51
|
Harms M, Hansson RF, Carmali S, Almeida-Hernández Y, Sanchez-Garcia E, Münch J, Zelikin AN. Dimerization of the Peptide CXCR4-Antagonist on Macromolecular and Supramolecular Protraction Arms Affords Increased Potency and Enhanced Plasma Stability. Bioconjug Chem 2022; 33:594-607. [PMID: 35293739 DOI: 10.1021/acs.bioconjchem.2c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are prime drug candidates due to their high specificity of action but are disadvantaged by low proteolytic stability. Here, we focus on the development of stabilized analogues of EPI-X4, an endogenous peptide antagonist of CXCR4. We synthesized macromolecular peptide conjugates and performed side-by-side comparison with their albumin-binding counterparts and considered monovalent conjugates, divalent telechelic conjugates, and Y-shaped peptide dimers. All constructs were tested for competition with the CXCR4 antibody-receptor engagement, inhibition of receptor activation, and inhibition of the CXCR4-tropic human immunodeficiency virus infection. We found that the Y-shaped conjugates were more potent than the parent peptide and at the same time more stable in human plasma, with a favorable outlook for translational studies.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rikke Fabech Hansson
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Sheiliza Carmali
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Yasser Almeida-Hernández
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
52
|
Agrawal S, Garg A, Varshney V. Recent updates on applications of Lipid-based nanoparticles for site-specific drug delivery. Pharm Nanotechnol 2022; 10:24-41. [PMID: 35249522 DOI: 10.2174/2211738510666220304111848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Site-specific drug delivery is a widespread and demanding area nowadays. Lipid-based nanoparticulate drug delivery systems have shown promising effects for targeting drugs among lymphatic systems, brain tissues, lungs, and skin. Recently, lipid nanoparticles are used for targeting the brain via the mucosal route for local therapeutic effects. Lipid nanoparticles (LNPs) can help in enhancing the efficacy and lowering the toxicities of anticancer drugs to treat the tumors, particularly in lymph after metastases of tumors. LNPs contain a non-polar core that can improve the absorption of lipophilic drugs into the lymph node and treat tumors. Cellular uptake of drugs can also be enhanced using LNPs and therefore, LNPs are the ideal carrier for treating intracellular infections such as leishmaniasis, tuberculosis and parasitic infection in the brain, etc. Furthermore, specific surface modifications with molecules like mannose, or PEG could improve the macrophage uptake and hence effectively eradicate parasites hiding in macrophages. METHOD An electronic literature search was conducted to update the advancements in the field of site-specific drug delivery utilizing lipid-based nanoparticles. A search of the Scopus database (https://www.scopus.com/home.uri) was conducted using the following keywords: lipid-based nanoparticles; site specific delivery. CONCLUSION Solid lipid nanoparticles have shown site-specific targeted delivery to various organs including the liver, oral mucosa, brain, epidermis, pulmonary and lymphatic systems. These lipid-based systems showed improved bioavailability as well as reduced side effects. Therefore, the focus of this article is to review the recent research studies on LNPs for site-specific or targeting drug delivery.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| | - Vikas Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| |
Collapse
|
53
|
Perazzolo S, Shireman LM, Shen DD, Ho RJY. Physiologically Based Pharmacokinetic Modeling of 3 HIV Drugs in Combination and the Role of Lymphatic System after Subcutaneous Dosing. Part 1: Model for the Free-Drug Mixture. J Pharm Sci 2022; 111:529-541. [PMID: 34673093 PMCID: PMC9272351 DOI: 10.1016/j.xphs.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Drug-combination nanoparticles (DcNP) allow the formulation of multiple HIV drugs in one injectable. In nonhuman primates (NHP), all drugs in DcNP have demonstrated long-acting pharmacokinetics (PK) in the blood and lymph nodes, rendering it suitable for a Targeted Long-acting Antiretroviral Therapy (TLC-ART). To support the translation of TLC-ART into the clinic, the objective is to present a physiologically based PK (PBPK) model tool to control mechanisms affecting the rather complex DcNP-drug PK. Two species contribute simultaneously to the drug PK: drugs that dissociate from DcNP (Part 1) and drugs retained in DcNP (Part 2, presented separately). Here, we describe the PBPK modeling of the nanoparticle-free drugs. The free-drug model was built on subcutaneous injections of suspended lopinavir, ritonavir, and tenofovir in NHP, and validated by external experiments. A novelty was the design of a lymphatic network as part of a whole-body PBPK system which included major lymphatic regions: the cervical, axillary, hilar, mesenteric, and inguinal nodes. This detailed/regionalized description of the lymphatic system and mononuclear cells represents an unprecedented level of prediction that renders the free-drug model extendible to other small-drug molecules targeting the lymphatic system at both the regional and cellular levels.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA.
| | - Laura M Shireman
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
54
|
Progress of albumin-polymer conjugates as efficient drug carriers. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Albumin is a protein that has garnered wide attention in nanoparticle-based drug delivery of cancer therapeutics due to its natural abundance and unique cancer-targeting ability. The propensity of albumin to naturally accumulate in tumours, further augmented by the incorporation of targeting ligands, has made the field of albumin-polymer conjugate development a much pursued one. Polymerization techniques such as RAFT and ATRP have paved the path to incorporate various polymers in the design of albumin-polymer hybrids, indicating the advancement of the field since the first instance of PEGylated albumin in 1977. The synergistic combination of albumin and polymer endows manifold features to these macromolecular hybrids to evolve as next generation therapeutics. The current review is successive to our previously published review on drug delivery vehicles based on albumin-polymer conjugates and aims to provide an update on the progress of albumin-polymer conjugates. This review also highlights the alternative of exploring albumin-polymer conjugates formed via supramolecular, non-covalent interactions. Albumin-based supramolecular polymer systems provide a versatile platform for functionalization, thereby, holding great potential in enhancing cytotoxicity and controlled delivery of therapeutic agents.
Collapse
|
55
|
Albayram MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 2022; 13:203. [PMID: 35017525 PMCID: PMC8752739 DOI: 10.1038/s41467-021-27887-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meningeal lymphatic vessels have been described in animal studies, but limited comparable data is available in human studies. Here we show dural lymphatic structures along the dural venous sinuses in dorsal regions and along cranial nerves in the ventral regions in the human brain. 3D T2-Fluid Attenuated Inversion Recovery magnetic resonance imaging relies on internal signals of protein rich lymphatic fluid rather than contrast media and is used in the present study to visualize the major human dural lymphatic structures. Moreover we detect direct connections between lymphatic fluid channels along the cranial nerves and vascular structures and the cervical lymph nodes. We also identify age-related cervical lymph node atrophy and thickening of lymphatics channels in both dorsal and ventral regions, findings which reflect the reduced lymphatic output of the aged brain.
Collapse
Affiliation(s)
- Mehmet Sait Albayram
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
| | - Garrett Smith
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Fatih Tufan
- Geriatrician (PP), Silivrikapi Mh. Hisaralti Cd, Istanbul, 34093, Turkey
| | - Ibrahim Sacit Tuna
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | | | - Michael Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Division of Cardiology, Department of Medicine, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, 29425, USA
| | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
56
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
57
|
Yu L, Hua Z, Luo X, Zhao T, Liu Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2021; 1877:188655. [PMID: 34780933 DOI: 10.1016/j.bbcan.2021.188655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
58
|
Zhu M. Immunological perspectives on spatial and temporal vaccine delivery. Adv Drug Deliv Rev 2021; 178:113966. [PMID: 34506868 DOI: 10.1016/j.addr.2021.113966] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 12/19/2022]
Abstract
The so-called rational design of vaccines has been a very attractive concept and also an important direction for vaccine research and development. However, the underlying rationales, especially on the immunological aspect, remain less systemically and deeply understood. Given the critical role of lymph nodes (LNs) in the induction of B and T cell responses upon vaccination, LN targeting has been a popular strategy in vaccine design. The LN is a highly organized structure; induction of adaptive immune response is highly orchestrated by various types of LN stromal cells and hematopoietic immune cells both spatially and temporally. Thus, not only LN targeting, but also cellular targeting and even subcellular compartment targeting should be considered for specifically enhanced vaccine efficacy. Moreover, temporal control of vaccine antigen and adjuvant delivery may also optimize the immune response.
Collapse
|
59
|
Gao Y, Yue Y, Xiong S. An Albumin-Binding Domain Peptide Confers Enhanced Immunoprotection Against Viral Myocarditis by CVB3 VP1 Vaccine. Front Immunol 2021; 12:666594. [PMID: 34630378 PMCID: PMC8492941 DOI: 10.3389/fimmu.2021.666594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced viral myocarditis is a common clinical cardiovascular disease without effective available vaccine. In this study, we tried to potentiate the immunoprotection efficacy of our previous CVB3-specific VP1 protein vaccine by introducing a streptococcal protein G-derived, draining lymph nodes (dLNs)-targeting albumin-binding domain (ABD) peptide. We found that compared with the original VP1 vaccine, ABD-fused VP1 (ABD-VP1) vaccine gained the new ability to efficiently bind murine albumin both in vitro and in vivo, possessed a much longer serum half-life in serum and exhibited more abundance in the dLNs after immunization. Accordingly, ABD-VP1 immunization not only significantly facilitated the enrichment and maturation of dendritic cells (DCs), induced higher percentages of IFN-γ+ CD8 + cells in the dLNs, but also robustly promoted VP1-induced T cell proliferation and cytotoxic T lymphocyte (CTL) responses in the spleens. More importantly, ABD-VP1 also elicited higher percentages of protective CD44hi CD62Lhi memory T cells in dLNs and spleens. Consequently, obvious protective effect against viral myocarditis was conferred by ABD-VP1 vaccine compared to the VP1 vaccine, reflected by the less body weight loss, improved cardiac function, alleviated cardiac histomorphological changes and an increased 28-day survival rate. Our results indicated that the ABD might be a promising immune-enhancing regime for vaccine design and development.
Collapse
Affiliation(s)
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
60
|
Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021; 38:1497-1518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023]
Abstract
Lipophilic conjugates (LCs) of small molecule drugs have been used widely in clinical and pre-clinical studies to achieve a number of pharmacokinetic and therapeutic benefits. For example, lipophilic derivatives of drugs are employed in several long acting injectable products to provide sustained drug exposure for hormone replacement therapy and to treat conditions such as neuropsychiatric diseases. LCs can also be used to modulate drug metabolism, and to enhance drug permeation across membranes, either by increasing lipophilicity to enhance passive diffusion or by increasing protein-mediated active transport. Furthermore, such conjugation strategies have been employed to promote drug association with endogenous macromolecular carriers (e.g. albumin and lipoproteins), and this in turn results in altered drug distribution and pharmacokinetic profiles, where the changes can be 'general' (e.g. prolonged plasma half-life) or 'specific' (e.g. enhanced delivery to specific tissues in parallel with the macromolecular carriers). Another utility of LCs is to enhance the encapsulation of drugs within engineered nanoscale drug delivery systems, in order to best take advantage of the targeting and pharmacokinetic benefits of nanomedicines. The current review provides a summary of the mechanisms by which lipophilic conjugates, including in combination with delivery vehicles, can be used to control drug delivery, distribution and therapeutic profiles. The article is structured into sections which highlight a specific benefit of LCs and then demonstrate this benefit with case studies. The review attempts to provide a toolbox to assist researchers to design and optimise drug candidates, including consideration of drug-formulation compatibility.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Tim Quach
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- PureTech Health, 6 Tide Street, Boston, MA, 02210, USA
| | - Chris Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Natalie Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
61
|
Chauhan A, Khan T, Omri A. Design and Encapsulation of Immunomodulators onto Gold Nanoparticles in Cancer Immunotherapy. Int J Mol Sci 2021; 22:8037. [PMID: 34360803 PMCID: PMC8347387 DOI: 10.3390/ijms22158037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
62
|
Walther R, Monge P, Pedersen AB, Benderoth A, Pedersen JN, Farzadfard A, Mandrup OA, Howard KA, Otzen DE, Zelikin AN. Per-glycosylation of the Surface-Accessible Lysines: One-Pot Aqueous Route to Stabilized Proteins with Native Activity. Chembiochem 2021; 22:2478-2485. [PMID: 33998129 DOI: 10.1002/cbic.202100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/11/2022]
Abstract
Chemical glycosylation of proteins is a powerful tool applied widely in biomedicine and biotechnology. However, it is a challenging undertaking and typically relies on recombinant proteins and site-specific conjugations. The scope and utility of this nature-inspired methodology would be broadened tremendously by the advent of facile, scalable techniques in glycosylation, which are currently missing. In this work, we investigated a one-pot aqueous protocol to achieve indiscriminate, surface-wide glycosylation of the surface accessible amines (lysines and/or N-terminus). We reveal that this approach afforded minimal if any change in the protein activity and recognition events in biochemical and cell culture assays, but at the same time provided a significant benefit of stabilizing proteins against aggregation and fibrillation - as demonstrated on serum proteins (albumins and immunoglobulin G, IgG), an enzyme (uricase), and proteins involved in neurodegenerative disease (α-synuclein) and diabetes (insulin). Most importantly, this highly advantageous result was achieved via a one-pot aqueous protocol performed on native proteins, bypassing the use of complex chemical methodologies and recombinant proteins.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | - Pere Monge
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | - Anja Benderoth
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | - Azad Farzadfard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Ole A Mandrup
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
63
|
Trac N, Chung EJ. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Exp Biol Med (Maywood) 2021; 246:2358-2371. [PMID: 33957802 DOI: 10.1177/15353702211010762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, Los Angeles, CA 90033, USA.,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
64
|
Mester S, Evers M, Meyer S, Nilsen J, Greiff V, Sandlie I, Leusen J, Andersen JT. Extended plasma half-life of albumin-binding domain fused human IgA upon pH-dependent albumin engagement of human FcRn in vitro and in vivo. MAbs 2021; 13:1893888. [PMID: 33691596 PMCID: PMC7954421 DOI: 10.1080/19420862.2021.1893888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Albumin has a serum half-life of 3 weeks in humans. This feature can be used to improve the pharmacokinetics of shorter-lived biologics. For instance, an albumin-binding domain (ABD) can be used to recruit albumin. A prerequisite for such design is that the ABD-albumin interaction does not interfere with pH-dependent binding of albumin to the human neonatal Fc receptor (FcRn), as FcRn acts as the principal regulator of the half-life of albumin. Thus, there is a need to know how ABDs act in the context of fusion partners and human FcRn. Here, we studied the binding and transport properties of human immunoglobulin A1 (IgA1), fused to a Streptococcus protein G-derived engineered ABD, in in vitro and in vivo systems harboring human FcRn. IgA has great potential as a therapeutic protein, but its short half-life is a major drawback. We demonstrate that ABD-fused IgA1 binds human FcRn pH-dependently and is rescued from cellular degradation in a receptor-specific manner in the presence of albumin. This occurs when ABD is fused to either the light or the heavy chain. In human FcRn transgenic mice, IgA1-ABD in complex with human albumin, gave 4-6-fold extended half-life compared to unmodified IgA1, where the light chain fusion showed the longest half-life. When the heavy chain-fused protein was pre-incubated with an engineered human albumin with improved FcRn binding, cellular rescue and half-life was further enhanced. Our study reveals how an ABD, which does not interfere with albumin binding to human FcRn, may be used to extend the half-life of IgA. Abbreviations: ABD - Albumin binding domain, ADA – anti-drug-antibodies, ADCC - Antibody-dependent cellular cytotoxicity, ELISA - Enzyme-linked Immunosorbent assay, FcαRI - Fcα receptor, FcγR - Fcγ receptor, FcRn - The neonatal Fc receptor, GST - Glutathione S-transferase, HC - Heavy chain, HERA - Human endothelial cell-based recycling assay, Her2 - Human epidermal growth factor 2, HMEC - Human microvascular endothelial cells, IgG - Immunoglobulin G, IgA - Immunoglobulin A, LC - Light chain, QMP - E505Q/T527M/K573P, WT - Wild type
Collapse
Affiliation(s)
- Simone Mester
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mitchell Evers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jeannette Nilsen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Inger Sandlie
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jeanette Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
65
|
Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
66
|
Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020; 160:115-135. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The advent of immunotherapy has revolutionised the treatment of some cancers. Harnessing the immune system to improve tumour cell killing is now standard clinical practice and immunotherapy is the first line of defence for many cancers that historically, were difficult to treat. A unifying concept in cancer immunotherapy is the activation of the immune system to mount an attack on malignant cells, allowing the body to recognise, and in some cases, eliminate cancer. However, in spite of a significant proportion of patients that respond well to treatment, there remains a subset who are non-responders and a number of cancers that cannot be treated with these therapies. These limitations highlight the need for targeted delivery of immunomodulators to both tumours and the effector cells of the immune system, the latter being highly concentrated in the lymphatic system. In this context, macromolecular therapies may provide a significant advantage. Macromolecules are too large to easily access blood capillaries and instead typically exhibit preferential uptake via the lymphatic system. In contexts where immune cells are the therapeutic target, particularly in cancer therapy, this may be advantageous. In this review, we examine in brief the current immunotherapy approaches in cancer and how macromolecular and nanomedicine strategies may improve the therapeutic profiles of these drugs. We subsequently discuss how therapeutics directed either by parenteral or mucosal administration, can be taken up by the lymphatics thereby accessing a larger proportion of the body's immune cells. Finally, we detail drug delivery strategies that have been successfully employed to target the lymphatics.
Collapse
|