51
|
Zhang T, Lip H, He C, Cai P, Wang Z, Henderson JT, Rauth AM, Wu XY. Multitargeted Nanoparticles Deliver Synergistic Drugs across the Blood-Brain Barrier to Brain Metastases of Triple Negative Breast Cancer Cells and Tumor-Associated Macrophages. Adv Healthc Mater 2019; 8:e1900543. [PMID: 31348614 DOI: 10.1002/adhm.201900543] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Patients with brain metastases of triple negative breast cancer (TNBC) have a poor prognosis owing to the lack of targeted therapies, the aggressive nature of TNBC, and the presence of the blood-brain barrier (BBB) that blocks penetration of most drugs. Additionally, infiltration of tumor-associated macrophages (TAMs) promotes tumor progression. Here, a terpolymer-lipid hybrid nanoparticle (TPLN) system is designed with multiple targeting moieties to first undergo synchronized BBB crossing and then actively target TNBC cells and TAMs in microlesions of brain metastases. In vitro and in vivo studies demonstrate that covalently bound polysorbate 80 in the terpolymer enables the low-density lipoprotein receptor-mediated BBB crossing and TAM-targetability of the TPLN. Conjugation of cyclic internalizing peptide (iRGD) enhances cellular uptake, cytotoxicity, and drug delivery to brain metastases of integrin-overexpressing TNBC cells. iRGD-TPLN with coloaded doxorubicin (DOX) and mitomycin C (MMC) (iRGD-DMTPLN) exhibits higher efficacy in reducing metastatic burden and TAMs than nontargeted DMTPLN or a free DOX/MMC combination. iRGD-DMTPLN treatment reduces metastatic burden by 6-fold and 19-fold and increases host median survival by 1.3-fold and 1.6-fold compared to DMTPLN or free DOX/MMC treatments, respectively. These findings suggest that iRGD-DMTPLN is a promising multitargeted drug delivery system for the treatment of integrin-overexpressing brain metastases of TNBC.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Hoyin Lip
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ping Cai
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Zhigao Wang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Jeffrey T. Henderson
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation OncologyUniversity of Toronto 610 University Ave Toronto Ontario M5G 2M9 Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| |
Collapse
|
52
|
Guo Q, Zhu Q, Miao T, Tao J, Ju X, Sun Z, Li H, Xu G, Chen H, Han L. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release 2019; 303:117-129. [DOI: 10.1016/j.jconrel.2019.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
|
53
|
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 2019; 11:E101. [PMID: 30813646 PMCID: PMC6471564 DOI: 10.3390/pharmaceutics11030101] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
The field of neuronanomedicine has recently emerged as the bridge between neurological sciences and nanotechnology. The possibilities of this novel perspective are promising for the diagnosis and treatment strategies of severe central nervous system disorders. Therefore, the development of nano-vehicles capable of permeating the blood⁻brain barrier (BBB) and reaching the brain parenchyma may lead to breakthrough therapies that could improve life expectancy and quality of the patients diagnosed with brain disorders. The aim of this review is to summarize the recently developed organic, inorganic, and biological nanocarriers that could be used for the delivery of imaging and therapeutic agents to the brain, as well as the latest studies on the use of nanomaterials in brain cancer, neurodegenerative diseases, and stroke. Additionally, the main challenges and limitations associated with the use of these nanocarriers are briefly presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Dr. Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
54
|
Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 2019; 110:319-341. [DOI: 10.1016/j.biopha.2018.11.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
|
55
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics 2018; 10:E269. [PMID: 30544966 PMCID: PMC6321434 DOI: 10.3390/pharmaceutics10040269] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Pathologies of the brain, of which brain cancer, Alzheimer's disease, Parkinson's disease, stroke, and multiple sclerosis, are some of the most prevalent, and that presently are poorly treated due to the difficulties associated with drug development, administration, and targeting to the brain. The existence of the blood-brain barrier, a selective permeability system which acts as a local gateway against circulating foreign substances, represents the key challenge for the delivery of therapeutic agents to the brain. However, the development of nanotechnology-based approaches for brain delivery, such as nanoparticles, liposomes, dendrimers, micelles, and carbon nanotubes, might be the solution for improved brain therapies.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, 060042 București, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 București, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 București, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 București, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
56
|
Kadari A, Pooja D, Gora RH, Gudem S, Kolapalli VRM, Kulhari H, Sistla R. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur J Pharm Biopharm 2018; 132:168-179. [DOI: 10.1016/j.ejpb.2018.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
|
57
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
58
|
Wei Y, Quan L, Zhou C, Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond) 2018; 13:1495-1512. [DOI: 10.2217/nnm-2018-0040] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have promising biomedical applications for drug delivery, tumor imaging and tumor treatment. Pharmacokinetics are important for the in vivo application of nanoparticles. Biodistribution and clearance are largely defined as the key points of pharmacokinetics to maximize therapeutic efficacy and to minimize side effects. Different engineered nanoparticles have different biodistribution and clearance processes. The interactions of organs with nanoparticles, which are determined by the characteristics of the organs and the biochemical/physical properties of the nanoparticles, are a major factor influencing biodistribution and clearance. In this review, the clearance functions of organs and the properties related to pharmacokinetics, including nanoparticle size, shape, biodegradation and surface modifications are discussed.
Collapse
Affiliation(s)
- Yanchun Wei
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Li Quan
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
| | - Chao Zhou
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Qiuqiang Zhan
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
- Key Laboratory of Optoelectronic Devices & Systems of Ministry of Education & Guangdong Province, Shenzhen University, Shenzhen 518052, PR China
| |
Collapse
|
59
|
Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples. Acta Pharmacol Sin 2018; 39:825-844. [PMID: 29698389 DOI: 10.1038/aps.2018.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.
Collapse
|
60
|
Hu T, Liu C, Li Q, Xiong J, Ma Y, Wu G, Zhao Y. Apatinib + CPT-11 + S-1 for treatment of refractory brain metastases in patient with triple-negative breast cancer: Case report and literature review. Medicine (Baltimore) 2018; 97:e0349. [PMID: 29642175 PMCID: PMC5908627 DOI: 10.1097/md.0000000000010349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Brain metastasis (BM) is a rising challenge in forward-looking oncology, as its treatment choices are very limited, especially, after the failure of local treatment schemes. PATIENT CONCERNS We report on a 39-year-old Chinese woman who was diagnosed with stage IV triple-negative breast cancer(TNBC) with multiple brain, lung, and bone metastases. She had previously, undergone whole-brain radiation therapy. Paclitaxel, platinum, UTD1, capecitabine, gemcitabine, vinorelbine, and single-agent apatinib were then administered as first- to fifth-line therapies. She exhibited progression each time after a short period of disease stabilization. DIAGNOSES Triple-negative breast cancer. INTERVENTIONS The patient chose treatment with apatinib+CPT-11+S-1 as the sixth-line therapy. OUTCOMES A remarkable response of the brain, and lung metastases, and alleviation of the brain edema were achieved, and these effects persisted for 7 months. LESSONS We describe the significant anti-tumor effect of apatinib + CPT-11 + S-1 against BMs from breast cancer. This report is the first to suggest potential approaches to BM treatment using this scheme and describes the effects of an apatinib-containing regimen on BMs.
Collapse
|
61
|
Souery WN, Bishop CJ. Clinically advancing and promising polymer-based therapeutics. Acta Biomater 2018; 67:1-20. [PMID: 29246651 DOI: 10.1016/j.actbio.2017.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
In this review article, we will examine the history of polymers and their evolution from provisional World War II materials to medical therapeutics. To provide a comprehensive look at the current state of polymer-based therapeutics, we will classify technologies according to targeted areas of interest, including central nervous system-based and intraocular-, gastrointestinal-, cardiovascular-, dermal-, reproductive-, skeletal-, and neoplastic-based systems. Within each of these areas, we will consider several examples of novel, clinically available polymer-based therapeutics; in addition, this review will also include a discussion of developing therapies, ranging from the in vivo to clinical trial stage, for each targeted area of treatment. Finally, we will emphasize areas of patient care in need of more effective, accessible, and targeted treatment approaches where polymer-based therapeutics may offer potential solutions.
Collapse
Affiliation(s)
- Whitney N Souery
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 101 Bizzell St., College Station, TX 77843, USA
| | - Corey J Bishop
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 101 Bizzell St., College Station, TX 77843, USA.
| |
Collapse
|
62
|
Berghoff AS, Preusser M. Role of the blood-brain barrier in metastatic disease of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 149:57-66. [PMID: 29307361 DOI: 10.1016/b978-0-12-811161-1.00004-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Systemic therapy is an important backbone in the multimodal treatment approach of brain metastases. However, the blood-brain barrier or, more correctly, the blood-tumor barrier, as the properties of tumor-associated vessels differ from the physiologic state, potentially limits the passage of systemic drugs. Indeed, several preclinical and clinical investigations showed that the distribution of drugs is very heterogeneous within a given brain metastasis, despite the contrast enhancement in magnetic resonance imaging. Brain metastases may show lower intratumoral concentrations of some drugs as compared to extracranial tumor sites, resulting in mixed responses. Therefore, a more profound understanding of the role of the blood-brain/blood-tumor barrier is needed to effectively formulate clinical trial approaches on systemic therapy options in patients with brain metastases.
Collapse
Affiliation(s)
- Anna S Berghoff
- Clinical Division of Oncology, Department of Medicine and CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Clinical Division of Oncology, Department of Medicine and CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
63
|
Chen K, Chang HHR, Shalviri A, Li J, Lugtu-Pe JA, Kane A, Wu XY. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability. Eur J Pharm Biopharm 2017; 120:116-125. [PMID: 28887098 DOI: 10.1016/j.ejpb.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Kuan Chen
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Hao Han R Chang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Alireza Shalviri
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Jamie Anne Lugtu-Pe
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Anil Kane
- Patheon Inc., Toronto Region Operations (TRO), Mississauga, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada.
| |
Collapse
|
64
|
Ma S, Li M, Liu N, Li Y, Li Z, Yang Y, Yu F, Hu X, Liu C, Mei X. Vincristine liposomes with smaller particle size have stronger diffusion ability in tumor and improve tumor accumulation of vincristine significantly. Oncotarget 2017; 8:87276-87291. [PMID: 29152080 PMCID: PMC5675632 DOI: 10.18632/oncotarget.20162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023] Open
Abstract
The passive targeting is the premise of active targeting that could make nanocarrier detained in tumor tissue. The particle size is the most important factor that influences the diffusion and distribution of nanoparticle both in vivo and in vitro. In order to investigate the relationship between particle size and diffusion ability, two kinds of liposome loaded with Vincristine (VCR-Lip) were prepared. The diffusion behavior of VCR-Lip with different particle size and free VCR was compared through diffusion stability study. The diffusion ability from 12-well culture plate to Millipore transwell of each formulation reflected on HepG-2 cytotoxicity results. Different cell placement methods and drug adding positions were used to study the VCR-Lip diffusion behaviors, which influenced the apoptosis of HepG-2 cell. The different cell uptake of Nile red–Lip and free Nile red was compared when changed the adding way of fluorescent fluorescein. To study the penetration ability in HepG-2 tumor spheroids, we constructed 30 nm and 100 nm Cy5.5-Lip to compare with free Cy5.5. Then the anti-tumor effect, tissue distribution of free VCR injection, 30 nm and 100 nm VCR-Lip were further investigated on the HepG-2 tumor bearing nude mice. The results of these study showed that the diffusion ability of free drug and fluorescent fluorescein was remarkable stronger than which encapsulated in liposomes. Moreover, diffusion ability of smaller liposome was stronger than larger one. In this way, 30 nm liposome had not only faster and stronger tumor distribution than 100 nm liposome, but also higher tumor drug accumulation than free drug as well. Our study provided a new thinking to improve the targeting efficiency of nano drug delivery system, no matter passive or active targeting.
Collapse
Affiliation(s)
- Siyu Ma
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Mingyuan Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Nan Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Ying Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Zhiping Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Yang Yang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Fanglin Yu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Xiaoqin Hu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Cheng Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China.,Wuhan Institute of Technology, Wuhan, PR China
| | - Xingguo Mei
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| |
Collapse
|
65
|
Qiu M, Ouyang J, Sun H, Meng F, Cheng R, Zhang J, Cheng L, Lan Q, Deng C, Zhong Z. Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27587-27595. [PMID: 28782928 DOI: 10.1021/acsami.7b10533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Poly(ethylene glycol)-b-polypeptide block copolymer micelles, with excellent safety, are one of the most clinically studied nanocarriers for anticancer drug delivery. Notably, self-assembled nanosystems based on hydrophobic polypeptides showing typically a low drug loading and burst drug release are limited to preclinical studies. Here, we report that poly(ethylene glycol)-b-poly(α-aminopalmitic acid) (PEG-b-PAPA) block copolymer could be easily prepared with tailored Mn through ring-opening polymerization of α-aminopalmitic acid N-carboxyanhydride (APA-NCA). Interestingly, PEG-b-PAPA copolymers exhibited superb solubility in common organic solvents (including CHCl3, CH2Cl2, and THF), while stable nanomicelles were formed in phosphate buffer, with a small size of 59 nm and a low critical micelle concentration of 2.38 mg/L. These polylipopeptide micelles (Lipep-Ms) allowed facile loading of a potent anticancer drug, docetaxel (DTX), likely due to the existence of a strong interaction between the lipophilic drug and polylipopeptide in the core. Notably, cRGD-peptide-functionalized Lipep-Ms (cRGD-Lipep-Ms) were also obtained with similar biophysical characteristics. The in vitro studies showed efficient cellular uptake of DTX-loaded cRGD-Lipep-Ms by B16F10 cells and fast intracellular drug release due to the enzymatic degradation of PAPA blocks in endo/lysosome, leading to a pronounced anticancer effect (IC50 = 0.15 μg DTX equiv/mL). The in vivo therapy studies showed that DTX-cRGD-Lipep-Ms exhibited superior tumor growth inhibition of B16F10 melanoma, improved survival rate, and little side effects as compared to free DTX. These polylipopeptide micelles appear as a promising and robust nanoplatform for anticancer drug delivery.
Collapse
Affiliation(s)
- Min Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Jia Ouyang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University , Suzhou, 215004, China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University , Suzhou, 215004, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| |
Collapse
|
66
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|