51
|
Küçüktürkmen B, Öz UC, Toptaş M, Devrim B, Saka OM, Bilgili H, Deveci MS, Ünsal E, Bozkır A. Development of Zoledronic Acid Containing Biomaterials for Enhanced Guided Bone Regeneration. J Pharm Sci 2021; 110:3200-3207. [PMID: 33984339 DOI: 10.1016/j.xphs.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
In recent years, biomaterial-based treatments, also called guided bone regeneration (GBR), which aim to establish a bone regeneration site and prevent the migration of gingival connective tissue and / or peripheral epithelium through the defective area during periodontal surgical procedures have come to the fore. In this report, we have developed a nanoparticle bearing thermosensitive in situ gel formulation of Pluronic F127 and poly(D,L-lactic acid) based membrane to reveal their utilization at GBR by in-vivo applications. In addition, the encouragement of the bone formation in defect area via inhibition of osteoclastic activity is intended by fabrication these biodegradable biomaterials at a lowered Zoledronic Acid (ZA) dose. Both of the developed materials remained stable under specified stability conditions (25 °C, 6 months) and provided the extended release profile of ZA. The in-vivo efficacy of nanoparticle bearing in situ gel formulation, membrane formulation and simultaneous application for guided bone regeneration was investigated in New Zealand female rabbits with a critical size defect of 0.5 × 0.5 cm in the tibia bone for eight weeks. Based on the histopathological findings, lamellar bone and primarily woven bone formations were observed after 8 weeks of post-implantation of both formulations, while fibrosis was detected only in the untreated group. Lamellar bone growth was remarkably achieved just four weeks after the simultaneous application of formulations. Consequently, the simultaneous application of ZA-membrane and ZA-nanoparticles loaded in-situ gel formulations offers enhanced and faster GBR therapy alternatives.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Umut Can Öz
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey.
| | - Mete Toptaş
- Faculty of Dentistry Department of Periodontology, Bezmialem University, İstanbul, Turkey
| | - Burcu Devrim
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Ongun Mehmet Saka
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Hasan Bilgili
- Faculty of Veterinary Medicine Department of Surgery, Ankara University, Ankara, Turkey
| | - Mehmet Salih Deveci
- Health Sciences University Gulhane Medical Faculty Pathology Department, Ankara, Turkey
| | - Elif Ünsal
- Faculty of Dentistry Department of Periodontology, Ankara University, Ankara, Turkey
| | - Asuman Bozkır
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
52
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
53
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
54
|
Ma W, Chu I. Self‐assembly
and
sol‐to‐gel
transition of thermosensitive
methoxy‐polyethylene glycol‐polyalanine
block copolymer hydrogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei‐Chun Ma
- Department of Chemical Engineering National Tsing Hua University Hsinchu Taiwan
| | - I‐Ming Chu
- Department of Chemical Engineering National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
55
|
Esmaeili J, Barati A, Ai J, Nooshabadi VT, Mirzaei Z. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv 2021; 11:10646-10669. [PMID: 35423538 PMCID: PMC8695814 DOI: 10.1039/d1ra00855b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor. Hydrogels demonstrated competency as potent and stimulus-sensitive drug delivery systems for tumor removal, which is attributed to their unique features, including high water content, biocompatibility, and biodegradability. In addition, hydrogels have gained more attention as 3D models for easier and faster screening of cancer and tumors due to their potential in mimicking the extracellular matrix. Hydrogels as a reservoir can be loaded by an effective dosage of chemotherapeutic agents, and then deliver them to targets. In comparison to conventional procedures, hydrogels considerably decreased the total cost, duration of research, and treatment time. This study provides a general look into the potential role of hydrogels as a powerful tool to augment cancer studies for better analysis of cancerous cell functions, cell survival, angiogenesis, metastasis, and drug screening. Moreover, the upstanding application of drug delivery systems related to the hydrogel in order to sustain the release of desired drugs in the tumor cell-site were explored.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences Semnan Iran
| | - Zeynab Mirzaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology Hafez str. 424 Tehran Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| |
Collapse
|
56
|
Quadros M, Momin M, Verma G. Design strategies and evolving role of biomaterial assisted treatment of osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111875. [PMID: 33579498 DOI: 10.1016/j.msec.2021.111875] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most commonly diagnosed form of bone cancer. It is characterized by a high risk of developing lung metastasis as the disease progresses. Standard treatment includes combination of surgical intervention, chemotherapy and radiotherapy. However, the non-specificity of potent chemotherapeutic agents often leads to major side effects. In this review, we discuss the role of various classes of biomaterials, including both organic as well as inorganic in realizing the local and systemic delivery of therapeutic agents like drugs, radioisotopes and even gene silencing agents to treat osteosarcoma. Biomaterial assisted unconventional therapies such as targeted therapy, nanotherapy, magnetic hyperthermia, gene therapy, photothermal and photodynamic therapies are also being explored. A wide variety of biomaterials including lipids, carbon-based materials, polymers, silica, bioactive glass, hydroxyapatite and metals are designed as delivery systems with the desired loading efficiency, release profile, and on-demand delivery. Among others, liposomal carriers have attracted a great deal of attention due to their capability to encapsulate both hydrophobic and hydrophilic drugs. Polymeric systems have high drug loading efficiency and stability and can even be tailored to achieve desired size and physiochemical properties. Carbon-based systems can also be seen as an upcoming class of therapeutics with great potential in treating different types of cancer. Inorganic materials like silica nanoparticles have high drug payload owing to their mesoporous structure. On the other hand, ceramic materials like bioactive glass and hydroxyapatite not only act as excellent delivery vectors but also participate in osteo-regeneration activity. These multifunctional biomaterials are also being investigated for their theranostic abilities to monitor cancer ablation. This review systematically discusses the vast landscape of biomaterials along with their challenges and respective opportunities for osteosarcoma therapy.
Collapse
Affiliation(s)
- Mural Quadros
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India; Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India.
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar 400 094, India.
| |
Collapse
|
57
|
Turuvekere Vittala Murthy N, Agrahari V, Chauhan H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur J Pharm Biopharm 2021; 161:66-79. [PMID: 33588032 DOI: 10.1016/j.ejpb.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
The emergence of multi-drug resistant (MDR) pathogens has become a global threat and a cause of significant morbidity and mortality around the world. Natural products have been used as a promising approach to counter the infectious diseases associated with these pathogens. The application of natural products and their derivatives especially polyphenolic compounds as antibacterial agents is an active area of research, and prior studies have successfully treated a variety of bacterial infections using these polyphenolic compounds. However, delivery of polyphenolic compounds has been challenging due to their physicochemical properties and often poor aqueous solubility. In this regard, nanotechnology-based novel drug delivery systems offer many advantages, including improving bioavailability and the controlled release of polyphenolic compounds. This review summarizes the pharmacological mechanism and use of nano-formulations in developing controlled release delivery systems of naturally occurring polyphenols in infectious diseases.
Collapse
Affiliation(s)
| | - Vibhuti Agrahari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma University, Oklahoma City, OK 73117, United States
| | - Harsh Chauhan
- School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, United States.
| |
Collapse
|
58
|
Golchin A, Farzaneh S, Porjabbar B, Sadegian F, Estaji M, Ranjbarvan P, Kanafimahbob M, Ranjbari J, Salehi-Nik N, Hosseinzadeh S. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Curr Stem Cell Res Ther 2021; 16:209-229. [DOI: 10.2174/1574888x15666200720115519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Currently, combining stem cells (SCs) with biomaterial scaffolds provides a promising strategy
for the future of biomedicine and regenerative medicine (RG). The cells need similar substrates of
the extracellular matrix (ECM) for normal tissue development, which signifies the importance of
three dimensional (3D) scaffolds to determine cell fate. Herein, the importance and positive contributions
of corresponding 3D scaffolds on cell functions, including cell interactions, cell migrations,
and nutrient delivery, are presented. Furthermore, the synthesis techniques which are recruited to
fabricate the 3D scaffolds are discussed, and the related studies of 3D scaffold for different tissues
are also reported in this paper. This review focuses on 3D scaffolds that have been used for tissue
engineering purposes and directing stem cell fate as a means of producing replacements for biomedical
applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Science, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Farzaneh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Porjabbar
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadegian
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Estaji
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Science, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Kanafimahbob
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Osorno LL, Brandley AN, Maldonado DE, Yiantsos A, Mosley RJ, Byrne ME. Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:278. [PMID: 33494400 PMCID: PMC7911285 DOI: 10.3390/nano11020278] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The novel and unique design of self-assembled micro and nanostructures can be tailored and controlled through the deep understanding of the self-assembly behavior of amphiphilic molecules. The most commonly known amphiphilic molecules are surfactants, phospholipids, and block copolymers. These molecules present a dual attraction in aqueous solutions that lead to the formation of structures like micelles, hydrogels, and liposomes. These structures can respond to external stimuli and can be further modified making them ideal for specific, targeted medical needs and localized drug delivery treatments. Biodegradability, biocompatibility, drug protection, drug bioavailability, and improved patient compliance are among the most important benefits of these self-assembled structures for drug delivery purposes. Furthermore, there are numerous FDA-approved biomaterials with self-assembling properties that can help shorten the approval pathway of efficient platforms, allowing them to reach the therapeutic market faster. This review focuses on providing a thorough description of the current use of self-assembled micelles, hydrogels, and vesicles (polymersomes/liposomes) for the extended and controlled release of therapeutics, with relevant medical applications. FDA-approved polymers, as well as clinically and commercially available nanoplatforms, are described throughout the paper.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
60
|
Zhang Y, Jiang C. Postoperative cancer treatments: In-situ delivery system designed on demand. J Control Release 2021; 330:554-564. [PMID: 33359583 DOI: 10.1016/j.jconrel.2020.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
The keys to the prevention of tumor recurrence after operation are the elimination of residual tumor cells and the reversal of microenvironments that induce recurrence. In the formulation of a treatment scheme, building an appropriate drug delivery system is essential. An in-situ drug delivery system (ISDDS) is regarded as an effective treatment route for postoperative use that increases drug delivery efficiency and mitigates side-effects. ISDDS technology has been considerably improved through a clearer understanding of the mechanisms of postoperative recurrence and the development of drug delivery materials. This paper describes the initiation and characteristics of postoperative recurrence mechanisms. Based on this information, design principles for ISDDS are proposed, and a variety of practical drug delivery systems that fulfil specific therapeutic needs are presented. Challenges and future opportunities related to the application of in-situ drug carriers for inhibiting cancer recurrence are also discussed.
Collapse
Affiliation(s)
- Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
61
|
Deka SR, Sharma AK, Kumar P. Synthesis and evaluation of Poly(N-isopropylacrylamide)-based stimuli-responsive biodegradable carrier with enhanced loading capacity and controlled release properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Shi Y, Li D, Ding J, He C, Chen X. Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties. Polym Chem 2021. [DOI: 10.1039/d1py00290b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties were developed and characterized.
Collapse
Affiliation(s)
- Yingge Shi
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
63
|
Alven S, Aderibigbe BA. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int J Mol Sci 2020; 21:E9656. [PMID: 33352826 PMCID: PMC7767230 DOI: 10.3390/ijms21249656] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels exhibit unique features which make them suitable wound dressings such as providing a moist environment for wound healing, exhibiting high moisture content, or creating a barrier against bacterial infections, and are suitable for the management of exuding and granulating wounds. Biopolymers have been utilized for their development due to their non-toxic, biodegradable, and biocompatible properties. Hydrogels have been prepared from biopolymers such as cellulose and chitosan by crosslinking with selected synthetic polymers resulting in improved mechanical, biological, and physicochemical properties. They were useful by accelerating wound re-epithelialization and also mimic skin structure, inducing skin regeneration. Loading antibacterial agents into them prevented bacterial invasion of wounds. This review article is focused on hydrogels formulated from two biopolymers-chitosan and cellulose-for improved wound management.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
64
|
Zhou ZH, Zhang JG, Chen Q, Luo YL, Xu F, Chen YS. Temperature and Photo Dual-Stimuli Responsive Block Copolymer Self-Assembly Micelles for Cellular Controlled Drug Release. Macromol Biosci 2020; 21:e2000291. [PMID: 33326167 DOI: 10.1002/mabi.202000291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Indexed: 11/09/2022]
Abstract
To well adapt to the complicated physiological environments, it is necessary to engineer dual- and/or multi-stimuli responsive drug carriers for more effective drug release. For this, a novel temperature responsive lateral chain photosensitive block copolymer, poly[(N-isopropylacrylamide-co-N,N-dimethylacrylamide) -block-propyleneacylalkyl-4-azobenzoate] (P(NIPAM-co-DMAA)-b-PAzoHPA), is synthesized by atom transfer radical polymerization. The structure is characterized by 1 H nuclear magnetic resonance spectrometry and laser light scattering gel chromatography system. The self-assembly behavior, morphology, and sizes of micelles are investigated by fluorescence spectroscopy, transmission electron microscope, and laser particle analyzer. Dual responsiveness to light and temperature is explored by ultraviolet-visible absorption spectroscopy. The results show that the copolymer micelles take on apparent light and temperature dual responsiveness, and its lower critical solution temperature (LCST) is above 37 °C, and changes with the trans-/cis- isomerization of azobenzene structure under UV irradiation. The blank copolymers are nontoxic, whereas the paclitaxel (PTX)-loaded counterparts possessed comparable anticancer activities to free PTX, with entrapment efficiency of 83.7%. The PTX release from the PTX-loaded micelles can be mediated by changing temperature and/or light stimuli. The developed block copolymers can potentially be used for cancer therapy as drug controlled release carriers.
Collapse
Affiliation(s)
- Zi-Hao Zhou
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jian-Guo Zhang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qing Chen
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
65
|
Gao Q, Hu J, Shi J, Wu W, Debeli DK, Pan P, Shan G. Fast photothermal poly(NIPAM-co-β-cyclodextrin) supramolecular hydrogel with self-healing through host-guest interaction for intelligent light-controlled switches. SOFT MATTER 2020; 16:10558-10566. [PMID: 33079109 DOI: 10.1039/d0sm01501f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A graphene oxide/poly(N-isopropylacrylamide-co-β-cyclodextrin) (GO/poly(NIPAM-co-β-CD)) hydrogel has been synthesized through host-guest interaction between β-cyclodextrin (β-CD) and the isopropyl group of N-isopropylacrylamide (NIPAM). The product exhibits rapid responses to the stimuli of temperature and near-infrared (NIR) irradiation, self-healing properties, and excellent mechanical properties. The host-guest interaction serves as the main physical cross-linker, while a hydrogen bond between the hydroxyl group of β-CD, GO sheets and amide group of NIPAM acts as a secondary cross-linker. The volume phase transition temperature and NIR response rate of such a hydrogel are controlled by its contents of β-CD and GO. The obtained hydrogels showing excellent properties might be applied in remote contactless control devices in advanced smart technologies. Based on the excellent characteristics of the hydrogels, remote light-controlled switches have been designed, and more applications will be explored, such as intelligent light-controlled drivers and soft robots.
Collapse
Affiliation(s)
- Qiaofeng Gao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Cui S, Yu L, Ding J. Strategy of “Block Blends” to Generate Polymeric Thermogels versus That of One-Component Block Copolymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai Guangdong, 519000, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai Guangdong, 519000, China
| |
Collapse
|
67
|
Zhou X, He X, Shi K, Yuan L, Yang Y, Liu Q, Ming Y, Yi C, Qian Z. Injectable Thermosensitive Hydrogel Containing Erlotinib-Loaded Hollow Mesoporous Silica Nanoparticles as a Localized Drug Delivery System for NSCLC Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001442. [PMID: 33304746 PMCID: PMC7709975 DOI: 10.1002/advs.202001442] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/18/2020] [Indexed: 02/05/2023]
Abstract
Erlotinib (ERT), oral administration agents, is one of the most pivotal targeted drugs in the treatment of non-small cell lung cancer (NSCLC); however, its poor solubility, low oral bioavailability, and capricious toxicity limit broader clinical applications. In this paper, a novel injectable matrix is prepared based on hollow mesoporous silica nanoparticles (HMSNs) and thermosensitive poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA, PLEL) hydrogel to encapsulate and localize the sustained release of ERT for improved efficacy against NSCLC. The test-tube-inversion method shows that this ERT-loaded hydrogel composite (ERT@HMSNs/gel) presents as an injectable flowing solution under room temperature and transfers into a physically crosslinked non-flowing gel structure at physiological temperature.The ERT@HMSNs/gel composite shows a much longer intratumoral and peritumoral drug retention by in vivo imaging study. Notably, this injectable drug delivery system (DDS) provides an impressive balance between antitumor efficacy and systemic safety in a mice xenograft model. The novel ERT loaded HMSNs/gel system may be a promising candidate for the in situ treatment of NSCLC. Moreover, this study provides a prospective platform for the design and fabrication of a nano-scaled delivery system for localized anticancer therapies.
Collapse
Affiliation(s)
- Xiaohan Zhou
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Xinlong He
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Kun Shi
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Liping Yuan
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Yun Yang
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Qingya Liu
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Yang Ming
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Cheng Yi
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| | - Zhiyong Qian
- Department of Medical OncologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengdu610041PR China
| |
Collapse
|
68
|
Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:430-454. [PMID: 33086984 DOI: 10.1089/ten.teb.2020.0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite tremendous progresses made in the field of tissue engineering over the past several decades, it remains a significant challenge for the treatment of osteoporosis (OP) due to the lack of appropriate carriers to improve the bioavailability of therapeutic agents and the unavailability of artificial bone matrix with desired properties for the replacement of damaged bone regions. Encouragingly, the development of injectable hydrogels for the treatment of OP has attracted increasing attention in recent years because they can serve either as a reservoir for various therapeutic species or as a perfect filler for bone injuries with irregular shapes. However, the relationship between the complicated pathological mechanism of OP and the properties of diverse polymeric materials lacks elucidation, which clearly hampers the clinical application of injectable hydrogels for the efficient treatment of OP. To clarify this relationship, this article summarized both localized and systematic treatment of OP using an injectable hydrogel-based strategy. Specifically, the pathogenesis of OP and the limitations of current treatment approaches were first analyzed. We further focused on the use of hydrogels loaded with various therapeutic substances following a classification standard of the encapsulated cargoes for OP treatment with an emphasis on the application and precautions of each category. A concluding remark on existing challenges and future directions of this rapidly developing research area was finally made. Impact statement Effective osteoporosis (OP) treatment remains a significant challenge due substantially to the unavailability of appropriate drug carriers and artificial matrices with desired properties to promote bone repair and replace damaged regions. For this purpose, this review focused on the development of diverse injectable hydrogel systems for the delivery of various therapeutic agents, including drugs, stem cells, and nucleic acids, for effective increase in bone mass and favorable osteogenesis. The summarized important guidelines are believed to promote clinical development and translation of hydrogels for the efficient treatment of OP and OP-related bone damages toward improved life quality of millions of patients.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|
69
|
Singh R, Pal D, Chattopadhyay S. Target-Specific Superparamagnetic Hydrogel with Excellent pH Sensitivity and Reversibility: A Promising Platform for Biomedical Applications. ACS OMEGA 2020; 5:21768-21780. [PMID: 32905505 PMCID: PMC7469382 DOI: 10.1021/acsomega.0c02817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Superparamagnetism has been widely used for many biomedical applications, such as early detection of inflammatory cancer and diabetes, magnetic resonance imaging (MRI), hyperthermia, etc., whereas incorporation of superparamagnetism in stimulus-responsive hydrogels has now gained substantial interest and attention for application in these fields. Recently, pH-responsive superparamagnetic hydrogels showing the potential use in disease diagnosis, biosensors, polymeric drug carriers, and implantable devices, have been developed based on the fact that pH is an important environmental factor in the body and some disease states manifest themselves by a change in the pH value. However, improvement in pH sensitivity of magnetic hydrogels is a dire need for their practical applications. In this study, we report the distinctly high pH sensitivity of new synthesized dual-responsive magnetic hydrogel nanocomposites, which was accomplished by copolymerization (free-radical polymerization) of two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA) with an optimum ratio, in the presence of presynthesized superparamagnetic iron oxide nanoparticles (Fe3O4(OH) x ). The monomers contain pH-sensitive functional groups (COO- and SO3 - for AA and VSA, respectively), and they have also been widely used as biomaterials because of the good biocompatibility. The pH sensitivity of the superparamagnetic hydrogel, poly(acrylic acid-co-vinylsulfonic acid), PAAVSA/Fe3O4, was investigated by swelling studies at different pH values from pH 7 to 1.4. Distinct pH reversibility of the system was also demonstrated through swelling/deswelling analysis. Thermal stability, chemical configuration, magnetic response, and structural properties of the system have been explored by suitable characterization techniques. Furthermore, the study reveals a pH-responsive significant change in the overall morphology and packing fraction of iron oxide nanoparticles in PAAVSA/Fe3O4 via energy-dispersive X-ray (EDX) elemental mapping with the field emission scanning electron microscopy (FESEM) study (for freeze-dried PAAVSA/Fe3O4, swelled at different pH values), implying a drastic change in susceptibility and induced saturation magnetization of the system. These important features could be easily utilized for the purpose of diagnosis using magnetic probe and/or impedance analysis techniques.
Collapse
Affiliation(s)
- Rinki Singh
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Dipayan Pal
- Discipline
of Physics, Indian Institute of Technology
Indore, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
- Discipline
of Physics, Indian Institute of Technology
Indore, Indore 453552, India
- Discipline
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
70
|
Feng Z, Lin S, McDonagh A, Yu C. Natural Hydrogels Applied in Photodynamic Therapy. Curr Med Chem 2020; 27:2681-2703. [PMID: 31622196 DOI: 10.2174/0929867326666191016112828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
Abstract
Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.
Collapse
Affiliation(s)
- Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiying Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chen Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
71
|
Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment. J Control Release 2020; 324:532-544. [PMID: 32454120 DOI: 10.1016/j.jconrel.2020.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
|
72
|
Soe HMSH, Luckanagul JA, Pavasant P, Jansook P. Development of in situ gel containing asiaticoside/cyclodextrin complexes. Evaluation in culture human periodontal ligament cells (HPLDCs). Int J Pharm 2020; 586:119589. [PMID: 32634457 DOI: 10.1016/j.ijpharm.2020.119589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Asiaticoside (AS), an active herbal compound isolated from Centella asiatica, has the potential benefit in promoting type I collagen (COL I) synthesis and osteogenic differentiation in human periodontal ligament cells (HPDLCs). However, it has low aqueous solubility which may hamper the bioavailability. Thus, the aim of this study was to develop thermoresponsive in situ gel containing AS/cyclodextrin (CD) complexes. The non-encapsulated formulations consisted of AS/hydroxypropyl β-CD (HPβCD) complexes and encapsulated formulations containing AS loaded sulfobutylether β-CD/chitosan nanoparticles (SBEβCD/CS NPs) were prepared. The appearance, pH and viscosity of all formulations were within the acceptable range. All formulations formed relatively rapid sol-to-gel transition when contacted with simulated salivary fluid at body temperature. Compared to non-encapsulated formulations, in vitro gelation and rheological studies of encapsulated formulations displayed gel formation that remained longer with high mechanical strength. In vitro mucoadhesion and in vitro release studies revealed that nanoencapsulated in situ gel had excellent mucoadhesive property and could release AS in a sustained manner. These formulations exhibited no cytotoxic effects to HPDCLs. The SBEβCD/CS NPs containing low AS content could express the COL I synthesis. Thus, nanoencapsulated platform could serve as a promising carrier to deliver AS for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
73
|
Xu Y, Liu J, Guan S, Cao Y, Chen C, Wang D. A dual pH and redox-responsive Ag/AgO/carboxymethyl chitosan composite hydrogel for controlled dual drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1706-1721. [PMID: 32614709 DOI: 10.1080/09205063.2020.1774118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yanqin Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Shumin Guan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Yuan Cao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Changguo Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
74
|
Macdougall LJ, Anseth K. Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(α-hydroxy acid) Diacrylate Macromers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
75
|
Amirova A, Rodchenko S, Kurlykin M, Tenkovtsev A, Krasnou I, Krumme A, Filippov A. Synthesis and Investigation of Thermo-Induced Gelation of Partially Cross-Linked Poly-2-isopropyl-2-oxazoline in Aqueous Media. Polymers (Basel) 2020; 12:E698. [PMID: 32245164 PMCID: PMC7182854 DOI: 10.3390/polym12030698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Water-soluble, partially cross-linked poly-2-isopropyl-2-oxazoline combining the properties of chemical and physical gels was synthesized by a two-step procedure. Thermally induced sol-gel transition in its aqueous solution was studied by rheology, light scattering, and turbidimetry. It was demonstrated that the synthesized product is bimodal; it consists of linear and cross-linked components. The cross-linked components are responsible for the gelation, while the linear ones abate the viscosity growth. Heating the solution above the phase transition temperature leads to the self-assembly of the particles into a physical gel. The combination of chemical and physical cross-linking was found to be a prospective route for thermosensitive gel development.
Collapse
Affiliation(s)
- Alina Amirova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Illia Krasnou
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Andres Krumme
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, Saint Petersburg 199004, Russia
| |
Collapse
|
76
|
Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030580. [PMID: 32150904 PMCID: PMC7182829 DOI: 10.3390/polym12030580] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-based thermosensitive hydrogels demonstrate great potential in biomedical applications. However, they have inherent drawbacks such as low mechanical strength, limited drug loading capacity and low biodegradability. Formulating PNIPAM with other functional components to form composited hydrogels is an effective strategy to make up for these deficiencies, which can greatly benefit their practical applications. This review seeks to provide a comprehensive observation about the PNIPAM-based composite hydrogels for biomedical applications so as to guide related research. It covers the general principles from the materials choice to the hybridization strategies as well as the performance improvement by focusing on several application areas including drug delivery, tissue engineering and wound dressing. The most effective strategies include incorporation of functional inorganic nanoparticles or self-assembled structures to give composite hydrogels and linking PNIPAM with other polymer blocks of unique properties to produce copolymeric hydrogels, which can improve the properties of the hydrogels by enhancing the mechanical strength, giving higher biocompatibility and biodegradability, introducing multi-stimuli responsibility, enabling higher drug loading capacity as well as controlled release. These aspects will be of great help for promoting the development of PNIPAM-based composite materials for biomedical applications.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Wenbo Fu
- Heze Key Laboratory of Water Pollution Treatment, Heze Vocational College, Heze 274000, China;
| | - Mingyu Yao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Zhen Ding
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Dongxiang Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
- Correspondence: ; Tel./Fax: +86-532-86983455
| |
Collapse
|
77
|
Op 't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:230-248. [PMID: 31928151 DOI: 10.1089/ten.teb.2019.0281] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound dressings are traditionally used to protect a wound and to facilitate healing. Currently, their function is expanding. There is an urgent need for new smart products that not only act as a protective barrier but also actively support the wound healing process. Hydrogel dressings are an example of such innovative products and typically facilitate wound healing by providing a hospitable and moist environment in which cells can thrive, while the wound can still breathe and exudate can be drained. These dressings also tend to be less painful or have a soothing effect and allow for additional drug delivery. In this review, various strategic and molecular design considerations are discussed that are relevant for developing a hydrogel into a wound dressing product. These considerations vary from material choice to ease of use and determine the dressing's final properties, application potential, and benefits for the patient. The focus of this review lies on identifying and explaining key aspects of hydrogel wound dressings and their relevance in the different phases of wound repair. Molecular targets of wound healing are discussed that are relevant when tailoring hydrogels toward specific wound healing scenarios. In addition, the potential of hydrogels is reviewed as medicine advances from a repair-based wound healing approach toward a regenerative-based one. Hydrogels can play a key role in the transition toward personal wound care and facilitating regenerative medicine strategies by acting as a scaffold for (stem) cells and carrier/source of bioactive molecules and/or drugs. Impact statement Improved wound healing will lead to a better quality of life around the globe. It can be expected that this coincides with a reduction in health care spending, as the duration of treatment decreases. To achieve this, new and modern wound care products are desired that both facilitate healing and improve comfort and outcome for the patient. It is proposed that hydrogel wound dressings can play a pivotal role in improving wound care, and to that end, this review aims to summarize the various design considerations that can be made to optimize hydrogels for the purpose of a wound dressing.
Collapse
Affiliation(s)
- Roel C Op 't Veld
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - X Frank Walboomers
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
78
|
Lin HC, Chen CY, Kao CW, Wu ST, Chen CL, Shen CR, Juang JH, Chu IM. In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
79
|
Zhao J, Liang X, Cao H, Tan T. Preparation of injectable hydrogel with near-infrared light response and photo-controlled drug release. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0289-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractPhoto-controlled release hydrogel provides a new strategy for treating tumours. Under the stimulation of external light sources, the ability to release the entrapped drug on time and space on demand has outstanding advantages in improving drug utilisation, optimising treatment, and reducing toxicity and side effects. In this study, a photo-controlled drug delivery system for disulphide cross-linked polyaspartic acid (PASP-SS) hydrogels encapsulating proteinase K (ProK) adsorbed with platinum nanoparticles (PtNPs) was designed. The injectable cysteamine-modified polyaspartic acid (PASP-SH) sol and PtNPs adsorbed by ProK (ProK-PtNPs) as regulatory factors were prepared. Then, ProK-PtNPs and lentinan were dissolved in the sol, and the oxidant was added to the matrix to form the gel in situ quickly after injection. Finally, the degradation of PASP-SS hydrogel by ProK and the controllability of drug release under near-infrared (NIR) light irradiation were elucidated. In vitro degradation of hydrogels and drug release experiments showed that the degradation rate of PASP-SS hydrogel significantly increased and the drug release rate increased significantly under near-infrared radiation. The results of cytotoxicity test showed that PASP-SS, ProK-PtNPs, and lentinan all had more than 90% cell survival rate on NIH3T3, and the lentinan released from the carrier obviously inhibited the proliferation of MCF7. PASP hydrogel has the potential to respond to on-demand light control.
Collapse
|
80
|
Xian C, Yuan Q, Bao Z, Liu G, Wu J. Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
81
|
Sun Y, Fry CM, Shieh A, Parquette JR. Self-assembly of a robust, reduction-sensitive camptothecin nanotube. Chem Commun (Camb) 2020; 56:10337-10340. [DOI: 10.1039/d0cc03528a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report that crosslinking a self-assembled, camptothecin nanotube via disulfide bond formation reversibly stabilizes the nanotubes at low concentrations and inhibits the release of CPT. In a reducing environment, the nanotubes dissociate leading to rapid drug release.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Cathleen M. Fry
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Aileen Shieh
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
82
|
Dhamoon RK, Goyal RK, Popli H, Gupta M. Luliconazole-Loaded Thermosensitive Hydrogel as Aqueous based Nail Lacquer for the Treatment of Onychomycosis. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210303109666190520081552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Onychomycosis is a nail fungal infection which accounts for 50% of the nail
diseases and is characterized by disfigurement and discoloration of nails. The current therapy includes
oral and topical formulations both of which come with their own drawbacks. This has left a room for
developing patient- compliant novel strategies which can facilitate drug delivery deeper into the nails
effectively.
Objective:
The main objective of the present work was to develop and evaluate in situ gelling thermosensitive
hydrogel as an aqueous nail lacquer for the treatment of onychomycosis. The idea was to
enhance permeation of Luliconazole into the nail while simultaneously solubilizing it in a hydrophilic
formulation.
Methods:
The sample of Luliconazole was authenticated using modern analytical techniques. The hydrogel-
nail lacquer was prepared using poloxamer Pluronic F127. The formulation was evaluated in
terms of drying time, viscosity, non- volatile content, pH, transition temperature, etc. In vitro study was
done to check the drug release while determining release kinetics. In vitro transungual permeation study
was done to check drug permeation through porcine hoof membrane. Stability studies were conducted
to ensure formulation stability.
Results:
The results confirmed a stable formulation with enhanced permeation through porcine hoof
membrane.
Conclusion:
The results support the potential use of in situ gelling thermo-sensitive hydrogels as a
novel transungual formulation in the treatment of onychomycosis with a slight improvement in water
resistance.
Collapse
Affiliation(s)
- Rupinder K. Dhamoon
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| |
Collapse
|
83
|
Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019; 11:E486. [PMID: 31546921 PMCID: PMC6781516 DOI: 10.3390/pharmaceutics11090486] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
84
|
Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opin Drug Deliv 2019; 16:1113-1131. [DOI: 10.1080/17425247.2019.1662785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sadia Sikder
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Vrinda Gote
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Meshal Alshamrani
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Jeff Sicotte
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Dhananjay Pal
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| |
Collapse
|
85
|
Koseki Y, Ikuta Y, Cong L, Takano-Kasuya M, Tada H, Watanabe M, Gonda K, Ishida T, Ohuchi N, Tanita K, Taemaitree F, Dao ATN, Onodera T, Oikawa H, Kasai H. Influence of Hydrolysis Susceptibility and Hydrophobicity of SN-38 Nano-Prodrugs on Their Anticancer Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yoshikazu Ikuta
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Liman Cong
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mayumi Takano-Kasuya
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Noriaki Ohuchi
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Keita Tanita
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Farsai Taemaitree
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Anh Thi Ngoc Dao
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tsunenobu Onodera
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hidetoshi Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
86
|
Azarniya A, Tamjid E, Eslahi N, Simchi A. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol 2019; 134:280-289. [DOI: 10.1016/j.ijbiomac.2019.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
|
87
|
Sun W, Zhao X, Fan J, Du J, Peng X. Boron Dipyrromethene Nano-Photosensitizers for Anticancer Phototherapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804927. [PMID: 30785670 DOI: 10.1002/smll.201804927] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/11/2019] [Indexed: 05/11/2023]
Abstract
As traditional phototherapy agents, boron dipyrromethene (BODIPY) photosensitizers have attracted increasing attention due to their high molar extinction coefficients, high phototherapy efficacy, and excellent photostability. After being formed into nanostructures, BODIPY-containing nano-photosensitizers show enhanced water solubility and biocompatibility as well as efficient tumor accumulation compared to BODIPY molecules. Hence, BODIPY nano-photosensitizers demonstrate a promising potential for fighting cancer. This review contains three sections, classifying photodynamic therapy (PDT), photothermal therapy (PTT), and the combination of PDT and PTT based on BODIPY nano-photosensitizers. It summarizes various BODIPY nano-photosensitizers, which are prepared via different approaches including molecular precipitation, supramolecular interactions, and polymer encapsulation. In each section, the design strategies and working principles of these BODIPY nano-photosensitizers are highlighted. In addition, the detailed in vitro and in vivo applications of these recently developed nano-photosensitizers are discussed together with future challenges in this field, highlighting the potential of these promising nanoagents for new tumor phototherapies.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
88
|
Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech 2019; 20:256. [PMID: 31332631 DOI: 10.1208/s12249-019-1470-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Designing scaffolds with optimum properties is an essential factor for tissue engineering success. They can be seeded with isolated cells or loaded with drugs to stimulate the body ability to repair or regenerate the injured tissues by acting as centers for new tissue formation. Recently, scaffolds gained a significant interest as principal candidates for tissue engineering due to overcoming the autograft or allograft's associated problems. The advancement of the tissue engineering field relies mainly on the introduction of new biomaterials for scaffolds' fabrication. This review presents and criticizes different scaffolds' fabrication techniques with particular emphasis on the fibrous, injectable in situ forming, foam, 3D freeze-dried, 3D printed, and 4D scaffolds. This article highlights on scaffolds' composition which would be beneficial for developing scaffolds that could potentially help to meet the demand for both drug delivery and tissue regeneration.
Collapse
|
89
|
Guo JL, Kim YS, Mikos AG. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies. Biomacromolecules 2019; 20:2904-2912. [PMID: 31282658 DOI: 10.1021/acs.biomac.9b00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biomacromolecules used for tissue engineering must possess either inherent biochemical cues for tissue regeneration or be chemically modified to incorporate bioactive, tissue-specific moieties. To this end, many strategies have emerged recently in the field to both utilize novel bioinspired macromolecules for tissue engineering and apply bioconjugation strategies for the functionalization of biomacromolecules with tissue-specific cues and other biological properties of interest. Furthermore, biomacromolecules have been processed into more highly biomimetic and clinically deliverable scaffold and hydrogel systems using 3D printing and the fabrication of in situ forming hydrogels, respectively. To support these advances, tissue engineers have also pursued greater spatiotemporal control over macromolecular bioactivity and the modulation of scaffold and hydrogel properties in response to both physiological and external stimuli. This Perspective thus highlights a few notable advances and techniques in the usage of biomacromolecules for tissue engineering applications, including new bioinspired macromolecules, advanced hydrogel and scaffold fabrication techniques, and spatiotemporal control over biomacromolecule constructs.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Yu Seon Kim
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Antonios G Mikos
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| |
Collapse
|
90
|
Yue Z, Che Y, Jin Z, Wang S, Ma Q, Zhang Q, Tan Y, Meng F. A facile method to fabricate thermo- and pH-sensitive hydrogels with good mechanical performance based on poly(ethylene glycol) methyl ether methacrylate and acrylic acid as a potential drug carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1375-1398. [PMID: 31220422 DOI: 10.1080/09205063.2019.1634859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A thermo- and pH-sensitive hydrogel was prepared by a facile free aqueous radical copolymerization of PEGMA and AAc without any crosslinkers for controlled drug delivery. The successful fabrication of hydrogels was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA) measurements. The morphological, mechanical and swelling properties of the obtained hydrogels were studied systematically. The results showed that the morphological and mechanical behaviors of the resultant hydrogels were strongly affected by the content of AAc. Moreover, the obtained hydrogels showed an excellent thermo-, pH- and salinity sensitivities. Release profiles of 5-Fu were studied at different pH (gastric pH 1.2 and intestinal pH 7.4) and temperatures (25 °C and 37 °C). The results showed that the release is very low at pH 1.2/37 °C and high at pH 7.4/25 °C. The cytotoxicity of hydrogels to cells was determined by an MTT assay. The result demonstrated that the blank hydrogels had negligible toxicity to cells, whereas the 5-Fu-loaded hydrogels remained high in cytotoxicity for LO2 and HepG-2 cells. Results of the present investigation exemplify the potential of this novel thermo- and pH-sensitive hydrogel for the controlled and targeted delivery of the anti cancer drug 5-Fu.
Collapse
Affiliation(s)
- Zhen Yue
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - YuJu Che
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Zhiwen Jin
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Sisi Wang
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Qinglin Ma
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Qian Zhang
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| | - Yebang Tan
- b School of Chemistry and Chemical Engineering, Shandong University , Jinan , PR China
| | - Fanjun Meng
- a Marine College, Shandong University (Weihai) , Weihai , PR China
| |
Collapse
|
91
|
Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
92
|
Acid gelation of soluble laccase-crosslinked corn bran arabinoxylan and possible gel formation mechanism. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Zhang M, Zhuang B, Du G, Han G, Jin Y. Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J Pharm Pharmacol 2019; 71:1044-1054. [PMID: 30887519 DOI: 10.1111/jphp.13088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Injured vaginal infection is detrimental to women. A curcumin hydrogel was studied for local treatment of injured vaginal infection. METHODS Curcumin solid dispersions (CSDs) were prepared from polyvinyl pyrrolidone and characterized by differential scanning calorimetry and an X-ray diffraction method. An in situ hydrogel CSD hydrogel (CSDG) was prepared with CSD/poloxamers and characterized. In vitro curcumin release and antibacterial effects of CSDs, CSDGs and curcumin were compared. The therapeutic effect of the CSDGs and Lincomycin/Lidocaine Gel was explored after intravaginal administration on the injured rat vaginal infection models. KEY FINDINGS Curcumin was amorphous in CSDs where curcumin rapidly released in simulated vaginal fluids. However, CSDGs showed sustained release. CSDGs quickly formed gels in the vagina. CSDGs showed high in vivo anti-Escherichia coli or Staphylococcus aureus effect though weak in vitro effect. The recovery of vaginal microenvironment and improvement of intravaginal Lactobacillus growth may be the major reason. Furthermore, CSDGs remarkably improved vaginal wound healing by alleviating inflammation and restoring vaginal epidermal tissues compared with the Lincomycin/Lidocaine Gel. CONCLUSION CSDGs are a promising topical formulation for local treatment of vaginal bacterial infection and improvement of vaginal wound healing.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Zhuang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Guang Han
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yiguang Jin
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
94
|
Temperature-responsive biodegradable injectable polymer systems with conveniently controllable properties. Polym J 2019. [DOI: 10.1038/s41428-019-0217-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
95
|
Lin X, Ma Q, Su J, Wang C, Kankala RK, Zeng M, Lin H, Zhou SF. Dual-Responsive Alginate Hydrogels for Controlled Release of Therapeutics. Molecules 2019; 24:molecules24112089. [PMID: 31159343 PMCID: PMC6600676 DOI: 10.3390/molecules24112089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, with the drug oxytetracycline (OTC) released, cell cytotoxicity and antimicrobial studies of dual-responsive sodium alginate and N-Isopropylacrylamide hydrogels (SA/pNIPAAm) with enclosed OTC were investigated. The molecular OTC release was explored with different acid-base conditions and temperature conditions. In order to characterize cell cytotoxicity and antimicrobial efficacy, time-dependent OTC release analysis of different acid-base conditions was performed in SA/pNIPAAm hydrogels. OTC@SA/pNIPAAm hydrogels showed excellent time-dependent antimicrobial efficacy, in which the IC50 values were 50.11 μg mL−1, 34.27 μg mL−1, and 22.39 μg mL−1 among three consecutive days, respectively. Meanwhile, the human cells showed excellent viability at the IC50 dosage of OTC@SA/pNIPAAm (50.11 μg mL−1). OTC@SA/pNIPAAm performed in this study indicated that SA/pNIPAAm may serve as drug carriers for sustainable release at a specific concentration and for being employed as substrates for decreasing drug toxicity. Besides, pH-responsive and thermos-responsive SA/pNIPAAm may lead to the better selectivity of drug release in the ideal location or site. Finally, the results demonstrate that the designed, dual-responsive, biocompatible OTC@SA/pNIPAAm hydrogels showed excellent antimicrobial efficacy and may potentially be found to have enormous applicability in the field of pharmaceutics.
Collapse
Affiliation(s)
- Xuexia Lin
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qiaoqiao Ma
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jianlong Su
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Cui Wang
- Biology department, College of Art and Science, Georgia State University, Atlanta, GA 30303, USA.
| | - Ranjith Kumar Kankala
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mingrong Zeng
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Honggui Lin
- School of Marine Engineering, Jimei University, Xiamen 361021, China.
| | - Shu-Feng Zhou
- Department of Chemical Engineering& Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
96
|
Bao W, Zhang X, Wu H, Chen R, Guo S. Synergistic Effect of Ultrasound and Polyethylene Glycol on the Mechanism of the Controlled Drug Release from Polylactide Matrices. Polymers (Basel) 2019; 11:E880. [PMID: 31091765 PMCID: PMC6571575 DOI: 10.3390/polym11050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/08/2023] Open
Abstract
In this paper, the synergistic effect of ultrasound and polyethylene glycol (PEG) on the controlled release of a water soluble drug from polylactide (PLA) matrices was studied. When ultrasound was used following the hot melt extrusion (HME) of the PLA/model drug release system, the release of the model drug (Methylene Blue (MB)) from the PLA when immersed in phosphate buffered saline (PBS) was affected by the variation of the parameters of ultrasound. It was found that no more than 2% PLA dissolved during the in-vitro release study, and the release of the MB from the PLA was diffusion controlled and fit well with the Higuchi diffusion model. Polyethylene glycol (PEG), which has high hydrophilicity and rapid dissolution speed, was blended with the PLA during the melt extrusion to enhance the release of the MB. The analysis of the structure and properties of the in-vitro release tablets of PLA/PEG/MB indicated that the ultrasound could improve the dispersion of MB in the PLA/PEG blends and it could also change the structure and properties of the PLA/PEG blends. Due to the dissolution of the PEG in PBS, the release of the MB from the PLA/PEG drug carrier was a combination of diffusion and erosion controlled release. Thus a new mechanism combining of diffusion and erosion models and modified kinetics model was proposed to explain the release behavior.
Collapse
Affiliation(s)
- Wenting Bao
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
- Aviation Fuel & Chemical Airworthiness Certification Center of CAAC, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610207, China.
| | - Xianlong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
97
|
Cui S, Yu L, Ding J. Thermogelling of Amphiphilic Block Copolymers in Water: ABA Type versus AB or BAB Type. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
98
|
Tang L, Gong L, Zhou G, Liu L, Zhang D, Tang J, Zheng J. Design of low temperature-responsive hydrogels used as a temperature indicator. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
99
|
Patra P, Seesala VS, Soni SR, Roy RK, Dhara S, Ghosh A, Patra N, Pal S. Biopolymeric pH-responsive fluorescent gel for in-vitro and in-vivo colon specific delivery of metronidazole and ciprofloxacin. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Lin D, Lei L, Shi S, Li X. Stimulus‐Responsive Hydrogel for Ophthalmic Drug Delivery. Macromol Biosci 2019; 19:e1900001. [PMID: 31026123 DOI: 10.1002/mabi.201900001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Deqing Lin
- Institute of Biomedical EngineeringSchool of Ophthalmology and Optometry and Eye HospitalWenzhou Medical University 270 Xueyuan Road Wenzhou 325027 P. R. China
| | - Lei Lei
- Institute of Biomedical EngineeringSchool of Ophthalmology and Optometry and Eye HospitalWenzhou Medical University 270 Xueyuan Road Wenzhou 325027 P. R. China
| | - Shuai Shi
- Institute of Biomedical EngineeringSchool of Ophthalmology and Optometry and Eye HospitalWenzhou Medical University 270 Xueyuan Road Wenzhou 325027 P. R. China
| | - Xingyi Li
- Institute of Biomedical EngineeringSchool of Ophthalmology and Optometry and Eye HospitalWenzhou Medical University 270 Xueyuan Road Wenzhou 325027 P. R. China
| |
Collapse
|