51
|
Single and combined effect of retinoic acid and rapamycin modulate the generation, activity and homing potential of induced human regulatory T cells. PLoS One 2017; 12:e0182009. [PMID: 28746369 PMCID: PMC5529012 DOI: 10.1371/journal.pone.0182009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Adoptive transfer of CD4+CD25+FOXP3+ regulatory T cells (Treg cells) has been successfully utilized to treat graft versus host disease and represents a promising strategy for the treatment of autoimmune diseases and transplant rejection. The aim of this study was to evaluate the effects of all-trans retinoic acid (atRA) and rapamycin (RAPA) on the number, phenotype, homing markers expression, DNA methylation, and function of induced human Treg cells in short-term cultures. Naive T cells were polyclonally stimulated and cultured for five days in the presence of different combinations of IL-2, TGF-β1, atRA and RAPA. The resulting cells were characterized by the expression of FOXP3, activation, surface and homing markers. Methylation of the Conserved Non-coding Sequence 2 was also evaluated. Functional comparison of the different culture conditions was performed by suppression assays in vitro. Culturing naive human T cells with IL-2/TGFβ1 resulted in the generation of 54.2% of Treg cells (CD4+CD25+FOXP3+) whereas the addition of 100 nM atRA increased the yield of Treg cells to 66% (p = 0.0088). The addition of RAPA did not increase the number of Treg cells in any of these settings. Treg cells generated in the presence of atRA had an increased expression of the β7 integrin to nearly 100% of the generated Treg cells, while RAPA treated cells showed enhanced expression of CXCR4. The differential expression of homing molecules highlights the possibility of inducing Treg cells with differential organ-specific homing properties. Neither atRA nor RAPA had an effect on the highly methylated CNS2 sites, supporting reports that their contribution to the lineage stability of Treg cells is not mediated by methylation changes in this locus. Treg cells generated in the presence of RAPA show the most potent suppression effect on the proliferation of effector cells.
Collapse
|
52
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
53
|
Affiliation(s)
- Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India 560012
| |
Collapse
|
54
|
Venkataraman L, Sivaraman B, Vaidya P, Ramamurthi A. Nanoparticulate delivery of agents for induced elastogenesis in three-dimensional collagenous matrices. J Tissue Eng Regen Med 2016; 10:1041-1056. [PMID: 24737693 PMCID: PMC4440849 DOI: 10.1002/term.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022]
Abstract
The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-β1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lavanya Venkataraman
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
| | | | - Pratik Vaidya
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
55
|
Orr S, Strominger I, Eremenko E, Vinogradov E, Ruvinov E, Monsonego A, Cohen S. TGF-β affinity-bound to a macroporous alginate scaffold generates local and peripheral immunotolerant responses and improves allocell transplantation. Acta Biomater 2016; 45:196-209. [PMID: 27523029 DOI: 10.1016/j.actbio.2016.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Enhancing vascularization of cell-transplantation devices is necessary for maintaining cell viability and integration within the host, but it also increases the risk of allograft rejection. Here, we investigated the feasibility of generating an immunoregulatory environment in a highly vascularized macroporous alginate scaffold by affinity-binding of the transforming growth factor-β (TGF-β) in a manner mimicking its binding to heparan sulfate. Using this device to transplant allofibroblasts under the kidney capsule resulted in the induction of local and peripheral TGF-β-dependent immunotolerance, characterized by higher frequency of immature dendritic cells and regulatory T cells within the device and by markedly reduced allofibroblast-specific T-cell response in the spleen, thereby increasing the viability of the transplanted cells. Culturing whole splenocytes in the TGF-β-bound scaffold indicated that the regulatory function of TGF-β is IL-10-dependent. We thus demonstrate a novel platform for transplantation devices, designed to promote an immunoregulatory microenvironment suitable for cell transplantation and autoimmune regulation. STATEMENT OF SIGNIFICANCE Allogeneic cell graft transplantation is a potentially optimal treatment for many clinical deficiencies. It is yet challenging to overcome chronic rejection without compromising host immunity to pathogens. We present the features and function of a cell transplantation device designed based on the principle of affinity binding of angiogenic and immunoregulatory factors to extracellular matrix in aim to achieve sustained release of these factors. We show that presentation of these factors in such manner generates the infrastructure for device vascularization and induces profound local allocell-specific tolerance, which then evokes peripheral T-cell tolerance. The tolerance is antigen specific, does not cause immune deficits and may thus serve to improve allocell survival as well as a platform to mitigate pathogenic autoimmunity.
Collapse
Affiliation(s)
- Shira Orr
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekatrina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekaterine Vinogradov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
56
|
Abstract
Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.
Collapse
Affiliation(s)
- Nathan A Hotaling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
| | - Li Tang
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
| | - Darrell J Irvine
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
57
|
Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats. PLoS One 2015; 10:e0135256. [PMID: 26248290 PMCID: PMC4527665 DOI: 10.1371/journal.pone.0135256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats treated with 1.0 mg/ kg rapamycin exhibited fewer and milder side effects than those treated with 3.0 mg/kg. In summary, all these data suggest that there is not a rapamycin dose that can inhibit mTOR for epilepsy without causing any side effects, but 1 mg /kg may be the optimal dose for young rats for suppressing mTOR with relatively few side effects.
Collapse
|
58
|
Yang EY, Kronenfeld JP, Gattás-Asfura KM, Bayer AL, Stabler CL. Engineering an "infectious" T(reg) biomimetic through chemoselective tethering of TGF-β1 to PEG brush surfaces. Biomaterials 2015. [PMID: 26197412 DOI: 10.1016/j.biomaterials.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of immunological responses to allografts following transplantation is of pivotal importance to improving graft outcome and duration. Of the many approaches, harnessing the dominant tolerance induced by regulatory T cells (Treg) holds tremendous promise. Recent studies have highlighted the unique potency of cell surface-bound TGF-β1 on Treg for promoting infectious tolerance, i.e. to confer suppressive capacity from one cell to another. To mimic this characteristic, TGF-β1 was chemoselectively tethered to inert and viable polymer grafting platforms using Staudinger ligation. We report the synthesis and functional characterization of these engineered TGF-β1 surfaces. Inert beads tethered with TGF-β1 were capable of efficiently converting naïve CD4(+) CD62L(hi) T cells to functional Treg. Concordantly, translation of conjugation scheme from inert surfaces to viable cells also led to efficient generation of functional Treg. Further, the capacity of these platforms to generate antigen-specific Treg was demonstrated. These findings illustrate the unique faculty of tethered TGF-β1 biomaterial platforms to function as an "infectious" Treg and provide a compelling approach for generating tolerogenic microenvironments for allograft transplantation.
Collapse
Affiliation(s)
- E Y Yang
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - J P Kronenfeld
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Medicine, University of Miami, Miami, FL, USA
| | | | - A L Bayer
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - C L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA.
| |
Collapse
|
59
|
Balmert SC, Zmolek AC, Glowacki AJ, Knab TD, Rothstein SN, Wokpetah JM, Fedorchak MV, Little SR. Positive Charge of "Sticky" Peptides and Proteins Impedes Release From Negatively Charged PLGA Matrices. J Mater Chem B 2015; 3:4723-4734. [PMID: 26085928 PMCID: PMC4465798 DOI: 10.1039/c5tb00515a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influence of electrostatic interactions and/or acylation on release of charged ("sticky") agents from biodegradable polymer matrices was systematically characterized. We hypothesized that release of peptides with positive charge would be hindered from negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles. Thus, we investigated release of peptides with different degrees of positive charge from several PLGA microparticle formulations, with different molecular weights and/or end groups (acid- or ester-terminated). Indeed, release studies revealed distinct inverse correlations between the amount of positive charge on peptides and their release rates from each PLGA microparticle formulation. Furthermore, we examined the case of peptides with net charge that changes from negative to positive within the pH range observed in degrading microparticles. These charge changing peptides displayed counterintuitive release kinetics, initially releasing faster from slower degrading (less acidic) microparticles, and releasing slower from the faster degrading (more acidic) microparticles. Importantly, trends between agent charge and release rates for model peptides also translated to larger, therapeutically relevant proteins and oligonucleotides. The results of these studies may improve future design of controlled release systems for numerous therapeutic biomolecules exhibiting positive charge, ultimately reducing time-consuming and costly trial and error iterations of such formulations.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Andrew C. Zmolek
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Andrew J. Glowacki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Timothy D. Knab
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Sam N. Rothstein
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | | | - Morgan V. Fedorchak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Steven R. Little
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
60
|
McHugh MD, Park J, Uhrich R, Gao W, Horwitz DA, Fahmy TM. Paracrine co-delivery of TGF-β and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials 2015; 59:172-81. [PMID: 25974747 DOI: 10.1016/j.biomaterials.2015.04.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
The cytokine milieu is critical for orchestration of lineage development towards effector T cell (Teff) or regulatory T cell (Treg) subsets implicated in the progression of cancer and autoimmune disease. Importantly, the fitness and survival of the Treg subset is dependent on the cytokines Interleukin-2 (IL-2) and transforming growth factor beta (TGF-β). The production of these cytokines is impaired in autoimmunity increasing the probability of Treg conversion to aggressive effector cells in a proinflammatory microenvironment. Therapy using soluble TGF-β and IL-2 administration is hindered by the cytokines' toxic pleiotropic effects and hence bioavailability to CD4(+) T cell targets. Thus, there is a clear need for a strategy that rectifies the cytokine milieu in autoimmunity and inflammation leading to enhanced Treg stability, frequency and number. Here we show that inert biodegradable nanoparticles (NP) loaded with TGF-β and IL-2 and targeted to CD4(+) cells can induce CD4(+) Tregs in-vitro and expand their number in-vivo. The stability of induced Tregs with cytokine-loaded NP was enhanced leading to retention of their suppressive phenotype even in the presence of proinflammatory cytokines. Our results highlight the importance of a nanocarrier-based approach for stabilizing and expanding Tregs essential for cell-immunotherapy of inflammation and autoimmune disease.
Collapse
Affiliation(s)
- Michael D McHugh
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, 415 Malone Engineering Center, New Haven, CT 06511, USA
| | - Jason Park
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, 415 Malone Engineering Center, New Haven, CT 06511, USA
| | - Ross Uhrich
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, 415 Malone Engineering Center, New Haven, CT 06511, USA
| | - Wenda Gao
- Transplant Research Center, Beth Israel Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - David A Horwitz
- Keck School of Medicine, University of Southern California, 2011 Zonal Ave, Los Angeles, CA 90089, USA
| | - Tarek M Fahmy
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, 415 Malone Engineering Center, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, 55 Prospect Street, 415 Malone Engineering Center, New Haven, CT 06511, USA
| |
Collapse
|
61
|
Fisher JD, Acharya AP, Little SR. Micro and nanoparticle drug delivery systems for preventing allotransplant rejection. Clin Immunol 2015; 160:24-35. [PMID: 25937032 DOI: 10.1016/j.clim.2015.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022]
Abstract
Despite decades of advances in transplant immunology, tissue damage caused by acute allograft rejection remains the primary cause of morbidity and mortality in the transplant recipient. Moreover, the long-term sequelae of lifelong immunosuppression leaves patients at risk for developing a host of other deleterious conditions. Controlled drug delivery using micro- and nanoparticles (MNPs) is an effective way to deliver higher local doses of a given drug to specific tissues and cells while mitigating systemic effects. Herein, we review several descriptions of MNP immunotherapies aimed at prolonging allograft survival. We also discuss developments in the field of biomimetic drug delivery that use MNP constructs to induce and recruit our bodies' own suppressive immune cells. Finally, we comment on the regulatory pathway associated with these drug delivery systems. Collectively, it is our hope the studies described in this review will help to usher in a new era of immunotherapy in organ transplantation.
Collapse
Affiliation(s)
- James D Fisher
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav P Acharya
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW The field of vascularized composite allograft (VCA) to achieve its full potential will require induction of tolerance. This review will introduce a new method of potential inducing tolerance in hand transplantation. RECENT FINDINGS Hand transplantation is never a life-extending transplant. This fact resulted in considerable debate both for and against the use of immunosuppression for nonlife-extending transplants. There is considerable debate about the ethics of hand transplantation. There is now consensus that nonlife-extending transplants are acceptable in properly selected patients. However, ideally, hand transplants should not receive life-long immunosuppression. Therefore, attempts to achieve drug-free tolerance through nonlife-endangering therapies are warranted. To this end, we propose implementation of tolerizing therapy long after periinflammation has subsided and drug minimization has proven successful. Evidence that short-term treatment with low doses of IL-2 or a long-lived IL-2 immunoglobulin (Ig) can tilt the balance of immunity from tissue destructive to tolerance come from preclinical demonstrations in mouse and nonhuman primate models of autoimmunity and/or transplantation and even more recent clinical trials. SUMMARY We believe that with the proper use of low-dose IL-2 given at an opportune time in the inflammatory process of transplant that reduce immunosuppression and even tolerance can be induced in hand transplantation. We propose that tolerance can be inducted after a long period of conventional treatment to avoid 'tolerance-hindering' adverse inflammation that occurs in the posttransplant period. With abatement of posttransplant inflammation and with time, we will institute low-dose IL-2-based therapy to support the proliferation, viability and functional phenotype of regulatory T cells.
Collapse
|
63
|
Garciafigueroa Y, Trucco M, Giannoukakis N. A brief glimpse over the horizon for type 1 diabetes nanotherapeutics. Clin Immunol 2015; 160:36-45. [PMID: 25817545 DOI: 10.1016/j.clim.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
The pace at which nanotherapeutic technology for human disease is evolving has accelerated exponentially over the past five years. Most of the technology is centered on drug delivery which, in some instances, offers tunable control of drug release. Emerging technologies have resulted in improvements in tissue and cell targeting while others are at the initial stages of pairing drug release and drug release kinetics with microenvironmental stimuli or changes in homeostasis. Nanotherapeutics has only recently been adopted for consideration as a prophylaxis/treatment approach in autoimmunity. Herein, we summarize the current state-of-the art of nanotherapeutics specifically for type 1 diabetes mellitus and offer our view over the horizon of where we envisage this modality evolving towards.
Collapse
Affiliation(s)
- Yesica Garciafigueroa
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| |
Collapse
|
64
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
65
|
Feng S, Lu F, Wang Y, Suo J. Comparison of the degradation and release behaviors of poly(lactide-co-glycolide)-methoxypoly(ethylene glycol) microspheres prepared with single- and double-emulsion evaporation methods. J Appl Polym Sci 2015. [DOI: 10.1002/app.41943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuibin Feng
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Feng Lu
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Yan Wang
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Jinping Suo
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| |
Collapse
|
66
|
Yang EY, Kronenfeld JP, Stabler CL. Engineering biomimetic materials for islet transplantation. Curr Diabetes Rev 2015; 11:163-9. [PMID: 25776871 PMCID: PMC4447569 DOI: 10.2174/1573399811666150317130440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
A closed-loop system that provides both the sensing of glucose and the appropriate dosage of insulin could dramatically improve treatment options for insulin-dependent diabetics. The intrahepatic implantation of allogeneic islets has the potential to provide this intimate control, by transplanting the very cells that have this inherent sensing and secretion capacity. Limiting islet transplantation, however, is the significant loss and dysfunction of islets following implantation, due to the poor engraftment environment and significant immunological attack. In this review, we outline approaches that seek to address these challenges via engineering biomimetic materials. These materials can serve to mimic natural processes that work toward improving engraftment, minimizing inflammation, and directing immunological responses. Biomimetic materials can serve to house cells, recapitulate native microenvironments, release therapeutic agents in a physiological manner, and/or present agents to direct cells towards desired responses. By integrating these approaches, superior platforms capable of improving long-term engraftment and acceptance of transplanted islets are on the horizon.
Collapse
Affiliation(s)
| | | | - Cherie L Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
67
|
Feng S, Nie L, Zou P, Suo J. Drug-loaded PLGA-mPEG microparticles as treatment for atopic dermatitis-like skin lesions in BALB/c mice model. J Microencapsul 2014; 32:201-9. [DOI: 10.3109/02652048.2014.995727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
68
|
Andorko JI, Hess KL, Jewell CM. Harnessing biomaterials to engineer the lymph node microenvironment for immunity or tolerance. AAPS JOURNAL 2014; 17:323-38. [PMID: 25533221 PMCID: PMC4365095 DOI: 10.1208/s12248-014-9708-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023]
Abstract
Nanoparticles, microparticles, and other biomaterials are advantageous in vaccination because these materials provide opportunities to modulate specific characteristics of immune responses. This idea of “tuning” immune responses has recently been used to combat infectious diseases and cancer, and to induce tolerance during organ transplants or autoimmune disease. Lymph nodes and other secondary lymphoid organs such as the spleen play crucial roles in determining if and how these responses develop following vaccination or immunotherapy. Thus, by manipulating the local microenvironments within these immunological command centers, the nature of systemic immune response can be controlled. This review provides recent examples that harness the interactions between biomaterials and lymph nodes or other secondary lymphoid organs to generate immunity or promote tolerance. These strategies draw on mechanical properties, surface chemistry, stability, and targeting to alter the interactions of cells, signals, and vaccine components in lymph nodes. While there are still many unanswered questions surrounding how best to design biomaterial-based vaccines to promote specific structures or functions in lymph nodes, features such as controlled release and targeting will help pave the way for the next generation of vaccines and immunotherapies that generate immune responses tuned for specific applications.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, College Park, Maryland, 20742, USA
| | | | | |
Collapse
|
69
|
Lipiäinen T, Peltoniemi M, Sarkhel S, Yrjönen T, Vuorela H, Urtti A, Juppo A. Formulation and stability of cytokine therapeutics. J Pharm Sci 2014; 104:307-26. [PMID: 25492409 DOI: 10.1002/jps.24243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022]
Abstract
Cytokines are messenger proteins that regulate the proliferation and differentiation of cells and control immune responses. Interferons, interleukins, and growth factors have applications in cancer, autoimmune, and viral disease treatment. The cytokines are susceptible to chemical and physical instability. This article reviews the structure and stability issues of clinically used cytokines, as well as formulation strategies for improved stability. Some general aspects for identifying most probable stability concerns, selecting excipients, and developing stable cytokine formulations are presented. The vast group of cytokines offers possibilities for new biopharmaceuticals. The formulation approaches of the current cytokine products could facilitate development of new biopharmaceuticals.
Collapse
Affiliation(s)
- Tiina Lipiäinen
- University of Helsinki, Faculty of Pharmacy, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
70
|
Glowacki AJ, Gottardi R, Yoshizawa S, Cavalla F, Garlet GP, Sfeir C, Little SR. Strategies to direct the enrichment, expansion, and recruitment of regulatory cells for the treatment of disease. Ann Biomed Eng 2014; 43:593-602. [PMID: 25245220 DOI: 10.1007/s10439-014-1125-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 01/21/2023]
Abstract
Disease and injury perturb the balance of processes associated with inflammation and tissue remodeling, resulting in positive feedback loops, exacerbation of disease and compromised tissue repair. Conversely, under homeostatic healthy conditions, these processes are tightly regulated through the expansion and/or recruitment of specific cell populations, promoting a balanced steady-state. Better understanding of these regulatory processes and recent advances in biomaterials and biotechnology have prompted strategies to utilize cells for the treatment and prevention of disease through regulation of inflammation and promotion of tissue repair. Herein, we describe how cells that regulate these processes can be increased in prevalence at a site of disease or injury. We review several relevant cell therapy approaches as well as new strategies for directing endogenous regulatory cells capable of promoting environmental homeostasis and even the establishment of a pro-regenerative micro-environment. Collectively, these examples may provide a blueprint for next-generation "medicine" that spurs the body's own cells to action and replaces conventional drugs.
Collapse
Affiliation(s)
- Andrew J Glowacki
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
van der Weijden J, Paulis LE, Verdoes M, van Hest JCM, Figdor CG. The right touch: design of artificial antigen-presenting cells to stimulate the immune system. Chem Sci 2014. [DOI: 10.1039/c4sc01112k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
72
|
Lewis JS, Roche C, Zhang Y, Brusko TM, Wasserfall CH, Atkinson M, Clare-Salzler MJ, Keselowsky BG. Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres. J Mater Chem B 2014; 2:2562-2574. [PMID: 24778809 PMCID: PMC4000038 DOI: 10.1039/c3tb21460e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microparticulate systems are beginning to show promise for delivery of modulatory agents for immunotherapeutic applications which modulate dendritic cell (DC) functions. Co-administration of multiple factors is an emerging theme in immune modulation which may prove beneficial in this setting. Herein, we demonstrate that localized, controlled delivery of multiple factors can be accomplished through poly (lactic-co-glycolic acid) (PLGA) microparticle systems fabricated in two size classes of phagocytosable and unphagocytosable microparticles (MPs). The immunosuppressive ability of combinatorial multi-factor dual MP systems was evaluated by investigating effects on DC maturation, DC resistance to LPS-mediated maturation and proliferation of allogeneic T cells in a mixed lymphocyte reaction. Phagocytosable MPs (~2 μm) were fabricated encapsulating either rapamycin (RAPA) or all-trans retinoic acid (RA), and unphagocytosable MPs (~30 μm) were fabricated encapsulating either transforming growth factor beta-1 (TGF-β1) or interleukin-10 (IL-10). Combinations of these MP classes reduced expression of stimulatory/costimulatory molecules (MHC-II, CD80 and CD86) in comparison to iDC and soluble controls, but not necessarily to single factor MPs. Dual MP-treated DCs resisted LPS-mediated activation, in a manner driven by the single factor phagocytosable MPs used. Dendritic cells treated with dual MP systems suppressed allogeneic T cell proliferation, generally demonstrating greater suppression by combination MPs than single factor formulations, particularly for the RA/IL-10 MPs. This work demonstrates feasibility of simultaneous targeted delivery of immunomodulatory factors to cell surface receptors and intracellular locations, and indicates that a combinatorial approach can boost immunoregulatory responses for therapeutic application in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Jamal S. Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Chris Roche
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Ying Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Clive H. Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Michael J. Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
73
|
Abstract
Adaptive immune responses, characterized by T cells and B cells engaging and responding to specific antigens, can be raised by biomaterials containing proteins, peptides, and other biomolecules. How does one avoid, control, or exploit such responses? This review will discuss major properties and processes that influence biomaterials-directed adaptive immunity, including the physical dimensions of a material, its epitope content, and its multivalency. Selected strategies involving novel biomaterials designs will be discussed to illustrate these points of control. Specific immunological processes that biomaterials are being developed to direct will be highlighted, including minimally inflammatory scaffolds for tissue repair and immunotherapies eliciting desired B cell (antibody) responses, T cell responses, or tolerance. The continuing development of a knowledge base for specifying the strength and phenotype of biomaterials-mediated adaptive immune responses is important, not only for the engineering of better vaccines and immunotherapies, but also for managing immune responses against newer generations of increasingly biological and biomolecular materials in contexts such as tissue repair, tissue engineering, or cell delivery.
Collapse
|
74
|
Rothstein SN, Donahue C, Falo LD, Little SR. In silico programming of degradable microparticles to hide and then reveal immunogenic payloads in vivo. J Mater Chem B 2014; 2:6183-6187. [DOI: 10.1039/c4tb01042f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Poly(lactic-co-glycolic) acid microparticles, mathematically designed for delayed release in vitro, hide and then reveal ovalbumin-alum in vivo without altering its immunogenicity.
Collapse
Affiliation(s)
| | - C. Donahue
- Departments of Dermatology
- Bioengineering
- McGowan Institute for Regenerative Medicine
- Clinical and Translational Science Institute
- University of Pittsburgh
| | - L. D. Falo
- Departments of Dermatology
- Bioengineering
- McGowan Institute for Regenerative Medicine
- Clinical and Translational Science Institute
- University of Pittsburgh
| | - S. R. Little
- Departments of Chemical and Petroleum Engineering
- Bioengineering
- Immunology
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
| |
Collapse
|
75
|
Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A 2013; 110:18525-30. [PMID: 24167272 DOI: 10.1073/pnas.1302829110] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hallmark of periodontal disease is the progressive destruction of gingival soft tissue and alveolar bone, which is initiated by inflammation in response to an invasive and persistent bacterial insult. In recent years, it has become apparent that this tissue destruction is associated with a decrease in local regulatory processes, including a decrease of forkhead box P3-expressing regulatory lymphocytes. Accordingly, we developed a controlled release system capable of generating a steady release of a known chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22), composed of a degradable polymer with a proven track record of clinical translation, poly(lactic-co-glycolic) acid. We have previously shown that this sustained presentation of CCL22 from a point source effectively recruits regulatory T cells (Tregs) to the site of injection. Following administration of the Treg-recruiting formulation to the gingivae in murine experimental periodontitis, we observed increases in hallmark Treg-associated anti-inflammatory molecules, a decrease of proinflammatory cytokines, and a marked reduction in alveolar bone resorption. Furthermore, application of the Treg-recruiting formulation (fabricated with human CCL22) in ligature-induced periodontitis in beagle dogs leads to reduced clinical measures of inflammation and less alveolar bone loss under severe inflammatory conditions in the presence of a diverse periodontopathogen milieu.
Collapse
|
76
|
Jhunjhunwala S, Chen LC, Nichols EE, Thomson AW, Raimondi G, Little SR. All-trans retinoic acid and rapamycin synergize with transforming growth factor-β1 to induce regulatory T cells but confer different migratory capacities. J Leukoc Biol 2013; 94:981-9. [PMID: 23898044 DOI: 10.1189/jlb.0312167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tregs play important roles in maintaining immune homeostasis, and thus, therapies based on Treg are promising candidates for the treatment for a variety of immune-mediated disorders. These therapies, however, face the significant challenge of obtaining adequate numbers of Tregs from peripheral blood that maintains suppressive function following extensive expansion. Inducing Tregs from non-Tregs offers a viable alternative. Different methods to induce Tregs have been proposed and involve mainly treating cells with TGF-β-iTreg. However, use of TGF-β alone is not sufficient to induce stable Tregs. ATRA or rapa has been shown to synergize with TGF-β to induce stable Tregs. Whereas TGF-β plus RA-iTregs have been well-described in the literature, the phenotype, function, and migratory characteristics of TGF-β plus rapa-iTreg have yet to be elucidated. Herein, we describe the phenotype and function of mouse rapa-iTreg and reveal that these cells differ in their in vivo homing capacity when compared with mouse RA-iTreg and mouse TGF-β-iTreg. This difference in migratory activity significantly affects the therapeutic capacity of each subset in a mouse model of colitis. We also describe the characteristics of iTreg generated in the presence of TGF-β, RA, and rapa.
Collapse
Affiliation(s)
- Siddharth Jhunjhunwala
- 3.720 Rutland Ave, Room 755A, Baltimore, MD 21205, USA. or University of Pittsburgh, 3700 O'Hara St., 440 Benedum Hall, Pittsburgh, PA 15261, USA. E-mail: ; Twitter: http://www.twitter.com/@think_little
| | | | | | | | | | | |
Collapse
|
77
|
Rothstein SN, Kay JE, Schopfer FJ, Freeman BA, Little SR. A retrospective mathematical analysis of controlled release design and experimentation. Mol Pharm 2012; 9:3003-11. [PMID: 23009671 DOI: 10.1021/mp300388w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development and performance evaluation of new biodegradable polymer controlled release formulations relies on successful interpretation and evaluation of in vitro release data. However, depending upon the extent of empirical characterization, release data may be open to more than one qualitative interpretation. In this work, a predictive model for release from degradable polymer matrices was applied to a number of published release data in order to extend the characterization of release behavior. Where possible, the model was also used to interpolate and extrapolate upon collected released data to clarify the overall duration of release and also kinetics of release between widely spaced data points. In each case examined, mathematical predictions of release coincide well with experimental results, offering a more definitive description of each formulation's performance than was previously available. This information may prove particularly helpful in the design of future studies, such as when calculating proper dosing levels or determining experimental end points in order to more comprehensively evaluate a controlled release system's performance.
Collapse
Affiliation(s)
- Sam N Rothstein
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | | | | | | | |
Collapse
|
78
|
Jhunjhunwala S, Raimondi G, Glowacki AJ, Hall SJ, Maskarinec D, Thorne SH, Thomson AW, Little SR. Bioinspired controlled release of CCL22 recruits regulatory T cells in vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4735-8. [PMID: 22821823 PMCID: PMC3491880 DOI: 10.1002/adma.201202513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 05/20/2023]
Affiliation(s)
- Siddharth Jhunjhunwala
- 360B CNBIO, 300 Technology Drive, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA-15219, USA
- 450 Technology Drive, Suite 300, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA-15219, USA
| | - Giorgio Raimondi
- 200 Lothrop Street, Department of Surgery, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 200 Lothrop Street, W1540, Thomas E. Starzl Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA-15261, USA
| | - Andrew J. Glowacki
- 3700 O’Hara Street, #1249, Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 450 Technology Drive, Suite 300, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA-15219, USA
| | - Sherri J. Hall
- 360B CNBIO, 300 Technology Drive, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA-15219, USA
| | - Dan Maskarinec
- 360B CNBIO, 300 Technology Drive, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA-15219, USA
| | - Stephen H. Thorne
- 200 Lothrop Street, Department of Surgery, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 200 Lothrop Street, E1040, Thomas E. Starzl Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA-15261, USA
| | - Angus W. Thomson
- 200 Lothrop Street, Department of Surgery, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 200 Lothrop Street, E1040, Thomas E. Starzl Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 200 Lothrop Street, W1540, Thomas E. Starzl Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA-15261, USA
| | - Steven R. Little
- 360B CNBIO, 300 Technology Drive, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA-15219, USA
- 3700 O’Hara Street, #1249, Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 200 Lothrop Street, E1040, Thomas E. Starzl Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA-15261, USA
- 450 Technology Drive, Suite 300, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA-15219, USA
| |
Collapse
|