51
|
Mi S, Qin XW, Lin YF, He J, Chen NN, Liu C, Weng SP, He JG, Guo CJ. Budding of Tiger Frog Virus (an Iridovirus) from HepG2 Cells via Three Ways Recruits the ESCRT Pathway. Sci Rep 2016; 6:26581. [PMID: 27225426 PMCID: PMC4880917 DOI: 10.1038/srep26581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
The cellular endosomal sorting complex required for transport (ESCRT) pathway is a multifunctional pathway involved in cell physiological activities. While the majority of RNA viruses bearing L-domains are known to hijack the ESCRT pathway to complete the budding process, the budding of large and complex enveloped DNA viruses, especially iridoviruses, has been rarely investigated. In the present study, we use the tiger frog virus (TFV) as a model to investigate whether iridoviruses are released from host cells through the ESCRT pathway. Inhibition of class E proteins and auxiliary proteins (VPS4A, VPS4B, Tsg101, Alix, and Nedd4.1) reduces extracellular virion production, which preliminarily indicates that the ESCRT pathway is involved in TFV release. The respective interactions of TFV VP031L, VP065L, VP093L with Alix, Tsg101, Nedd4 suggest the underlying molecular mechanism by which TFV gets access to the ESCRT pathway. Co-depletion of Alix, Tsg101, and Nedd4.1 induces a significant reduction in extracellular virion production, which implies the functional redundancy of host factors in TFV budding. Those results are first observation that iridovirus gains access to ESCRT pathway through three ways of interactions between viral proteins and host proteins. Our study provides a better understanding of the budding mechanism of enveloped DNA viruses.
Collapse
Affiliation(s)
- Shu Mi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Xiao-Wei Qin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Yi-Fan Lin
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Jian He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Nan-Nan Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Chang-Jun Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| |
Collapse
|
52
|
Fan Y, Chang MX, Ma J, LaPatra SE, Hu YW, Huang L, Nie P, Zeng L. Transcriptomic analysis of the host response to an iridovirus infection in Chinese giant salamander, Andrias davidianus. Vet Res 2015; 46:136. [PMID: 26589400 PMCID: PMC4654921 DOI: 10.1186/s13567-015-0279-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
The emergence of an infectious viral disease caused by the Chinese giant salamander iridovirus (GSIV) has led to substantial economic losses. However, no more molecular information is available for the understanding of the mechanisms associated with virus–host interaction. In this study, de novo sequencing was used to obtain abundant high-quality ESTs and investigate differentially-expressed genes in the spleen of Chinese giant salamanders that were either infected or mock infected with GSIV. Comparative expression analysis indicated that 293 genes were down-regulated and 220 genes were up-regulated. Further enrichment analysis showed that the most enriched pathway is “complement and coagulation cascades”, and significantly enriched diseases include “inherited thrombophilia”, “immune system diseases”, “primary immunodeficiency”, “complement regulatory protein defects”, and “disorders of nucleotide excision repair”. Additionally, 30 678 simple sequence repeats (SSRs) from all spleen samples, 26 355 single nucleotide polymorphisms (SNPs) from the spleens of uninfected animals and 36 070 SNPs from the spleens of infected animals were detected. The large amount of variation was specific for the Chinese giant salamanders that were infected with GSIV. The results reported herein provided significant and new EST information that could contribute greatly in investigations into the molecular functions of immune genes in the Chinese giant salamander.
Collapse
Affiliation(s)
- Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430223, China.
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Jie Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| | - Scott E LaPatra
- Research Division, Clear Springs Foods, Inc., PO Box 712, Buhl, ID, 83316, USA.
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Lili Huang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| |
Collapse
|
53
|
Epstein B, Storfer A. Comparative Genomics of an Emerging Amphibian Virus. G3 (BETHESDA, MD.) 2015; 6:15-27. [PMID: 26530419 PMCID: PMC4704714 DOI: 10.1534/g3.115.023762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022]
Abstract
Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination.
Collapse
Affiliation(s)
- Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
54
|
McCartney-Melstad E, Shaffer HB. Amphibian molecular ecology and how it has informed conservation. Mol Ecol 2015; 24:5084-109. [PMID: 26437125 DOI: 10.1111/mec.13391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023]
Abstract
Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems.
Collapse
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
55
|
Protective immunity of a Pichia pastoris expressed recombinant iridovirus major capsid protein in the Chinese giant salamander, Andrias davidianus. Vaccine 2015; 33:5662-5669. [DOI: 10.1016/j.vaccine.2015.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 01/12/2023]
|
56
|
You X, Sheng J, Liu L, Nie D, Liao Z. Three ferritin subunit analogs in Chinese giant salamander (Andrias davidianus) and their response to microbial stimulation. Mol Immunol 2015; 67:642-51. [PMID: 26319314 DOI: 10.1016/j.molimm.2015.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 11/28/2022]
Abstract
Ferritin, an evolutionarily conserved iron-binding protein, plays important roles in iron storage and detoxification and in host immune response to invading stimulus as well. In the present study, we identified three ferritin subunit analog cDNAs from Chinese giant salamander (Andrias davidianus). All the three ferritin subunit cDNAs had a putative iron responsive element in the 5'-untranslated region. Two deduced ferritin subunits (designated as cgsFerH and cgsFerM) had the highest identity of 90% to H type subunit of vertebrate ferritins, while another deduced ferritin subunit (designated as cgsFerL) had the highest identity of 84% to L type subunit of vertebrate ferritins. The Chinese giant salamander ferritin (cgsFer) was widely expressed in various tissues, with highest expression for cgsFerH and cgsFerL in liver and highest expression for cgsFerM in spleen. Infection of Chinese giant salamander with A. davidianus ranavirus showed significant induction of cgsFer expression. Both lipopolysaccharide and iron challenge drastically augmented cgsFer expression in the splenocytes and hepatocytes from Chinese giant salamander. In addition, recombinant cgsFers bound to ferrous iron in a dose-dependent manner, with significant ferroxidase activity. Furthermore, the recombinant cgsFer inhibited the growth of the pathogen Vibrio anguillarum. These results indicated that cgsFer was potential candidate of immune molecules involved in acute phase response to invading microbial pathogens in Chinese giant salamander possibly through its regulatory roles in iron homeostasis.
Collapse
Affiliation(s)
- Xiuling You
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jianghong Sheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liu Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dongsong Nie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
57
|
Yuan JD, Chen ZY, Huang X, Gao XC, Zhang QY. Establishment of three cell lines from Chinese giant salamander and their sensitivities to the wild-type and recombinant ranavirus. Vet Res 2015; 46:58. [PMID: 26070783 PMCID: PMC4465014 DOI: 10.1186/s13567-015-0197-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/24/2015] [Indexed: 11/16/2022] Open
Abstract
Known as lethal pathogens, Ranaviruses have been identified in diseased fish, amphibians (including Chinese giant salamander Andrias davidianus, the world’s largest amphibian) and reptiles, causing organ necrosis and systemic hemorrhage. Here, three Chinese giant salamander cell lines, thymus cell line (GSTC), spleen cell line (GSSC) and kidney cell line (GSKC) were initially established. Their sensitivities to ranaviruses, wild-type Andrias davidianus ranavirus (ADRV) and recombinant Rana grylio virus carrying EGFP gene (rRGV-EGFP) were tested. Temporal transcription pattern of ranavirus major capsid protein (MCP), fluorescence and electron microscopy observations showed that both the wild-type and recombinant ranavirus could replicate in the cell lines.
Collapse
Affiliation(s)
- Jiang-Di Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xing Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
58
|
North AC, Hodgson DJ, Price SJ, Griffiths AGF. Anthropogenic and ecological drivers of amphibian disease (ranavirosis). PLoS One 2015; 10:e0127037. [PMID: 26039741 PMCID: PMC4454639 DOI: 10.1371/journal.pone.0127037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/10/2015] [Indexed: 01/20/2023] Open
Abstract
Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria) populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000) dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild.
Collapse
Affiliation(s)
- Alexandra C. North
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - David J. Hodgson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | | | - Amber G. F. Griffiths
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
59
|
Jiang N, Fan Y, Zhou Y, Liu W, Ma J, Meng Y, Xie C, Zeng L. Characterization of Chinese giant salamander iridovirus tissue tropism and inflammatory response after infection. DISEASES OF AQUATIC ORGANISMS 2015; 114:229-237. [PMID: 26036830 DOI: 10.3354/dao02868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Chinese giant salamander iridovirus (GSIV), belonging to the genus Ranavirus in the family Iridoviridae, causes severe hemorrhagic lesions and nearly 100% mortality in naturally infected Chinese giant salamanders Andrias davidiamus. However, the replication and distribution of the virus has not been well characterized in vivo. Using in situ hybridization, the expression of the GSIV major capsid protein (MCP) was detected in the cytoplasm of cells of the spleen, kidney, liver and gut tissues. MCP expression in the spleen and kidney appeared to fluctuate significantly during the acute phase of infection. Using an immunofluorescence assay, GSIV antigens were abundant in the spleen and kidney tissues but appeared to be at relatively low levels in the liver and gut. Additionally, there were significant changes in the expression of the pro-inflammatory cytokines macrophage migration inhibitory factor (MIF), tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) in different tissues in response to infection with GSIV. The expression of MIF, TNF-α and IL-1β had significantly increased in the spleen at 3 d post-infection; this correlated with a decrease in virus replication in the spleen. These results suggest that the spleen and kidney are the major target tissues of GSIV, and the increased expression of MIF, TNF‑α and IL-1β may contribute to a reduction of virus replication in the spleen.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, PR China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Sutton WB, Gray MJ, Hoverman JT, Secrist RG, Super PE, Hardman RH, Tucker JL, Miller DL. Trends in Ranavirus Prevalence Among Plethodontid Salamanders in the Great Smoky Mountains National Park. ECOHEALTH 2015; 12:320-329. [PMID: 25537630 DOI: 10.1007/s10393-014-0994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Emerging pathogens are a potential contributor to global amphibian declines. Ranaviruses, which infect ectothermic vertebrates and are common in aquatic environments, have been implicated in die-offs of at least 72 amphibian species worldwide. Most studies on the subject have focused on pool-breeding amphibians, and infection trends in other amphibian species assemblages have been understudied. Our primary study objective was to evaluate hypotheses explaining ranavirus prevalence within a lungless salamander assemblage (Family Plethodontidae) in the Great Smoky Mountains National Park, USA. We sampled 566 total plethodontid salamanders representing 14 species at five sites over a 6-year period (2007-2012). We identified ranavirus-positive individuals in 11 of the 14 (78.6%) sampled species, with salamanders in the genus Desmognathus having greatest infection prevalence. Overall, we found the greatest support for site elevation and sampling year determining infection prevalence. We detected the greatest number of infections in 2007 with 82.5% of sampled individuals testing positive for ranavirus, which we attribute to record drought during this year. Infection prevalence remained relatively high in low-elevation sites in 2008 and 2009. Neither body condition nor aquatic dependence was a significant predictor of ranavirus prevalence. Overall, our results indicate that life history differences among species play a minor role determining ranavirus prevalence compared to the larger effects of site elevation and yearly fluctuations (likely due to environmental stressors) during sampling years.
Collapse
Affiliation(s)
- William B Sutton
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, 37209, USA.
| | - Matthew J Gray
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard G Secrist
- Great Smoky Mountains Institute at Tremont, Townsend, TN, 37882, USA
| | - Paul E Super
- Appalachian Highlands Science Learning Center, Great Smoky Mountains National Park, Lake Junaluska, NC, 28745, USA
| | - Rebecca H Hardman
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer L Tucker
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Debra L Miller
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
61
|
Winzeler ME, Hamilton MT, Tuberville TD, Lance SL. First case of ranavirus and associated morbidity and mortality in an eastern mud turtle Kinosternon subrubrum in South Carolina. DISEASES OF AQUATIC ORGANISMS 2015; 114:77-81. [PMID: 25958808 DOI: 10.3354/dao02849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ranaviruses are double-stranded DNA viruses that infect amphibians, fish, and reptiles, causing global epidemics in some amphibian populations. It is important to identify new species that may be susceptible to the disease, particularly if they reside in the same habitat as other at-risk species. On the Savannah River Site (SRS) in Aiken, South Carolina, USA, ranaviruses are present in several amphibian populations, but information is lacking on the presence, prevalence, and morbidity of the virus in reptile species. An eastern mud turtle Kinosternon subrubrum captured on the SRS in April 2014 exhibited clinical signs of a ranaviral infection, including oral plaque and conjunctivitis. Quantitative PCR analyses of DNA from liver tissue, ocular, oral, nasal, and cloacal swabs were all positive for ranavirus, and sequencing of the template confirmed infection with a FV3-like ranavirus. Histopathologic examination of postmortem tissue samples revealed ulceration of the oral and tracheal mucosa, intracytoplasmic epithelial inclusions in the oral mucosa and tongue sections, individualized and clusters of melanomacrophages in the liver, and bacterial rods located in the liver, kidney, heart, stomach, and small intestine. This is the first report of morbidity and mortality of a mud turtle with a systemic ranaviral infection.
Collapse
Affiliation(s)
- Megan E Winzeler
- Savannah River Ecology Lab, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | | | | | | |
Collapse
|
62
|
Geng X, Wei H, Shang H, Zhou M, Chen B, Zhang F, Zang X, Li P, Sun J, Che J, Zhang Y, Xu C. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J Proteomics 2015; 119:196-208. [DOI: 10.1016/j.jprot.2015.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
|
63
|
Development of the Chinese giant salamander Andrias davidianus farming industry in Shaanxi Province, China: conservation threats and opportunities. ORYX 2015. [DOI: 10.1017/s0030605314000842] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractThe Chinese giant salamander Andrias davidianus is endemic to China and is Critically Endangered, largely because of overexploitation for food. This species is an expensive delicacy in China, and a rapidly growing industry to farm the species has developed throughout much of the country, centred on the Qinling Mountain region of Shaanxi Province. During a 2010 workshop on Chinese giant salamander conservation, which involved a range of stakeholders from across China, it became clear that the conservation community knew little about the salamander farming industry and whether it posed actual or potential threats or opportunities for conservation of the Chinese giant salamander. We therefore conducted a series of investigations to understand the industry better. Our results indicate that although farming of Chinese giant salamanders has the potential to be a positive development for conservation by supplying market demand with farmed animals, it is currently more likely to threaten than support conservation of the species, with continued overexploitation and the potential added impacts of infectious disease and genetic pollution arising from farming practices such as movement of animals across the country and the release of untreated farm wastewater and farmed salamanders to the wild.
Collapse
|
64
|
Morphological changes in amphibian and fish cell lines infected with Andrias davidianus ranavirus. J Comp Pathol 2015; 152:110-3. [PMID: 25728809 DOI: 10.1016/j.jcpa.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 12/27/2022]
Abstract
Andrias davidianus ranavirus (ADRV) is an emerging viral pathogen that causes severe disease in Chinese giant salamanders, the largest extant amphibian in the world. A fish cell line, Epithelioma papulosum cyprinid (EPC), and a new amphibian cell line, Chinese giant salamander spleen cell (GSSC), were infected with ADRV and observed by light and electron microscopy. The morphological changes in these two cell lines infected with ADRV were compared. Cytopathic effect (CPE) began with rounding of the cells, progressing to cell detachment in the cell monolayer, followed by cell lysis. Significant CPE was visualized as early as 24 h post infection (hpi) in EPC cells and at 36 hpi in GSSC cells. Microscopical examination showed clear and significant CPE in EPC cells, while less extensive and irregular CPE with some adherent cells remaining was observed in GSSC cells. Following ADRV infection, CPE became more extensive. Transmission electron micrographs showed many virus particles around cytoplasmic vacuoles, formed as crystalline arrays or scattered in the cytoplasm of infected cells. Infected cells showed alteration in nuclear morphology, with condensed and marginalized nuclear chromatin on the inner aspect of the nuclear membrane and formation of a cytoplasmic viromatrix adjacent to the nucleus in both cell lines. Some virus particles were also detected in the nucleus of infected GSSC cells. Both cell lines are able to support replication of ADRV and can therefore be used to investigate amphibian ranaviruses.
Collapse
|
65
|
Stöhr AC, López-Bueno A, Blahak S, Caeiro MF, Rosa GM, Alves de Matos AP, Martel A, Alejo A, Marschang RE. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe. PLoS One 2015; 10:e0118633. [PMID: 25706285 PMCID: PMC4338083 DOI: 10.1371/journal.pone.0118633] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of ranaviruses and the emergence of pathogen pollution via animal trade of ectothermic vertebrates.
Collapse
Affiliation(s)
- Anke C. Stöhr
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Silvia Blahak
- Chemisches und Veterinäruntersuchungsamt Ostwestfalen Lippe (CVUA-OWL), Detmold, Germany
| | - Maria F. Caeiro
- Centro de Estudos do Ambiente e do Mar (CESAM) Lisboa, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo M. Rosa
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - António Pedro Alves de Matos
- Centro de Estudos do Ambiente e do Mar (CESAM) Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, Portugal
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Spain
| | - Rachel E. Marschang
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
- Laboklin GmbH & Co. KG, Laboratory for Clinical Diagnostics, Bad Kissingen, Germany
- * E-mail:
| |
Collapse
|
66
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
67
|
Liu W, Xu J, Ma J, LaPatra SE, Meng Y, Fan Y, Zhou Y, Yang X, Zeng L. Immunological responses and protection in Chinese giant salamander Andrias davidianus immunized with inactivated iridovirus. Vet Microbiol 2014; 174:382-390. [PMID: 25465180 DOI: 10.1016/j.vetmic.2014.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Chinese giant salamander hemorrhage is a newly emerged infectious disease in China and has caused huge economic losses. The causative pathogen has been identified as the giant salamander iridovirus (GSIV). In this study, the immunological responses and protection in Chinese giant salamander immunized with β-propiolactone inactivated GSIV are reported. Red and white blood cell counting and classification, phagocytic activity, neutralizing antibody titration, immune-related gene expression and determination of the relative percent survival were evaluated after vaccination. The red and white blood cell counts showed that the numbers of erythrocytes and leukocytes in the peripheral blood of immunized Chinese giant salamanders increased significantly on days 4 and 7 post-injection (P<0.01). Additionally, the differential leukocyte count of monocytes and neutrophils were significantly different compared to the control group (P<0.01); the percentage of lymphocytes was 70.45±7.52% at day 21. The phagocytic percentage and phagocytic index was 38.78±4.33% and 3.75±0.52, respectively, at day 4 post-immunization which were both significantly different compared to the control group (P<0.01). The serum neutralizing antibody titer increased at day 14 post-immunization and reached the highest titer (341±9.52) at day 21. The quantitative PCR analysis revealed that the immunization significantly up-regulated the expression of immune related genes TLR-9 and MyD88 the first two weeks after immunization. The challenge test conducted at day 30 post-injection demonstrated that the immunized group produced a relative survival of 72%. These results indicate that the inactivated GSIV could elicit significant non-specific and specific immunological responses in Chinese giant salamander that resulted in significant protection against GSIV induced disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jie Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Scott E LaPatra
- Research Division, Clear Springs Foods, Inc., P.O. Box 712, Buhl, ID 83316, USA
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xin Yang
- College of Fisheries, Nanjing Agricultural University, Wuxi 214081, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
68
|
Waltzek TB, Miller DL, Gray MJ, Drecktrah B, Briggler JT, MacConnell B, Hudson C, Hopper L, Friary J, Yun SC, Malm KV, Weber ES, Hedrick RP. New disease records for hatchery-reared sturgeon. I. Expansion of frog virus 3 host range into Scaphirhynchus albus. DISEASES OF AQUATIC ORGANISMS 2014; 111:219-227. [PMID: 25320034 DOI: 10.3354/dao02761] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In 2009, juvenile pallid sturgeon Scaphirhynchus albus, reared at the Blind Pony State Fish Hatchery (Missouri, USA) to replenish dwindling wild stocks, experienced mass mortality. Histological examination revealed extensive necrosis of the haematopoietic tissues, and a virus was isolated from affected organs in cell culture and then observed by electron microscopy. Experimental infection studies revealed that the virus is highly pathogenic to juvenile pallid sturgeon, one of several species of sturgeon currently listed as Endangered. The DNA sequence of the full length major capsid protein gene of the virus was identical to that of the species Frog virus 3 (FV3), the type species for the genus Ranavirus, originally isolated from northern leopard frog Lithobates pipiens. Although FV3 infections and epizootics in amphibians and reptiles are well documented, there is only 1 prior report of a natural infection of FV3 in fish. Our results illustrate the broad potential host range for FV3, with the known potential to cause significant mortality in poikilothermic vertebrates across 3 taxonomic classes including bony fishes, anuran and caudate amphibians, and squamate and testudine reptiles.
Collapse
Affiliation(s)
- Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zhu R, Chen ZY, Wang J, Yuan JD, Liao XY, Gui JF, Zhang QY. Thymus cDNA library survey uncovers novel features of immune molecules in Chinese giant salamander Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:413-422. [PMID: 24909429 DOI: 10.1016/j.dci.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
A ranavirus-induced thymus cDNA library was constructed from Chinese giant salamander, the largest extant amphibian species. Among the 137 putative immune-related genes derived from this library, these molecules received particular focus: immunoglobulin heavy chains (IgM, IgD, and IgY), IFN-inducible protein 6 (IFI6), and T cell receptor beta chain (TCRβ). Several unusual features were uncovered: IgD displays a structure pattern distinct from those described for other amphibians by having only four constant domains plus a hinge region. A unique IgY form (IgY(ΔFc)), previously undescribed in amphibians, is present in serum. Alternative splicing is observed to generate IgH diversification. IFI6 is newly-identified in amphibians, which occurs in two forms divergent in subcelluar distribution and antiviral activity. TCRβ immunoscope profile follows the typical vertebrate pattern, implying a polyclonal T cell repertoire. Collectively, the pioneering survey of ranavirus-induced thymus cDNA library from Chinese giant salamander reveals immune components and characteristics in this primitive amphibian.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiang-Di Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yong Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
70
|
Cheng K, Jones MEB, Jancovich JK, Burchell J, Schrenzel MD, Reavill DR, Imai DM, Urban A, Kirkendall M, Woods LW, Chinchar VG, Pessier AP. Isolation of a Bohle-like iridovirus from boreal toads housed within a cosmopolitan aquarium collection. DISEASES OF AQUATIC ORGANISMS 2014; 111:139-152. [PMID: 25266901 DOI: 10.3354/dao02770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A captive 'survival assurance' population of 56 endangered boreal toads Anaxyrus boreas boreas, housed within a cosmopolitan collection of amphibians originating from Southeast Asia and other locations, experienced high mortality (91%) in April to July 2010. Histological examination demonstrated lesions consistent with ranaviral disease, including multicentric necrosis of skin, kidney, liver, spleen, and hematopoietic tissue, vasculitis, and myriad basophilic intracytoplasmic inclusion bodies. Initial confirmation of ranavirus infection was made by Taqman real-time PCR analysis of a portion of the major capsid protein (MCP) gene and detection of iridovirus-like particles by transmission electron microscopy. Preliminary DNA sequence analysis of the MCP, DNA polymerase, and neurofilament protein (NFP) genes demonstrated highest identity with Bohle iridovirus (BIV). A virus, tentatively designated zoo ranavirus (ZRV), was subsequently isolated, and viral protein profiles, restriction fragment length polymorphism analysis, and next generation DNA sequencing were performed. Comparison of a concatenated set of 4 ZRV genes, for which BIV sequence data are available, with sequence data from representative ranaviruses confirmed that ZRV was most similar to BIV. This is the first report of a BIV-like agent outside of Australia. However, it is not clear whether ZRV is a novel North American variant of BIV or whether it was acquired by exposure to amphibians co-inhabiting the same facility and originating from different geographic locations. Lastly, several surviving toads remained PCR-positive 10 wk after the conclusion of the outbreak. This finding has implications for the management of amphibians destined for use in reintroduction programs, as their release may inadvertently lead to viral dissemination.
Collapse
Affiliation(s)
- Kwang Cheng
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP). Vet Microbiol 2014; 172:129-39. [DOI: 10.1016/j.vetmic.2014.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 01/04/2023]
|
72
|
Huang LY, Wang KY, Xiao D, Chen DF, Geng Y, Wang J, He Y, Wang EL, Huang JL, Xiao GY. Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium. FISH & SHELLFISH IMMUNOLOGY 2014; 38:34-41. [PMID: 24631734 DOI: 10.1016/j.fsi.2014.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Attenuated Salmonella typhimurium SL7207 was used as a carrier for a reconstructed DNA vaccine against Streptococcus agalactiae. A 1.02 kb DNA fragment, encoding for a portion of the surface immunogenic protein (Sip) of S. agalactiae was inserted into pVAX1. The recombinant plasmid pVAX1-sip was transfected in EPC cells to detect the transient expression by an indirect immunofluorescence assay, together with Western blot analysis. The pVAX1-sip was transformed by electroporation into SL7207. The stability of pVAX1-sip into Salmonella was over 90% after 50 generations with antibiotic selection in vitro while remained stable over 80% during 35 generations under antibiotic-free conditions. The LD50 of SL/pVAX1-sip was 1.7 × 10(11) CFU/fish by intragastric administration which indicated a quite low virulence. Tilapias were inoculated orally at 10(8) CFU/fish, the recombinant bacteria were found present in intestinal tract, spleens and livers and eventually eliminated from the tissues 4 weeks after immunization. Fish immunized at 10(7), 10(8) and 10(9) CFU/fish with different immunization times caused various levels of serum antibody and an effective protection against lethal challenge with the wild-type strain S. agalactiae. Integration studies showed that the pVAX1-sip did not integrate with tilapia chromosomes. The DNA vaccine SL/pVAX1-sip was proved to be safe and effective in protecting tilapias against S. agalactiae infection.
Collapse
Affiliation(s)
- L Y Huang
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - K Y Wang
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | - D Xiao
- Animal Health Research Institute of Tongwei Co., Ltd., Chengdu, Sichuan 610041, People's Republic of China
| | - D F Chen
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Department of Aquaculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Y Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - J Wang
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Y He
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - E L Wang
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - J L Huang
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - G Y Xiao
- Research Center of Fish Disease, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| |
Collapse
|
73
|
First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade. PLoS One 2014; 9:e90750. [PMID: 24599268 PMCID: PMC3944218 DOI: 10.1371/journal.pone.0090750] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.
Collapse
|
74
|
Zhu R, Chen ZY, Wang J, Yuan JD, Liao XY, Gui JF, Zhang QY. Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:311-322. [PMID: 24135718 DOI: 10.1016/j.dci.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 06/02/2023]
Abstract
A series of MHC alleles (including 26 class IA, 27 class IIA, and 17 class IIB) were identified from Chinese giant salamander Andrias davidianus (Anda-MHC). These genes are similar to classical MHC molecules in terms of characteristic domains, functional residues, deduced tertiary structures and genetic diversity. The majority of variation between alleles is found in the putative peptide-binding region (PBR), which is driven by positive Darwinian selection. The coexistence of two isoforms in MHC IA, IIA, and IIB alleles are shown: one full-length transcript and one novel splice variant. Despite lake of the external domains, these variants exhibit similar subcellular localization with the full-length transcripts. Moreover, the expression of MHC isoforms are up-regulated upon in vivo and in vitro stimulation with Andrias davidianus ranavirus (ADRV), suggesting their potential roles in the immune response. The results provide insights into understanding MHC variation and function in this ancient and endangered urodele amphibian.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Ultrastructural Morphogenesis of an Amphibian Iridovirus Isolated from Chinese Giant Salamander (Andrias davidianus). J Comp Pathol 2014; 150:325-31. [DOI: 10.1016/j.jcpa.2013.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022]
|
76
|
Meng Y, Ma J, Jiang N, Zeng LB, Xiao HB. Pathological and microbiological findings from mortality of the Chinese giant salamander (Andrias davidianus). Arch Virol 2014; 159:1403-12. [PMID: 24385158 DOI: 10.1007/s00705-013-1962-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
Abstract
The Chinese giant salamander, Andrias davidianus, is a nationally protected and cultured species in China. Recently, a severe epizootic occurred in cultured Chinese giant salamanders in Hubei, Hunan, Sichuan, Shaanxi, and Zhejiang provinces of China, causing substantial economic losses. The typical clinical signs of diseased larval animals were jaw and abdominal swelling and subcutaneous hemorrhaging. Diseased adult animals exhibited skin hemorrhages, ulceration of the hind limbs, and multiple hemorrhagic spots in the visceral organs. Histopathological observation indicated tissue necrosis and cytoplasmic inclusions in the spleen, liver and kidney, suggestive of viral disease. A viral agent was isolated from affected tissues in cell culture. The virus was determined to be pathogenic after experimental infection. Electron microscopy revealed iridovirus-like virions with a size of 140-180 nm in diameter inside the kidney of naturally infected animals and in cell culture. The major capsid protein (MCP) of the virus exhibited 98-99 % sequence identity to ranaviruses. Additionally, phylogenetic analysis indicated that the virus belonged to the genus Ranavirus. Comparative analysis of the MCP gene sequence with those of other viruses previously isolated from Chinese giant salamanders revealed that these isolates were highly similar, although a few variations were observed. The virus was preliminarily named Chinese giant salamander iridovirus (GSIV).
Collapse
Affiliation(s)
- Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China
| | | | | | | | | |
Collapse
|
77
|
Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV). Vet Res 2013; 44:101. [PMID: 24143877 PMCID: PMC4015033 DOI: 10.1186/1297-9716-44-101] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/04/2013] [Indexed: 01/08/2023] Open
Abstract
Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus (ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders, and broaden our understanding of evolutionary emergence of ranaviruses.
Collapse
|
78
|
Development of a loop-mediated isothermal amplification assay for rapid detection of iridovirus in the Chinese giant salamander. J Virol Methods 2013; 194:211-6. [PMID: 24025343 DOI: 10.1016/j.jviromet.2013.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/24/2022]
Abstract
The Chinese giant salamander (Andrias davidianus) iridovirus (GSIV) is an emerging infectious pathogen responsible for severe hemorrhagic disease and high mortality in cultured Chinese giant salamanders. A loop-mediated isothermal amplification (LAMP) assay based on the major caspid protein (MCP) gene has been developed to detect this virus. Primer pairs for the LAMP assay were designed based on the GSIV MCP gene sequence. Amplification results indicate that under optimized conditions the LAMP assay has the ability to specifically detect the virus in both diseased animals and infected epithelioma papilloma cyprinid (EPC) cells. The assay was shown to be 10-fold more sensitive than nested PCR and was able to detect concentrations of 10(-9) (approximately 0.01 pg/μL). The LAMP assay is relatively easy to perform in situ and the amplification products can be observed directly under UV light or via staining with SYBR Green I. The LAMP assay is also rapid and cost-effective. This study establishes the use of a LAMP assay for rapid detection of GSIV, which is a novel and important tool for the diagnosis of GSIV infection in laboratory or farmed Chinese giant salamanders.
Collapse
|
79
|
Landsberg JH, Kiryu Y, Tabuchi M, Waltzek TB, Enge KM, Reintjes-Tolen S, Preston A, Pessier AP. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. DISEASES OF AQUATIC ORGANISMS 2013; 105:89-99. [PMID: 23872853 DOI: 10.3354/dao02625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A multispecies amphibian larval mortality event, primarily affecting American bullfrogs Lithobates catesbeianus, was investigated during April 2011 at the Mike Roess Gold Head Branch State Park, Clay County, Florida, USA. Freshly dead and moribund tadpoles had hemorrhagic lesions around the vent and on the ventral body surface, with some exhibiting a swollen abdomen. Bullfrogs (100%), southern leopard frogs L. sphenocephalus (33.3%), and gopher frogs L. capito (100%) were infected by alveolate parasites. The intensity of infection in bullfrog livers was high. Tadpoles were evaluated for frog virus 3 (FV3) by histology and PCR. For those southern leopard frog tadpoles (n = 2) whose livers had not been obscured by alveolate spore infection, neither a pathologic response nor intracytoplasmic inclusions typically associated with clinical infections of FV3-like ranavirus were noted. Sequencing of a portion (496 bp) of the viral major capsid protein gene confirmed FV3-like virus in bullfrogs (n = 1, plus n = 6 pooled) and southern leopard frogs (n = 1, plus n = 4 pooled). In July 2011, young-of-the-year bullfrog tadpoles (n = 7) were negative for alveolate parasites, but 1 gopher frog tadpole was positive. To our knowledge, this is the first confirmed mortality event for amphibians in Florida associated with FV3-like virus, but the extent to which the virus played a primary role is uncertain. Larval mortality was most likely caused by a combination of alveolate parasite infections, FV3-like ranavirus, and undetermined etiological factors.
Collapse
Affiliation(s)
- Jan H Landsberg
- Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Stöhr AC, Fleck J, Mutschmann F, Marschang RE. Ranavirus infection in a group of wild-caught Lake Urmia newts Neurergus crocatus imported from Iraq into Germany. DISEASES OF AQUATIC ORGANISMS 2013; 103:185-189. [PMID: 23574704 DOI: 10.3354/dao02556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
High mortality, in association with anorexia and skin ulcerations, occurred in a group of wild-caught Lake Urmia newts Neurergus crocatus, imported from Iraq in 2011. Predominant findings in the pathological examinations consisted of systemic hemorrhages and ulcerative dermatitis. Ranavirus DNA was detected via PCR in 2 of 3 dead animals, and a part of the major capsid protein (MCP) gene was sequenced. The analyzed portion of the MCP gene was 99% identical to the corresponding portion of the frog virus 3 genome. This is the first description of a ranavirus in Lake Urmia newts and in wild-caught amphibians from Iraq, as well as the first description of ranavirus infection in a urodele from the Middle East.
Collapse
Affiliation(s)
- Anke C Stöhr
- Fachgebiet für Umwelt und Tierhygiene, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
81
|
Molecular Characterization and Virulence Genes of Aeromonas hydrophila Isolated from the Chinese Giant Salamander ( Andrias davidianus). ASIAN HERPETOL RES 2013. [DOI: 10.3724/sp.j.1245.2012.00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Gilbert M, Bickford D, Clark L, Johnson A, Joyner PH, Ogg Keatts L, Khammavong K, Nguyễn Văn L, Newton A, Seow TPW, Roberton S, Silithammavong S, Singhalath S, Yang A, Seimon TA. Amphibian pathogens in Southeast Asian frog trade. ECOHEALTH 2012; 9:386-398. [PMID: 23404036 DOI: 10.1007/s10393-013-0817-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
Amphibian trade is known to facilitate the geographic spread of pathogens. Here we assess the health of amphibians traded in Southeast Asia for food or as pets, focusing on Batrachochytrium dendrobatidis (Bd), ranavirus and general clinical condition. Samples were collected from 2,389 individual animals at 51 sites in Lao PDR, Cambodia, Vietnam and Singapore for Bd screening, and 74 animals in Cambodia and Vietnam for ranavirus screening. Bd was found in one frog (n = 347) in Cambodia and 13 in Singapore (n = 419). No Bd was found in Lao PDR (n = 1,126) or Vietnam (n = 497), and no ranavirus was found in Cambodia (n = 70) or Vietnam (n = 4). Mild to severe dermatological lesions were observed in all East Asian bullfrogs Hoplobatrachus rugolosus (n = 497) sampled in farms in Vietnam. Histologic lesions consistent with sepsis were found within the lesions of three frogs and bacterial sepsis in two (n = 4); one had Gram-negative bacilli and one had acid-fast organisms consistent with mycobacterium sp. These results confirm that Bd is currently rare in amphibian trade in Southeast Asia. The presence of Mycobacterium-associated disease in farmed H. rugolosus is a cause for concern, as it may have public health implications and indicates the need for improved biosecurity in amphibian farming and trade.
Collapse
Affiliation(s)
- Martin Gilbert
- Wildlife Conservation Society, 2300 Southern Blvd, Bronx, NY 10460, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses. J Virol 2012; 86:3617-25. [PMID: 22301140 DOI: 10.1128/jvi.07108-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Worldwide amphibian population declines have been ascribed to global warming, increasing pollution levels, and other factors directly related to human activities. These factors may additionally be favoring the emergence of novel pathogens. In this report, we have determined the complete genome sequence of the emerging common midwife toad ranavirus (CMTV), which has caused fatal disease in several amphibian species across Europe. Phylogenetic and gene content analyses of the first complete genomic sequence from a ranavirus isolated in Europe show that CMTV is an amphibian-like ranavirus (ALRV). However, the CMTV genome structure is novel and represents an intermediate evolutionary stage between the two previously described ALRV groups. We find that CMTV clusters with several other ranaviruses isolated from different hosts and locations which might also be included in this novel ranavirus group. This work sheds light on the phylogenetic relationships within this complex group of emerging, disease-causing viruses.
Collapse
|
84
|
Ecopathology of ranaviruses infecting amphibians. Viruses 2011; 3:2351-2373. [PMID: 22163349 PMCID: PMC3230856 DOI: 10.3390/v3112351] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/03/2011] [Accepted: 11/10/2011] [Indexed: 12/19/2022] Open
Abstract
Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.
Collapse
|