51
|
Denkova AG, Liu H, Men Y, Eelkema R. Enhanced Cancer Therapy by Combining Radiation and Chemical Effects Mediated by Nanocarriers. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Antonia G. Denkova
- Department of Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Huanhuan Liu
- Department of Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Yongjun Men
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
52
|
Yang H, He H, Tong Z, Xia H, Mao Z, Gao C. The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window. J Colloid Interface Sci 2020; 565:186-196. [PMID: 31972332 DOI: 10.1016/j.jcis.2020.01.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/04/2020] [Accepted: 01/11/2020] [Indexed: 12/01/2022]
Abstract
Gold nanorods (GNRs) with longitudinal surface plasmon resonance (LSPR) peaks in second near-infrared (NIR-II) window have attracted a great amount of attention as photothermal transducer because of their inherently excellent photothermal transition efficiency, high biocompatibility and versatile surface functionalization. One key question for the application of these GNRs against tumors in vivo is which size/shape and surface ligand conjugation are promising for circulation and tumor targeting. In this study, we prepared a series of gold nanorods (GNRs) of similar aspect ratio and LSPR peaks, and thus similar photothermal transfer efficiency under irradiation of 980 nm laser, but with tunable size in width and length. The obtained GNRs were subjected to surface modification with PEG and tumor targeting ligand lactoferrin. With these tailor-designed GNRs in hand, we have the chance to study the impact of dimension and surface property of the GNRs on their internalization via tumor cells, photothermal cytotoxicity in vitro, blood circulation and tissue distribution pattern in vivo. As a result, the GNRs with medium size (70 nm in length and 11.5 nm in width) and surface PEG/LF modification (GNR70@PEG-LF) exhibit the fastest cell internalization via HepG2 cells and best photothermal outcome in vitro. The GNR70@PEG-LF also display long circulation time and the highest tumor accumulation in vivo, due to the synergetic effect of surface coating and dimension. Finally, tumor ablation ability of the GNRs under irradiation of 980 nm light were validated on mice xenograft model, suggesting their potential photothermal therapy against cancer in NIR-II window.
Collapse
Affiliation(s)
- Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongpeng He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
53
|
Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy. J Immunol Res 2020; 2020:9624532. [PMID: 32377541 PMCID: PMC7199570 DOI: 10.1155/2020/9624532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
One of the standards for cancer treatment is cancer immunotherapy which treats both primary and metastasized tumors. Although cancer immunotherapeutics show better outcomes as compared with conventional approaches of cancer treatment, the currently used cancer immunotherapeutics have limited application in delivering cancer antigens to immune cells. Conversely, in solid tumors, tumor microenvironment suppresses the immune system leading to the evasion of anticancer immunity. Some promising attempts have been made to overcome these drawbacks by using different approaches, for instance, the use of biomaterial-based nanoparticles. Accordingly, various studies involving the application of nanoparticles in cancer immunotherapy have been discussed in this review article. This review not only describes the modes of cancer immunotherapy to reveal the importance of nanoparticles in this modality but also narrates nanoparticle-mediated delivery of cancer antigens and therapeutic supplements. Moreover, the impact of nanoparticles on the immunosuppressive behavior of tumor environment has been discussed. The last part of this review deals with cancer immunotherapy using a combination of traditional interventional oncology approach and image-guided local immunotherapy against cancer. According to recent studies, cancer therapy can potentially be improved through nanoparticle-based immunotherapy. In addition, drawbacks associated with the currently used cancer immunotherapeutics can be fixed by using nanoparticles.
Collapse
|
54
|
Karatzas A, Haataja JS, Skoulas D, Bilalis P, Varlas S, Apostolidi P, Sofianopoulou S, Stratikos E, Houbenov N, Ikkala O, Iatrou H. Marcromolecular Architecture and Encapsulation of the Anticancer Drug Everolimus Control the Self-Assembly of Amphiphilic Polypeptide-Containing Hybrids. Biomacromolecules 2019; 20:4546-4562. [DOI: 10.1021/acs.biomac.9b01331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anastasis Karatzas
- University of Athens, Department of Chemistry, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Johannes S. Haataja
- Aalto University, Department of Applied Physics, FI-00076, Aalto, Espoo, Finland
| | - Dimitrios Skoulas
- University of Athens, Department of Chemistry, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Panayiotis Bilalis
- University of Athens, Department of Chemistry, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Spyridon Varlas
- University of Athens, Department of Chemistry, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Panagiota Apostolidi
- University of Athens, Department of Chemistry, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | | | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Patriarhou Gregoriou and Neapoleos 27, Agia Paraskevi 15341, Athens, Greece
| | - Nikolay Houbenov
- Aalto University, Department of Applied Physics, FI-00076, Aalto, Espoo, Finland
| | - Olli Ikkala
- Aalto University, Department of Applied Physics, FI-00076, Aalto, Espoo, Finland
| | - Hermis Iatrou
- University of Athens, Department of Chemistry, Panepistimiopolis, Zografou, 15771, Athens, Greece
| |
Collapse
|
55
|
Shave MK, Balciunaite A, Xu Z, Santore MM. Rapid Electrostatic Capture of Rod-Shaped Particles on Planar Surfaces: Standing up to Shear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13070-13077. [PMID: 31550166 PMCID: PMC6800086 DOI: 10.1021/acs.langmuir.9b01871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We compare the electrostatically driven capture of flowing rod-shaped and spherical silica particles from dilute solutions onto a flow chamber wall that carries the opposite electrostatic charge from the particles. Particle accumulation and orientation are measured in time at a fixed region on the wall of a shear flow chamber. Rod-shaped particle aspect ratios are 2.5-3.2 and particle lengths are 1.3 and 2.67 μm for two samples, while sphere diameters were 0.72, 0.96, and 2.0 μm for three samples. At a moderate wall shear rate of 22 s-1, the particle accumulation for both rods and spheres is well described by diffusion-limited kinetics, demonstrating the limiting effect of particle diffusion in the near-wall boundary layer for electrostatically driven capture in this particle shape and size range. The significance of this finding is demonstrated in a calculation that shows that for delivery applications, nearly the same (within 10%) particle volume or mass is delivered to a surface at the diffusion-limited rate by rods and spheres. Therefore, in the absence of other motivating factors, the expense of developing rod-shaped microscale delivery packages to enhance capture from flow in the diffusion-limited simple shear regime is unwarranted. It is also interesting that the captured orientations of the larger rods, 2.6 μm in average length, were highly varied and insensitive to flow: a substantial fraction of rods were trapped in standing and slightly leaning orientations, touching the surface by their ends. Additionally, for particles that were substantially tipped over, there was only modest orientation in the flow direction. Taken together, these findings suggest that on the time scale of near-surface particle rotations, adhesion events are fast, trapping particles in orientations that do not necessarily maximize their favored adhesive contact or reduce hydrodynamic drag.
Collapse
Affiliation(s)
- Molly K Shave
- Department of Polymer Science and Engineering , University of Massachusetts at Amherst , 120 Governors Drive , Amherst , Massachusetts 01003 , United States
| | - Aiste Balciunaite
- Department of Polymer Science and Engineering , University of Massachusetts at Amherst , 120 Governors Drive , Amherst , Massachusetts 01003 , United States
| | - Zhou Xu
- Department of Physics , University of Massachusetts at Amherst , 666 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Maria M Santore
- Department of Polymer Science and Engineering , University of Massachusetts at Amherst , 120 Governors Drive , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
56
|
Chamseddine IM, Kokkolaras M. Nanoparticle Optimization for Enhanced Targeted Anticancer Drug Delivery. J Biomech Eng 2019; 140:2658265. [PMID: 29049542 DOI: 10.1115/1.4038202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/08/2022]
Abstract
Nanoparticle (NP)-based drug delivery is a promising method to increase the therapeutic index of anticancer agents with low median toxic dose. The delivery efficiency, corresponding to the fraction of the injected NPs that adhere to the tumor site, depends on NP size a and aspect ratio AR. Values for these variables are currently chosen empirically, which may not result in optimal targeted drug delivery. This study applies rigorous optimization to the design of NPs. A preliminary investigation revealed that delivery efficiency increases monotonically with a and AR. However, maximizing a and AR results in nonuniform drug distribution, which impairs tumor regression. Therefore, a multiobjective optimization (MO) problem is formulated to quantify the trade-off between NPs accumulation and distribution. The MO is solved using the derivative-free mesh adaptive direct search algorithm. Theoretically, the Pareto-optimal set consists of an infinite number of mathematically equivalent solutions to the MO problem. However, interesting design solutions can be identified subjectively, e.g., the ellipsoid with a major axis of 720 nm and an aspect ratio of 7.45, as the solution closest to the utopia point. The MO problem formulation is then extended to optimize NP biochemical properties: ligand-receptor binding affinity and ligand density. Optimizing physical and chemical properties simultaneously results in optimal designs with reduced NP sizes and thus enhanced cellular uptake. The presented study provides an insight into NP structures that have potential for producing desirable drug delivery.
Collapse
Affiliation(s)
- Ibrahim M Chamseddine
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada e-mail:
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada e-mail:
| |
Collapse
|
57
|
Fabrication of topologically anisotropic microparticles and their surface modification with pH responsive polymer brush. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109894. [PMID: 31499968 DOI: 10.1016/j.msec.2019.109894] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 11/23/2022]
Abstract
This paper describes the fabrication of topologically anisotropic cup shaped polylactide (PLA)/poly[methyl methacrylate‑co‑2‑(2‑bromopropionyloxy) ethyl methacrylate] (poly(MMA-co-BEMA)) (75/25) composite particles of ~6 μm size using electrojetting technique. An attempt was made to understand the mechanism of cup shape formation from the miscible blend by electrojetting. Both the solution parameters and the processing conditions affected the particles' shape which can be varied from cup shaped to discoid type. Surface initiated atom transfer radical polymerization (ATRP) of stimuli responsive DMAEMA (2‑dimethylamino ethyl methacrylate) was subsequently carried out for 1 h onto the surface of cup shaped particles to observe pH responsiveness of the modified anisotropic particles. Interestingly, morphology of the cup shaped particles was changed to elongated cup which did show significant swelling under acidic pH (swelling ratio:~1.6) and enhanced dye adsorption at specific pH as observed by optical microscope and confocal laser scanning microscope implying that DMAEMA polymerization happened onto the surface of the composite microparticles. The Raman microscopy and FTIR spectra obtained from the particles after polymerization further confirmed the immobilization of pH responsive poly(DMAEMA) brushes onto the cup shaped particles which may potentially function as triggered/targeted drug delivery vehicles. Moreover, the brush modified cup shaped particles were found to be two times more efficient in adsorbing dye compared to disc shaped one indicating a clear advantage of using cup shaped particles over other shapes for immobilizing/adsorbing charged species e.g. sensitive biomolecules.
Collapse
|
58
|
Miali ME, Colasuonno M, Surdo S, Palomba R, Pereira R, Rondanina E, Diaspro A, Pascazio G, Decuzzi P. Leaf-Inspired Authentically Complex Microvascular Networks for Deciphering Biological Transport Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31627-31637. [PMID: 31412200 DOI: 10.1021/acsami.9b09453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The vascular transport of molecules, cells, and nanoconstructs is a fundamental biophysical process impacting tissue regeneration, delivery of nutrients and therapeutic agents, and the response of the immune system to external pathogens. This process is often studied in single-channel microfluidic devices lacking the complex tridimensional organization of vascular networks. Here, soft lithography is employed to replicate the vein system of a Hedera elix leaf on a polydimethilsiloxane (PDMS) template. The replica is then sealed and connected to an external pumping system to realize an authentically complex microvascular network. This satisfies energy minimization criteria by Murray's law and comprises a network of channels ranging in size from capillaries (∼50 μm) to large arterioles and venules (∼400 μm). Micro-PIV (micro-particle image velocimetry) analysis is employed to characterize flow conditions in terms of streamlines, fluid velocity, and flow rates. To demonstrate the ability to reproduce physiologically relevant transport processes, two different applications are demonstrated: vascular deposition of tumor cells and lysis of blood clots. To this end, conditions are identified to culture cells within the microvasculature and realize a confluent endothelial monolayer. Then, the vascular deposition of circulating breast (MDA-MB 231) cancer cells is documented throughout the network under physiologically relevant flow conditions. Firm cell adhesion mostly occurs in channels with low mean blood velocity. As a second application, blood clots are formed within the chip by mixing whole blood with a thrombin solution. After demonstrating the blood clot stability, tissue plasminogen activator (tPA) and tPA-carrying nanoconstructs (tPA-DPNs) are employed as thrombolytics. In agreement with previous data, clot dissolution is equally induced by tPA and tPA-DPNs. The proposed leaf-inspired chip can be efficiently used to study a variety of vascular transport processes in complex microvascular networks, where geometry and flow conditions can be modulated and monitored throughout the experimental campaign.
Collapse
Affiliation(s)
- Marco E Miali
- Dipartimento di Meccanica, Matematica e Management, DMMM , Politecnico di Bari , Via Re David , 200-70125 Bari , Italy
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Marianna Colasuonno
- Sant'Anna School of Advanced Studies , Piazza Martiri della Libertà 33 , 56127 Pisa , Italy
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Salvatore Surdo
- Nanophysics Department , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Rui Pereira
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Eliana Rondanina
- Nanostructures , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Alberto Diaspro
- Nanophysics Department , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Giuseppe Pascazio
- Dipartimento di Meccanica, Matematica e Management, DMMM , Politecnico di Bari , Via Re David , 200-70125 Bari , Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
59
|
Quijia Quezada C, Azevedo CS, Charneau S, Santana JM, Chorilli M, Carneiro MB, Bastos IMD. Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomedicine 2019; 14:6407-6424. [PMID: 31496694 PMCID: PMC6691952 DOI: 10.2147/ijn.s206109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is one of the most important public health problems in Latin America due to its high mortality and morbidity levels. There is no effective treatment for this disease since drugs are usually toxic with low bioavailability. Serious efforts to achieve disease control and eventual eradication have been unsuccessful to date, emphasizing the need for rapid diagnosis, drug development, and a reliable vaccine. Novel systems for drug and vaccine administration based on nanocarriers represent a promising avenue for Chagas disease treatment. Nanoparticulate systems can reduce toxicity, and increase the efficacy and bioavailability of active compounds by prolonging release, and therefore improve the therapeutic index. Moreover, nanoparticles are able to interact with the host's immune system, modulating the immune response to favour the elimination of pathogenic microorganisms. In addition, new advances in diagnostic assays, such as nanobiosensors, are beneficial in that they enable precise identification of the pathogen. In this review, we provide an overview of the strategies and nanocarrier-based delivery systems for antichagasic agents, such as liposomes, micelles, nanoemulsions, polymeric and non-polymeric nanoparticles. We address recent progress, with a particular focus on the advances of nanovaccines and nanodiagnostics, exploring new perspectives on Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Quijia Quezada
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Clênia S Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcella B Carneiro
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
60
|
Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D, Gao H, Zhao CX. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS NANO 2019; 13:7410-7424. [PMID: 31287659 DOI: 10.1021/acsnano.9b03924] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The physicochemical properties of nanoparticles play critical roles in regulating nano-bio interactions. Whereas the effects of the size, shape, and surface charge of nanoparticles on their biological performances have been extensively investigated, the roles of nanoparticle mechanical properties in drug delivery, which have only been recognized recently, remain the least explored. This review article provides an overview of the impacts of nanoparticle mechanical properties on cancer drug delivery, including (1) basic terminologies of the mechanical properties of nanoparticles and techniques for characterizing these properties; (2) current methods for fabricating nanoparticles with tunable mechanical properties; (3) in vitro and in vivo studies that highlight key biological performances of stiff and soft nanoparticles, including blood circulation, tumor or tissue targeting, tumor penetration, and cancer cell internalization, with a special emphasis on the underlying mechanisms that control those complicated nano-bio interactions at the cellular, tissue, and organ levels. The interesting research and findings discussed in this review article will offer the research community a better understanding of how this research field evolved during the past years and provide some general guidance on how to design and explore the effects of nanoparticle mechanical properties on nano-bio interactions. These fundamental understandings, will in turn, improve our ability to design better nanoparticles for enhanced drug delivery.
Collapse
Affiliation(s)
- Yue Hui
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Xin Yi
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering , Peking University , Beijing 100871 , China
| | - Fei Hou
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Huajian Gao
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| |
Collapse
|
61
|
Denardo SJ, Denardo BC, Carpinone PL, Dean WT, New DM, Estrada LE, Green CL, Yock PG, Karunasiri G. Validated model of platelet slip at stenosis and device surfaces. Platelets 2019; 31:373-382. [PMID: 31311384 DOI: 10.1080/09537104.2019.1636021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Platelets are central to thrombosis. However, it is unknown whether platelets slip at vascular or device surfaces. The presence of platelet slip at a surface would interrupt physical contact between the platelet and that surface, and therefore diminish adhesion and thrombosis. Unfortunately, no existing technology can directly measure platelet slip in a biological environment. The objective of this study was to explore whether microspheres-modeling platelets-slip at different vascular and device surfaces in an acrylic scaled-up model coronary artery. The microspheres (3.12 µm diameter) were suspended in a transparent glycerol/water experimental fluid, which flowed continuously at Reynolds numbers typical of coronary flow (200-400) through the model artery. We placed a series of axisymmetric acrylic stenoses (cross-sectional area reduction [CSAr], 20-90%) into the model artery, both without and with a central cylinder present (modeling a percutaneous interventional guide wire, and with a scaled-up Doppler catheter mounted upstream). We used laser Doppler velocimetry (LDV) to measure microsphere velocities within, proximal and distal to each stenosis, and compared to computer simulations of fluid flow with no-slip. For validation, we replaced the acrylic with paraffin stenoses (more biologically relevant from a surface roughness perspective) and then analyzed the signal recorded by the scaled-up Doppler catheter. Using the LDV, we identified progressive microsphere slip proportional to CSAr inside entrances for stenoses ≥60% and ≥40% without and with cylinder present, respectively. Additionally, microsphere slip occurred universally along the cylinder surface. Computer simulations indicated increased fluid shear rates (velocity gradients) at these particular locations, and logistic regression analysis comparing microsphere slip with fluid shear rate resulted in a c-index of 0.989 at a cut-point fluid shear rate of (10.61 [cm-1]×mean velocity [cm×sec-1]). Moreover, the presence of the cylinder caused disordering of microsphere shear rates distal to higher grade stenoses, indicating a disturbance in their flow. Finally, despite lower precision, the signal recorded by the scaled-up Doppler catheter nonetheless indicated slip at the entry into and at most locations distal to the 90% stenosis. Our validated model establishes proof of concept for platelet slip, and platelet slip explains several important basic and clinical observations. If technological advances allow confirmation in a true biologic environment, then our results will likely influence the development of shear-dependent antiplatelet drugs. Also, adding shear rate information, our results provide a direct experimental fluid dynamic foundation for antiplatelet-focused antithrombotic therapy during coronary interventions directed towards higher grade atherosclerotic stenoses.
Collapse
Affiliation(s)
- Scott J Denardo
- Reid Heart Center/FirstHealth of Carolinas Cardiac and Vascular Institute, Pinehurst, NC, USA
| | - Bruce C Denardo
- Department of Physics, Naval Postgraduate School, Monterey, CA, USA
| | - Paul L Carpinone
- Particle Engineering Research Center, University of Florida, Gainesville, FL, USA
| | - William T Dean
- Department of Physics, Naval Postgraduate School, Monterey, CA, USA
| | - David M New
- Department of Physics, Naval Postgraduate School, Monterey, CA, USA
| | - Luis E Estrada
- Department of Physics, Naval Postgraduate School, Monterey, CA, USA
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Paul G Yock
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
62
|
Tahmasbi Rad A, Malik S, Yang L, Oberoi-Khanuja TK, Nieh MP, Bahal R. A universal discoidal nanoplatform for the intracellular delivery of PNAs. NANOSCALE 2019; 11:12517-12529. [PMID: 31188378 DOI: 10.1039/c9nr03667a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide nucleic acids (PNAs) have gained considerable attention due to their remarkable potential in gene editing and targeting-based strategies. However, cellular delivery of PNAs remains a challenge in developing their broader therapeutic applications. Here, we investigated a novel complex made of lipid bicelles and PNA-based carriers for the efficient delivery of PNAs. For proof of concept, PNAs targeting microRNA (miR) 210 and 155 were tested. Comprehensive evaluation of positive as well as negative charge-containing bicelles with PNA : lipid ratios of 1 : 100, 1 : 1000, and 1 : 2500 was performed. The negatively charged bicelles with a PNA : lipid molar ratio of 1 : 2500 yielded a discoidal shape with a uniform diameter of ∼30 nm and a bilayer thickness of 5 nm, while the positively charged bicellar system contained irregular vesicles after the incorporation of PNA. Small-angle X-ray scattering (SAXS) analysis was performed to provide insight into how the hydrophobic PNAs interact with bicelles. Further, flow cytometry followed by confocal microscopy analyses substantiate the superior transfection efficiency of bicelles containing dye-conjugated antimiR PNAs. Functional analysis also confirmed miR inhibition by PNA oligomers delivered by bicelles. The nanodiscoidal complex opens a new pathway to deliver PNAs, which, on their own, are a great challenge to be endocytosed into cells.
Collapse
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Shipra Malik
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| | - Lin Yang
- National Synchrotron Light Source - II, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
63
|
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019; 565:509-522. [PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500 Selangor, Malaysia.
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
64
|
Li K, Ma H. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5471-5483. [PMID: 30925063 DOI: 10.1021/acs.langmuir.9b00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloid surface charge heterogeneity was incorporated into a three-dimensional trajectory model, which simulated particle translation and rotation via a force/torque analysis, to study the transport and retention dynamics of rod-shaped colloids over a wide size range in porous media under unfavorable conditions (energy barriers to deposition exist). Our previous study Li , K. ; Ma , H. Deposition Dynamics of Rod-Shaped Colloids during Transport in Porous Media under Favorable Conditions , Langmuir , 2018 , 34 , 9 , 2967 - 2980 , 10.1021/acs.langmuir.7b03983 for rod transport under favorable conditions (lacking energy barriers) demonstrated that particle rotation due to the coupled effect of flow hydrodynamics and Brownian rotation governed rod transport and retention. In this work, we showed that the shape of a colloid affected both transport process and colloid-collector interactions, but shape alone could not make rods to overcome energy barriers of over tens of kT for attachment under unfavorable conditions. The location of colloid surface heterogeneity did not affect transport but predominantly affected colloid-surface interactions by influencing the likelihood of heterogeneity patches facing the collector due to particle rotation. For surface heterogeneity located on the end(s) of a colloid, rods displayed enhanced retention compared with spheres; for surface heterogeneity located on the middle band, rods showed less retention compared with spheres. It was more effective to arrest a traveling rod when surface heterogeneity was located on the end relative to the side, because the tumbling motion greatly increased the likelihood of the end to intercept collector surfaces, and also because a rod would experience less repulsion with an end-on orientation relative to the collector surface compared to a side-on orientation due to the curvature effect. The influences of the particle aspect ratio on retention strongly depended upon the location of colloid surface heterogeneity. Our findings demonstrated that rods had distinct rotation and retention behaviors from spheres under conditions typically encountered in the environment; thus, particle rotation should be considered when studying the transport process of nonspherical colloids or spherical particles with inhomogeneous surface properties.
Collapse
Affiliation(s)
- Ke Li
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Huilian Ma
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
65
|
Abstract
Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.
Collapse
|
66
|
Pharmaceutical feasibility and flow characteristics of polymeric non-spherical particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:243-258. [PMID: 30904588 DOI: 10.1016/j.nano.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
Last decade has seen emergence of particle shape as a critical design parameter to overcome several long standing problems associated with particulate drug delivery- non-specific drug effects, RES uptake, poor bioavailability, achieving controlled release profiles, predictable degradation profiles, longer circulation time and zero order release kinetics to name a few. Non-spherical particles have been synthesized by techniques ranging from classical solvent evaporation to specialized techniques like film stretching and PRINT®. Non-spherical particles tend to show a difference in macrophage uptake, adhesion to target cells and distribution in vivo. This review also discusses these effects and its implications. Lastly, the impact of particle aspect ratio and other shape-governed parameters on flow properties, dispersion viscosities and other pharmaceutically relevant aspects have been briefly explained. Although there are no thumb rules yet, modern and classical literature on behavior of non-spherical particles has been reviewed and the observations have been trend-lined.
Collapse
|
67
|
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019; 143:3-21. [PMID: 30639257 DOI: 10.1016/j.addr.2019.01.002] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Over the years, a plethora of materials - natural and synthetic - have been engineered at a nanoscopic level and explored for drug delivery. Nanocarriers based on such materials could improve the payload's pharmacokinetics and achieve the desired pharmacological response at the target tissue. Despite the development of rationally designed drug nanocarriers, only a handful of such formulations have been successfully translated into the clinic. The physicochemical properties (size, shape, surface chemistry, porosity, elasticity, and many others) of these nanocarriers influence its biological identity, which in presence of biological barriers in vivo, could significantly modulate the therapeutic index of its cargo and alter the desired outcome. Further, complexities associated with developing effective drug nanocarriers have led to conflicting views of its safety, permeation of biological barriers and cellular uptake. Here, in this review, we emphasize the effect of physicochemical properties of nanocarriers on their interactions with the biological milieu. The review will discuss in depth, how modulating the physicochemical properties would influence a drug nanocarrier's behavior in vivo and the mechanisms underlying these effects. The goal of this review is to summarize the design considerations based on these properties and to provide a conceptual template for achieving improved therapeutic efficacy with enhanced patient compliance.
Collapse
|
68
|
Röder J, Dickmeis C, Commandeur U. Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. FRONTIERS IN PLANT SCIENCE 2019; 10:158. [PMID: 30838013 PMCID: PMC6390637 DOI: 10.3389/fpls.2019.00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an expanding interdisciplinary field concerning the development and application of nanostructured materials derived from inorganic compounds or organic polymers and peptides. Among these latter materials, proteinaceous plant virus nanoparticles have emerged as a key platform for the introduction of tailored functionalities by genetic engineering and conjugation chemistry. Tobacco mosaic virus and Cowpea mosaic virus have already been developed for bioimaging, vaccination and electronics applications, but the flexible and filamentous Potato virus X (PVX) has received comparatively little attention. The filamentous structure of PVX particles allows them to carry large payloads, which are advantageous for applications such as biomedical imaging in which multi-functional scaffolds with a high aspect ratio are required. In this context, PVX achieves superior tumor homing and retention properties compared to spherical nanoparticles. Because PVX is a protein-based nanoparticle, its unique functional properties are combined with enhanced biocompatibility, making it much more suitable for biomedical applications than synthetic nanomaterials. Moreover, PVX nanoparticles have very low toxicity in vivo, and superior pharmacokinetic profiles. This review focuses on the production of PVX nanoparticles engineered using chemical and/or biological techniques, and describes current and future opportunities and challenges for the application of PVX nanoparticles in medicine, diagnostics, materials science, and biocatalysis.
Collapse
Affiliation(s)
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
69
|
Abstract
PURPOSE OF REVIEW Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. RECENT FINDINGS As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. SUMMARY The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.
Collapse
|
70
|
Cao S, Tang R, Sudlow G, Wang Z, Liu K, Luan J, Tadepalli S, Seth A, Achilefu S, Singamaneni S. Shape-Dependent Biodistribution of Biocompatible Silk Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5499-5508. [PMID: 30640448 PMCID: PMC7063564 DOI: 10.1021/acsami.8b17809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microcapsules are emerging as promising microsize drug carriers due to their remarkable deformability. Shape plays a dominant role in determining their vascular transportation. Herein, we explored the effect of the shape of the microcapsules on the in vivo biodistribution for rational design of microcapsules to achieve optimized targeting efficiency. Silk fibroin, a biocompatible, biodegradable, and abundant material, was utilized as a building block to construct biconcave discoidal and spherical microcapsules with diameter of 1.8 μm and wall thickness of 20 nm. We have compared the cytocompatibility, cellular uptake, and biodistribution of both microcapsules. Both biconcave and spherical microcapsules exhibited excellent cytocompatibility and internalization into cancer cells. During blood circulation in mice, both microcapsules showed retention in liver and kidney and most underwent renal clearance. However, we observed significantly higher accumulation of biconcave silk microcapsules in lung compared with spherical microcapsules, and the accumulation was found to be stable in lung even after 3 days. The higher concentration of biconcave discoidal microcapsules found in lung arises from pulmonary environment, margination dynamics, and enhanced deformation in bloodstream. Red blood cell (RBC)-mimicking silk microcapsules demonstrated here can potentially serve as a promising platform for delivering drugs for lung diseases.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Rui Tang
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, 63130, USA
| | - Gail Sudlow
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Kengku Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Samuel Achilefu
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, 63130, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| |
Collapse
|
71
|
Zu G, Cao Y, Dong J, Zhou Q, van Rijn P, Liu M, Pei R. Development of an Aptamer-Conjugated Polyrotaxane-Based Biodegradable Magnetic Resonance Contrast Agent for Tumor-Targeted Imaging. ACS APPLIED BIO MATERIALS 2018; 2:406-416. [DOI: 10.1021/acsabm.8b00639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jingjin Dong
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Qihui Zhou
- Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
72
|
Biomimetic surface modification of discoidal polymeric particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:79-87. [PMID: 30529792 DOI: 10.1016/j.nano.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 11/23/2022]
Abstract
The rationale for the design of drug delivery nanoparticles is traditionally based on co-solvent self-assembly following bottom-up approaches or in combination with top-down approaches leading to tailored physiochemical properties to regulate biological responses. However, the optimal design and control of material properties to achieve specific biological responses remain the central challenge in drug delivery research. Considering this goal, we herein designed discoidal polymeric particles (DPPs) whose surfaces are re-engineered with isolated red blood cell (RBC) membranes to tailor their pharmacokinetics. The RBC membrane-coated DPPs (RBC-DPPs) were found to be biocompatible in cell-based in vitro experiments and exhibited extended blood circulation half-life. They also demonstrated unique kinetics at later time points in a mouse model compared to that of bare DPPs. Our results suggested that the incorporation of biomimicry would enable the biomimetic particles to cooperate with systems in the body such as cells and biomolecules to achieve specific biomedical goals.
Collapse
|
73
|
Wang HF, Ran R, Liu Y, Hui Y, Zeng B, Chen D, Weitz DA, Zhao CX. Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. ACS NANO 2018; 12:11600-11609. [PMID: 30380832 DOI: 10.1021/acsnano.8b06846] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticle tumor accumulation relies on a key mechanism, the enhanced permeability and retention (EPR) effect, but it remains challenging to decipher the exact impact of the EPR effect. Animal models in combination with imaging modalities are useful, but it is impossible to delineate the roles of multiple biological barriers involved in nanoparticle tumor accumulation. Here we report a microfluidic tumor-vasculature-on-a-chip (TVOC) mimicking two key biological barriers, namely, tumor leaky vasculature and 3D tumor tissue with dense extracellular matrix (ECM), to study nanoparticle extravasation through leaky vasculature and the following accumulation in tumor tissues. Intact 3D tumor vasculature was developed with selective permeability of small molecules (20 kDa) but not large ones (70 kDa). The permeability was further tuned by cytokine stimulation, demonstrating the independent control of the leaky tumor vasculature. Combined with tumor spheroids in dense ECM, our TVOC model is capable of predicting nanoparticles' in vivo tumor accumulation, thus providing a powerful platform for nanoparticle evaluation.
Collapse
Affiliation(s)
- Hao-Fei Wang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Rui Ran
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Bijun Zeng
- Diamantina Institute , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Dong Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems , Zhejiang University , Zheda Road, No. 38 , Hangzhou , 310027 , People's Republic of China
- Institute of Process Equipment, College of Energy Engineering , Zhejiang University , Zheda Road, No. 38 , Hangzhou , 310027 , People's Republic of China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
74
|
Shi X, Tian F. Multiscale Modeling and Simulation of Nano‐Carriers Delivery through Biological Barriers—A Review. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| | - Falin Tian
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
75
|
Covarrubias G, Cha A, Rahmy A, Lorkowski M, Perera V, Erokwu BO, Flask C, Peiris PM, Schiemann WP, Karathanasis E. Imaging breast cancer using a dual-ligand nanochain particle. PLoS One 2018; 13:e0204296. [PMID: 30335750 PMCID: PMC6193613 DOI: 10.1371/journal.pone.0204296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Nanoparticles often only exploit the upregulation of a receptor on cancer cells to enhance intratumoral deposition of therapeutic and imaging agents. However, a single targeting moiety assumes that a tumor is homogenous and static. Tumoral microenvironments are both heterogenous and dynamic, often displaying variable spatial and temporal expression of targetable receptors throughout disease progression. Here, we evaluated the in vivo performance of an iron oxide nanoparticle in terms of targeting and imaging of orthotropic mouse models of aggressive breast tumors. The nanoparticle, a multi-component nanochain, was comprised of 3–5 iron oxide nanoparticles chemically linked in a linear chain. The nanoparticle’s surface was decorated with two types of ligands each targeting two different upregulated biomarkers on the tumor endothelium, P-selectin and fibronectin. The nanochain exhibited improved tumor deposition not only through vascular targeting but also through its elongated structure. A single-ligand nanochain exhibited a ~2.5-fold higher intratumoral deposition than a spherical nanoparticle variant. Furthermore, the dual-ligand nanochain exhibited higher consistency in generating detectable MR signals compared to a single-ligand nanochain. Using a 7T MRI, the dual-ligand nanochains exhibited highly detectable MR signal within 3h after injection in two different animal models of breast cancer.
Collapse
Affiliation(s)
- Gil Covarrubias
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anthony Cha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Abdelrahman Rahmy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Morgan Lorkowski
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Vindya Perera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bernadette O. Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Chris Flask
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pubudu M. Peiris
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
76
|
Zhou L, Qiu T, Lv F, Liu L, Ying J, Wang S. Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800670. [PMID: 30080319 DOI: 10.1002/adhm.201800670] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/03/2018] [Indexed: 01/28/2023]
Abstract
Self-assembly strategies have been widely applied in the nanomedicine field, which provide a convenient approach for building various structures for delivery carriers. When cooperating with biomolecules, self-assembly systems have significant influence on the cell activity and life process and could be used for regulating nanodrug activity. In this review, self-assembled nanomedicines are introduced, including materials, encapsulation, and releasing strategies, where self-assembly strategies are involved. Furthermore, as a promising and emerging area for nanomedicine, in situ self-assembly of anticancer drugs and supramolecular antibiotic switches is also discussed about how to regulate drug activity. Selective pericellular assembly can block mass transformation of cancer cells inducing cell apoptosis, and the intracellular assembly can either cause cell death or effectively avoid drug elimination from cytosol of cancer cells because of the assembly-induced retention (AIR) effect. Host-guest interactions of drug and competitive molecules offer reversible regulations of antibiotic activity, which can reduce drug-resistance and inhibit the generation of drug-resistant bacteria. Finally, the challenges and development trend in the field are discussed.
Collapse
Affiliation(s)
- Lingyun Zhou
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Tian Qiu
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jianming Ying
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
77
|
Park W, Heo YJ, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res 2018; 22:24. [PMID: 30275967 PMCID: PMC6158870 DOI: 10.1186/s40824-018-0133-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, cancer immunotherapy has become standard for cancer treatment. Immunotherapy not only treats primary tumors, but also prevents metastasis and recurrence, representing a major advantage over conventional cancer treatments. However, existing cancer immunotherapies have limited clinical benefits because cancer antigens are often not effectively delivered to immune cells. Furthermore, unlike lymphoma, solid tumors evade anti-cancer immunity by forming an immune-suppressive tumor microenvironment (TME). One approach for overcoming these limitations of cancer immunotherapy involves nanoparticles based on biomaterials. MAIN BODY Here, we review in detail recent trends in the use of nanoparticles in cancer immunotherapy. First, to illustrate the unmet needs for nanoparticles in this field, we describe the mechanisms underlying cancer immunotherapy. We then explain the role of nanoparticles in the delivery of cancer antigens and adjuvants. Next, we discuss how nanoparticles can be helpful within the immune-suppressive TME. Finally, we summarize current and future uses of nanoparticles with image-guided interventional techniques in cancer immunotherapy. CONCLUSION Recently developed approaches for using nanoparticles in cancer immunotherapy have enormous potential for improving cancer treatment. Cancer immunotherapy based on nanoparticles is anticipated not only to overcome the limitations of existing immunotherapy, but also to generate synergistic effects via cooperation between nanoparticles and immune cells.
Collapse
Affiliation(s)
- Wooram Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488 Republic of Korea
| | - Young-Jae Heo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488 Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488 Republic of Korea
| |
Collapse
|
78
|
Moskalensky AE, Litvinenko AL. The platelet shape change: biophysical basis and physiological consequences. Platelets 2018; 30:543-548. [DOI: 10.1080/09537104.2018.1514109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alexander E. Moskalensky
- Laboratory of Optics and Dynamics of Biological Systems, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia
| | - Alena L. Litvinenko
- Laboratory of Optics and Dynamics of Biological Systems, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia
| |
Collapse
|
79
|
Ye H, Shen Z, Li Y. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. SOFT MATTER 2018; 14:7401-7419. [PMID: 30187053 DOI: 10.1039/c8sm01304g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigates the shear rate dependent margination of micro-particles (MPs) with different shapes in blood flow through numerical simulations. We develop a multiscale computational model to handle the fluid-structure interactions involved in the blood flow simulations. The lattice Boltzmann method (LBM) is used to solve the plasma dynamics and a coarse-grained model is employed to capture the dynamics of red blood cells (RBCs) and MPs. These two solvers are coupled together by the immersed boundary method (IBM). The shear rate dependent margination of sphere MPs is firstly investigated. We find that margination of sphere MPs dramatically increases with the increment of wall shear rate [small gamma, Greek, dot above]ω under 800 s-1, induced by the breaking of rouleaux in blood flow. However, the margination probability only slowly grows when [small gamma, Greek, dot above]ω > 800 s-1. Furthermore, the shape effect of MPs is examined by comparing the margination behaviors of sphere-like, oblate-like and prolate-like MPs under different wall shear rates. We find that the margination of MPs is governed by the interplay of two factors: hydrodynamic collisions with RBCs including the collision frequency and collision displacement of MPs, and near wall dynamics. MPs that demonstrate poor performance in one process such as collision frequency may stand out in the other process like near wall dynamics. Specifically, the ellipsoidal MPs (oblate and prolate) with small aspect ratio (AR) outperform those with large AR regardless of the wall shear rate, due to their better performance in both the collision with RBCs and near wall dynamics. Additionally, we find there exists a transition shear rate region 700 s-1 < [small gamma, Greek, dot above]ω < 900 s-1 for all of these MPs: the margination probability dramatically increases with the shear rate below this region and slowly grows above this region, similar to sphere MPs. We further use the surface area to volume ratio (SVR) to distinguish different shaped MPs and illustrate their shear rate dependent margination in a contour in the shear rate-SVR plane. It is of significance that we can approximately predict the margination of MPs with a specific SVR. All these simulation results can be potentially applied to guide the design of micro-drug carriers for biomedical applications.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, USA.
| | | | | |
Collapse
|
80
|
Pitek AS, Park J, Wang Y, Gao H, Hu H, Simon DI, Steinmetz NF. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. NANOSCALE 2018; 10:16547-16555. [PMID: 30137088 PMCID: PMC6145846 DOI: 10.1039/c8nr02861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cardiovascular thrombotic disease is an underlying cause of stroke, myocardial infarction and pulmonary embolism - some of the leading causes of death worldwide. Reperfusion therapy with anticoagulant, antiplatelet, and fibrinolytic agents has significantly reduced early mortality and morbidity from acute myocardial infarction and stroke. Nevertheless, bleeding side effects (e.g., intracranial hemorrhage) associated with the anti-thrombotic therapy can offset its benefits and limit its applicability to strictly defined short therapeutic windows. We have previously shown that elongated plant virus based nanoparticles can target cardiovascular thrombi and exhibited their utility for the delivery of streptokinase in an ex vivo model of thrombosis. Herein, we build upon our previous findings and demonstrate plant viral delivery of the current standard-of-care tissue plasminogen activator (tPA). Studies on a pre-clinical mouse model of arterial thrombosis indicate that while the therapeutic efficacy of free tPA and tPA-conjugated TMV are similar, the safety profile of the tPA-TMV formulation is improved, i.e. administration of the latter has less impact on hemostasis as demonstrated by decreased bleeding time. Thus, our data suggest that TMV-based delivery of thrombolytic therapies could be a promising and safer alternative to reperfusion therapy with the tPA.
Collapse
Affiliation(s)
- Andrzej S. Pitek
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jooneon Park
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel I. Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Materials Science and Engineering,
Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
81
|
Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen Gupta A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. NANOSCALE 2018; 10:15350-15364. [PMID: 30080212 PMCID: PMC6247903 DOI: 10.1039/c8nr04042g] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Intravascular drug delivery technologies majorly utilize spherical nanoparticles as carrier vehicles. Their targets are often at the blood vessel wall or in the tissue beyond the wall, such that vehicle localization towards the wall (margination) becomes a pre-requisite for their function. To this end, some studies have indicated that under flow environment, micro-particles have a higher propensity than nano-particles to marginate to the wall. Also, non-spherical particles theoretically have a higher area of surface-adhesive interactions than spherical particles. However, detailed systematic studies that integrate various particle size and shape parameters across nano-to-micro scale to explore their wall-localization behavior in RBC-rich blood flow, have not been reported. We address this gap by carrying out computational and experimental studies utilizing particles of four distinct shapes (spherical, oblate, prolate, rod) spanning nano- to-micro scale sizes. Computational studies were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package, with Dissipative Particle Dynamics (DPD). For experimental studies, model particles were made from neutrally buoyant fluorescent polystyrene spheres, that were thermo-stretched into non-spherical shapes and all particles were surface-coated with biotin. Using microfluidic setup, the biotin-coated particles were flowed over avidin-coated surfaces in absence versus presence of RBCs, and particle adhesion and retention at the surface was assessed by inverted fluorescence microscopy. Our computational and experimental studies provide a simultaneous analysis of different particle sizes and shapes for their retention in blood flow and indicate that in presence of RBCs, micro-scale non-spherical particles undergo enhanced 'margination + adhesion' compared to nano-scale spherical particles, resulting in their higher binding. These results provide important insight regarding improved design of vascularly targeted drug delivery systems.
Collapse
Affiliation(s)
- Michaela Cooley
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Gutierrez M, Ojeda LS, Eniola-Adefeso O. Vascular-targeted particle binding efficacy in the presence of rigid red blood cells: Implications for performance in diseased blood. BIOMICROFLUIDICS 2018; 12:042217. [PMID: 30018696 PMCID: PMC6027197 DOI: 10.1063/1.5027760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/08/2018] [Indexed: 05/03/2023]
Abstract
The field of drug delivery has taken an interest in combating numerous blood and heart diseases via the use of injectable vascular-targeted carriers (VTCs). However, VTC technology has encountered limited efficacy due to a variety of challenges associated with the immense complexity of the in vivo blood flow environment, including the hemodynamic interactions of blood cells, which impact their margination and adhesion to the vascular wall. Red blood cell (RBC) physiology, i.e., size, shape, and deformability, drive cellular distribution in blood flow and has been shown to impact VTC margination to the vessel wall significantly. The RBC shape and deformability are known to be altered in certain human diseases, yet little experimental work has been conducted towards understanding the effect of these alterations, specifically RBC rigidity, on VTC dynamics in physiological blood flow. In this work, we investigate the impact of RBCs of varying stiffnesses on the adhesion efficacy of particles of various sizes, moduli, and shapes onto an inflamed endothelial layer in a human vasculature-inspired, in vitro blood flow model. The blood rigid RBC compositions and degrees of RBC stiffness evaluated are analogous to conditions in diseases such as sickle cell disease. We find that particles of different sizes, moduli, and shapes yield drastically different adhesion patterns in blood flow in the presence of rigid RBCs when compared to 100% healthy RBCs. Specifically, up to 50% reduction in the localization and adhesion of non-deformable 2 μm particles to the vessel wall was observed in the presence of rigid RBCs. Interestingly, deformable 2 μm particles showed enhanced vessel wall localization and adhesion, by up to 85%, depending on the rigidity of RBCs evaluated. Ultimately, this work experimentally clarifies the importance of considering RBC rigidity in the intelligent design of particle therapeutics and highlights possible implications for a wide range of diseases relating to RBC deformability.
Collapse
Affiliation(s)
- Mario Gutierrez
- Department of Chemical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, USA
| | - Lauro Sebastian Ojeda
- Department of Chemical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
83
|
Ye H, Shen Z, Yu L, Wei M, Li Y. Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proc Math Phys Eng Sci 2018; 474:20170845. [PMID: 29662344 DOI: 10.1098/rspa.2017.0845] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/16/2018] [Indexed: 02/05/2023] Open
Abstract
A large number of nanoparticles (NPs) have been raised for diverse biomedical applications and some of them have shown great potential in treatment and imaging of diseases. Design of NPs is essential for delivery efficacy due to a number of biophysical barriers, which prevents the circulation of NPs in vascular flow and their accumulation at tumour sites. The physiochemical properties of NPs, so-called '4S' parameters, such as size, shape, stiffness and surface functionalization, play crucial roles in their life journey to be delivered to tumour sites. NPs can be modified in various ways to extend their blood circulation time and avoid their clearance by phagocytosis, and efficiently diffuse into tumour cells. However, it is difficult to overcome these barriers simultaneously by a simple combination of '4S' parameters for NPs. At this moment, external triggerings are necessary to guide the movement of NPs, which include light, ultrasound, magnetic field, electrical field and chemical interaction. The delivery system can be constructed to be sensitive to these external stimuli which can reduce the non-specific toxicity and improve the efficacy of the drug-delivery system. From a mechanics point of view, we discuss how different forces play their roles in the margination of NPs in blood flow and tumour microvasculature.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269, USA
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269, USA
| | - Le Yu
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269, USA.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
| |
Collapse
|
84
|
Sun W, Fan J, Wang S, Kang Y, Du J, Peng X. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7832-7840. [PMID: 29411602 DOI: 10.1021/acsami.7b19281] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Suzhen Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Yao Kang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
85
|
Li K, Ma H. Deposition Dynamics of Rod-Shaped Colloids during Transport in Porous Media under Favorable Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2967-2980. [PMID: 29400469 DOI: 10.1021/acs.langmuir.7b03983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A three-dimensional computational modeling study of the deposition dynamics of rod-shaped colloids during transport in porous media under favorable conditions (no energy barrier to deposition) is presented. The objective was to explore the influences of the particle shape on colloid transport and retention. During simulation, both translation and rotation of ellipsoidal particles were tracked and evaluated based on an analysis of all forces and torques acting on the particle. We observed that the shape was a key factor affecting colloid transport and attachment. Rod particles exhibited enhanced retention compared with spheres of equivalent volume in the size range greater than ∼200 nm. The shape effect was the most pronounced for particles around 200 nm to 1 μm under simulated conditions. The shape effect was also strongly dependent upon the fluid velocity; it was most significant at high velocity, but not so at very low velocity. The above-described shape effect on retention was directly related to particle rotation dynamics due to the coupled effects from rotational diffusion and flow hydrodynamics. Rotational diffusion changed the particle orientation randomly, which caused the rod particles to drift considerably across flow streamlines for attachment in the size range from 200 nm to 1 μm. The hydrodynamic effect induced periodic particle rotation and oscillation, which rendered large-sized rod particles to behave like "spinning bodies," prescribed by their long axes so as to easily intercept with the collector surface for retention. Our findings demonstrated that the practice of using equivalent spheres to approximate rods is inadequate in predicting the transport fate and adhesion dynamics of rod-shaped colloids in porous media.
Collapse
Affiliation(s)
- Ke Li
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Huilian Ma
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
86
|
Uhl CG, Gao Y, Zhou S, Liu Y. The Shape Effect on Polymer Nanoparticle Transport in a Blood Vessel. RSC Adv 2018; 8:8089-8100. [PMID: 30271591 PMCID: PMC6157743 DOI: 10.1039/c8ra00033f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nanoparticle therapeutic delivery is influenced by many factors including physical, chemical, and biophysical properties along with local vascular conditions. In recent years, nanoparticles of various shapes have been fabricated and have shown significant impact on transport efficiency. Identification of which nanoparticle shape helps to improve the therapeutic delivery process allows for enhanced therapeutic effects, yet is hard to be quantified in vivo due to the complex nature of the in vivo environment. In this work, we turn to biological models as a guide for informing improved nanoparticle therapeutic delivery, and quantify the contribution of various factors on delivery efficiency. Here we show that with a mimetic blood vessel, improved therapeutic delivery is achieved using long filamentous rod nanoparticles under low pressure conditions. When considering medium pressure conditions, a combination of nanoparticle shapes presents improved therapeutic delivery over the treatment time-course starting with long filamentous rod nanoparticles, followed by short rod nanoparticles. Conditions of high pressure required a combination of short rod nanoparticles, followed by spherical nanoparticles to achieve enhanced therapeutic delivery. Overall, improvement of therapeutic delivery via nanoparticle carriers is likely to require a combination of nanoparticle shapes administered at different times over the treatment time-course, given patient specific conditions. Microfluidic platform analysis of therapeutic carrier delivery to cancerous sites for optimization of drug delivery efficiency over time-course treatment plans.![]()
Collapse
Affiliation(s)
- C G Uhl
- 19 Memorial Drive West Lehigh University, Bethlehem PA, 18015, USA
| | - Y Gao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - S Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y Liu
- 19 Memorial Drive West Lehigh University, Bethlehem PA, 18015, USA
| |
Collapse
|
87
|
Hu X, Sun J, Li F, Li R, Wu J, He J, Wang N, Liu J, Wang S, Zhou F, Sun X, Kim D, Hyeon T, Ling D. Renal-Clearable Hollow Bismuth Subcarbonate Nanotubes for Tumor Targeted Computed Tomography Imaging and Chemoradiotherapy. NANO LETTERS 2018; 18:1196-1204. [PMID: 29297694 DOI: 10.1021/acs.nanolett.7b04741] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although metallic nanomaterials with high X-ray attenuation coefficients have been widely used as X-ray computed tomography (CT) contrast agents, their intrinsically poor biodegradability requires them to be cleared from the body to avoid any potential toxicity. On the other hand, extremely small-sized nanomaterials with outstanding renal clearance properties are not much effective for tumor targeting because of their too rapid clearance in vivo. To overcome this dilemma, here we report on the hollow bismuth subcarbonate nanotubes (BNTs) assembled from renal-clearable ultrasmall bismuth subcarbonate nanoclusters for tumor-targeted imaging and chemoradiotherapy. The BNTs could be targeted to tumors with high efficiency and exhibit a high CT contrast effect. Moreover, simultaneous radio- and chemotherapy using drug-loaded BNTs could significantly suppress tumor volumes, highlighting their potential application in CT imaging-guided therapy. Importantly, the elongated nanotubes could be disassembled into isolated small nanoclusters in the acidic tumor microenvironment, accelerating the payload release and kidney excretion. Such body clearable CT contrast agent with high imaging performance and multiple therapeutic functions shall have a substantial potential for biomedical applications.
Collapse
Affiliation(s)
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou 310016, China
| | | | | | | | - Jie He
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou 310016, China
| | | | - Jianan Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University , Seoul 08826, Republic of Korea
| | | | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou 310016, China
| | - Xiaolian Sun
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University , Seoul 08826, Republic of Korea
| | - Daishun Ling
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
88
|
Abstract
To date, the role of elasticity in drug delivery remains elusive due to the inability to measure microscale mechanics and alter rheology without affecting chemistry. Herein, we describe the in vitro cellular uptake and in vivo tumor uptake of nanolipogels (NLGs). NLGs are composed of identical lipid bilayers encapsulating an alginate core, with tunable elasticity. The elasticity of NLGs was evaluated by atomic force microscopy, which demonstrated that they exhibit Young’s moduli ranging from 45 ± 9 to 19,000 ± 5 kPa. Neoplastic and non-neoplastic cells exhibited significantly greater uptake of soft NLGs (Young’s modulus <1.6 MPa) relative to their elastic counterparts (Young’s modulus >13.8 MPa). In an orthotopic breast tumor model, soft NLGs accumulated significantly more in tumors, whereas elastic NLGs preferentially accumulated in the liver. Our findings demonstrate that particle elasticity directs tumor accumulation, suggesting that it may be a design parameter to enhance tumor delivery efficiency. Nanoparticle elasticity is thought to play an important role in drug delivery, but is little studied. Here, the authors use nanolipogels with tunable moduli to study the effect of particle elasticity on in vitro cellular uptake and in vivo tumor uptake, finding that stiffer particles are not as easily internalized.
Collapse
|
89
|
Hwang MY, Kim SG, Lee HS, Muller SJ. Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. SOFT MATTER 2018; 14:216-227. [PMID: 29227498 DOI: 10.1039/c7sm01829k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, we experimentally observed and characterized soft elastic particle deformation in confined flow in a microchannel with a rectangular cross-section. Hydrogel microparticles of pNIPAM were produced using two different concentrations of crosslinker. This resulted in particles with two different shear moduli of 13.3 ± 5.5 Pa and 32.5 ± 15.7 Pa and compressive moduli of 66 ± 10 Pa and 79 ± 15 Pa, respectively, as measured by capillary micromechanics. Under flow, the particle shapes transitioned from circular to egg, triangular, arrowhead, and ultimately parachute shaped with increasing shear rate. The shape changes were reversible, and deformed particles relaxed back to circular/spherical in the absence of flow. The thresholds for each shape transition were quantified using a non-dimensional radius of curvature at the tip, particle deformation, circularity, and the depth of the concave dimple at the trailing edge. Several of the observed shapes were distinct from those previously reported in the literature for vesicles and capsules; the elastic particles had a narrower leading tip and a lower circularity. Due to variations in the shear moduli between particles within a batch of particles, each flow rate corresponded to a small but finite range of capillary number (Ca) and resulted in a series of shapes. By arranging the images on a plot of Ca versus circularity, a direct correlation was developed between shape and Ca and thus between particle deformation and shear modulus. As the shape was very sensitive to differences in shear modulus, particle deformation in confined flow may allow for better differentiation of microparticle shear modulus than other methods.
Collapse
Affiliation(s)
- Margaret Y Hwang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
90
|
Ye W, Wang N, Hu K, Zhang L, Liu A, Pan C, Gong T, Liu T, Ding H. Bio-inspired microcapsule for targeted antithrombotic drug delivery. RSC Adv 2018; 8:27253-27259. [PMID: 35539989 PMCID: PMC9083295 DOI: 10.1039/c8ra04273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
Thrombosis or embolism is the leading cause of death and long-term adult disability worldwide. To reduce the risk of thrombosis and hemorrhaging in patients, a facile and versatile method was developed to fabricate microcapsules for targeted antithrombotic drug delivery. The microcapsules were prepared via oxidative polymerization of dopamine on polystyrene microspheres, followed by immobilization of fibrinogen onto the surface of poly(dopamine) layers. Subsequently, microcapsules were obtained by removing the cores with THF. Nattokinase was loaded into the microcapsules via diffusion. The loading amount was approximately 0.05 mg g−1 at 37 °C, and the loading efficiency was nearly 75%, based on the initial concentration of nattokinase in PBS. The release of nattokinase was a gradual process at 37 °C, and the activity of the targeted activated platelets was highly efficient. The antithrombotic activity of the nattokinase microcapsules was evidenced by the sharp dissolution of fibrin clots and the blood clotting time indexes. A gradual release mechanism of platelet-inspired microcapsules used for targeted antithrombotic therapy was proposed. This strategy for targeted antithrombotic drug delivery, which lowers the demand dose and minimizes side effects while maximizing drug efficacy, provides a potential new way to treat life-threatening diseases caused by vascular disruption. NK-loaded hollow microcapsules were fabricated and assessed as a potential antithrombosis therapy.![]()
Collapse
Affiliation(s)
- Wei Ye
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Nan Wang
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Kebang Hu
- Department of Urology
- The First Hospital of Jilin University
- Changchun 130021
- PR China
| | - Lincai Zhang
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Aihui Liu
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Changjiang Pan
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Tao Gong
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Tao Liu
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Hongyan Ding
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
91
|
Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018; 8:51-63. [PMID: 29872622 PMCID: PMC5985628 DOI: 10.1016/j.apsb.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
High-density lipoproteins (HDL) are naturally-occurring nanoparticles that are biocompatible, non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and microRNA from donor cells to recipient cells. Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins (rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative, promising avenue for efficient targeting transport of nanomedicine.
Collapse
Affiliation(s)
| | | | - Xiaoling Gao
- Corresponding author. Tel.: +86 21 63846590 776945.
| |
Collapse
|
92
|
Wang Z, Wu Z, Liu J, Zhang W. Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors. Expert Opin Drug Deliv 2017; 15:379-395. [PMID: 29264946 DOI: 10.1080/17425247.2018.1420051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Efficient delivery of drugs by nanoparticles deep into solid tumors is the precondition of valid cancer therapy. Despite profound understanding of the delivery of spherical nanoparticles into solid tumor attained, insufficient attention was paid to anisotropic particles. Actually, owing to their structural asymmetry, some non-spherical particles exhibit significant advantages over their spherical counterparts. AREAS COVERED This review will focus on particles with different shapes (discoidal particle, nanorod, filamentous particle, single-walled carbon nanotube) and the influence of their morphological characteristics (size, aspect ratio, rigidity) on the process of drug delivery to solid tumor in view of systemic circulation, transport from circulation system to tumor tissue, intratumoral transport and uptake by tumor cells, on the basis of introduction of challenges for drug delivery to solid tumor. In addition, the morphological characteristics will be briefly introduced to provide an understanding of anisotropic particle morphology. EXPERT OPINION Anisotropic particles exhibit desirable properties such as enhanced circulation time and efficient tumor penetration that could serve as an enlightenment in the exploitation of novel non-spherical nanocarriers to clinical therapy. Yet, current understanding of how anisotropic particles interact with organism is insufficient, which restricts the biomedical application of anisotropic particles. Further work is desired for the development of practical fabrication of anisotropic particles, quantitative analysis of particle morphology, as well as profound understanding of new targeting mechanism and intratumoral penetration of anisotropic particles.
Collapse
Affiliation(s)
- Zhen Wang
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China.,b Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Zimei Wu
- c School of Pharmacy , University of Auckland , Auckland , New Zealand
| | - Jianping Liu
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| | - Wenli Zhang
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
93
|
Lozano O, Torres-Quintanilla A, García-Rivas G. Nanomedicine for the cardiac myocyte: Where are we? J Control Release 2017; 271:149-165. [PMID: 29273321 DOI: 10.1016/j.jconrel.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Biomedical achievements in the last few decades, leading to successful therapeutic interventions, have considerably improved human life expectancy. Nevertheless, the increasing load and the still suboptimal outcome for patients with cardiac dysfunction underlines the relevance of continuous research to develop novel therapeutics for these diseases. In this context, the field of nanomedicine has attracted a lot of attention due to the potential novel treatment possibilities, such as controlled and sustained release, tissue targeting, and drug protection from degradation. For cardiac myocytes, which constitute the majority of the heart by mass and are the contractile unit, new options have been explored in terms of the use of nanomaterials (NMs) for therapy, diagnosis, and tissue engineering. This review focuses on the advances of nanomedicine targeted to the cardiac myocyte: first presenting the NMs used and the principal cardiac myocyte-based afflictions, followed by an overview of key advances in the field, including NMs interactions with the cardiac myocyte, therapy delivery, diagnosis based on imaging, and tissue engineering for tissue repair and heart-on-a-chip devices.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico.
| | - Alejandro Torres-Quintanilla
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico
| |
Collapse
|
94
|
Abstract
Nanomaterials have been widely used in the design of drug delivery platforms. This work computationally explores the vascular dynamics of nanoworms as drug carriers within blood flow by considering the effects of nanoworm length, stiffness, and local physiological conditions such as hematocrit. We found that nanoworms with length of 8 μm and moderate stiffness are the optimal choice as drug carriers for circulating within normal vascular network due to their lower near wall margination. Compared to those of spherical rigid particles, these nanoworms demonstrate significant demargination behaviors at hematocrit 20%, induced by the local hydrodynamic interactions. Specifically, the interactions between nanoworms and red blood cells create asymmetrical local flow fields, resulting in the demargination of nanoworms. In addition, the flexibility of nanoworms enables them to conform to the deformed shape of red blood cells under shear flow, leading to their high concentration within the core region of vessels. Therefore, the long blood circulation time of nanoworms can be partially attributed to their demargination behaviors and intertwinement with red blood cells. According to these simulation results, tuning the length and stiffness of nanoworms is the key to design drug carries with reduced near wall margination within normal vascular networks and extend their blood circulation time.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, United States
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, United States
| | - Le Yu
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
95
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
96
|
Kolhatkar A, Chen YT, Chinwangso P, Nekrashevich I, Dannangoda GC, Singh A, Jamison AC, Zenasni O, Rusakova IA, Martirosyan KS, Litvinov D, Xu S, Willson RC, Lee TR. Magnetic Sensing Potential of Fe 3O 4 Nanocubes Exceeds That of Fe 3O 4 Nanospheres. ACS OMEGA 2017; 2:8010-8019. [PMID: 29214234 PMCID: PMC5709776 DOI: 10.1021/acsomega.7b01312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
This paper highlights the relation between the shape of iron oxide (Fe3O4) particles and their magnetic sensing ability. We synthesized Fe3O4 nanocubes and nanospheres having tunable sizes via solvothermal and thermal decomposition synthesis reactions, respectively, to obtain samples in which the volumes and body diagonals/diameters were equivalent. Vibrating sample magnetometry (VSM) data showed that the saturation magnetization (Ms) and coercivity of 100-225 nm cubic magnetic nanoparticles (MNPs) were, respectively, 1.4-3.0 and 1.1-8.4 times those of spherical MNPs on a same-volume and same-body diagonal/diameter basis. The Curie temperature for the cubic Fe3O4 MNPs for each size was also higher than that of the corresponding spherical MNPs; furthermore, the cubic Fe3O4 MNPs were more crystalline than the corresponding spherical MNPs. For applications relying on both higher contact area and enhanced magnetic properties, higher-Ms Fe3O4 nanocubes offer distinct advantages over Fe3O4 nanospheres of the same-volume or same-body diagonal/diameter. We evaluated the sensing potential of our synthesized MNPs using giant magnetoresistive (GMR) sensing and force-induced remnant magnetization spectroscopy (FIRMS). Preliminary data obtained by GMR sensing confirmed that the nanocubes exhibited a distinct sensitivity advantage over the nanospheres. Similarly, FIRMS data showed that when subjected to the same force at the same initial concentration, a greater number of nanocubes remained bound to the sensor surface because of higher surface contact area. Because greater binding and higher Ms translate to stronger signal and better analytical sensitivity, nanocubes are an attractive alternative to nanospheres in sensing applications.
Collapse
Affiliation(s)
- Arati
G. Kolhatkar
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Yi-Ting Chen
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Pawilai Chinwangso
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Ivan Nekrashevich
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Gamage C. Dannangoda
- Department
of Physics, University of Texas Rio Grande
Valley, Brownsville, Texas 78520, United States
| | - Ankit Singh
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Andrew C. Jamison
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Oussama Zenasni
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Irene A. Rusakova
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Karen S. Martirosyan
- Department
of Physics, University of Texas Rio Grande
Valley, Brownsville, Texas 78520, United States
- E-mail: (K.S.M.)
| | - Dmitri Litvinov
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (D.L.)
| | - Shoujun Xu
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (S.X.)
| | - Richard C. Willson
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (R.C.W)
| | - T. Randall Lee
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (T.R.L.)
| |
Collapse
|
97
|
Margulis K, Zhang X, Joubert L, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of Polymeric Nanocubes by Self‐Assembly and Crystallization of Dithiolane‐Containing Triblock Copolymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Xiangyi Zhang
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Karsten Bruening
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Christopher J. Tassone
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | |
Collapse
|
98
|
Margulis K, Zhang X, Joubert L, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of Polymeric Nanocubes by Self‐Assembly and Crystallization of Dithiolane‐Containing Triblock Copolymers. Angew Chem Int Ed Engl 2017; 56:16357-16362. [DOI: 10.1002/anie.201709564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xiangyi Zhang
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Karsten Bruening
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Christopher J. Tassone
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | |
Collapse
|
99
|
Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis. Biomaterials 2017; 156:45-55. [PMID: 29190497 DOI: 10.1016/j.biomaterials.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
Abstract
Micro-sized drug-carrier particles accumulate mainly in the lungs and nano-sized particles tend to accumulate in the liver and spleen. Here, we show that micro-particles designed to mimic red blood cells (RBCs) can overcome these limitations. The RBC-MPs created in this study have a unique intra-particle elasticity distribution (IED), enabling them to bend around the central axis of the RBC-like dent, enabling them to pass through pores smaller than their diameter, mechanically behaving as authentic RBCs. In contrast, spherical MPs (SPH-MPs) and RBC-MPs hardened by incorporating a siloxane network (SiO2-RBC-MPs), could not. In addition to the IED, we discovered that the deformability also depends on the shape and average particle elasticity. RBC-MPs did not accumulate in the lungs and the spleen, but were targeted specifically to the liver instead. In contrast, non-RBC-MPs such as SPH-MPs and SiO2-RBC-MPs showed heavy accumulation in the lungs and/or spleen, and were dispersed non-specifically in various organs. Thus, controlling the shape and mechanical properties of RBC-MPs is important for achieving the desired biodistribution. When RBC-MPs were loaded with a (TGF)-β receptor inhibitor, RBC-MPs could treat liver fibrosis without pneumotoxicity.
Collapse
|
100
|
Pitek AS, Wang Y, Gulati S, Gao H, Stewart PL, Simon DI, Steinmetz NF. Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Mol Pharm 2017; 14:3815-3823. [PMID: 28881141 DOI: 10.1021/acs.molpharmaceut.7b00559] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombotic cardiovascular disease, including acute myocardial infarction, ischemic stroke, and venous thromboembolic disease, is the leading cause of morbidity and mortality worldwide. While reperfusion therapy with thrombolytic agents reduces mortality from acute myocardial infarction and disability from stroke, thrombolysis is generally less effective than mechanical reperfusion and is associated with fatal intracerebral hemorrhage in up to 2-5% of patients. To address these limitations, we propose the tobacco mosaic virus (TMV)-based platform technology for targeted delivery of thrombolytic therapies. TMV is a plant virus-based nanoparticle with a high aspect ratio shape measuring 300 × 18 nm. These soft matter nanorods have favorable flow and margination properties allowing the targeting of the diseased vessel wall. We have previously shown that TMV homes to thrombi in a photochemical mouse model of arterial thrombosis. Here we report the synthesis of TMV conjugates loaded with streptokinase (STK). Various TMV-STK formulations were produced through bioconjugation of STK to TMV via intervening PEG linkers. TMV-STK was characterized using SDS-PAGE and Western blot, transmission electron microscopy, cryo-electron microscopy, and cryo-electron tomography. We investigated the thrombolytic activity of TMV-STK in vitro using static phantom clots, and in a physiologically relevant hydrodynamic model of shear-induced thrombosis. Our findings demonstrate that conjugation of STK to the TMV surface does not compromise the activity of STK. Moreover, the nanoparticle conjugate significantly enhances thrombolysis under flow conditions, which can likely be attributed to TMV's shape-mediated flow properties resulting in enhanced thrombus accumulation and dissolution. Together, these data suggest TMV to be a promising platform for the delivery of thrombolytics to enhance clot localization and potentially minimize bleeding risk.
Collapse
Affiliation(s)
- Andrzej S Pitek
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Sahil Gulati
- Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Daniel I Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|