51
|
Guo Y, Jiang K, Shen Z, Zheng G, Fan L, Zhao R, Shao J. A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43508-43519. [PMID: 29171263 DOI: 10.1021/acsami.7b14755] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted great attention. However, applications of some photosensitizers remain an obstacle by their poor photostability. To enhance the treatment efficiency of photosensitizers and tumor theranostic effect, herein, we reported a novel carrier-free, theranostic nanodrug by self-assembly of small molecule dual anticancer drugs and photosensitizer for tumor targeting. The developed carrier-free small molecule nanodrug delivery system was formed by hydrophobic ursolic acid, paclitaxel, and amphipathic indocyanine green (ICG) associated with electrostatic, π-π stacking, and hydrophobic interactions exhibiting water stability. The self-assembling of ICG on the dual anticancer nanodrug significantly enhanced water solubility of hydrophobic anticancer drugs and ICG photostability contributing to long-term near-infrared (NIR) fluorescence imaging and effective chemophototherapy of tumor. The in vivo NIR fluorescence imaging showed that the theranostic nanodrug could be targeted to the tumor site via a potential enhanced permeability and retention effect proving the efficient accumulation of nanoparticles in the tumor site. Dramatically, chemophototherapy of tumor-bearing mice in vivo almost completely suppressed tumor growth and no tumor recurrence was observed. Encouraged by its carrier-free, prominent imaging and effective therapy, the small molecule nanodrug via self-assembly will provide a promising strategy for synergistic cancer theranostics.
Collapse
Affiliation(s)
- Yan Guo
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Kai Jiang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Zhichun Shen
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Guirong Zheng
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Lulu Fan
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Ruirui Zhao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| |
Collapse
|
52
|
Sokolova V, Shi Z, Huang S, Du Y, Kopp M, Frede A, Knuschke T, Buer J, Yang D, Wu J, Westendorf AM, Epple M. Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta Biomater 2017; 64:401-410. [PMID: 28963016 DOI: 10.1016/j.actbio.2017.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action was discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. A modular system where the immunoactive toll-like-receptor ligand 3 (TLR-3) poly(I:C) was incorporated into calcium phosphate nanoparticles was developed. The nanoparticles had a hydrodynamic diameter of 275nm and a zeta potential of +20mV, measured by dynamic light scattering. The diameter of the solid core was 120nm by scanning electron microscopy. In vitro, the nanoparticle uptake was investigated after 1 and 24h of incubation of THP-1 cells (macrophages) with nanoparticles by fluorescence microscopy. After intravenous injection into BALB/c and C57BL/6J mice, respectively, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. Pronounced immunostimulatory effects of the nanoparticles were found in vitro with primary liver cells, i.e. Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6J mice. Thus, they represent a suitable alternative to hydrodynamic injection treatments for future vaccination concepts. STATEMENT OF SIGNIFICANCE The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action has been discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. We have developed a modular system where poly(I:C) was incorporated into calcium phosphate nanoparticles. The uptake into relevant liver cells was studied both in vitro and in vivo. After intravenous injection into mice, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. The corresponding strong immune reaction proves their high potential to turn up the immune system, e.g. against viral infections, without adverse side reactions.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Zou Shi
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Annika Frede
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Torben Knuschke
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jan Buer
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Astrid Maria Westendorf
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
Collapse
|
53
|
Mazrad ZAI, Choi CA, Kwon YM, In I, Lee KD, Park SY. Design of Surface-Coatable NIR-Responsive Fluorescent Nanoparticles with PEI Passivation for Bacterial Detection and Killing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33317-33326. [PMID: 28876888 DOI: 10.1021/acsami.7b10688] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability to quickly detect and kill bacteria is crucial in the realm of antibiotic resistance. In this study, we synthesized a detection probe consisting of polyethylenimine (PEI)-passivated polydopamine-based fluorescent carbon (FDA:PEI) nanoparticles, generating a cationic adhesive material for bacterial detection that is surface-coatable, photothermal, and antibacterial. The cationic FDA:PEI nanoparticles effectively bound to the anionic bacterial cell wall, resulting in a dramatic quenching effect visible in fluorescence spectra and confocal images. In this fluorescence on/off system, FDA:PEI nanoparticles showed similar bacterial detection abilities between aqueous- and solid-phase assays. Scanning electron microscopy clearly showed the attachment of FDA:PEI nanoparticles to the surface of bacteria, both in solution and as a coating on the surface of a polypropylene film. In addition to detection, this versatile material was found to have an antibacterial potential, via near-infrared irradiation to induce a heat release, killing bacteria by thermolysis. Thus, by exploiting the cationic and catechol moieties on the surface of polydopamine carbon dots, we developed a novel bacterial-detection platform that can be used in a broad range of conditions.
Collapse
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of IT Convergence, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| | - Cheong A Choi
- Department of Chemical and Biological Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| | - Yong Min Kwon
- Department of Chemical and Biological Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| | - Insik In
- Department of IT Convergence, Korea National University of Transportation , Chungju 380-702, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine , Busan 49267, South Korea
| | - Sung Young Park
- Department of IT Convergence, Korea National University of Transportation , Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| |
Collapse
|
54
|
Babu A, Munshi A, Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm 2017; 43:1391-1401. [PMID: 28523942 PMCID: PMC6101010 DOI: 10.1080/03639045.2017.1313861] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) is emerging as a powerful approach in cancer treatment. siRNA is an important RNAi tool that can be designed to specifically silence the expression of genes involved in drug resistance and chemotherapeutic inactivity. Combining siRNA and other therapeutic agents can overcome the multidrug resistance (MDR) phenomenon by simultaneously silencing genes and enhancing chemotherapeutic activity. Moreover, the therapeutic efficiency of anticancer drugs can be significantly improved by additive or synergistic effects induced by siRNA and combined therapies. Co-delivery of these diverse anticancer agents, however, requires specially designed nanocarriers. This review highlights the recent trends in siRNA/anticancer drug co-delivery systems under the major categories of liposomes/lipid, polymeric and inorganic nanoplatforms. The objective is to discuss the strategies for nanocarrier-based co-delivery systems using siRNA/anticancer drug combinations, emphasizing various siRNA targets that help overcome MDR and enhance therapeutic efficiency.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Department of Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Department of Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Department of Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; USA
| |
Collapse
|
55
|
Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc Natl Acad Sci U S A 2017; 114:E6490-E6497. [PMID: 28739942 DOI: 10.1073/pnas.1621240114] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by siRNA's comprehensively poor pharmacokinetic properties, which necessitate molecule modifications and complex delivery strategies. We sought an alternative approach to commonly used nanoparticle carriers by leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized siRNA conjugated to a diacyl lipid moiety (siRNA-L2), which rapidly binds albumin in situ. siRNA-L2, in comparison with unmodified siRNA, exhibited a 5.7-fold increase in circulation half-life, an 8.6-fold increase in bioavailability, and reduced renal accumulation. Benchmarked against leading commercial siRNA nanocarrier in vivo jetPEI, siRNA-L2 achieved 19-fold greater tumor accumulation and 46-fold increase in per-tumor-cell uptake in a mouse orthotopic model of human triple-negative breast cancer. siRNA-L2 penetrated tumor tissue rapidly and homogeneously; 30 min after i.v. injection, siRNA-L2 achieved uptake in 99% of tumor cells, compared with 60% for jetPEI. Remarkably, siRNA-L2 achieved a tumor:liver accumulation ratio >40:1 vs. <3:1 for jetPEI. The improved pharmacokinetic properties of siRNA-L2 facilitated significant tumor gene silencing for 7 d after two i.v. doses. Proof-of-concept was extended to a patient-derived xenograft model, in which jetPEI tumor accumulation was reduced fourfold relative to the same formulation in the orthotopic model. The siRNA-L2 tumor accumulation diminished only twofold, suggesting that the superior tumor distribution of the conjugate over nanoparticles will be accentuated in clinical situations. These data reveal the immense promise of in situ albumin targeting for development of translational, carrier-free RNAi-based cancer therapies.
Collapse
|
56
|
The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discov Today 2017; 22:1084-1091. [DOI: 10.1016/j.drudis.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
57
|
Kopp M, Rotan O, Papadopoulos C, Schulze N, Meyer H, Epple M. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PLoS One 2017; 12:e0178260. [PMID: 28586345 PMCID: PMC5460861 DOI: 10.1371/journal.pone.0178260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Collapse
Affiliation(s)
- Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | | | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
58
|
Nam HY, Min KH, Kim DE, Choi JR, Lee HJ, Lee SC. Mussel-inspired poly(L-DOPA)-templated mineralization for calcium phosphate-assembled intracellular nanocarriers. Colloids Surf B Biointerfaces 2017; 157:215-222. [PMID: 28599182 DOI: 10.1016/j.colsurfb.2017.05.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/02/2023]
Abstract
We developed a calcium phosphate (CaP)-assembled polymer nanocarrier for intracellular doxorubicin (DOX) delivery based on a mussel-inspired mineralization approach. A DOX-loaded core-shell polymer nanoparticle (DOX-NP) consisting of a poly(3,4-dihydroxy-l-phenylalanine) (PDOPA) core and a poly (ethylene glycol) (PEG) shell was utilized as a nanotemplate for CaP mineralization. The mean hydrodynamic diameter of the DOX-loaded CaP-mineralized polymer nanoparticles (DOX-CaP-NPs) was 154.3nm. Energy-dispersive X-ray spectroscopy confirmed that the DOX-CaP-NPs contained substantial amounts of Ca and P, elements found only in the CaP mineral. The loading efficiency and content of DOX, estimated by fluorescence spectroscopy, were 54.0% and 10.8wt%, respectively. The CaP deposited in the PDOPA core domain enabled the DOX-CaP-NPs to maintain a robust structure and effectively inhibit DOX release at extracellular pH, whereas at endosomal pH, the CaP core dissolved to trigger a facilitated DOX release. The DOX-CaP-NPs may serve as robust nanocarriers with a high delivery efficacy for cancer chemotherapy.
Collapse
Affiliation(s)
- Hye Young Nam
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Kyung Hyun Min
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Da Eun Kim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jeong Ryul Choi
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
59
|
Zhou Z, Li H, Wang K, Guo Q, Li C, Jiang H, Hu Y, Oupicky D, Sun M. Bioreducible Cross-Linked Hyaluronic Acid/Calcium Phosphate Hybrid Nanoparticles for Specific Delivery of siRNA in Melanoma Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14576-14589. [PMID: 28393529 DOI: 10.1021/acsami.6b15347] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study introduces a novel cross-linking strategy capable of successfully stabilizing CaP nanoparticles and stimuli-responsive small interfering RNA (siRNA) release. We synthesized a polysaccharide derivative thiolated hyaluronic acid (HA-SH), which was slightly modified but multifunctional and developed a smart redox-responsive delivery system. siRNA was efficaciously condensed by calcium phosphate (CaP) via electrostatic interaction to form a positively charged inner "core". Disulfide cross-linked HA (HA-ss-HA) was formed and played a role as an anionic outer "shell" to stabilize the CaP core. We demonstrated that the nanoparticles were stable both in the storage milieu and systemic circulation, thus overcoming the most serious disadvantage of CaP nanoparticles for gene delivery. Meanwhile, this smart system could selectively release siRNA into the cytosol by both a GSH-triggered disassembly and successful endosomal escape. Therefore, the hybrid delivery system achieved an 80% gene-silencing efficiency in vitro for both luciferase and Bcl2. Silencing of Bcl2 resulted in dramatic apoptosis of B16F10 cells. Besides, equipped with the tumor-targeting component HA, the nanoparticles significantly suppressed the growth of B16F10 xenograft tumor in mice. The anionic HA-ss-HA-equipped nanoparticles showed no apparent toxicity in vitro or in vivo, as well as showed a high transfection efficiency. Taken together, this redox-responsive, tumor-targeting smart anionic nanoparticle holds great promise for exploitation in functionalized siRNA delivery and tumor therapy.
Collapse
Affiliation(s)
- Zhanwei Zhou
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Huipeng Li
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University , Nanjing 210093, China
| | - Qian Guo
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Chenzi Li
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University , Nanjing 210093, China
| | - David Oupicky
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Minjie Sun
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|
60
|
Xie F, Zhang L, Peng J, Li C, Pu J, Xu Y, Du Z. Hepatic Carcinoma Selective Nucleic Acid Nanovector Assembled by Endogenous Molecules Based on Modular Strategy. Mol Pharm 2017; 14:1841-1851. [DOI: 10.1021/acs.molpharmaceut.6b00709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fang Xie
- School
of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Luchen Zhang
- School
of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinliang Peng
- School
of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chong Li
- School
of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Pu
- School
of Medicine, Shanghai Jiao Tong University, 280 Chongqing South Road, Shanghai 200127, China
| | - Yuhong Xu
- School
of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixiu Du
- School
of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
61
|
Rotan O, Severin KN, Pöpsel S, Peetsch A, Merdanovic M, Ehrmann M, Epple M. Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:381-393. [PMID: 28326227 PMCID: PMC5331334 DOI: 10.3762/bjnano.8.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The efficient intracellular delivery of (bio)molecules into living cells remains a challenge in biomedicine. Many biomolecules and synthetic drugs are not able to cross the cell membrane, which is a problem if an intracellular mode of action is desired, for example, with a nuclear receptor. Calcium phosphate nanoparticles can serve as carriers for small and large biomolecules as well as for synthetic compounds. The nanoparticles were prepared and colloidally stabilized with either polyethyleneimine (PEI; cationic nanoparticles) or carboxymethyl cellulose (CMC; anionic nanoparticles) and loaded with defined amounts of the fluorescently labelled proteins HTRA1, HTRA2, and BSA. The nanoparticles were purified by ultracentrifugation and characterized by dynamic light scattering and scanning electron microscopy. Various cell types (HeLa, MG-63, THP-1, and hMSC) were incubated with fluorescently labelled proteins alone or with protein-loaded cationic and anionic nanoparticles. The cellular uptake was followed by light and fluorescence microscopy, confocal laser scanning microscopy (CLSM), and flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was different for dissolved HTRA1 and HTRA1-loaded nanoparticles.
Collapse
Affiliation(s)
- Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Katharina N Severin
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Simon Pöpsel
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Alexander Peetsch
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Michael Ehrmann
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| |
Collapse
|
62
|
Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT. Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 2017; 1:59-79. [PMID: 29071179 PMCID: PMC5646725 DOI: 10.7150/ntno.17896] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Kuo-Ching Mei
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| |
Collapse
|
63
|
Mazrad ZAI, Choi CA, Kim SH, Lee G, Lee S, In I, Lee KD, Park SY. Target-specific induced hyaluronic acid decorated silica fluorescent nanoparticles@polyaniline for bio-imaging guided near-infrared photothermal therapy. J Mater Chem B 2017; 5:7099-7108. [DOI: 10.1039/c7tb01606a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heating properties of FNPs(Si/HA)@PANI nanoparticles could lead to new options for photothermal therapy guided by tumor targeted bioimaging to track treatment progress.
Collapse
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Cheong A Choi
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Sung Han Kim
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Sangkug Lee
- IT Convergence Material R&D Group
- Korea Institute of Industrial Technology
- Cheonan-si
- Republic of Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Kang-Dae Lee
- Department of Otolaryngology–Head and Neck Surgery
- Kosin University College of Medicine
- Busan 49267
- Republic of Korea
| | - Sung Young Park
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Chemical and Biological Engineering
| |
Collapse
|
64
|
Lee HJ, Kim DE, Park DJ, Choi GH, Yang DN, Heo JS, Lee SC. pH-Responsive mineralized nanoparticles as stable nanocarriers for intracellular nitric oxide delivery. Colloids Surf B Biointerfaces 2016; 146:1-8. [DOI: 10.1016/j.colsurfb.2016.05.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 01/05/2023]
|
65
|
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. NANOSCALE 2016; 8:16819-16840. [PMID: 27704068 DOI: 10.1039/c5nr09078d] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
After more than four billion years of evolution, nature has created a large number of fascinating living organisms, which show numerous peculiar structures and wonderful properties. Nature can provide sources of plentiful inspiration for scientists to create various materials and devices with special functions and uses. Since Messersmith proposed the fabrication of multifunctional coatings through mussel-inspired chemistry, this field has attracted considerable attention for its promising and exiciting applications. Polydopamine (PDA), an emerging soft matter, has been demonstrated to be a crucial component in mussel-inspired chemistry. In this review, the recent developments of PDA for mussel-inspired surface modification are summarized and discussed. The biomedical applications of PDA-based materials are also highlighted. We believe that this review can provide important and timely information regarding mussel-inspired chemistry and will be of great interest for scientists in the chemistry, materials, biology, medicine and interdisciplinary fields.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
66
|
Ju Y, Dai Q, Cui J, Dai Y, Suma T, Richardson JJ, Caruso F. Improving Targeting of Metal-Phenolic Capsules by the Presence of Protein Coronas. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22914-22922. [PMID: 27560314 DOI: 10.1021/acsami.6b07613] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Particles adsorb proteins when they enter a physiological environment; this results in a surface coating termed a "protein corona". A protein corona can affect both the properties and functionalities of engineered particles. Here, we prepared hyaluronic acid (HA)-based capsules through the assembly of metal-phenolic networks (MPNs) and engineered their targeting ability in the absence and presence of protein coronas by varying the HA molecular weight. The targeting ability of the capsules was HA molecular weight dependent, and a high HA molecular weight (>50 kDa) was required for efficient targeting. The specific interactions between high molecular weight HA capsules and receptor-expressing cancer cells were negligibly affected by the presence of protein coronas, whereas nonspecific capsule-cell interactions were significantly reduced in the presence of a protein corona derived from human serum. Consequently, the targeting specificity of HA-based MPN capsules was enhanced due to the formation of a protein corona. This study highlights the significant and complex roles of a protein corona in biointeractions and demonstrates how protein coronas can be used to improve the targeting specificity of engineered particles.
Collapse
Affiliation(s)
- Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiong Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yunlu Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
67
|
Choi YS, Cho DY, Lee HK, Cho JK, Lee DH, Bae YH, Lee JK, Kang HC. Enhanced cell survival of pH-sensitive bioenergetic nucleotide nanoparticles in energy/oxygen-depleted cells and their intranasal delivery for reduced brain infarction. Acta Biomater 2016; 41:147-60. [PMID: 27245429 DOI: 10.1016/j.actbio.2016.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/07/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Nucleotides (NTs) (e.g., adenosine triphosphate) are very important molecules in the body. They generate bioenergy through phosphate group release, are involved in various biological processes, and are used to treat various diseases that involve energy depletion. However, their highly anionic characteristics might limit delivery of exogenous NTs into the cell, which is required to realize their functions as bioenergy sources. In this study, ionic complexation between Ca(2+) and NT phosphates was used to form Ca(2+)/NT nanocomplexes (NCs), and branched polyethyleneimine (bPEI1.8kDa) was coated on the surface of Ca(2+)/NT NCs via a simple electrostatic coating. The resultant Ca(2+)/NT/bPEI1.8kDa NCs were approximately 10-25nm in size and had positive zeta-potentials, and their NT loading efficiency and content were approximately 60-75% and 10-20 wt%, respectively. Faster NT release from Ca(2+)/NT/bPEI1.8kDa NCs was induced by lower pH and by NTs with fewer phosphates. Reductions in cell viability in response to low temperature, serum deprivation, or hypoxia were recovered by NT delivery in Ca(2+)/NT/bPEI1.8kDa NCs. In a middle cerebral artery occlusion (MCAO)-induced post-ischemic rat model, the BBB (blood brain barrier)-detoured intranasal administration of Ca(2+)/ATP/bPEI1.8kDa NCs induced a better reduction in infarct volume and neurological deficits than did free ATP. In conclusion, intracellular NT delivery using Ca(2+)/NT/bPEI1.8kDa NCs might potentially enhance cell survival and reduce infarction in energy-/oxygen-depleted environments. STATEMENT OF SIGNIFICANCE This study describes bioenergetic nucleotide delivery systems and their preparation, physicochemical characterization, and biological characterization both in vitro and in vivo. Nucleotides, such as adenosine triphosphate (ATP) and guanosine triphosphate (GTP), are very important signaling and energy molecules in the body. However, research on these nucleotides using nanosized carriers has been very limited. Liposomal ATP delivery has been reported in heart and renal ischemia studies. Notably, although this delivery system has potential in energy-depleted environments (e.g., low temperature, serum deprivation, and hypoxia) and in brain ischemia, studies are lacking regarding these systems. Thus, we designed polycation-shielded Ca(2+)/nucleotide nanocomplexes using simple mixing, which produced 10- to 25-nm-sized particles. The nanocomplexes released nucleotides in response to acidic pH, and they enhanced cell survival rates under conditions of low temperature, serum deprivation, or hypoxia. Importantly, the nanocomplexes reduced cerebral infarct volumes in a post-ischemic rat model. Thus, our study demonstrates that a novel nucleotide nanocomplex could have potential for preventing or treating diseases that involve energy depletion, such as cardiac, cerebral, and retinal ischemia, and liver failure.
Collapse
Affiliation(s)
- Yeon Su Choi
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Dong Youl Cho
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hye-Kyung Lee
- Department of Anatomy and Inha Research Institute of Medical Sciences, Inha University School of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Jung-Kyo Cho
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Don Haeng Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon 22332, Republic of Korea; Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 21988, Republic of Korea
| | - You Han Bae
- Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 21988, Republic of Korea; Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Rm 2972, Salt Lake City, UT 84112, USA
| | - Ja-Kyeong Lee
- Department of Anatomy and Inha Research Institute of Medical Sciences, Inha University School of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Han Chang Kang
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
68
|
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016; 104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery.
Collapse
|
69
|
Chen L, Liu X, Wong KH. Novel nanoparticle materials for drug/food delivery-polysaccharides. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
70
|
Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine (Lond) 2016; 11:2341-57. [PMID: 27526874 DOI: 10.2217/nnm-2016-0117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development.
Collapse
Affiliation(s)
- Ana Cadete
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
71
|
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res 2016; 111:619-641. [PMID: 27436147 DOI: 10.1016/j.phrs.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Collapse
Affiliation(s)
- Riccardo Vago
- Università Vita-Salute San Raffaele, Milano, I-20132, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Collico
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Zuppone
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Davide Prosperi
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
72
|
Qiu C, Wei W, Sun J, Zhang HT, Ding JS, Wang JC, Zhang Q. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. NANOSCALE 2016; 8:13033-13044. [PMID: 27314204 DOI: 10.1039/c6nr04034a] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform spherical core-shell morphology with an approximate size of 170 nm and zeta potential of -12 mV. The coating of hydrophilic HA improved the physical stability of nanoparticles over one month due to the strong interactions between phosphonate and calcium. In vitro experiments demonstrated that the negatively charged CaP-AHA/siRNA NPs could effectively deliver EGFR-targeted siRNA into A549 cells through CD44-mediated endocytosis and significantly down-regulate the level of EGFR expression. Also, the internalized CaP-AHA/siRNA NPs exhibited a pH-responsive release of siRNA, indicating that the acidification of lysosomes probably facilitated the disassembling of nanoparticles and the resultant ions sharply increased the inner osmotic pressure and thus expedited the release of siRNA from late lysosomes into the cytoplasm. Furthermore, in vivo tumor therapy demonstrated that high accumulation of CaP-AHA/siEGFR NPs in tumor led to a significant tumor growth inhibition with a specific EGFR gene silencing effect after intravenous administration in nude mice xenografted with A549 tumor, along with a negligible body weight loss. These results suggested that the CaP-AHA/siRNA NPs could be an effective and safe systemic siRNA delivery system for a RNAi-based tumor targeted therapy strategy.
Collapse
Affiliation(s)
- Chong Qiu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 xueyuan Road, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
73
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
74
|
Pan J, Yuan Y, Wang H, Liu F, Xiong X, Chen H, Yuan L. Efficient Transfection by Using PDMAEMA-Modified SiNWAs as a Platform for Ca(2+)-Dependent Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15138-15144. [PMID: 27249181 DOI: 10.1021/acsami.6b04689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The major bottleneck for gene delivery lies in the lack of safe and efficient gene vectors and delivery systems. In order to develop a much safer and efficient transfection system, a novel strategy of combining traditional Ca(2+)-dependent transfection with cationic polymer poly(N,N-dimethylamino)ethyl methacrylate (PDMAEMA) modified silicon nanowire arrays (SiNWAs) was proposed in this work. Detailed studies were carried out on the effects of the PDMAEMA polymerization time, the Ca(2+) concentration, and the incubation time of Ca(2+)@DNA complex with PDMAEMA-modified SiNWAs (SN-PDM) on the gene transfection in the cells. The results demonstrated that the transfection efficiency of SN-PDM assisted traditional Ca(2+)-dependent transfection was significantly enhanced compared to those without any surface assistance, and SN-PDM with polymerization time 24 h exhibited the highest efficiency. Moreover, the optimal transfection efficiency was found at the system of a complex containing Ca(2+) (100 mM) and plasmid DNA (pDNA) incubated on SN-PDM for 20 min. Compared with unmodified SiNWAs, SN-PDM has little cytotoxicity and can improve cell attachment. All of these results demonstrated that SN-PDM could significantly enhance Ca(2+)-dependent transfection; this process depends on the amino groups' density of PDMAEMA on the surface, the Ca(2+) concentration, and the available Ca(2+)@DNA complex. Our study provides a potential novel and excellent means of gene delivery for therapeutic applications.
Collapse
Affiliation(s)
- Jingjing Pan
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Yuqi Yuan
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongwei Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Feng Liu
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Xinhong Xiong
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Lin Yuan
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
75
|
Uskoković V, Wu VM. Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering. MATERIALS 2016; 9. [PMID: 27347359 PMCID: PMC4917371 DOI: 10.3390/ma9060434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review we demonstrate that such compositional simplifications are meaningful when it comes to the design of a solution for osteomyelitis, a disease that is in its natural, non-postoperative form particularly prevalent in the underdeveloped parts of the world wherein poverty, poor sanitary conditions, and chronically compromised defense lines of the immune system are the norm. We show that calcium phosphate nanoparticles, which are inexpensive to make, could be chemically designed to possess the same functionality as a hypothetic mixture additionally composed of: (a) a bone growth factor; (b) an antibiotic for prophylactic or anti-infective purposes; (c) a bisphosphonate as an antiresorptive compound; (d) a viral vector to enable the intracellular delivery of therapeutics; (e) a luminescent dye; (f) a radiographic component; (g) an imaging contrast agent; (h) a magnetic domain; and (i) polymers as viscous components enabling the injectability of the material and acting as carriers for the sustained release of a drug. In particular, calcium phosphates could: (a) produce tunable drug release profiles; (b) take the form of viscous and injectable, self-setting pastes; (c) be naturally osteo-inductive and inhibitory for osteoclastogenesis; (d) intracellularly deliver bioactive compounds; (e) accommodate an array of functional ions; (f) be processed into macroporous constructs for tissue engineering; and (g) be naturally antimicrobial. All in all, we see in calcium phosphates the presence of a protean nature whose therapeutic potentials have been barely tapped into.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
- Correspondence: or ; Tel.: +1-415-412-0233
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
| |
Collapse
|
76
|
Ju Y, Cui J, Sun H, Müllner M, Dai Y, Guo J, Bertleff-Zieschang N, Suma T, Richardson JJ, Caruso F. Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. Biomacromolecules 2016; 17:2268-76. [DOI: 10.1021/acs.biomac.6b00537] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Ju
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Huanli Sun
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Markus Müllner
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yunlu Dai
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Junling Guo
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadja Bertleff-Zieschang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
77
|
Sharker SM, Kang EB, Shin CI, Kim SH, Lee G, Park SY. Near-infrared-active and pH-responsive fluorescent polymer-integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer. J Appl Polym Sci 2016. [DOI: 10.1002/app.43791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shazid Md. Sharker
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-702 Republic of Korea
| | - Eun Bi Kang
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Chun-Im Shin
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Sung Han Kim
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| |
Collapse
|
78
|
Satterlee AB, Huang L. Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform. Theranostics 2016; 6:918-29. [PMID: 27217828 PMCID: PMC4876619 DOI: 10.7150/thno.14689] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
Over the last four years, the Lipid-Calcium-Phosphate (LCP) nanoparticle platform has shown success in a wide range of treatment strategies, recently including theranostics. The high specific drug loading of radiometals into LCP, coupled with its ability to efficiently encapsulate many types of cytotoxic agents, allows a broad range of theranostic applications, many of which are yet unexplored. In addition to providing an overview of current medical imaging modalities, this review highlights the current theranostic applications for LCP using SPECT and PET, and discusses potential future uses of the platform by comparing it with both systemically and locally delivered clinical radiotherapy options as well as introducing its applications as an MRI contrast agent. Strengths and weaknesses of LCP and of nanoparticles in general are discussed, as well as caveats regarding the use of fluorescence to determine the accumulation or biodistribution of a probe.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| | - Leaf Huang
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| |
Collapse
|
79
|
Zhao MD, Cheng JL, Yan JJ, Chen FY, Sheng JZ, Sun DL, Chen J, Miao J, Zhang RJ, Zheng CH, Huang HF. Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation. Int J Nanomedicine 2016; 11:1323-36. [PMID: 27099493 PMCID: PMC4821386 DOI: 10.2147/ijn.s99692] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To identify a new drug candidate for treating endometriosis which has fewer side effects, a new polymeric nanoparticle gene delivery system consisting of polyethylenimine-grafted chitosan oligosaccharide (CSO-PEI) with hyaluronic acid (HA) and small interfering RNA (siRNA) was designed. There was no obvious difference in sizes observed between (CSO-PEI/siRNA)HA and CSO-PEI/siRNA, but the fluorescence accumulation in the endometriotic lesion was more significant for (CSO-PEI/siRNA)HA compared with CSO-PEI/siRNA due to the specific binding of HA to CD44. In addition, the (CSO-PEI/siRNA)HA nanoparticle gene therapy significantly decreased the endometriotic lesion sizes with atrophy and degeneration of the ectopic endometrium. The epithelial cells of ectopic endometrium from rat models of endometriosis showed a significantly lower CD44 expression than control after treatment with (CSO-PEI/siRNA)HA. Furthermore, observation under an electron microscope showed no obvious toxic effect on the reproductive organs. Therefore, (CSO-PEI/siRNA)HA gene delivery system can be used as an effective method for the treatment of endometriosis.
Collapse
Affiliation(s)
- Meng-Dan Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin-Lin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing-Jing Yan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Feng-Ying Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Sheng
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Li Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Miao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Run-Ju Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Cai-Hong Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - He-Feng Huang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
80
|
Badwaik V, Liu L, Gunasekera D, Kulkarni A, Thompson DH. Mechanistic Insight into Receptor-Mediated Delivery of Cationic-β-Cyclodextrin:Hyaluronic Acid-Adamantamethamidyl Host:Guest pDNA Nanoparticles to CD44(+) Cells. Mol Pharm 2016; 13:1176-84. [PMID: 26900622 DOI: 10.1021/acs.molpharmaceut.6b00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Targeted delivery is a key element for improving the efficiency and safety of nonviral vectors for gene therapy. We have recently developed a CD44 receptor targeted, hyaluronic acid-adamantamethamidyl based pendant polymer system (HA-Ad), capable of forming complexes with cationic β-cyclodextrins (CD-PEI(+)) and pDNA. Complexes formed using these compounds (HA-Ad:CD-PEI(+):pDNA) display high water solubility, good transfection efficiency, and low cytotoxicity. Spatial and dynamic tracking of the transfection complexes by confocal microscopy and multicolor flow cytometry techniques was used to evaluate the target specificity, subcellular localization, and endosomal escape process. Our data shows that cells expressing the CD44 receptor undergo enhanced cellular uptake and transfection efficiency with HA-Ad:CD-PEI(+):pDNA complexes. This transfection system, comprised noncovalent assembly of cyclodextrin:adamantamethamidyl-modified hyaluronic acid via host:guest interactions to condense pDNA, is a potentially useful tool for targeted delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Vivek Badwaik
- Department of Chemistry and Purdue University Center for Cancer Research, Multidisciplinary Cancer Research Facility, Bindley Bioscience Center, Purdue University , 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - Linjia Liu
- Department of Chemistry and Purdue University Center for Cancer Research, Multidisciplinary Cancer Research Facility, Bindley Bioscience Center, Purdue University , 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - Dinara Gunasekera
- Department of Chemistry and Purdue University Center for Cancer Research, Multidisciplinary Cancer Research Facility, Bindley Bioscience Center, Purdue University , 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - Aditya Kulkarni
- Department of Chemistry and Purdue University Center for Cancer Research, Multidisciplinary Cancer Research Facility, Bindley Bioscience Center, Purdue University , 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry and Purdue University Center for Cancer Research, Multidisciplinary Cancer Research Facility, Bindley Bioscience Center, Purdue University , 1203 West State Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
81
|
Deng W, Cao X, Wang Y, Yu Q, Zhang Z, Qu R, Chen J, Shao G, Gao X, Xu X, Yu J. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1264-1273. [PMID: 26809505 DOI: 10.1021/acs.jafc.5b05661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification.
Collapse
Affiliation(s)
| | | | | | - Qingtong Yu
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | | | | | | | | | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | | | | |
Collapse
|
82
|
Gao P, Zhang X, Wang H, Zhang Q, Li H, Li Y, Duan Y. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors. Oncotarget 2016; 7:2855-66. [PMID: 26625203 PMCID: PMC4823076 DOI: 10.18632/oncotarget.6428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.
Collapse
Affiliation(s)
- Pei Gao
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiangyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
83
|
Jiang Y, Huo S, Hardie J, Liang XJ, Rotello VM. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opin Drug Deliv 2016; 13:547-59. [PMID: 26735861 PMCID: PMC4914043 DOI: 10.1517/17425247.2016.1134486] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Small interfering RNA (siRNA) is an effective method for regulating the expression of proteins, even "undruggable" ones that are nearly impossible to target through traditional small molecule therapeutics. Delivery to the cell and then to the cytosol is the primary requirement for realization of therapeutic potential of siRNA. AREAS COVERED We summarize recent advances in the design of inorganic nanoparticle with surface functionality and physicochemical properties engineered for siRNA delivery. Specifically, we discuss the main approaches developed so far to load siRNA into/onto NPs, and NP surface chemistry engineered for enhanced intracellular siRNA delivery, endosomal escape, and targeted delivery of siRNA to disease cells and tissues. EXPERT OPINION Several challenges remain in developing inorganic NPs for efficient and effective siRNA delivery. Getting the material to the chosen site is important, however the greatest hurdle may well be delivery into the cytosol, either through efficient endosomal escape or by direct cytosolic siRNA delivery. Effective delivery at the organismic and cellular level coupled with biocompatible vehicles with low immunogenic response will facilitate the clinical translation of RNAi for the treatment of genetic diseases.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Shuaidong Huo
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11, First North Road, Zhongguancun, Beijing, 100190, China
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11, First North Road, Zhongguancun, Beijing, 100190, China
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
84
|
Lih E, Choi SG, Ahn DJ, Joung YK, Han DK. Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis. J Tissue Eng 2016; 7:2041731416683745. [PMID: 28228930 PMCID: PMC5308429 DOI: 10.1177/2041731416683745] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 01/25/2023] Open
Abstract
Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses.
Collapse
Affiliation(s)
- Eugene Lih
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
| | - Seul Gi Choi
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, Korea
- Department of Chemical & Biological Engineering, Korea University, Seoul, Korea
| | - Dong June Ahn
- Department of Biomicrosystem Technology, Korea University, Seoul, Korea
- Department of Chemical & Biological Engineering, Korea University, Seoul, Korea
- KU-KIST Graduate School of Converging Science and Engineering, Korea University, Seoul, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
85
|
Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
86
|
Sharker SM, Kim SM, Lee JE, Choi KH, Shin G, Lee S, Lee KD, Jeong JH, Lee H, Park SY. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J Control Release 2015; 217:211-20. [DOI: 10.1016/j.jconrel.2015.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022]
|
87
|
Jeong KM, Lee MS, Nam MW, Zhao J, Jin Y, Lee DK, Kwon SW, Jeong JH, Lee J. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J Chromatogr A 2015; 1424:10-7. [PMID: 26585205 DOI: 10.1016/j.chroma.2015.10.083] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023]
Abstract
The present study demonstrates that deep eutectic solvents (DESs) with the highest extractability can be designed by combining effective DES components from screening diverse DESs. The extraction of polar ginseng saponins from white ginseng was used as a way to demonstrate the tuneability as well as recyclability of DESs. A newly designed ternary DES (GPS-5) composed of glycerol, l-proline, and sucrose at 9:4:1 was used as a sustainable and efficient extraction medium. Based on the anti-tumor activity on HCT-116 cancer cells, it was confirmed that GPS-5 was merely an extraction solvent with no influence of the bioactivity of the ginsenosides extracted. Excellent recovery of the extracted saponins was easily achieved through solid-phase extraction (SPE). Recycling of the DES was accomplished by simple freeze-drying of the washed solutions from the SPE. The extraction efficiencies of the DESs recycled once, twice, and thrice were 92%, 85%, and 83% of that of the freshly synthesized solvent.
Collapse
Affiliation(s)
- Kyung Min Jeong
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea
| | - Min Sang Lee
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea
| | - Min Woo Nam
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea
| | - Jing Zhao
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea
| | - Yan Jin
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea
| | - Dong-Kyu Lee
- College of Pharmacy Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy Sungkyunkwan University, 2066 Seoburo, Suwon 16419, Republic of Korea.
| |
Collapse
|
88
|
Li WM, Chiang CS, Huang WC, Su CW, Chiang MY, Chen JY, Chen SY. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer. J Control Release 2015; 220:107-118. [PMID: 26478017 DOI: 10.1016/j.jconrel.2015.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 01/10/2023]
Abstract
We developed a surfactant-free method utilizing amifostine to stably link a targeting ligand (Herceptin) to amphiphilic gelatin (AG)-iron oxide@calcium phosphate (CaP) nanoparticles with hydrophobic curcumin (CUR) and hydrophilic doxorubicin (DOX) encapsulated in the AG core and CaP shell (AGIO@CaP-CD), respectively. This multi-functional nanoparticle system has a pH-sensitive CaP shell and degradable amphiphilic gelatin (AG) core, which enables controllable sequential release of the two drugs. The dual-targeting system of AGIO@CaP-CD (HER-AGIO@CaP-CD) with a bioligand and magnetic targeting resulted in significantly elevated cellular uptake in HER2-overexpressing SKBr3 cells and more efficacious therapy than delivery of targeting ligand alone due to the synergistic cell multi-drug resistance/apoptosis-inducing effect of the CUR and DOX combination. This nanoparticle combined with Herceptin and iron oxide nanoparticles not only provided a dual-targeting functionality, but also encapsulated CUR and DOX as a dual-drug delivery system for the combination therapy. This study further demonstrated that the therapeutic efficacy of this dual-targeting co-delivery system can be improved by modifying the application duration of magnetic targeting, which makes this combination therapy system a powerful new tool for in vitro/in vivo cancer therapy, especially for HER2-positive cancers.
Collapse
Affiliation(s)
- Wei-Ming Li
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chih-Sheng Chiang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wei-Chen Huang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Wei Su
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Yu Chiang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jian-Yi Chen
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - San-Yuan Chen
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
89
|
Kumar V, Mondal G, Dutta R, Mahato RI. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials 2015; 76:144-56. [PMID: 26524535 DOI: 10.1016/j.biomaterials.2015.10.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/18/2023]
Abstract
In liver fibrosis, secretion of growth factors and hedgehog (Hh) ligands by hepatic parenchyma upon repeated insults results in transdifferentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts which secrete excessive amounts of extracellular matrix (ECM) proteins. An Hh inhibitor GDC-0449 and miR-29b1 can play an important role in treating liver fibrosis by inhibiting several pro-fibrotic genes. Our in-silico analysis indicate that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, PDGF-β and PI3K/AKT which are upregulated in liver fibrosis. Common bile duct ligation (CBDL) resulted in an increase in Ptch-1, Shh and Gli-1 expression. miR-29b1 and GDC-0449 were co-formulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) (mPEG-b-PCC-g-DC-g-TEPA) copolymer, and injected systemically into CBDL mice. High concentrations of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion at 30 min post systemic administration of their micelle formulation. There was a significant decrease in collagen deposition in the liver and serum injury markers, leading to improvement in liver morphology. Combination therapy was more effective in providing hepatoprotection, lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as collagen, α-SMA, FN-1 and p-AKT compared to monotherapy. In conclusion, inhibition of Hh pathway and restoration of miR-29b1 have the potential to act synergistically in treating CBDL-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rinku Dutta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
90
|
Tang J, Li L, Howard CB, Mahler SM, Huang L, Xu ZP. Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. J Mater Chem B 2015; 3:6805-6812. [PMID: 27213045 PMCID: PMC4869335 DOI: 10.1039/c5tb00912j] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Lipid coated calcium phosphate (LCP) nanoparticles (NPs) remain an attractive option for siRNA systemic delivery. Previous research has shown that the stoichiometry of reactants affects the size and morphology of nanostructured calcium phosphate (CaP) particles. However, it is unclear how synthesis parameters such as the Ca/P molar ratio and mixing style influence the siRNA loading and protection by LCP NPs, and subsequent siRNA delivery efficiency. In this research, we found that the Ca/P molar ratio is critical in controlling the size, zeta potential, dispersion state, siRNA loading and protection. Based on the siRNA loading efficiency and capacity as well as siRNA protection effectiveness, we suggested an optimized LCP NPs delivery system. The optimized LCP NPs had a hollow, spherical structure with the average particle size of ~40 nm and were able to maintain their stability in serum containing media and PBS for over 24 h, with a pH-sensitive dissolution property. The superior ability of optimized LCP NPs to maintain the integrity of encapsulated siRNA and the colloidal stability in culture medium allow this formulation to achieve improved cellular accumulation of siRNA and enhanced growth inhibition of human breast cancer cells in vitro, compared with the commercial transfection agent Oligofectamine™.
Collapse
Affiliation(s)
- Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
91
|
Uskoković V. The Role of Hydroxyl Channel in Defining Selected Physicochemical Peculiarities Exhibited by Hydroxyapatite. RSC Adv 2015; 5:36614-36633. [PMID: 26229593 PMCID: PMC4517856 DOI: 10.1039/c4ra17180b] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mysteries surrounding the most important mineral for the vertebrate biology, hydroxyapatite, are many. Perhaps the Greek root of its name, απαταo, meaning 'to deceive' and given to its mineral form by the early gem collectors who confused it with more precious stones, is still applicable today, though in a different connotation, descriptive of a number of physicochemical peculiarities exhibited by it. Comparable to water as the epitome of peculiarities in the realm of liquids, hydroxyapatite can serve as a paradigm for peculiarities in the world of solids. Ten of the peculiar properties of hydroxyapatite are sketched in this review piece, ranging from (i) the crystal lattice flexibility to (ii) notorious surface layer instability to (iii) finite piezoelectricity, pyroelectricity and conductivity to protons to (iv) accelerated growth and improved osteoconductivity in the electromagnetic fields to (v) high nucleation rate at low supersaturations and low crystal growth rate at high supersaturations to (vi) higher bioactivity and resorbability of biological apatite compared to the synthetic ones, and beyond. An attempt has been made to explain this array of curious characteristics by referring to a particular element of the crystal structure of hydroxyapatite: the hydroxyl ion channel extending in the direction of the c-axis, through a crystallographic column created by the overlapping calcium ion triangles.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| |
Collapse
|
92
|
Xu W, Ding J, Xiao C, Li L, Zhuang X, Chen X. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015; 54:72-86. [DOI: 10.1016/j.biomaterials.2015.03.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
93
|
Abstract
Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs), an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.
Collapse
|
94
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [DOI: 10.1021/cr500542t] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
95
|
Ruvinov E, Kryukov O, Forti E, Korin E, Goldstein M, Cohen S. Calcium–siRNA nanocomplexes: What reversibility is all about. J Control Release 2015; 203:150-60. [DOI: 10.1016/j.jconrel.2015.02.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
96
|
|
97
|
Choi B, Cui ZK, Kim S, Fan J, Wu BM, Lee M. Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation. J Mater Chem B 2015; 3:6448-6455. [PMID: 26413302 DOI: 10.1039/c5tb00843c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA interference (RNAi)-based therapy using small interfering RNA (siRNA) exhibits great potential to treat diseases. Although calcium phosphate (CaP)-based systems are attractive options to deliver nucleic acids due to their good biocompatibility and high affinity with nucleic acids, they are limited by uncontrollable particle formation and inconsistent transfection efficiencies. In this study, we developed a stable CaP nanocarrier system with enhanced intracellular uptake by adding highly cationic, glutamine-conjugated oligochitosan (Gln-OChi). CaP nanoparticles coated with Gln-OChi (CaP/Gln-OChi) significantly enhanced gene transfection and knockdown efficiency in both immortalized cell line (HeLa) and primary mesenchymal stem cells (MSCs) with minimal cytotoxicity. The osteogenic bioactivity of siRNA-loaded CaP/Gln-OChi particles was further confirmed in three-dimensional environments by using photocrosslinkable chitosan hydrogels encapsulating MSCs and particles loaded with siRNA targeting noggin, a bone morphogenetic protein antagonist. These findings suggest that our CaP/Gln-OChi nanocarrier provides an efficient and safe gene delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Bogyu Choi
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Soyon Kim
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA ; Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA ; Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
98
|
Dördelmann G, Kozlova D, Karczewski S, Lizio R, Knauer S, Epple M. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J Mater Chem B 2014; 2:7250-7259. [DOI: 10.1039/c4tb00922c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|