51
|
Kaya CS, Bilgili F, Akalan NE, Yucesoy CA. Intraoperative testing of passive and active state mechanics of spastic semitendinosus in conditions involving intermuscular mechanical interactions and gait relevant joint positions. J Biomech 2020; 103:109755. [PMID: 32204891 DOI: 10.1016/j.jbiomech.2020.109755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 11/27/2022]
Abstract
In cerebral palsy (CP) patients suffering pathological knee joint motion, spastic muscle's passive state forces have not been quantified intraoperatively. Besides, assessment of spastic muscle's active state forces in conditions involving intermuscular mechanical interactions and gait relevant joint positions is lacking. Therefore, the source of flexor forces limiting joint motion remains unclear. The aim was to test the following hypotheses: (i) in both passive and active states, spastic semitendinosus (ST) per se shows its highest forces within gait relevant knee angle (KA) range and (ii) due to intermuscular mechanical interactions, the active state forces elevate. Isometric forces (seven children with CP, GMFCS-II) were measured during surgery over a range of KA from flexion to full extension, at hip angle (HA) = 45° and 20°, in four conditions: (I) passive state, (II) individual stimulation of the ST, simultaneous stimulation of the ST (III) with its synergists, and (IV) also with an antagonist. Gait analyses: intraoperative data for KA = 17-61° (HA = 45°) and KA = 0-33° (HA = 20°) represent the loading response and terminal swing, and mid/terminal stance phases of gait, respectively. Intraoperative tests: Passive forces maximally approximated half of peak force in condition II (HA = 45°). Added muscle activations did increase muscle forces significantly (HA = 45°: on average by 42.0% and 72.5%; HA = 20°: maximally by 131.8% and 123.7%, respectively in conditions III and IV, p < 0.01). In conclusion, intermuscular mechanical interactions yield elevated active state forces, which are well above passive state forces. This indicates that intermuscular mechanical interactions may be a source of high flexor forces in CP.
Collapse
Affiliation(s)
- Cemre S Kaya
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Fuat Bilgili
- Istanbul Faculty of Medicine, Department of Orthopaedics and Traumatology, Istanbul University, Istanbul, Turkey
| | - N Ekin Akalan
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul Kültür University, Istanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
52
|
Cornet S, Périer C, Kalinichev M. Optimization of the rat digit abduction score (DAS) assay: Evaluation of botulinum neurotoxin activity in the gastrocnemius lateralis, peronei, and extensor digitorum longus. Toxicon X 2020; 6:100029. [PMID: 32550584 PMCID: PMC7285904 DOI: 10.1016/j.toxcx.2020.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
The mouse digit abduction score (DAS) assay is commonly used to measure muscle flaccidity-inducing effects of botulinum neurotoxin (BoNT) in vivo. Adapting the assay to rats has been challenging, as injection of onabotulinumtoxinA (onaBoNT-A) into the gastrocnemius muscle, as performed in mice, or into the tibialis anterior leads to sub-optimal sensitivity of the test (Broide et al., 2013). To optimize the experimental design of the rat DAS assay, we evaluated the effects of research-grade, purified, native BoNT serotype A1 (BoNT-A) in three muscles: the gastrocnemius lateralis, peronei, and extensor digitorum longus using female animals. Following injection, animals were tested daily for the digit abduction and body weight. BoNT-A caused dose-dependent inhibition of digit abduction when injected into the gastrocnemius lateralis or peronei. BoNT-A was six-fold more potent when injected into the peronei in comparison to the gastrocnemius lateralis. As injection of BoNT-A into the extensor digitorum longus muscle resulted in an all-or-none digit abduction response and therefore prevented calculation of the ED50, it was considered unsuitable for the rat DAS assay. At equipotent doses, peronei- and extensor digitorum longus-injected animals showed normal body weight gain, while those injected with BoNT-A into the gastrocnemius lateralis gained less weight in comparison to vehicle-treated controls. Thus, injecting the peronei muscles of female rats offers optimized conditions for evaluating the biological properties of BoNTs in the rat DAS assay; for assessing the potency, onset, and duration of action across natural and recombinant BoNT in a robust and reproducible manner. BoNT-A was tested in the DAS following injection into three muscles of female rats. DAS linked to the extensor digitorum longus injections lacks dose-dependency. Gastrocnemius injections inhibit digit abduction, but with an effect on body weigh. Peronei injections are linked to higher potency and no effects on body weight. Using the peronei in female rats are optimized conditions in the rat DAS assay.
Collapse
Affiliation(s)
- Sylvie Cornet
- Ipsen Innovation, 5, Avenue du Canada, 91940, Les Ulis, France
| | - Cindy Périer
- Ipsen Innovation, 5, Avenue du Canada, 91940, Les Ulis, France
| | | |
Collapse
|
53
|
Siebert T, Donath L, Borsdorf M, Stutzig N. Effect of Static Stretching, Dynamic Stretching, and Myofascial Foam Rolling on Range of Motion During Hip Flexion: A Randomized Crossover Trial. J Strength Cond Res 2020; 36:680-685. [PMID: 34379375 DOI: 10.1519/jsc.0000000000003517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Siebert, T, Donath, L, Borsdorf, M, and Stutzig, N. Effect of static stretching, dynamic stretching, and myofascial foam rolling on range of motion during hip flexion: A randomized crossover trial. J Strength Cond Res XX(X): 000-000, 2020-Static and dynamic stretching (DS) are commonly used in sports and physical therapy to increase the range of motion (ROM). However, prolonged static stretching (SS) can deteriorate athletic performance. Alternative methods to increase ROM are thus needed. Foam rolling (FR) may initiate muscle relaxation, improve muscular function, physical performance, and ROM. Previous studies that examined effects of FR on ROM did not control for increased tissue compliance or shifted pain threshold. In this study, the isolated influence of altered tissue compliance on ROM after FR, SS, and DS was investigated using a randomized crossover design. Hip flexion ROM at given joint torques before and after SS, DS, and FR was randomly assessed in 14 young male adults (age: 23.7 +/- 1.3 years; height: 182 +/- 8 cm; body mass: 79.4 +/- 6.9 kg). Hip flexion ROM was measured in the sagittal plane with the subjects lying in a lateral position (no gravitational effects on ROM measurements). Surface electromyographic (EMG) analysis of 2 representative hip extensors (M. biceps femoris and M. semitendinosus) was applied to control for active muscle contribution during ROM measurements. Significant increases in ROM for SS (3.8 +/- 1.1[degrees]; p < 0.001) and DS (3.7 +/- 1.8[degrees]; p < 0.001) were observed, but not for FR (0.8 +/- 3.1[degrees]; p = 0.954). Because stretch forces on tendon and muscle tissue during SS and DS predominately act in longitudinal direction, FR induces mainly transversal forces in the muscle tissue. Thus, increased ROM after FR reported in the literature is more likely due to a shift in the pain threshold. These results provide a better understanding of differential loading conditions during SS, DS, and FR for coaches and practitioners.
Collapse
Affiliation(s)
- Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Mischa Borsdorf
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
54
|
Cornet S, Périer C, Kalinichev M. WITHDRAWN: Optimization of the rat digit abduction score (DAS) assay: Evaluation of botulinum neurotoxin activity in the gastrocnemius lateralis, peronei, and extensor digitorum longus. Toxicon 2020:S0041-0101(20)30045-3. [PMID: 32113789 DOI: 10.1016/j.toxicon.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.toxcx.2020.100029. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Sylvie Cornet
- Ipsen Innovation. 5, Avenue du Canada, 91940 Les Ulis, France
| | - Cindy Périer
- Ipsen Innovation. 5, Avenue du Canada, 91940 Les Ulis, France
| | | |
Collapse
|
55
|
Oranchuk DJ, Storey AG, Nelson AR, Cronin JB. Scientific Basis for Eccentric Quasi-Isometric Resistance Training: A Narrative Review. J Strength Cond Res 2020; 33:2846-2859. [PMID: 31361732 DOI: 10.1519/jsc.0000000000003291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oranchuk, DJ, Storey, AG, Nelson, AR, and Cronin, JB. The scientific basis for eccentric quasi-isometric resistance training: A narrative review. J Strength Cond Res 33(10): 2846-2859, 2019-Eccentric quasi-isometric (EQI) resistance training involves holding a submaximal, yielding isometric contraction until fatigue causes muscle lengthening and then maximally resisting through a range of motion. Practitioners contend that EQI contractions are a powerful tool for the development of several physical qualities important to health and sports performance. In addition, several sports involve regular quasi-isometric contractions for optimal performance. Therefore, the primary objective of this review was to synthesize and critically analyze relevant biological, physiological, and biomechanical research and develop a rationale for the value of EQI training. In addition, this review offers potential practical applications and highlights future areas of research. Although there is a paucity of research investigating EQIs, the literature on responses to traditional contraction types is vast. Based on the relevant literature, EQIs may provide a practical means of increasing total volume, metabolite build-up, and hormonal signaling factors while safely enduring large quantities of mechanical tension with low levels of peak torque. Conversely, EQI contractions likely hold little neuromuscular specificity to high velocity or power movements. Therefore, EQI training seems to be effective for improving musculotendinous morphological and performance variables with low injury risk. Although speculative due to the limited specific literature, available evidence suggests a case for future experimentation.
Collapse
Affiliation(s)
- Dustin J Oranchuk
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Adam G Storey
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - André R Nelson
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - John B Cronin
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.,School of Health and Medical Science, Edith Cowan University, Perth, Australia
| |
Collapse
|
56
|
On a three-dimensional constitutive model for history effects in skeletal muscles. Biomech Model Mechanobiol 2019; 18:1665-1681. [DOI: 10.1007/s10237-019-01167-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 01/07/2023]
|
57
|
Maas H. Significance of epimuscular myofascial force transmission under passive muscle conditions. J Appl Physiol (1985) 2019; 126:1465-1473. [DOI: 10.1152/japplphysiol.00631.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the past 20 yr, force transmission via connective tissue linkages at the muscle belly surface, called epimuscular myofascial force transmission, has been studied extensively. In this article, the effects of epimuscular linkages under passive muscle conditions are reviewed. Several animal studies that included direct (invasive) measurements of force transmission have shown that different connective tissue structures serve as an epimuscular pathway and that these tissues have sufficient stiffness, especially at supraphysiological muscle lengths and relative positions, to transmit substantial passive forces (up to 15% of active optimal force). Exact values of lumped tissue stiffness for different connective tissue structures have not yet been estimated. Experiments using various imaging techniques (ultrasound, MRI, shear wave elastography) have yielded some, but weak, evidence of epimuscular myofascial force transmission for passive muscles in humans. At this point, the functional consequences of epimuscular pathways for muscle and joint mechanics in the intact body are still unknown. Potentially, however, these pathways may affect sensory feedback and, thereby, neuromuscular control. In addition, altered epimuscular force transmission in pathological conditions may also contribute to changes in passive range of joint motion.
Collapse
Affiliation(s)
- Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
58
|
Affiliation(s)
- R D Herbert
- Neuroscience Research Australia (NeuRA), Sydney , Australia.,University of New South Wales, Sydney, Australia
| | - S C Gandevia
- Neuroscience Research Australia (NeuRA), Sydney , Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
59
|
Schleip R, Gabbiani G, Wilke J, Naylor I, Hinz B, Zorn A, Jäger H, Breul R, Schreiner S, Klingler W. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Front Physiol 2019; 10:336. [PMID: 31001134 PMCID: PMC6455047 DOI: 10.3389/fphys.2019.00336] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/13/2019] [Indexed: 11/19/2022] Open
Abstract
Fascial tissues form a ubiquitous network throughout the whole body, which is usually regarded as a passive contributor to biomechanical behavior. We aimed to answer the question, whether fascia may possess the capacity for cellular contraction which, in turn, could play an active role in musculoskeletal mechanics. Human and rat fascial specimens from different body sites were investigated for the presence of myofibroblasts using immunohistochemical staining for α-smooth muscle actin (n = 31 donors, n = 20 animals). In addition, mechanographic force registrations were performed on isolated rat fascial tissues (n = 8 to n = 18), which had been exposed to pharmacological stimulants. The density of myofibroblasts was increased in the human lumbar fascia in comparison to fasciae from the two other regions examined in this study: fascia lata and plantar fascia [H(2) = 14.0, p < 0.01]. Mechanographic force measurements revealed contractions in response to stimulation by fetal bovine serum, the thromboxane A2 analog U46619, TGF-β1, and mepyramine, while challenge by botulinum toxin type C3–used as a Rho kinase inhibitor– provoked relaxation (p < 0.05). In contrast, fascial tissues were insensitive to angiotensin II and caffeine (p < 0.05). A positive correlation between myofibroblast density and contractile response was found (rs = 0.83, p < 0.001). The hypothetical application of the registered forces to human lumbar tissues predicts a potential impact below the threshold for mechanical spinal stability but strong enough to possibly alter motoneuronal coordination in the lumbar region. It is concluded that tension of myofascial tissue is actively regulated by myofibroblasts with the potential to impact active musculoskeletal dynamics.
Collapse
Affiliation(s)
- Robert Schleip
- Department of Neuroanesthesiology, Neurosurgical Clinic, Ulm University, Günzburg, Germany.,Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany.,Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany
| | - Giulio Gabbiani
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jan Wilke
- Department of Sports Medicine, Institute of Sport Science, Goethe University Frankfurt, Frankfurt, Germany
| | - Ian Naylor
- School of Pharmacy, University of Bradford, Bradford, United Kingdom
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, University of Toronto, Toronto, ON, Canada
| | - Adjo Zorn
- Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany
| | - Heike Jäger
- Division of Neurophysiology, Ulm University, Ulm, Germany
| | - Rainer Breul
- Anatomische Anstalt, Ludwig-Maximilians-Universität, München, Germany
| | | | - Werner Klingler
- Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany.,Faculty of Health School - Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
60
|
Dependence of muscle and deep fascia stiffness on the contraction levels of the quadriceps: An in vivo supersonic shear-imaging study. J Electromyogr Kinesiol 2019; 45:33-40. [DOI: 10.1016/j.jelekin.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
|
61
|
Kellis E. Intra- and Inter-Muscular Variations in Hamstring Architecture and Mechanics and Their Implications for Injury: A Narrative Review. Sports Med 2019; 48:2271-2283. [PMID: 30117053 DOI: 10.1007/s40279-018-0975-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the architecture, anatomy, and biomechanics of the hamstrings may assist in explaining the mechanisms that affect and improve their function. The aim of this review is to specifically examine intra- and inter-muscular variations in architecture and mechanical properties of the hamstrings. Of the hamstrings, the long head of the biceps femoris shows the shortest and more pennated fibers. The semimembranosus has a similar muscle architecture with a long head of the biceps femoris but it has a different proximal attachment as well as a different moment arm compared with the long head of the biceps femoris. For the same joint motion, the semitendinosus displays less relative strain than the other hamstrings probably owing to a greater length, longer fascicles and, possibly, a longer tendon. Intra-muscular variations in architecture are documented but their implications are currently unclear. Proximally, the long head of the biceps femoris has shorter and more pennated fibers coupled with a narrower aponeurosis than distally, while the semitendinosus is the only muscle that entails a tendinous inscription. In conclusion, some of the identified intra- and inter-muscular variations in architecture may help explain why some muscles sustain injuries more than others. In the same line, exercises designed for the hamstrings may not provide the same stimulus for all components of this muscle group. Future research could examine whether intervention strategies that target specific muscles or specific areas of the hamstrings may offer additional benefits for injury prevention or rehabilitation of their function.
Collapse
Affiliation(s)
- Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, 62110, Greece.
| |
Collapse
|
62
|
Diong J, Héroux ME, Gandevia SC, Herbert RD. Minimal force transmission between human thumb and index finger muscles under passive conditions. PLoS One 2019; 14:e0212496. [PMID: 30768639 PMCID: PMC6377133 DOI: 10.1371/journal.pone.0212496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
It has been hypothesized that force can be transmitted between adjacent muscles. Intermuscle force transmission violates the assumption that muscles act in mechanical isolation, and implies that predictions from biomechanical models are in error due to mechanical interactions between muscles, but the functional relevance of intermuscle force transmission is unclear. To investigate intermuscle force transmission between human flexor pollicis longus and the index finger part of flexor digitorum profundus, we compared finger flexion force produced by passive thumb flexion after one of three conditioning protocols: passive thumb flexion-extension cycling, thumb flexion maximal voluntary contraction (MVC), and thumb extension stretch. Finger flexion force increased after all three conditions. Compared to passive thumb flexion-extension cycling, change in finger flexion force was less after thumb extension stretch (mean difference 0.028 N, 95% CI 0.005 to 0.051 N), but not after thumb flexion MVC (0.007 N, 95% CI -0.020 to 0.033 N). As muscle conditioning changed finger flexion force produced by passive thumb flexion, the change in force is likely due to intermuscle force transmission. Thus, intermuscle force transmission resulting from passive stretch of an adjacent muscle is probably small enough to be ignored.
Collapse
Affiliation(s)
- Joanna Diong
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
| | - Martin E Héroux
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.,University of New South Wales, Randwick, NSW, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.,University of New South Wales, Randwick, NSW, Australia
| | - Robert D Herbert
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.,University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
63
|
Tijs C, Bernabei M, van Dieën JH, Maas H. Myofascial Loads Can Occur without Fascicle Length Changes. Integr Comp Biol 2019; 58:251-260. [PMID: 29873725 DOI: 10.1093/icb/icy049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many studies have shown that connective tissue linkages can transmit force between synergistic muscles and that such force transmission depends on the position of these muscles relative to each other and on properties of their intermuscular connective tissues. Moving neighboring muscles has been reported to cause longitudinal deformations within passive muscles held at a constant muscle-tendon unit (MTU) length (e.g., soleus [SO]), but muscle forces were not directly measured. Deformations do not provide a direct measure of the force transmitted between muscles. We combined two different muscle preparations to assess whether myofascial loads exerted by neighboring muscles result in length changes of SO fascicles. We investigated the effects of proximal MTU length changes of two-joint gastrocnemius (GA) and plantaris (PL) muscles on the fascicle length of the one-joint SO muscle within (1) an intact muscle compartment and (2) a disrupted compartment that allowed measurements of fascicle length and distal tendon force of SO simultaneously. SO muscle bellies of Wistar rats (n = 5) were implanted with sonomicrometry crystals. In three animals, connectivity between SO and GA+PL was enhanced. Measurements were performed before and during maximal excitation of all plantar flexor muscles. In both setups, MTU length of GA+PL did not affect the length of SO fascicles, neither during passive nor active conditions. However, lengthening the MTU of GA+PL increased distal tendon force of SO by 43.3-97.8% (P < 0.001) and 27.5-182.6% (P < 0.001), respectively. This indicates that substantial myofascial force transmission between SO and synergistic muscle can occur via a connective tissue network running parallel to the series of SO sarcomeres without substantial length changes of SO fascicles.
Collapse
Affiliation(s)
- Chris Tijs
- Department of Organismic and Evolutionary Biology, Concord Field Station-Harvard University, Bedford, MA 01730, USA
| | - Michel Bernabei
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands
| |
Collapse
|
64
|
Does epimuscular myofascial force transmission occur between the human quadriceps muscles in vivo during passive stretching? J Biomech 2019; 83:91-96. [DOI: 10.1016/j.jbiomech.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
|
65
|
Bordoni B, Marelli F, Morabito B, Castagna R. A New Concept of Biotensegrity Incorporating Liquid Tissues: Blood and Lymph. J Evid Based Integr Med 2018; 23:2515690X18792838. [PMID: 30124054 PMCID: PMC6102753 DOI: 10.1177/2515690x18792838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The definition of fascia includes tissues of mesodermal derivation, considered as
specialized connective tissue: blood and lymph. As water shapes rocks, bodily fluids
modify shapes and functions of bodily structures. Bodily fluids are silent witnesses of
the mechanotransductive information, allowing adaptation and life, transporting
biochemical and hormonal signals. While the solid fascial tissue divides, supports, and
connects the different parts of the body system, the liquid fascial tissue feeds and
transports messages for the solid fascia. The focus of this article is to reconsider the
model of biotensegrity because it does not take into account the liquid fascia, and to try
to integrate the fascial continuum with the lymph and the blood in a new model. The name
given to this new model is RAIN—Rapid Adaptability of Internal Network.
Collapse
Affiliation(s)
- Bruno Bordoni
- 1 Institute of Hospitalization and Care with Scientific Address, Foundation Don Carlo Gnocchi IRCCS, Milan, Italy.,2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Fabiola Marelli
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Bruno Morabito
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Roberto Castagna
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy
| |
Collapse
|
66
|
Ateş F, Yucesoy CA. Botulinum toxin type-A affects mechanics of non-injected antagonistic rat muscles. J Mech Behav Biomed Mater 2018; 84:208-216. [DOI: 10.1016/j.jmbbm.2018.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 11/27/2022]
|
67
|
Otsuka S, Yakura T, Ohmichi Y, Ohmichi M, Naito M, Nakano T, Kawakami Y. Site specificity of mechanical and structural properties of human fascia lata and their gender differences: A cadaveric study. J Biomech 2018; 77:69-75. [DOI: 10.1016/j.jbiomech.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/09/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023]
|
68
|
Bordoni B, Lintonbon D, Morabito B. Meaning of the Solid and Liquid Fascia to Reconsider the Model of Biotensegrity. Cureus 2018; 10:e2922. [PMID: 30197845 PMCID: PMC6126780 DOI: 10.7759/cureus.2922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The definition of fascia includes tissues of mesodermal derivation considered as specialized connective tissues: the blood and lymph. As water shapes rocks, bodily fluids modify the shape and functioning of bodily structures. Bodily fluids are silent witnesses to mechanotransductive information, allowing adaptation and life, transporting biochemical and hormonal signals. While the solid fascial tissue divides, supports, and connects the different parts of the body system, the liquid fascial tissue feeds and transports messages for the solid fascia. This article reconsiders the model of biotensegrity, by revising the definition of solid and liquid fascia, and tries to integrate the fascial continuum with the lymph and blood in a new model, because in the previous model, these two liquid elements were not taken into consideration. The name given to this new model is Rapid Adaptability of Internal Network (RAIN).
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi Irccs/department of Cardiology, Institute of Hospitalization and Care, Milano, ITA
| | - David Lintonbon
- Osteopathic Technique, London School of Osteopathy, London, GBR
| | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Rome, ITA
| |
Collapse
|
69
|
Valle X, Alentorn-Geli E, Tol JL, Hamilton B, Garrett WE, Pruna R, Til L, Gutierrez JA, Alomar X, Balius R, Malliaropoulos N, Monllau JC, Whiteley R, Witvrouw E, Samuelsson K, Rodas G. Muscle Injuries in Sports: A New Evidence-Informed and Expert Consensus-Based Classification with Clinical Application. Sports Med 2018; 47:1241-1253. [PMID: 27878524 DOI: 10.1007/s40279-016-0647-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Muscle injuries are among the most common injuries in sport and continue to be a major concern because of training and competition time loss, challenging decision making regarding treatment and return to sport, and a relatively high recurrence rate. An adequate classification of muscle injury is essential for a full understanding of the injury and to optimize its management and return-to-play process. The ongoing failure to establish a classification system with broad acceptance has resulted from factors such as limited clinical applicability, and the inclusion of subjective findings and ambiguous terminology. The purpose of this article was to describe a classification system for muscle injuries with easy clinical application, adequate grouping of injuries with similar functional impairment, and potential prognostic value. This evidence-informed and expert consensus-based classification system for muscle injuries is based on a four-letter initialism system: MLG-R, respectively referring to the mechanism of injury (M), location of injury (L), grading of severity (G), and number of muscle re-injuries (R). The goal of the classification is to enhance communication between healthcare and sports-related professionals and facilitate rehabilitation and return-to-play decision making.
Collapse
Affiliation(s)
- Xavier Valle
- Medical Department, FC Barcelona, Ciutat Esportiva Joan Gamper, Av. Onze de Setembre, s/n, Sant Joan Despí, 08970, Barcelona, Spain. .,Sports Medicine School, Universitat de Barcelona, Barcelona, Spain. .,Mapfre Centre for Tennis Medicine, Barcelona, Spain. .,Department de Cirurgia de la Facultat de Medicina, 'Universitat Autònoma de Barcelona', Barcelona, Spain.
| | - Eduard Alentorn-Geli
- Department of Orthopaedic Surgery, Duke Sports Sciences Institute, Duke University, Durham, NC, USA
| | - Johannes L Tol
- Department of Sports Medicine, Aspetar, Doha, Qatar.,Department of Sports Medicine, The Sports Physician Group, OLVG-West, Amsterdam, The Netherlands.,Academic Center for Evidence Based Sports Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Bruce Hamilton
- Department of Sports Medicine, Aspetar, Doha, Qatar.,High Performance Sport NZ, Millenium Institute of Sport and Health, Auckland, New Zealand
| | - William E Garrett
- Department of Orthopaedic Surgery, Duke Sports Sciences Institute, Duke University, Durham, NC, USA
| | - Ricard Pruna
- Medical Department, FC Barcelona, Ciutat Esportiva Joan Gamper, Av. Onze de Setembre, s/n, Sant Joan Despí, 08970, Barcelona, Spain
| | - Lluís Til
- Medical Department, FC Barcelona, Ciutat Esportiva Joan Gamper, Av. Onze de Setembre, s/n, Sant Joan Despí, 08970, Barcelona, Spain.,High Performance Centre, Health Consortium of Terrassa, Barcelona, Spain
| | - Josep Antoni Gutierrez
- Medical Department, FC Barcelona, Ciutat Esportiva Joan Gamper, Av. Onze de Setembre, s/n, Sant Joan Despí, 08970, Barcelona, Spain.,Sport Catalan Council, Generalitat de Catalunya, Barcelona, Spain
| | | | - Ramón Balius
- Mapfre Centre for Tennis Medicine, Barcelona, Spain.,Sport Catalan Council, Generalitat de Catalunya, Barcelona, Spain
| | - Nikos Malliaropoulos
- Musculoskeletal Department, Thessaloniki Sports Medicine Clinic, Thessaloníki, Greece.,Department of Rheumatology, Sports Clinic, Mile End Hospital, Barts Health NHS Trust, London, UK
| | - Joan Carles Monllau
- Department of Orthopaedic Surgery, Parc de Salut Mar-Hospital del Mar and Hospital de l'Esperança, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Universitari Dexeus (ICATME), Barcelona, Spain
| | - Rodney Whiteley
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Erik Witvrouw
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Kristian Samuelsson
- Department of Orthopaedic Surgery, Sahlgrenska Academy, University of Gothenburg, Göteburg, Sweden
| | - Gil Rodas
- Medical Department, FC Barcelona, Ciutat Esportiva Joan Gamper, Av. Onze de Setembre, s/n, Sant Joan Despí, 08970, Barcelona, Spain
| |
Collapse
|
70
|
Williams CD, Holt NC. Spatial Scale and Structural Heterogeneity in Skeletal Muscle Performance. Integr Comp Biol 2018; 58:163-173. [DOI: 10.1093/icb/icy057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- C D Williams
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| | - N C Holt
- Department of Biology, Northern Arizona University, S. San Francisco Street, Flagstaff, AZ 86011, USA
| |
Collapse
|
71
|
Huang Y, Fan Y, Salanova M, Yang X, Sun L, Blottner D. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse. Front Physiol 2018; 9:616. [PMID: 29875702 PMCID: PMC5974101 DOI: 10.3389/fphys.2018.00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.
Collapse
Affiliation(s)
- Yunfei Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Michele Salanova
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Dieter Blottner
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Neuromuscular Group, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
72
|
The interaction between the vastus medialis and vastus intermedius and its influence on the extensor apparatus of the knee joint. Knee Surg Sports Traumatol Arthrosc 2018; 26:727-738. [PMID: 28124107 DOI: 10.1007/s00167-016-4396-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Although the vastus medialis (VM) is closely associated with the vastus intermedius (VI), there is a lack of data regarding their functional relationship. The purpose of this study was to investigate the anatomical interaction between the VM and VI with regard to their origins, insertions, innervation and function within the extensor apparatus of the knee joint. METHODS Eighteen human cadaveric lower limbs were investigated using macro-dissection techniques. Six limbs were cut transversely in the middle third of the thigh. The mode of origin, insertion and nerve supply of the extensor apparatus of the knee joint were studied. The architecture of the VM and VI was examined in detail, as was their anatomical interaction and connective tissue linkage to the adjacent anatomical structures. RESULTS The VM originated medially from a broad hammock-like structure. The attachment site of the VM always spanned over a long distance between: (1) patella, (2) rectus femoris tendon and (3) aponeurosis of the VI, with the insertion into the VI being the largest. VM units were inserted twice-once on the anterior and once on the posterior side of the VI. The VI consists of a complex multi-layered structure. The layers of the medial VI aponeurosis fused with the aponeuroses of the tensor vastus intermedius and vastus lateralis. Together, they form the two-layered intermediate layer of the quadriceps tendon. The VM and medial parts of the VI were innervated by the same medial division of the femoral nerve. CONCLUSION The VM consists of multiple muscle units inserting into the entire VI. Together, they build a potential functional muscular complex. Therefore, the VM acts as an indirect extensor of the knee joint regulating and adjusting the length of the extensor apparatus throughout the entire range of motion. It is of clinical importance that, besides the VM, substantial parts of the VI directly contribute to the medial pull on the patella and help to maintain medial tracking of the patella during knee extension. The interaction between the VM and VI, with responsibility for the extension of the knee joint and influence on the patellofemoral function, leads readily to an understanding of common clinical problems found at the knee joint as it attempts to meet contradictory demands for both mobility and stability. Surgery or trauma in the anteromedial aspect of the quadriceps muscle group might alter a delicate interplay between the VM and VI. This would affect the extensor apparatus as a whole.
Collapse
|
73
|
Nichols TR. Distributed force feedback in the spinal cord and the regulation of limb mechanics. J Neurophysiol 2018; 119:1186-1200. [PMID: 29212914 PMCID: PMC5899305 DOI: 10.1152/jn.00216.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
74
|
Effects of antagonistic and synergistic muscles’ co-activation on mechanics of activated spastic semitendinosus in children with cerebral palsy. Hum Mov Sci 2018; 57:103-110. [DOI: 10.1016/j.humov.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/13/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023]
|
75
|
Maas H, Finni T. Mechanical Coupling Between Muscle-Tendon Units Reduces Peak Stresses. Exerc Sport Sci Rev 2018; 46:26-33. [PMID: 28857890 DOI: 10.1249/jes.0000000000000132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presence of mechanical linkages between synergistic muscles and their common tendons may distribute forces among the involved structures. We review studies, using humans and other animals, examining muscle and tendon interactions and discuss the hypothesis that connections between muscle bellies and within tendons may serve as a mechanism to distribute forces and mitigate peak stresses.
Collapse
Affiliation(s)
- Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Taija Finni
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
76
|
Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle. Eur J Appl Physiol 2018; 118:585-593. [DOI: 10.1007/s00421-018-3798-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
|
77
|
Goudriaan M, Nieuwenhuys A, Schless SH, Goemans N, Molenaers G, Desloovere K. A new strength assessment to evaluate the association between muscle weakness and gait pathology in children with cerebral palsy. PLoS One 2018; 13:e0191097. [PMID: 29324873 PMCID: PMC5764363 DOI: 10.1371/journal.pone.0191097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
AIM The main goal of this validation study was to evaluate whether lower limb muscle weakness and plantar flexor rate of force development (RFD) related to altered gait parameters in children with cerebral palsy (CP), when weakness was assessed with maximal voluntary isometric contractions (MVICs) in a gait related test position. As a subgoal, we analyzed intra- and intertester reliability of this new strength measurement method. METHODS Part 1 -Intra- and intertester reliability were determined with the intra-class correlation coefficient (ICC2,1) in 10 typical developing (TD) children (age: 5-15). We collected MVICs in four lower limb muscle groups to define maximum joint torques, as well as plantar flexor RFD. Part 2 -Validity of the strength assessment was explored by analyzing the relations of lower limb joint torques and RFD to a series of kinematic- and kinetic gait features, the GDI (gait deviation index), and the GDI-kinetic in 23 children with CP (GMFCS I-II; age: 5-15) and 23 TD children (age: 5-15) with Spearman's rank correlation coefficients. RESULTS Part 1 -The best reliability was found for the torque data (Nm), with the highest ICC2,1 (0.951) for knee extension strength (inter) and the lowest (0.693) for dorsiflexion strength (intra). For plantar flexor RFD, the most reliable window size was 300 milliseconds (ICC2,1: 0.828 (inter) and 0.692 (intra)). Part 2 -The children with CP were significantly weaker than the TD children (p <0.001). Weakness of the dorsiflexors and plantar flexors associated with delayed and decreased knee flexion angle during swing, respectively. No other significant correlations were found. CONCLUSION While our new strength assessment was reliable, intra-joint correlations between weakness, RFD, and gait deviations were low. However, we found inter-joint associations, reflected by a strong association between plantar- and dorsiflexor weakness, and decreased and delayed knee flexion angle during swing.
Collapse
Affiliation(s)
- Marije Goudriaan
- KU Leuven–University of Leuven, Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Leuven, Belgium
| | - Angela Nieuwenhuys
- KU Leuven–University of Leuven, Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Leuven, Belgium
| | - Simon-Henri Schless
- KU Leuven–University of Leuven, Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Leuven, Belgium
| | - Nathalie Goemans
- KU Leuven–University of Leuven, Department of Development and Regeneration, Organ Systems, Leuven, Belgium
- University Hospitals Leuven, Department of Child Neurology, Leuven, Belgium
| | - Guy Molenaers
- KU Leuven–University of Leuven, Department of Development and Regeneration, Organ Systems, Leuven, Belgium
- University Hospitals Leuven, Department of Orthopedics, Clinical Motion Analysis Laboratory (CERM), Pellenberg, Belgium
| | - Kaat Desloovere
- KU Leuven–University of Leuven, Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Leuven, Belgium
- University Hospitals Leuven, Department of Orthopedics, Clinical Motion Analysis Laboratory (CERM), Pellenberg, Belgium
| |
Collapse
|
78
|
Collagen fibril organization in chicken and porcine skeletal muscle perimysium under applied tension and compression. J Mech Behav Biomed Mater 2018; 77:734-744. [DOI: 10.1016/j.jmbbm.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022]
|
79
|
Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J Appl Physiol (1985) 2018; 124:234-244. [DOI: 10.1152/japplphysiol.00565.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent research indicates that fascia is capable of changing its biomechanical properties. Moreover, as it links the skeletal muscles, forming a body-wide network of multidirectional myofascial continuity, the classical conception of muscles as independent actuators has been challenged. Hence, the present synthesis review aims to characterize the mechanical relevance of the connective tissue for the locomotor system. Results of cadaveric and animal studies suggest a clinically relevant myofascial force transmission to neighboring structures within one limb (e.g., between synergists) and in the course of muscle-fascia chains (e.g., between leg and trunk). Initial in vivo trials appear to underpin these findings, demonstrating the existence of nonlocal exercise effects. However, the factors influencing the amount of transmitted force (e.g., age and physical activity) remain controversial, as well as the role of the central nervous system within the context of the observed remote exercise effects.
Collapse
Affiliation(s)
- Jan Wilke
- Department of Sports Medicine, Goethe University, Frankfurt am Main, Germany
| | - Robert Schleip
- Fascia Research Group, Neurosurgical Clinic Guenzburg of Ulm University, Ulm, Germany
| | - Can A. Yucesoy
- Institute of Biomedical Engineering, Bogazici University, Instanbul, Turkey
| | - Winfried Banzer
- Department of Sports Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
80
|
Kaya CS, Temelli Y, Ates F, Yucesoy CA. Effects of inter-synergistic mechanical interactions on the mechanical behaviour of activated spastic semitendinosus muscle of patients with cerebral palsy. J Mech Behav Biomed Mater 2018; 77:78-84. [DOI: 10.1016/j.jmbbm.2017.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022]
|
81
|
Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle. J Orthop Sports Phys Ther 2017; 47:899-905. [PMID: 28990440 DOI: 10.2519/jospt.2017.7030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.
Collapse
|
82
|
Grob K, Gilbey H, Manestar M, Ackland T, Kuster MS. The Anatomy of the Articularis Genus Muscle and Its Relation to the Extensor Apparatus of the Knee. JB JS Open Access 2017; 2:e0034. [PMID: 30229230 PMCID: PMC6133144 DOI: 10.2106/jbjs.oa.17.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: The anatomy of the articularis genus muscle has prompted speculation that it elevates the suprapatellar bursa during extension of the knee joint. However, its architectural parameters indicate that this muscle is not capable of generating enough force to fulfill this function. The purpose of the present study was to investigate the anatomy of the articularis genus, with special emphasis on its relationship with the adjacent vastus intermedius and vastus medialis muscles. Methods: The articularis genus muscle was investigated in 18 human cadaveric lower limbs with use of macrodissection techniques. All components of the quadriceps muscle group were traced from origin to insertion, and their affiliations were determined. Six limbs were cut transversely in the middle third of the thigh. The modes of origin and insertion of the articularis genus, its nerve supply, and its connections with the vastus intermedius and vastus medialis were studied. Results: The muscle bundles of the articularis genus were organized into 3 main layers: superficial, intermediate, and deep. The bundles of the superficial layer and, in 60% of the specimens, the bundles of the intermediate layer originated from both the vastus intermedius and the anterior and anterolateral surfaces of the femur. The bundles of the deep layer and, in 40% of the specimens, the bundles of the intermediate layer arose solely from the anterior surface of the femur. The distal insertion sites included different levels of the suprapatellar bursa and the joint capsule. A number of connections between the articularis genus and the vastus intermedius were found. While the vastus medialis inserted into the whole length of the vastus intermedius aponeurosis, it included muscle fibers of the articularis genus, building an intricate muscle system supplied by nerve branches of the same medial deep division of the femoral nerve. Conclusions: The articularis genus, vastus medialis, and vastus intermedius have a complex, interacting architecture, suggesting that the articularis genus most likely does not act as an independent muscle. With support of the vastus intermedius and vastus medialis, the articularis genus might be able to function as a retractor of the suprapatellar bursa. The finding of likely interplay between the articularis genus, vastus intermedius, and vastus medialis is supported by their concurrent innervation. Clinical Relevance: The association between the articularis genus, vastus medialis, and vastus intermedius may be more complex than previously believed, and this close anatomical connection could have functional implications for knee surgery. Dysfunction, scarring, or postoperative arthrofibrosis of the sophisticated interactive mechanism needs further investigation.
Collapse
Affiliation(s)
- Karl Grob
- Department of Orthopaedic Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Helen Gilbey
- Hollywood Functional Rehabilitation Clinic, Perth, Western Australia, Australia
| | - Mirjana Manestar
- Department of Anatomy, University of Zürich-Irchel, Zürich, Switzerland
| | - Timothy Ackland
- The University of Western Australia, Perth, Western Australia, Australia
| | - Markus S Kuster
- The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
83
|
Marinho HVR, Amaral GM, Moreira BS, Santos TRT, Magalhães FA, Souza TR, Fonseca ST. Myofascial force transmission in the lower limb: An in vivo experiment. J Biomech 2017; 63:55-60. [DOI: 10.1016/j.jbiomech.2017.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 01/26/2023]
|
84
|
Yucesoy CA, Temelli Y, Ateş F. Intra-operatively measured spastic semimembranosus forces of children with cerebral palsy. J Electromyogr Kinesiol 2017; 36:49-55. [DOI: 10.1016/j.jelekin.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/24/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
|
85
|
Mirakhorlo M, Maas H, Veeger DHEJ. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns. PLoS One 2017; 12:e0183145. [PMID: 28817708 PMCID: PMC5560573 DOI: 10.1371/journal.pone.0183145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/31/2017] [Indexed: 11/19/2022] Open
Abstract
Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22–30 years) flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N) orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS) and extensor digitorum (ED) in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N) with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260–370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly) responsible for the observed increase in force enslaving during index finger flexion.
Collapse
Affiliation(s)
- Mojtaba Mirakhorlo
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- * E-mail:
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - DirkJan H. E. J. Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
86
|
Chaudhry H, Bukiet B, Anderson EZ, Burch J, Findley T. Muscle strength and stiffness in resistance exercise: Force transmission in tissues. J Bodyw Mov Ther 2017; 21:517-522. [PMID: 28750958 DOI: 10.1016/j.jbmt.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/22/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
Physical therapists and osteopaths want to know the quantitative force transmitted in the tissues during resistance exercise and also the relationship between tissue strength and the specific type of resistance exercise of the skeletal muscles. This paper uses the strain energy function for large deformations associated with the active and passive response of transversely isotropic skeletal muscle tissue to evaluate muscle strength and force transmitted in tissues during resistance exercises for the quadriceps muscle at the knee during isometric training exercise at different knee angles in vivo. It is found that after an exercise program, the muscle stiffness is halved when the bending angle of the knee increases from 50° to 100°. The muscle strength generated is marginally greater at 100° than at 50°. The stress transmitted in the lateral direction for 100° bending is double that for 50°.
Collapse
Affiliation(s)
- Hans Chaudhry
- Vetha Center for Transdisciplinary Studies, Newark, NJ, USA
| | - Bruce Bukiet
- Department of Mathematical Sciences, Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Ellen Z Anderson
- School of Health Professions, Rutgers University, Newark, NJ, USA
| | - Jared Burch
- School of Health Professions, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
87
|
Kudo S, Nakamura S. Relationship between hardness and deformation of the vastus lateralis muscle during knee flexion using ultrasound imaging. J Bodyw Mov Ther 2017; 21:549-553. [PMID: 28750963 DOI: 10.1016/j.jbmt.2016.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 11/29/2022]
Abstract
The aims of this study were to clarify the relationship between deformation of the VL during knee flexion and the stiffness of the VL. 40 lower limbs of 20 male normal volunteers were divided into control and tightness groups using the Ely test. Deformation of the VL in the transverse plane during active knee flexion from 0 to 90° was recorded using B-mode ultrasonography. Hardness of the VL was measured on the middle lateral thigh using a durometer. The reaction force at fully passive flexion was measured using a hand held dynamometer. The deformation of the VL and the hardness and passive torque showed significant differences between the 2 groups. The deformation of the VL showed a significantly higher correlation with hardness of the VL. Measurements of the deformation of the VL might be predicted by the elasticity around the VL.
Collapse
Affiliation(s)
- Shintarou Kudo
- Department of Physical Therapy, Morinomiya University of Medical Sciences, Japan.
| | - Sho Nakamura
- Department of Rehabilitation, Miyamoto Orthopedics Clinic, Japan
| |
Collapse
|
88
|
Amorim AC, Cacciari LP, Passaro AC, Silveira SRB, Amorim CF, Loss JF, Sacco ICN. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women. PLoS One 2017; 12:e0177575. [PMID: 28542276 PMCID: PMC5443498 DOI: 10.1371/journal.pone.0177575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.
Collapse
Affiliation(s)
- Amanda C. Amorim
- Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Licia P. Cacciari
- Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Anice C. Passaro
- Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | - Cesar F. Amorim
- Physical Therapy Master Program, University of the City of Sao Paulo (UNICID), São Paulo, Brazil
| | | | - Isabel C. N. Sacco
- Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
89
|
Karakuzu A, Pamuk U, Ozturk C, Acar B, Yucesoy CA. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity. J Biomech 2017; 57:69-78. [DOI: 10.1016/j.jbiomech.2017.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/27/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
|
90
|
Spivey MJ, Spevack SC. An inclusive account of mind across spatiotemporal scales of cognition. JOURNAL OF CULTURAL COGNITIVE SCIENCE 2017. [DOI: 10.1007/s41809-017-0002-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
91
|
Bernabei M, van Dieën JH, Maas H. Longitudinal and transversal displacements between triceps surae muscles during locomotion of the rat. J Exp Biol 2017; 220:537-550. [DOI: 10.1242/jeb.143545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The functional consequences of differential muscle activation and contractile behavior between mechanically coupled synergists are still poorly understood. Even though synergistic muscles exert similar mechanical effects at the joint they span, differences in the anatomy, morphology and neural drive may lead to non-uniform contractile conditions. This study aimed to investigate the patterns of activation and contractile behavior of triceps surae muscles, to understand how these contribute to the relative displacement between the one-joint soleus (SO) and two-joint lateral gastrocnemius (LG) muscle bellies and their distal tendons during locomotion in the rat. In seven rats, muscle belly lengths and muscle activation during level and upslope trotting were measured by sonomicrometry crystals and electromyographic electrodes chronically implanted in the SO and LG. Length changes of muscle–tendon units (MTUs) and tendon fascicles were estimated based on joint kinematics and muscle belly lengths. Distances between implanted crystals were further used to assess longitudinal and transversal deformations of the intermuscular volume between the SO and LG. For both slope conditions, we observed differential timing of muscle activation as well as substantial differences in contraction speeds between muscle bellies (maximal relative speed 55.9 mm s−1). Muscle lengths and velocities did not differ significantly between level and upslope locomotion, only EMG amplitude of the LG was affected by slope. Relative displacements between SO and LG MTUs were found in both longitudinal and transversal directions, yielding an estimated maximal length change difference of 2.0 mm between their distal tendons. Such relative displacements may have implications for the force exchanged via intermuscular and intertendinous pathways.
Collapse
Affiliation(s)
- Michel Bernabei
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam 1081, The Netherlands
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam 1081, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam 1081, The Netherlands
| |
Collapse
|
92
|
Tijs C, van Dieën JH, Baan GC, Maas H. Synergistic Co-activation Increases the Extent of Mechanical Interaction between Rat Ankle Plantar-Flexors. Front Physiol 2016; 7:414. [PMID: 27708589 PMCID: PMC5030264 DOI: 10.3389/fphys.2016.00414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022] Open
Abstract
Force transmission between rat ankle plantar-flexors has been found for physiological muscle lengths and relative positions, but only with all muscles maximally activated. The aims of this study were to assess intermuscular mechanical interactions between ankle plantar-flexors during (i) fully passive conditions, (ii) excitation of soleus (SO), (iii) excitation of lateral gastrocnemius (LG), and (iv) during co-activation of SO, and LG (SO&LG). We assessed effects of proximal lengthening of LG and plantaris (PL) muscles (i.e., simulating knee extension) on forces exerted at the distal SO tendon (FSO) and on the force difference between the proximal and distal LG+PL tendons (ΔFLG+PL) of the rat. LG+PL lengthening increased FSO to a larger extent (p = 0.017) during LG excitation (0.0026 N/mm) than during fully passive conditions (0.0009 N/mm). Changes in FSO in response to LG+PL lengthening were lower (p = 0.002) during SO only excitation (0.0056 N/mm) than during SO&LG excitation (0.0101 N/mm). LG+PL lengthening changed ΔFLG+PL to a larger extent (p = 0.007) during SO excitation (0.0211 N/mm) than during fully passive conditions (0.0157 N/mm). In contrast, changes in ΔFLG+PL in response to LG+PL lengthening during LG excitation (0.0331 N/mm) were similar (p = 0.161) to that during SO&LG excitation (0.0370 N/mm). In all conditions, changes of FSO were lower than those of ΔFLG+PL. This indicates that muscle forces were transmitted not only between LG+PL and SO, but also between LG+PL and other surrounding structures. In addition, epimuscular myofascial force transmission between rat ankle plantar-flexors was enhanced by muscle activation. However, the magnitude of this interaction was limited.
Collapse
Affiliation(s)
- Chris Tijs
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit AmsterdamAmsterdam, Netherlands; Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| | - Guus C Baan
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| |
Collapse
|
93
|
Hohenschurz-Schmidt DJ, Esteves JE, Thomson OP. Tensegrity and manual therapy practice: a qualitative study. INT J OSTEOPATH MED 2016. [DOI: 10.1016/j.ijosm.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
94
|
Tijs C, van Dieën JH, Maas H. Limited mechanical effects of intermuscular myofascial connections within the intact rat anterior crural compartment. J Biomech 2016; 49:2953-2959. [PMID: 27452876 DOI: 10.1016/j.jbiomech.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 01/28/2023]
Abstract
Skeletal muscles of the rat anterior crural compartment are mechanically connected by epimuscular myofascial connections, but the relevance for mechanical muscle function within physiological ranges of joint motion is unclear. We evaluated the net effect at the ankle joint of epimuscular myofascial connections between tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in the rat (n=8) and determined which anatomical structures may mediate such epimuscular mechanical interactions. We assessed (1) effects of knee angle (i.e. changes in EDL length and position relative to TA) and interactions of knee angle with fasciotomy and proximal EDL tenotomy on TA ankle moment and (2) the effect of knee angle on TA and EDL ankle moment summation. Knee angle was varied between 60° and 130°. Ankle angle was kept constant (90°). TA and EDL were excited individually and simultaneously (TA&EDL). The mathematical sum of individual TA and EDL moments was compared with the moment exerted by TA&EDL to assess the extent of non-additive ankle moment summation. Magnitude of TA ankle moment was not affected by knee angle, but frontal plane moment direction was. However, dissections indicated that this was not caused by the compartmental fascia or EDL length changes. Moment summation was non-additive in magnitude (+1.1±1.1% mean±s.d.) and frontal plane direction. The latter was affected by knee angle and ranged from +0.2±0.3° at 60° to +1.1±0.6° at 130°. As the net effects found were very limited, we conclude that myofascial connections between muscles in the anterior crural compartment have limited mechanical relevance during normal movement.
Collapse
Affiliation(s)
- Chris Tijs
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands.
| |
Collapse
|
95
|
Cruz-Montecinos C, Cerda M, Sanzana-Cuche R, Martín-Martín J, Cuesta-Vargas A. Ultrasound assessment of fascial connectivity in the lower limb during maximal cervical flexion: technical aspects and practical application of automatic tracking. BMC Sports Sci Med Rehabil 2016; 8:18. [PMID: 27403319 PMCID: PMC4939606 DOI: 10.1186/s13102-016-0043-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/15/2016] [Indexed: 01/14/2023]
Abstract
Background The fascia provides and transmits forces for connective tissues, thereby regulating human posture and movement. One way to assess the myofascial interaction is a fascia ultrasound recording. Ultrasound can follow fascial displacement either manually or automatically through two-dimensional (2D) method. One possible method is the iterated Lucas-Kanade Pyramid (LKP) algorithm, which is based on automatic pixel tracking during passive movements in 2D fascial displacement assessments. Until now, the accumulated error over time has not been considered, even though it could be crucial for detecting fascial displacement in low amplitude movements. The aim of this study was to assess displacement of the medial gastrocnemius fascia during cervical spine flexion in a kyphotic posture with the knees extended and ankles at 90°. Methods The ultrasound transducer was placed on the extreme dominant belly of the medial gastrocnemius. Displacement was calculated from nine automatically selected tracking points. To determine cervical flexion, an established 2D marker protocol was implemented. Offline pressure sensors were used to synchronize the 2D kinematic data from cervical flexion and deep fascia displacement of the medial gastrocnemius. Results Fifteen participants performed the cervical flexion task. The basal tracking error was 0.0211 mm. In 66 % of the subjects, a proximal fascial tissue displacement of the fascia above the basal error (0.076 mm ± 0.006 mm) was measured. Fascia displacement onset during cervical spine flexion was detected over 70 % of the cycle; however, only when detected for more than 80 % of the cycle was displacement considered statistically significant as compared to the first 10 % of the cycle (ANOVA, p < 0.05). Conclusion By using an automated tracking method, the present analyses suggest statistically significant displacement of deep fascia. Further studies are needed to corroborate and fully understand the mechanisms associated with these results.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile ; Laboratory of Biomechanics, San José Hospital, Santiago, Chile
| | - Mauricio Cerda
- SCIAN-Lab, Programa de Anatomía y Biología del Desarrollo, ICBM, University of Chile, Santiago, Chile
| | - Rodolfo Sanzana-Cuche
- Departamento de Ciencias Morfológicas, Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Martín-Martín
- Escuela de Terapia Ocupacional, Facultad de Salud, Deporte y Recreación, Universidad Bernardo O Higgins, Santiago, Chile ; Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Instituto Investigacion Biomedica de Málaga (IBIMA), Universidad de Málaga, Andalucia Tech, Cátedra de Fisioterapia y DiscapacidadGrupo de Clinimetria (FE-14), Málaga, Spain
| | - Antonio Cuesta-Vargas
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Instituto Investigacion Biomedica de Málaga (IBIMA), Universidad de Málaga, Andalucia Tech, Cátedra de Fisioterapia y DiscapacidadGrupo de Clinimetria (FE-14), Málaga, Spain ; School of Clinical Science, Faculty of Health Sciences at Queensland University Technology, Brisbane, Australia ; Facultad de Ciencias de la Salud, Universidad de Málaga, Av. Arquitecto Peñalosa s/n (Teatinos Campus Expansion), 29009 Málaga, Spain
| |
Collapse
|
96
|
Ateş F, Temelli Y, Yucesoy CA. The mechanics of activated semitendinosus are not representative of the pathological knee joint condition of children with cerebral palsy. J Electromyogr Kinesiol 2016; 28:130-6. [DOI: 10.1016/j.jelekin.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
|
97
|
Bernabei M, Maas H, van Dieën JH. A lumped stiffness model of intermuscular and extramuscular myofascial pathways of force transmission. Biomech Model Mechanobiol 2016; 15:1747-1763. [PMID: 27193153 PMCID: PMC5106516 DOI: 10.1007/s10237-016-0795-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/03/2016] [Indexed: 12/02/2022]
Abstract
Mechanical behavior of skeletal muscles is commonly modeled under the assumption of mechanical independence between individual muscles within a muscle group. Epimuscular myofascial force transmission via the connective tissue network surrounding a muscle challenges this assumption as it alters the force distributed to the tendons of individual muscles. This study aimed to derive a lumped estimate of stiffness of the intermuscular and extramuscular connective tissues and to assess changes in such stiffness in response to a manipulation of the interface between adjacent muscles. Based on in situ measurements of force transmission in the rat plantar flexors, before and after resection of their connective tissue network, a nonlinear estimate of epimuscular myofascial stiffness was quantified and included in a multi-muscle model with lumped parameters which allows for force transmission depending on the relative position between the muscles in the group. Such stiffness estimate was assessed for a group with normal intermuscular connective tissues and for a group with increased connectivity, mimicking scar tissue development. The model was able to successfully predict the amount of epimuscular force transmission for different experimental conditions than those used to obtain the model parameters. The proposed nonlinear stiffness estimates of epimuscular pathways could be integrated in larger musculoskeletal models, to provide more accurate predictions of force when effects of mechanical interaction or altered epimuscular connections, e.g. after surgery or injury, are substantial.
Collapse
Affiliation(s)
- Michel Bernabei
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Van der Boechorststraat 9, 1081, Amsterdam, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Van der Boechorststraat 9, 1081, Amsterdam, The Netherlands.
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Van der Boechorststraat 9, 1081, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Smilde HA, Vincent JA, Baan GC, Nardelli P, Lodder JC, Mansvelder HD, Cope TC, Maas H. Changes in muscle spindle firing in response to length changes of neighboring muscles. J Neurophysiol 2016; 115:3146-55. [PMID: 27075540 DOI: 10.1152/jn.00937.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/05/2016] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.
Collapse
Affiliation(s)
- Hiltsje A Smilde
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Jake A Vincent
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Guus C Baan
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; School of Applied Physiology and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Johannes C Lodder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim C Cope
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; School of Applied Physiology and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Huub Maas
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands;
| |
Collapse
|
99
|
Hodson-Tole EF, Wakeling JM, Dick TJM. Passive Muscle-Tendon Unit Gearing Is Joint Dependent in Human Medial Gastrocnemius. Front Physiol 2016; 7:95. [PMID: 27014093 PMCID: PMC4791406 DOI: 10.3389/fphys.2016.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fiber length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behavior of muscle fibers and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles.
Collapse
Affiliation(s)
- Emma F Hodson-Tole
- School of Healthcare Science, Manchester Metropolitan University Manchester, UK
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Taylor J M Dick
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
100
|
Turkoglu AN, Yucesoy CA. Simulation of effects of botulinum toxin on muscular mechanics in time course of treatment based on adverse extracellular matrix adaptations. J Biomech 2016; 49:1192-1198. [PMID: 26994785 DOI: 10.1016/j.jbiomech.2016.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
BTX effects on muscular mechanics are highly important, but their mechanism and variability in due treatment course is not well understood. Recent modeling shows that partial muscle paralysis per se causes restricted sarcomere shortening due to muscle fiber-extracellular matrix (ECM) mechanical interactions. This leads to two notable acute-BTX effects compared to pre-BTX treatment condition: (1) enhanced potential of active force production of the non-paralyzed muscle parts, and (2) decreased muscle length range of force exertion (ℓrange). Recent experiments also indicate increased ECM stiffness of BTX treated muscle. Hence, altered muscle fiber-ECM interactions and BTX effects are plausible in due treatment course. Using finite element modeling, the aim was to test the following hypotheses: acute-BTX treatment effects elevate with increased ECM stiffness in the long-term, and are also persistent post-BTX treatment. Model results confirm these hypotheses and show that restricted sarcomere shortening effect becomes more pronounced in the long-term and is persistent or reversed (for longer muscle lengths) post-BTX treatment. Consequently, force production capacity of activated sarcomeres gets further enhanced in the long-term. Remarkably, such enhanced capacity becomes permanent for the entire muscle post-treatment. Shift of muscle optimum length to a shorter length is more pronounced in the long-term, some of which remains permanent post-treatment. Compared to Pre-BTX treatment, a narrower ℓrange (20.3%, 27.1% and 3.4%, acute, long-term and post-BTX treatment, respectively) is a consistent finding. We conclude that ECM adaptations can affect muscular mechanics adversely both during spasticity management and post-BTX treatment. Therefore, this issue deserves major future attention.
Collapse
Affiliation(s)
- Ahu N Turkoglu
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey
| | - Can A Yucesoy
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|