microglia, and neurons. There is increasing recognition of the importance of the TWEAK/Fn14 pathway in autoimmune neurologic conditions, including experimental autoimmune encephalomyelitis and neuropsychiatric lupus. Previously, we had found that Fn14 knockout lupus-prone MRL/lpr mice display significantly attenuated neuropsychiatric manifestations. To investigate whether this improvement in disease is secondary to inhibition of TWEAK/Fn14 signaling within the CNS or the periphery, and determine whether TWEAK-mediated neuropsychiatric effects are strain dependent, we performed intracerebroventricular (ICV) injection of Fc-TWEAK or an isotype matched control protein to C57Bl6/J non-autoimmune mice. We found that Fc-TWEAK injected C57Bl6/J mice developed significant depression-like behavior and cognitive dysfunction. Inflammatory mediators associated with lupus brain disease, including CCL2, C3, and iNOS, were significantly elevated in the brains of Fc-TWEAK treated mice. Furthermore, Fc-TWEAK directly increased blood brain barrier (BBB) permeability, as demonstrated by increased IgG deposition in the brain and reduced aquaporin-4 expression. Finally, Fc-TWEAK increased apoptotic cell death in the cortex and hippocampus. In conclusion, TWEAK can contribute to lupus-associated neurobehavioral deficits including depression and cognitive dysfunction by acting within the CNS to enhance production of inflammatory mediators, promote disruption of the BBB, and induce apoptosis in resident brain cells. Our study provides further support that the TWEAK/Fn14 signaling pathway may be a potential therapeutic target for inflammatory diseases involving the CNS.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood-Brain Barrier/metabolism
- Brain/metabolism
- Cognitive Dysfunction/chemically induced
- Cytokine TWEAK
- Depression/chemically induced
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Injections, Intraventricular
- Lupus Erythematosus, Systemic/etiology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Mice, Inbred C57BL
- Neurons/metabolism
- Pregnancy
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction/physiology
- Tumor Necrosis Factors/administration & dosage
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Ariel Stock
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
60
|
Wen J, Doerner J, Chalmers S, Stock A, Wang H, Gullinello M, Shlomchik MJ, Putterman C. B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus. J Neuroinflammation 2016; 13:73. [PMID: 27055816 PMCID: PMC4823887 DOI: 10.1186/s12974-016-0537-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Background Neuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE. Methods We evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice. Results We found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice. Conclusions Our study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica Doerner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha Chalmers
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Haowei Wang
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Maria Gullinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Rheumatology, Albert Einstein College of Medicine, F701N, 1300 Morris Park Ave, Bronx, NY, 10461, USA.
| |
Collapse
|
61
|
Rubinstein TB, Putterman C, Goilav B. Biomarkers for CNS involvement in pediatric lupus. Biomark Med 2016; 9:545-58. [PMID: 26079959 DOI: 10.2217/bmm.15.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CNS disease, or central neuropsychiatric lupus erythematosus (cNPSLE), occurs frequently in pediatric lupus, leading to significant morbidity and poor long-term outcomes. Diagnosing cNPSLE is especially difficult in pediatrics; many current diagnostic tools are invasive and/or costly, and there are no current accepted screening mechanisms. The most complicated aspect of diagnosis is differentiating primary disease from other etiologies; research to discover new biomarkers is attempting to address this dilemma. With many mechanisms involved in the pathogenesis of cNPSLE, biomarker profiles across several modalities (molecular, psychometric and neuroimaging) will need to be used. For the care of children with lupus, the challenge will be to develop biomarkers that are accessible by noninvasive measures and reliable in a pediatric population.
Collapse
Affiliation(s)
- Tamar B Rubinstein
- Department of Pediatrics, Division of Rheumatology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, 3415 Bainbridge Avenue, Bronx, NY 10467, USA
| | - Chaim Putterman
- Department of Medicine, Division of Rheumatology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Beatrice Goilav
- Department of Pediatrics, Division of Nephrology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, 3415 Bainbridge Avenue, Bronx, NY 10467, USA
| |
Collapse
|
62
|
Magro-Checa C, Zirkzee EJ, Huizinga TW, Steup-Beekman GM. Management of Neuropsychiatric Systemic Lupus Erythematosus: Current Approaches and Future Perspectives. Drugs 2016. [PMID: 26809245 DOI: 10.1007/s40265-015-0534-3"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a generic definition referring to a series of neurological and psychiatric symptoms directly related to systemic lupus erythematosus (SLE). NPSLE includes heterogeneous and rare neuropsychiatric (NP) manifestations involving both the central and peripheral nervous system. Due to the lack of a gold standard, the attribution of NP symptoms to SLE represents a clinical challenge that obligates the strict exclusion of any other potential cause. In the acute setting, management of these patients does not differ from other non-SLE subjects presenting with the same NP manifestation. Afterwards, an individualized therapeutic strategy, depending on the presenting manifestation and severity of symptoms, must be started. Clinical trials in NPSLE are scarce and most of the data are extracted from case series and case reports. High-dose glucocorticoids and intravenous cyclophosphamide remain the cornerstone for patients with severe symptoms that are thought to reflect inflammation or an underlying autoimmune process. Rituximab, intravenous immunoglobulins, or plasmapheresis may be used if response is not achieved. When patients present with mild to moderate NP manifestations, or when maintenance therapy is warranted, azathioprine and mycophenolate may be considered. When symptoms are thought to reflect a thrombotic underlying process, anticoagulation and antiplatelet agents are the mainstay of therapy, especially if antiphospholipid antibodies or antiphospholipid syndrome are present. Recent trials on SLE using new biologicals, based on newly understood SLE mechanisms, have shown promising results. Based on what we currently know about its pathogenesis, it is tempting to speculate how these new therapies may affect the management of NPSLE patients. This article provides a comprehensive and critical review of the literature on the epidemiology, pathophysiology, diagnosis, and management of NPSLE. We describe the most common pharmacological treatments used in NPSLE, based on both a literature search and our expert opinion. The extent to which new drugs in the advanced development of SLE, or the blockade of new targets, may impact future treatment of NPSLE will also be discussed.
Collapse
Affiliation(s)
- César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Elisabeth J Zirkzee
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
63
|
|
64
|
Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice. J Neuroinflammation 2015; 12:205. [PMID: 26546449 PMCID: PMC4636802 DOI: 10.1186/s12974-015-0423-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease marked by both B and T cell hyperactivity which commonly affects the joints, skin, kidneys, and brain. Neuropsychiatric disease affects about 40 % of SLE patients, most frequently manifesting as depression, memory deficits, and general cognitive decline. One important and yet unresolved question is whether neuropsychiatric SLE (NPSLE) is a complication of systemic autoimmunity or whether it is primarily driven by brain-intrinsic factors. Methods To dissect the relative contributions of the central nervous system from those of the hematopoietic compartment, we generated bone marrow chimeras between healthy control (MRL/+) and lupus-prone MRL/Tnfrsf6lpr/lpr mice (MRL/+ → MRL/lpr), as well as control chimeras. After bone marrow reconstitution, mice underwent extensive behavioral testing, analysis of brain tissue, and histological assessment. Results Despite transfer of healthy MRL/+ bone marrow and marked attenuation of systemic disease, we found that MRL/+ → MRL/lpr mice had a behavioral phenotype consisting of depressive-like behavior and visuospatial memory deficits, comparable to MRL/lpr → MRL/lpr control transplanted mice and the behavioral profile previously established in MRL/lpr mice. Moreover, MRL/+ → MRL/lpr chimeric mice displayed increased brain RANTES expression, neurodegeneration, and cellular infiltration in the choroid plexus, as well as blood brain barrier disruption, all in the absence of significant systemic autoimmunity. Conclusions Chimeric MRL/+ → MRL/lpr mice displayed no attenuation of the behavioral phenotype found in MRL/lpr mice, despite normalized serum autoantibodies and conserved renal function. Therefore, neuropsychiatric disease in the MRL/lpr lupus-prone strain of mice can occur absent any major contributions from systemic autoimmunity.
Collapse
|
65
|
Fragoso-Loyo H, Atisha-Fregoso Y, Nuñez-Alvarez CA, Llorente L. Utility of TWEAK to assess neuropsychiatric disease activity in systemic lupus erhytematosus. Lupus 2015; 25:364-9. [PMID: 26466614 DOI: 10.1177/0961203315610206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The purpose of this study was to assess the utility of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) in serum and cerebrospinal fluid (CSF) as a biomarker in neuropsychiatric systemic lupus erythematosus (NPSLE). METHODS Thirty three NPSLE patients were evaluated at hospitalization and six months later. As controls, five SLE patients with septic meningitis, 51 hospitalized SLE patients without a history of neuropsychiatric (NP) manifestations and without infections, 16 SLE patients without NP manifestations (surgical-SLE), four patients with primary neuropsychiatric disorders, and 25 patients with non-autoimmune diseases were also studied. Serum and CSF samples were drawn at hospitalization, except non-NPSLE patients, in whom only serum was studied, and six months later in 19 NPSLE and 27 non-NPSLE patients. Serum and CSF TWEAK levels were measured by ELISA; values are expressed in pg/mL. RESULTS The mean ± SD age of NPSLE patients was 31 ± 13.1 years, which was similar across study groups (p = 0.54). TWEAK levels in serum were not different across the study groups. In CSF, TWEAK levels were higher in NPSLE, surgical-SLE and primary neuropsychiatric groups than in non-autoimmune patients: median (IQR) 159.2 (94.1-374.9), 172.3 (125.3-421.9), 371.3 (143-543) vs. 122.1 (76.1-212.4), respectively; all p < 0.05. Six months later, when the neuropsychiatric manifestations were clinically in remission, serum or CSF TWEAK did not vary from baseline in NPSLE patients. CONCLUSIONS TWEAK levels are slightly elevated in CSF in SLE patients compared with non-autoimmune controls, irrespective of the presence of NP manifestations. TWEAK levels in serum and CSF do not seem to be a useful biomarker of CNS involvement in SLE.
Collapse
Affiliation(s)
- H Fragoso-Loyo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Y Atisha-Fregoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C A Nuñez-Alvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
66
|
Abstract
The peer-reviewed publications in the field of autoimmunity published in 2013 represented a significant proportion of immunology articles and grew since the previous year to indicate that more immune-mediated phenomena may recognize an autoimmune mechanism and illustrated by osteoarthritis and atherosclerosis. As a result, our understanding of the mechanisms of autoimmunity is becoming the paradigm for translational research in which the progress in disease pathogenesis for both tolerance breakdown and inflammation perpetuation is rapidly followed by new treatment approaches and clinical management changes. The similarities across the autoimmune disease spectrum outnumber differences, particularly when treatments are compared. Indeed, the therapeutics of autoimmune diseases are based on a growing armamentarium that currently includes monoclonal antibodies and small molecules which act by targeting molecular markers or intracellular mediators with high specificity. Among the over 100 conditions considered as autoimmune, the common grounds are well illustrated by the data reported for systemic lupus erythematosus and rheumatoid arthritis or by the plethora of studies on Th17 cells and biomarkers, particularly serum autoantibodies. Further, we are particularly intrigued by studies on the genomics, epigenetics, and microRNA at different stages of disease development or on the safe and effective use of abatacept acting on the costimulation of T and B cells in rheumatoid arthritis. We are convinced that the data published in 2013 represent a promising background for future developments that will exponentially impact the work of laboratory and clinical scientists over the next years.
Collapse
|
67
|
Behavioral Deficits Are Accompanied by Immunological and Neurochemical Changes in a Mouse Model for Neuropsychiatric Lupus (NP-SLE). Int J Mol Sci 2015; 16:15150-71. [PMID: 26151848 PMCID: PMC4519892 DOI: 10.3390/ijms160715150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/11/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. Neuropsychiatric symptoms, particularly affective and cognitive indications, may be among the earliest manifestations of SLE. Among the potential pathophysiological mechanisms responsible for NP-SLE are increased peripheral pro-inflammatory cytokines, subsequent induction of indoleamine-2,3-dioxygenase (IDO) and activation of the kynurenine pathway. In the MRL/MpJ-Faslpr (MRL/lpr) murine model of lupus, depression-like behavior and cognitive dysfunction is evident before significant levels of autoantibody titers and nephritis are present. We examined the behavioral profile of MRL/lpr mice and their congenic controls, a comprehensive plasma cytokine and chemokine profile, and brain levels of serotonin and kynurenine pathway metabolites. Consistent with previous studies, MRL/lpr mice had increased depression-like behavior and visuospatial memory impairment. Plasma levels of different inflammatory molecules (Haptoglobin, interleukin 10 (IL-10), interferon γ-inducible protein 10 (IP-10/CXCL10), lymphotactin, macrophage inhibitory protein 3β (MIP-3β/CCL19), monocyte chemotactic protein 1, 3 and 5 (MCP-1/CCL2, MCP-3/CCL7, MCP-5/CCL12), vascular cell adhesion molecule 1 (VCAM-1), lymphotactin and interferon γ (IFN-γ)) were increased in MRL/lpr mice. In cortex and hippocampus, MRL/lpr mice had increased levels of kynurenine pathway metabolites (kynurenine, 3-hydroxykynurenine, 3-hydroxynthranilic acid and quinolinic acid). Therefore, our study suggests that increased cytokine expression may be critical in the regulation subtle aspects of brain function in NP-SLE via induction of IDO and tryptophan/kynurenine metabolism.
Collapse
|
68
|
The 2014 ACR annual meeting: a bird’s eye view of autoimmunity in 2015. Autoimmun Rev 2015; 14:622-32. [DOI: 10.1016/j.autrev.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
|
69
|
TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun 2015; 60:40-50. [PMID: 25911200 DOI: 10.1016/j.jaut.2015.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 01/15/2023]
Abstract
Neuropsychiatric disease is one of the most common manifestations of human systemic lupus erythematosus, but the mechanisms remain poorly understood. In human brain microvascular endothelial cells in vitro, TNF-like weak inducer of apoptosis (TWEAK) decreases tight junction ZO-1 expression and increases the permeability of monolayer cell cultures. Furthermore, knockout (KO) of the TWEAK receptor, Fn14, in the MRL/lpr lupus mouse strain markedly attenuates neuropsychiatric disease, as demonstrated by significant reductions in depressive-like behavior and improved cognitive function. The purpose of the present study was to determine the mechanisms by which TWEAK signaling is instrumental in the pathogenesis of neuropsychiatric lupus (NPSLE). Evaluating brain sections of MRL/lpr Fn14WT and Fn14KO mice, we found that Fn14KO mice displayed significantly decreased cellular infiltrates in the choroid plexus. To evaluate the integrity of the blood brain barrier (BBB) in MRL/lpr mice, Western blot for fibronectin, qPCR for iNOS, and immunohistochemical staining for VCAM-1/ICAM-1 were performed. We found preserved BBB permeability in MRL/lpr Fn14KO mice, attributable to reduced brain expression of VCAM-1/ICAM-1 and iNOS. Additionally, administration of Fc-TWEAK intravenously directly increased the leakage of a tracer (dextran-FITC) into brain tissue. Furthermore, MRL/lpr Fn14KO mice displayed reduced antibody (IgG) and complement (C3, C6, and C4a) deposition in the brain. Finally, we found that MRL/lpr Fn14KO mice manifested reduced neuron degeneration and hippocampal gliosis. Our studies indicate that TWEAK/Fn14 interactions play an important role in the pathogenesis of NPSLE by increasing the accumulation of inflammatory cells in the choroid plexus, disrupting BBB integrity, and increasing neuronal damage, suggesting a novel target for therapy in this disease.
Collapse
|
70
|
Doerner JL, Wen J, Xia Y, Paz KB, Schairer D, Wu L, Chalmers SA, Izmirly P, Michaelson JS, Burkly LC, Friedman AJ, Putterman C. TWEAK/Fn14 Signaling Involvement in the Pathogenesis of Cutaneous Disease in the MRL/lpr Model of Spontaneous Lupus. J Invest Dermatol 2015; 135:1986-1995. [PMID: 25826425 PMCID: PMC4504782 DOI: 10.1038/jid.2015.124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK, TNFSF12) and its sole receptor Fn14, belonging to the TNF ligand and receptor superfamilies respectively, are involved in cell survival and cytokine production. The role of TWEAK/Fn14 interactions in the pathogenesis of cutaneous lupus has not been explored. TWEAK treatment of murine PAM212 keratinocytes stimulated the secretion of RANTES via Fn14 and promoted apoptosis. Parthenolide, but not wortmanin or the MAPK inhibitor PD98059, significantly decreased production of RANTES, indicating that this effect of TWEAK is mediated via NF-κB signaling. UVB irradiation significantly upregulated the expression of Fn14 on keratinocytes in vitro and in vivo and increased RANTES production. MRL/lpr Fn14 knockout (KO) lupus mice were compared with MRL/lpr Fn14 wild-type (WT) mice to evaluate for any possible differences in the severity of cutaneous lesions and the presence of infiltrating immune cells. MRL/lpr Fn14 KO mice had markedly attenuated cutaneous disease as compared with their Fn14 WT littermates, as evidenced by the well-maintained architecture of the skin and significantly decreased skin infiltration of T cells and macrophages. Our data strongly implicate TWEAK/Fn14 signaling in the pathogenesis of the cutaneous manifestations in the MRL/lpr model of spontaneous lupus and suggest a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica L Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yumin Xia
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karin Blecher Paz
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Schairer
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lan Wu
- Biogen Idec, Cambridge, Massachusetts, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peter Izmirly
- Division of Rheumatology, NYU-Langone Medical Center, New York, USA
| | | | | | - Adam J Friedman
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
71
|
Chalmers SA, Chitu V, Herlitz LC, Sahu R, Stanley ER, Putterman C. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J Autoimmun 2014; 57:42-52. [PMID: 25554644 DOI: 10.1016/j.jaut.2014.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
Kidney involvement affects 40-60% of patients with lupus, and is responsible for significant morbidity and mortality. Using depletion approaches, several studies have suggested that macrophages may play a key role in the pathogenesis of lupus nephritis. However, "off target" effects of macrophage depletion, such as altered hematopoiesis or enhanced autoantibody production, impeded the determination of a conclusive relationship. In this study, we investigated the role of macrophages in mice receiving rabbit anti-glomerular antibodies, or nephrotoxic serum (NTS), an experimental model which closely mimics the immune complex mediated disease seen in murine and human lupus nephritis. GW2580, a selective inhibitor of the colony stimulating factor-1 (CSF-1) receptor kinase, was used for macrophage depletion. We found that GW2580-treated, NTS challenged mice did not develop the increased levels of proteinuria, serum creatinine, and BUN seen in control-treated, NTS challenged mice. NTS challenged mice exhibited significantly increased kidney expression of inflammatory cytokines including RANTES, IP-10, VCAM-1 and iNOS, whereas GW2580-treated mice were protected from the robust expression of these inflammatory cytokines that are associated with lupus nephritis. Quantification of macrophage related gene expression, flow cytometry analysis of kidney single cell suspensions, and immunofluorescence staining confirmed the depletion of macrophages in GW2580-treated mice, specifically within renal glomeruli. Our results strongly implicate a specific and necessary role for macrophages in the development of immune glomerulonephritis mediated by pathogenic antibodies, and support the development of macrophage targeting approaches for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Samantha A Chalmers
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Violeta Chitu
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, NY 10032, USA
| | - Ranjit Sahu
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - E Richard Stanley
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
72
|
Steinman L, Shoenfeld Y. From defining antigens to new therapies in multiple sclerosis: honoring the contributions of Ruth Arnon and Michael Sela. J Autoimmun 2014; 54:1-7. [PMID: 25308417 DOI: 10.1016/j.jaut.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Ruth Arnon and Michael Sela profoundly influenced the development of a model system to test new therapies in multiple sclerosis (MS). Their application of the animal model, known as experimental autoimmune encephalomyelitis (EAE), for the discovery of Copaxone, opened a new path for testing of drug candidates in MS. By measuring clinical, pathologic, and immunologic outcomes, the biological implications of new drugs could be elucidated. Using EAE they established the efficacy of Copaxone as a therapy for preventing and reducing paralysis and inflammation in the central nervous system without massive immune suppression. This had a huge impact on the field of drug discovery for MS. Much like the use of parabiosis to discover soluble factors associated with obesity, or the replica plating system to probe antibiotic resistance in bacteria, the pioneering research on Copaxone using the EAE model, paved the way for the discovery of other therapeutics in MS, including Natalizumab and Fingolimod. Future applications of this approach may well elucidate novel therapies for the neurodegenerative phase of multiple sclerosis associated with disease progression.
Collapse
Affiliation(s)
- Lawrence Steinman
- Beckman Center for Molecular Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
73
|
Xia Y, Herlitz LC, Gindea S, Wen J, Pawar RD, Misharin A, Perlman H, Wu L, Wu P, Michaelson JS, Burkly LC, Putterman C. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J Am Soc Nephrol 2014; 26:1053-70. [PMID: 25270074 DOI: 10.1681/asn.2014030233] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/23/2014] [Indexed: 11/03/2022] Open
Abstract
TNF ligand superfamily member 12, also known as TNF-related weak inducer of apoptosis (TWEAK), acts through its receptor, fibroblast growth factor-inducible 14 (Fn14), to mediate several key pathologic processes involved in tissue injury relating to lupus nephritis. To explore the potential for renal protection in lupus nephritis by targeting this pathway, we introduced the Fn14 null allele into the MRL-lpr/lpr lupus mouse strain. At 26-38 weeks of age, female Fn14-knockout MRL-lpr/lpr mice had significantly lower levels of proteinuria compared with female wild-type MRL-lpr/lpr mice. Furthermore, Fn14-knockout mice had significantly improved renal histopathology accompanied by attenuated glomerular and tubulointerstitial inflammation. There was a significant reduction in glomerular Ig deposition in Fn14-knockout mice, despite no detectable differences in either serum levels of antibodies or splenic immune cell subsets. Notably, we found that the Fn14-knockout mice displayed substantial preservation of podocytes in glomeruli and that TWEAK signaling directly damaged barrier function and increased filtration through podocyte and glomerular endothelial cell monolayers. Our results show that deficiency of the Fn14 receptor significantly improves renal disease in a spontaneous lupus nephritis model through prevention of the direct injurious effects of TWEAK on the filtration barrier and/or modulation of cytokine production by resident kidney cells. Thus, blocking the TWEAK/Fn14 axis may be a novel therapeutic intervention in immune-mediated proliferative GN.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, New York
| | - Simona Gindea
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Jing Wen
- Department of Microbiology and Immunology and
| | - Rahul D Pawar
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander Misharin
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harris Perlman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lan Wu
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | - Ping Wu
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | | | - Linda C Burkly
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | - Chaim Putterman
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
74
|
Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol 2014; 10:579-96. [DOI: 10.1038/nrneurol.2014.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
Pawar RD, Goilav B, Xia Y, Zhuang H, Herlitz L, Reeves WH, Putterman C. Serum autoantibodies in pristane induced lupus are regulated by neutrophil gelatinase associated lipocalin. Clin Immunol 2014; 154:49-65. [PMID: 24971701 PMCID: PMC4119527 DOI: 10.1016/j.clim.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
The onset of autoantibodies in systemic autoimmunity can be the result of a breakdown in tolerance at multiple checkpoints. Genetic, hormonal, and immunological factors can combine with environmental influences to accelerate the onset of disease and aggravate disease outcome. Here, we describe a novel mechanism relating to the regulatory role of Neutrophil Gelatinase Associated Lipocalin (NGAL) in modulating the levels of autoantibodies in pristane induced lupus. Following a single injection of pristane intraperitoneally, NGAL expression was induced in both the serum and spleen. Furthermore, NGAL deficient mice were more susceptible to the induction of pristane stimulated autoimmunity, and displayed higher numbers of autoantibody secreting cells and increased expression of activation induced cytidine deaminase (AID) and other inflammatory mediators in the spleen. In contrast, kidney damage was milder in NGAL deficient mice, indicating that NGAL was detrimental in autoantibody mediated kidney disease. These studies indicate that NGAL plays differential roles in different tissues in the context of lupus, and suggest a previously unrecognized role for NGAL in adaptive immunity.
Collapse
Affiliation(s)
- Rahul D Pawar
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Beatrice Goilav
- The Division of Pediatric Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yumin Xia
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haoyang Zhuang
- The Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL 32611, USA
| | - Leal Herlitz
- The Department of Pathology, Columbia University Medical Center, NY 10032, USA
| | - Westley H Reeves
- The Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL 32611, USA
| | - Chaim Putterman
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
76
|
Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model. Autoimmun Rev 2014; 13:963-73. [PMID: 25183233 DOI: 10.1016/j.autrev.2014.08.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
Mouse models of autoimmunity, such as (NZB×NZW)F1, MRL/MpJ-Fas(lpr) (MRL-lpr) and BXSB mice, spontaneously develop systemic lupus erythematosus (SLE)-like syndromes with heterogeneity and complexity that characterize human SLE. Despite their inherent limitations, such models have highly contributed to our current understanding of the pathogenesis of SLE as they provide powerful tools to approach the human disease at the genetic, cellular, molecular and environmental levels. They also allow novel treatment strategies to be evaluated in a complex integrated system, a favorable context knowing that very few murine models that adequately mimic human autoimmune diseases exist. As we move forward with more efficient medications to treat lupus patients, certain forms of the disease that requires to be better understood at the mechanistic level emerge. This is the case of neuropsychiatric (NP) events that affect 50-60% at SLE onset or within the first year after SLE diagnosis. Intense research performed at deciphering NP features in lupus mouse models has been undertaken. It is central to develop the first lead molecules aimed at specifically treating NPSLE. Here we discuss how mouse models, and most particularly MRL-lpr female mice, can be used for studying the pathogenesis of NPSLE in an animal setting, what are the NP symptoms that develop, and how they compare with human SLE, and, with a critical view, what are the neurobehavioral tests that are pertinent for evaluating the degree of altered functions and the progresses resulting from potentially active therapeutics.
Collapse
Affiliation(s)
- Hélène Jeltsch-David
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France.
| | - Sylviane Muller
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France.
| |
Collapse
|
77
|
Selmi C. Hot topics in autoimmune diseases: Perspectives from the 2013 Asian Congress of Autoimmunity. Autoimmun Rev 2014; 13:781-7. [DOI: 10.1016/j.autrev.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
|
78
|
Stock AD, Wen J, Putterman C. Neuropsychiatric Lupus, the Blood Brain Barrier, and the TWEAK/Fn14 Pathway. Front Immunol 2013; 4:484. [PMID: 24400009 PMCID: PMC3872310 DOI: 10.3389/fimmu.2013.00484] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) can experience acute neurological events such as seizures, cerebrovascular accidents, and delirium, psychiatric conditions including depression, anxiety, and psychosis, as well as memory loss and general cognitive decline. Neuropsychiatric SLE (NPSLE) occurs in between 30 and 40% of SLE patients, can constitute the initial patient presentation, and may occur outside the greater context of an SLE flare. Current efforts to elucidate the mechanistic underpinnings of NPSLE are focused on several different and potentially complementary pathways, including thrombosis, brain autoreactive antibodies, and complement deposition. Furthermore, significant effort is dedicated to understanding the contribution of neuroinflammation induced by TNF, IL-1, IL-6, and IFN-γ. More recent studies have pointed to a possible role for the TNF family ligand TWEAK in the pathogenesis of neuropsychiatric disease in human lupus patients, and in a murine model of this disease. The blood brain barrier (BBB) consists of tight junctions between endothelial cells (ECs) and astrocytic projections which regulate paracellular and transcellular flow into the central nervous system (CNS), respectively. Given the privileged environment of the CNS, an important question is whether and how the integrity of the BBB is compromised in NPSLE, and its potential pathogenic role. Evidence of BBB violation in NPSLE includes changes in the albumin quotient (Qalb) between plasma and cerebrospinal fluid, activation of brain ECs, and magnetic resonance imaging. This review summarizes the evidence implicating BBB damage as an important component in NPSLE development, occurring via damage to barrier integrity by environmental triggers such as infection and stress; cerebrovascular ischemia as result of a generally prothrombotic state; and immune mediated EC activation, mediated by antibodies and/or inflammatory cytokines. Additionally, new evidence supporting the role of TWEAK/Fn14 signaling in compromising the integrity of the BBB in lupus will be presented.
Collapse
Affiliation(s)
- Ariel D Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - Jing Wen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA ; Division of Rheumatology, Albert Einstein College of Medicine , Bronx, NY , USA
| |
Collapse
|
79
|
Cheng E, Armstrong CL, Galisteo R, Winkles JA. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic. Front Immunol 2013; 4:473. [PMID: 24391646 PMCID: PMC3870272 DOI: 10.3389/fimmu.2013.00473] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023] Open
Abstract
The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.
Collapse
Affiliation(s)
- Emily Cheng
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L. Armstrong
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|