51
|
Pan CG, Xiao SK, Yu KF, Wu Q, Wang YH. Legacy and alternative per- and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: Fate, trophic transfer and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123618. [PMID: 32823029 DOI: 10.1016/j.jhazmat.2020.123618] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
The usage of alternative per- and polyfluoroalkyl substances (PFASs) has been increasing due to the restriction and elimination of legacy PFASs. However, there is limited knowledge on bioaccumulation and trophic magnification of alternative PFASs, especially in subtropical ecosystems. In the present study, we performed a comprehensive survey to investigate the occurrence, bioaccumulation and trophic magnification of legacy and alternative PFASs in subtropical marine food webs in the Beibu Gulf, South China. Results showed that perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) were the predominant PFASs in water phase, while perfluorooctane sufonate (PFOS) contributed most to the sum of target PFASs in sediments and marine organisms. Of the investigated PFASs, PFOS and 6:2 chlorinated polyfluoroalkyl ether sulfonic acids (F-53B) exhibited the highest bioaccumulation factor with values > 5000, qualifying as very bioaccumulative chemicals. There was a significant positive correlation between log BSAF and the carbon chain length of perfluoroalkyl carboxylic acids (PFCAs). Trophic magnification (TMF) was observed for PFOS and F-53B, while the remaining PFASs were biodiluted through the present food web. The hazard ratios for PFOS and PFOA in all organisms were far less than unity, suggesting overall low PFAS risks for humans through consumption of marine organisms.
Collapse
Affiliation(s)
- Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
52
|
Wang Q, Ruan Y, Jin L, Zhang X, Li J, He Y, Wei S, Lam JCW, Lam PKS. Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1045-1056. [PMID: 33395277 DOI: 10.1021/acs.est.0c06685] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been manufactured and widely used for over 60 years. Currently, there are thousands of marketed PFASs, but only dozens of them are routinely monitored. This work involved target, nontarget, and suspect screening of PFASs in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) and finless porpoise (Neophocaena phocaenoides), two resident marine mammals in the South China Sea, stranded between 2012 and 2018. Among the 21 target PFASs, perfluorooctane sulfonate and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) predominated in the samples, accounting for 46 and 30% of the total PFASs, respectively. Significantly higher total target PFAS concentrations (p < 0.05) were found in dolphin liver samples [3.23 × 103 ± 2.63 × 103 ng/g dry weight (dw)] than in porpoise liver samples (2.63 × 103 ± 1.10 × 103 ng/g dw). Significant increasing temporal trends (p < 0.05) were found in the concentrations of two emerging PFASs, perfluoroethylcyclohexane sulfonate and 2,3,3,3-tetrafluoro-2-propanoate in porpoises, indicating increasing pollution by these emerging PFASs. Forty-four PFASs from 9 classes were additionally identified by nontarget and suspect screening, among which 15 compounds were reported for the first time in marine mammals. A primary risk assessment showed that the emerging PFAS 6:2 Cl-PFESA could have possible adverse effects in terms of reproductive injury potential on most of the investigated cetaceans.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Jing Li
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Paul K S Lam
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
53
|
Cheang CC, Lee BY, Ip BHY, Yiu WH, Tsang LM, Ang PO. Fish and crustacean biodiversity in an outer maritime estuary of the Pearl River Delta revealed by environmental DNA. MARINE POLLUTION BULLETIN 2020; 161:111707. [PMID: 33065394 DOI: 10.1016/j.marpolbul.2020.111707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Understanding the faunal community structure in the estuary would be crucial in assessing the health of the ecosystem. The poor visibility in the estuarine area due to the outflow from the Pearl River hinders the conventional visual census in assessing the megafaunal biodiversity. In this study, the fish and crustacean biodiversity of Hong Kong's western waters, i.e. the outer maritime estuary of the PRD, were studied through the metabarcoding of environmental DNA (eDNA). eDNA from the seawater and sediment samples was extracted from five sites in the region. After testing the performance of two genetic markers, amplicons of the cytochrome oxidase I, amplified by polymerase chain reaction, were subjected to Illumina high-throughput sequencing (MiSeq) analysis. A total of 22 fish species from 17 families and 34 crustacean species from 27 families were identified by blasting the sequences against the NCBI GenBank database, demonstrating segregation between samples from different sites. This study provides insight on the detail distribution of fish assembly in PRD, when compared with a previous eDNA study in the inner brackish PRD.
Collapse
Affiliation(s)
- Chi-Chiu Cheang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, N.T., Hong Kong, China.
| | - Bo-Yee Lee
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, N.T., Hong Kong, China
| | - Brian Ho-Yeung Ip
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, N.T., Hong Kong, China
| | - Wai-Hong Yiu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, N.T., Hong Kong, China
| | - Ling-Ming Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Put O Ang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
54
|
Hamid H, Li LY, Grace JR. Effect of substrate concentrations on aerobic biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate. CHEMOSPHERE 2020; 261:128108. [PMID: 33113640 DOI: 10.1016/j.chemosphere.2020.128108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Biotransformation of 6:2 fluorotelomer sulfonate (FTS) results in the formation of short-chain (C4 - C6) perfluorocarboxylic acids (PFCAs) in landfill leachate. Although leachate substrate concentrations (i.e., organic carbon, ammonia) vary widely, their effects on 6:2 FTS biotransformation and PFCAs formation are unknown. This study investigated the effect of organic carbon and ammonia concentration in 6:2 FTS aerobic biotransformation and PFCA formation in leachate. Biotransformation experiments were conducted with sediment collected from a landfill leachate ditch, to which deionized (DI) water and various amounts of leachate were added. Microbial community analysis using 16S rRNA indicated that while phylum Proteobacteria dominated the bacterial composition throughout the 60 days, Actinobacteria increased with time. Many genera from Proteobacteria and Actinobacteria can synthesize a wide array of enzymes, indicating that these phyla are likely to play an important role in 6:2 FTS biotransformation. Higher biotransformation of 6:2 FTS was observed in leachate-added microcosms (∼21%), compared to DI water microcosm (∼14%), likely reflecting the substrate dependency of 6:2 FTS biotransformation. Substrate limiting conditions in DI water microcosm resulted in slightly greater formation of ∑(C4 - C6) PFCAs (∼14 mol%), compared with leachate added microcosms (10-13 mol%). The findings suggest that dilution of landfill leachate, (e.g., during wet seasons), likely results in reduced 6:2 FTS biotransformation and increased PFCAs formation compared to dry conditions. Observed formation of C7 - C8 PFCAs in the live microcosms suggested that landfills act as secondary sources of legacy PFCAs (e.g., perfluorooctanoic acid) in the environment.
Collapse
Affiliation(s)
- Hanna Hamid
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Loretta Y Li
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - John R Grace
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
55
|
Tang L, Liu M, Hu C, Zhou B, Lam PKS, Lam JCW, Chen L. Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115284. [PMID: 32781212 DOI: 10.1016/j.envpol.2020.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Perfluorobutane sulfonate (PFBS), an environmental pollutant of emerging concern, is previously shown to dynamically interact with hypoxia on aquatic developmental toxicities. However, the molecular mechanisms underlying the interaction remain unknown. In this follow-up study, marine medaka embryos were exposed to 0 and 3.3 mg/L of PFBS under normoxia (6.9 mg/L) or hypoxia (1.7 mg/L) condition till 15 days post-fertilization. High-throughput transcriptomic sequencing was employed to filter differentially expressed genes and provide mechanistic insight into interactive action between hypoxia and PFBS. The results showed that hypoxia alone and the coexposure paradigm were similarly potent to modify transcriptional profiles, with the majority of genes significantly down-regulated. In contrast, transcriptional toxicity of PFBS was relatively milder. Functional annotation analyses found that hypoxia and coexposure groups mainly impacted phototransduction signaling by decreasing the transcriptions of cyclic nucleotide-gated (CNG) cation channels and retinol transport genes. However, this study demonstrated the first toxicological evidence that toxic effects of PFBS targeted the perception of chemical stimulus through olfactory and gustatory receptors. The addition of PFBS moderately exacerbated the toxic actions of hypoxia, which largely shaped the transcriptional pattern of coexposure group. In addition, gene interactive networks were constructed for hypoxia and coexposure groups, underlining the increased chromatin deacetylation and methylation to epigenetically repress genome-wide transcriptional initiation. Overall, PFBS and hypoxia interact to interrupt the embryonic development of sensory systems, which may compromise the individual fitness and survival, especially during early life stages when precocious perception of food and escape from predators are essential.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, SAR, Hong Kong, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, SAR, Hong Kong, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
56
|
Hung MD, Jung HJ, Jeong HH, Lam NH, Cho HS. Perfluoroalkyl substances (PFASs) in special management sea areas of Korea: Distribution and bioconcentration in edible fish species. MARINE POLLUTION BULLETIN 2020; 156:111236. [PMID: 32510380 DOI: 10.1016/j.marpolbul.2020.111236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Thirteen PFASs in water (n = 58), sediment (n = 58) and edible fish samples (n = 81) collected from three special management sea areas of Korea including Gwangyang bay, Masan bay and Busan harbor in July 2018 were investigated. The mean PFASs concentration in water (ng/L) were in order Masan (5.09) > Busan (2.82) > Gwangyang (1.74). PFASs levels were found as the low concentration in sediment. The greatest total PFASs concentration in each fish tissue was found as 3.04 (ng/g ww) in a Japanese amberjack fish for muscle in Busan, 66.23 (ng/mL) in Japanese amberjack fish for blood in Masan and 125.03 (ng/g ww) flathead grey mullet in Busan bay. The BCF (L/kg) of PFDoDA was found as the highest in muscle of all species with values from 30,922 (grey mullet in Gwangyang) to 69,131 (grey mullet in Busan). PFDS was the highest BCF's PFASs (110,599 L/kg) in muscle which was found in Japanese amberjack in Busan bay.
Collapse
Affiliation(s)
- Mai Duc Hung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Ji Jung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hui Ho Jeong
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Nguyen Hoang Lam
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
57
|
Tang L, Liu M, Song S, Hu C, Lam PKS, Lam JCW, Chen L. Interaction between hypoxia and perfluorobutane sulfonate on developmental toxicity and endocrine disruption in marine medaka embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105466. [PMID: 32172180 DOI: 10.1016/j.aquatox.2020.105466] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/22/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The co-occurrence of hypoxia and xenobiotics is extremely common in natural environments, highlighting the necessity to elicit their interaction on aquatic toxicities. In the present study, marine medaka embryos were exposed to various concentrations (nominal 0, 1, 3.3 and 10 mg/L) of perfluorobutane sulfonate (PFBS), an environmental pollutant of emerging concern, under either normoxia (6.9 mg/L) or hypoxia (1.7 mg/L) condition. After acute exposure till 15 days post-fertilization, single or combined toxicities of PFBS and hypoxia on embryonic development (e.g., mortality, hatching and heartbeat) and endocrine systems were investigated. Sex and thyroid hormones were measured by enzyme-linked immunosorbent assay. Transcriptional changes of endocrine genes were determined by quantitative real-time PCR assays. Co-exposure to 10 mg/L PFBS and hypoxia caused a further reduction in survival rate and heart beat compared to single exposure. PFBS induced a precocious hatching, while no larvae hatched under hypoxia condition. By disturbing the balance of sex hormones, either PFBS or hypoxia single exposure produced an anti-estrogenic activity in medaka larvae. However, PFBS and hypoxia combinations reversed to estrogenic activity in co-exposed larvae. Variation in disrupting pattern may be attributed to the interactive effects on steroidogenic pathway involving diverse cytochrome P450 enzymes. Regarding thyroid system, PFBS exposure caused detriments of multiple processes along thyroidal axis (e.g., feedback regulation, synthesis and transport of thyroid hormones, receptor-mediated signaling and thyroid gland development), while hypoxia potently impaired the development and function of thyroid gland. Combinations of PFBS and hypoxia interacted to dysregulate the function of thyroid endocrine system. In summary, the present study revealed the dynamic interaction of PFBS pollutant and hypoxia on aquatic developmental toxicities and endocrine disruption. Considering the frequent co-occurrence of xenobiotics and hypoxia, current results would be beneficial to improve our understanding about their interactive mechanisms and provide baseline evidences for accurate ecological risk evaluation.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwen Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
58
|
Ke Y, Chen J, Hu X, Tong T, Huang J, Xie S. Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113615. [PMID: 31759679 DOI: 10.1016/j.envpol.2019.113615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Legacy perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are gradually phased out because of their persistence, bioaccumulation, toxicity, long-distance transport and ubiquity in the environment. Alternatively, emerging PFASs are manufactured and released into the environment. It is accepted that PFASs can impact microbiota, although it is still unclear whether emerging PFASs are toxic towards soil microbiota. However, it could be assumed that OBS could impact soil microorganisms because it had similar chemical properties (toxicity and persistence) as legacy PFASs. The present study aimed to explore the influences of an emerging PFAS, namely sodium p-perfluorous nonenoxybenzene sulfonate (OBS), on archaeal, bacterial, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and ammonia oxidation. Grassland soil was amended with OBS at different dosages (0, 1, 10 and 100 mg/kg). After OBS amendment, tolerant microorganisms (e.g., archaea and AOA) were promoted, while susceptive microorganisms (e.g., bacteria and AOB) were inhibited. OBS amendment greatly changed microbial structure. Potential nitrifying activity was inhibited by OBS in a dose-dependent manner during the whole incubation. Furthermore, AOB might play a more important role in ammonia oxidation than AOA. Overall, OBS influenced ammonia oxidation by regulating the activity, abundance and structure of ammonia-oxidizing microorganisms, and could also exert influences on total bacterial and archaeal populations.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Hu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
59
|
Pan CG, Wang YH, Yu KF, Zhang W, Zhang J, Guo J. Occurrence and distribution of perfluoroalkyl substances in surface riverine and coastal sediments from the Beibu Gulf, south China. MARINE POLLUTION BULLETIN 2020; 150:110706. [PMID: 31753558 DOI: 10.1016/j.marpolbul.2019.110706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 05/15/2023]
Abstract
There is limited understanding on the occurrence of PFASs in coastal sediment, especially in less-developed coastal areas. Here, we collected surface sediment samples from the Beibu Gulf to investigate the occurrence, spatial distribution and environmental risks of 18 PFASs. The concentrations of the total PFASs (ΣPFASs) ranged from 56.2 to 586.3 pg/g dry weight (dw), with a mean value of 172.5 pg/g dw. ΣPFASs concentrations were significantly lower in riverine than in coastal sediments. Additionally, there was a decreasing trend in ΣPFASs concentrations from the west (Fangchenggang) to the east (Beihai) of the Beibu Gulf. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were the predominant PFASs, with their concentrations in the range of 4.8-249.0 pg/g dw and not detected (n.d)-224.8 pg/g dw, respectively. On a global scale, PFOS and PFOA concentrations were at low levels in the sediment of the Beibu Gulf, and they posed negligible environmental risks.
Collapse
Affiliation(s)
- Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Wei Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jun Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jing Guo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
60
|
Chen P, Wang R, Yang J, Zhong W, Liu M, Yi S, Zhu L. Stronger estrogenic and antiandrogenic effects on zebrafish larvae displayed by 6:2 polyfluoroalkyl phosphate diester than the 8:2 congener at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133907. [PMID: 31425999 DOI: 10.1016/j.scitotenv.2019.133907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are one kind of emerging polyfluoroalkyl substances in the environment. However, their in vivo toxicities are largely unknown, especially at environmental relevant concentrations. To fill this gap, zebrafish embryos were exposed to 6:2 or 8:2 diPAP at environmentally relevant concentrations (0.5, 5, 50 ng/L) for 7 d. 6:2 and 8:2 diPAPs upregulated the mRNA and protein levels of aromatase in the exposed larvae, and elevated estradiol (E2) and vitellogenin (VTG) levels, but reduced testosterone (T) and 11-ketotestosterone (11-KT) levels, demonstrating estrogenic and antiandrogenic effects. Among the three ER subtypes, ERβ2 displayed the highest in vivo mRNA expression and the lowest in silico binding energies, suggesting that it was the main target ER subtype responsible for the estrogenic effect. Molecular simulation results indicated that diPAPs and E2 could bind to one common residue, arginine (Arg) 87, in the binding pocket of ERβ2, inducing similar estrogenic disruption mechanisms as E2. Both compounds could form hydrophobic interaction with glutamic acid (Glu) 12 and tryptophan (Trp) 80 and two hydrogen bonds with Arg81 of androgen receptor (AR) ligand-binding domains (LBDs) in antagonistic mode, resulting in a reduced level of AR upon exposure. The in silico binding energies of 6:2 diPAP with both ER and AR were lower than 8:2 diPAP, explaining the observed greater in vivo estrogenic and antiandrogenic activities of 6:2 diPAP. This study provided the first line of evidences that diPAPs could display adverse effects on the endocrine functions of fish species.
Collapse
Affiliation(s)
- Pengyu Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Ruihan Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jing Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Menglin Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China.
| |
Collapse
|
61
|
Feng H, Ruan Y, Zhang K, Lam PK. Current analytical methodologies and gaps for per- and polyfluoroalkyl substances determination in the marine environment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
62
|
Li P, Zhi D, Zhang X, Zhu H, Li Z, Peng Y, He Y, Luo L, Rong X, Zhou Y. Research progress on the removal of hazardous perfluorochemicals: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109488. [PMID: 31499465 DOI: 10.1016/j.jenvman.2019.109488] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 05/27/2023]
Abstract
Perfluorinated substances are global and ubiquitous pollutants. The persistent organic pollution of perfluorochemicals (PFCs) have drawn attentions worldwide. In view of the current need for sustainable development, many researchers began to study the remediation techniques for PFCs. Due to its unique hydrophobic and oil-phobic characteristics, the requirements for the PFCs removal process are different, so that their remediation techniques are still under continuous exploration. Hence, this review summarized the removal behaviors of various PFCs on different materials which supply a good foundation for future investigations in this field. It is evident from previous literature that every remediation techniques for PFCs has its own advantages. Among various currently evaluated removal methods, adsorption seems to be one of the most commonly used and recognized techniques for PFCs pollution control. Other innovative and promising techniques, such as physical and/or chemical methods, have also been tested for their effectiveness in removing perfluorinated compounds.
Collapse
Affiliation(s)
- Peipei Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongmei Zhu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhiyong Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yutao Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yangzhou He
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangmin Rong
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
63
|
Zhang X, Lohmann R, Sunderland EM. Poly- and Perfluoroalkyl Substances in Seawater and Plankton from the Northwestern Atlantic Margin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12348-12356. [PMID: 31565932 PMCID: PMC6992416 DOI: 10.1021/acs.est.9b03230] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ocean is thought to be the terminal sink for poly- and perfluoroalkyl substances (PFAS) that have been produced and released in large quantities for more than 60 years. Regulatory actions have curbed production of legacy compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but impacts of regulations on PFAS releases to the marine environment are poorly understood. Here, we report new data for 21 targeted PFAS in seawater and plankton from the coast, shelf, and slope of the Northwestern Atlantic Ocean. We find strong inverse correlations between salinity and concentrations of most PFAS, indicating that ongoing continental discharges are the major source to the marine environment. For legacy PFAS such as PFOS and PFOA, a comparison of inland and offshore measurements from the same year (2014) suggests that there are ongoing releases to the marine environment from sources such as submarine groundwater discharges. Vertical transport of most PFAS associated with settling particles from the surface (10 m) to deeper waters is small compared to advective transport except for perfluorodecanoic acid (PFDA; 35% of vertical flux) and precursor compounds to PFOS (up to 86%). We find higher than expected bioaccumulation factors (BAFs = Cplankton/Cwater) for perfluorinated carboxylic acids (PFCAs) with five and six carbons (log BAF = 2.9-3.4) and linear PFOS (log BAF = 2.6-4.3) in marine plankton compared to PFCAs with 7-11 carbons. We postulate that this reflects additional contributions from precursor compounds. Known precursor compounds detected here have among the highest BAFs (log BAF > 3.0) for all PFAS in this study, suggesting that additional research on the bioaccumulation potential of unknown organofluorine compounds is urgently needed.
Collapse
Affiliation(s)
- Xianming Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston MA USA 02115
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston MA USA 02115
| |
Collapse
|
64
|
Tsui MMP, Chen L, He T, Wang Q, Hu C, Lam JCW, Lam PKS. Organic ultraviolet (UV) filters in the South China sea coastal region: Environmental occurrence, toxicological effects and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:26-33. [PMID: 31154117 DOI: 10.1016/j.ecoenv.2019.05.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Organic ultraviolet (UV) filters are common ingredients of personal care products and occur ubiquitously in the aquatic environment; however, little is known about their distribution in and potential effects to the marine environment. This study reports the occurrence, toxicological effects and risk assessment of eleven commonly consumed UV filters in marine surface water collected from the South China Sea (SCS) coastal region. The concentrations of UV filters ranged from <MDL to 145 ng/L in the SCS, in which benzophenone-3, octocrylene and butyl methoxydibenzoylmethane were the most dominant compounds with their detection frequencies over 97%. Relatively higher levels of total UV filters were found near the highly industrialized and urbanized Pearl River Estuary (PRE) and the concentrations gradually decreased towards the SCS. In general, the environmental levels of UV filters were higher at the western marine waters in Hong Kong than the eastern marine waters. Significant negative correlations were observed between benzophenone-4 and water temperature, as well as ethylhexyl methoxycinnamate and salinity (P < 0.001; r < -0.5). Immobilization test of barnacle nauplius larvae (Balanus amphitrite) was conducted to assess the acute toxicity of organic UV filters to marine organisms. Benzophenone-8 and 4-methylbenzylidene camphor showed relatively higher toxicity with the 50% effect concentrations (EC50) of 2.2 and 3.9 mg/L, respectively. A preliminary risk assessment was conducted by the results obtained from our field and laboratory studies. Results showed that the risk to cause immobilization in barnacle nauplius larvae in associated with exposure to current levels of organic UV filters in the SCS was minimal.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tangtian He
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
65
|
Wang Q, Tsui MMP, Ruan Y, Lin H, Zhao Z, Ku JPH, Sun H, Lam PKS. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region. CHEMOSPHERE 2019; 231:468-477. [PMID: 31151006 DOI: 10.1016/j.chemosphere.2019.05.162] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are anthropogenic chemicals widely used in industrial and consumer products. PFASs can be readily transported by water due to their relatively high solubility and polarity, and oceans are believed to be their final global sink. The heavily industrialized and urbanized Pearl River Delta in South China represents a major source of PFASs. In the present study, samples of surface waters, bottom waters, and sediments of the South China Sea (SCS) were collected during summer 2017 and 2018 to determine the level, distribution, and potential regional risk of PFASs. The PFAS concentrations in surface seawater, bottom seawater, and sediment were 125-1015 pg/L, 38-779 pg/L, and 7.5-84.2 pg/g dry weight, respectively. Perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) were the dominant PFASs in seawater, while perfluorooctanesulfonic acid (PFOS) was dominant in sediment. The PFAS alternatives 6:2 and -8:2 Cl-polyfluorinated ether sulfonate (6:2 and 8:2 Cl-PFESA) as well as hexafluoropropylene oxide dimer (HFPO-DA) were detected in the SCS for the first time. The spatial distribution of PFASs in seawater and sediment were impacted by river outflows and sea currents, and concentrations decreased from the estuaries to the offshore regions due to the dilution effect. PFAS concentrations were relatively low compared to other coastal regions worldwide, and a preliminary environmental hazard assessment showed that PFASs posed minimal risk to marine organisms in the coastal region of the SCS, with the exception of PFOS.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jonas P H Ku
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
66
|
Yamazaki E, Taniyasu S, Ruan Y, Wang Q, Petrick G, Tanhua T, Gamo T, Wang X, Lam PKS, Yamashita N. Vertical distribution of perfluoroalkyl substances in water columns around the Japan sea and the Mediterranean Sea. CHEMOSPHERE 2019; 231:487-494. [PMID: 31151008 DOI: 10.1016/j.chemosphere.2019.05.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 05/06/2023]
Abstract
Perfluoroalkyl substances (PFASs) have become an important class of global environmental contaminants, yet their vertical profile in the marine water column is still less understood, especially for the semi-closed seas. In this study, the contamination level and spatial distribution of 8 PFASs were investigated in both surface and vertical water samples from two semi-closed seas, the Japan Sea and the Mediterranean Sea. Similar levels and compositions of PFASs were found between these two seas. The vertical profile of PFASs in the Mediterranean Sea was variable while that was relatively steady in the Japan Sea, probably due to their different pollution sources. The accumulation rate of PFASs from the East China Sea to the Japan Sea was calculated, for which perfluorooctanesulfonic acid and perfluorooctanoic acid were found to have high accumulation potency in both surface and deep water; most of the investigated PFASs were accumulated in the deep water due to the long residence time while they were more likely to escape to the Pacific Ocean in the surface water. This work aimed (i) to study the distribution of PFASs in both surface and vertical water samples in two semi-closed seas, namely the Japan Sea and for the first time the Mediterranean Sea, (ii) to assess the temporal trend in the Japan Sea, and (iii) to firstly investigate the potential transport of PFASs from the East China Sea and Taiwan Strait in order to estimate the inventory of PFASs in whole water mass in the Japan Sea.
Collapse
Affiliation(s)
- Eriko Yamazaki
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gert Petrick
- AIMES GmbH, Kösterberg 10, 24238, Selent, Germany; Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Toste Tanhua
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Toshitaka Gamo
- Atmosphere & Ocean Research Institute, The University of Tokyo 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Xinhong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
67
|
Johansson JH, Salter ME, Acosta Navarro JC, Leck C, Nilsson ED, Cousins IT. Global transport of perfluoroalkyl acids via sea spray aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:635-649. [PMID: 30888351 DOI: 10.1039/c8em00525g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent organic pollutants found throughout the world's oceans. Previous research suggests that long-range atmospheric transport of these substances may be substantial. However, it remains unclear what the main sources of PFAAs to the atmosphere are. We have used a laboratory sea spray chamber to study water-to-air transfer of 11 PFAAs via sea spray aerosol (SSA). We observed significant enrichment of all PFAAs relative to sodium in the SSA generated. The highest enrichment was observed in aerosols with aerodynamic diameter < 1.6 μm, which had aerosol PFAA concentrations up to ∼62 000 times higher than the PFAA water concentrations in the chamber. In surface microlayer samples collected from the sea spray chamber, the enrichment of the substances investigated was orders of magnitude smaller than the enrichment observed in the aerosols. In experiments with mixtures of structural isomers, a lower contribution of branched PFAA isomers was observed in the surface microlayer compared to the bulk water. However, no clear trend was observed in the comparison of structural isomers in SSA and bulk water. Using the measured enrichment factors of perfluorooctanoic acid and perfluorooctane sulfonic acid versus sodium we have estimated global annual emissions of these substances to the atmosphere via SSA as well as their global annual deposition to land areas. Our experiments suggest that SSA may currently be an important source of these substances to the atmosphere and, over certain areas, to terrestrial environments.
Collapse
Affiliation(s)
- J H Johansson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
68
|
Pan CG, Yu KF, Wang YH, Zhang W, Zhang J, Guo J. Perfluoroalkyl substances in the riverine and coastal water of the Beibu Gulf, South China: Spatiotemporal distribution and source identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:297-305. [PMID: 30640098 DOI: 10.1016/j.scitotenv.2019.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Few studies have examined the perfluoroalkyl substances (PFASs) contamination in less-developed coastal regions. In the present study, we collected 19 riverine and 21 coastal surface water samples in the summer and winter of 2017 to investigate PFASs contamination in the Beibu Gulf, South China. The results show that eleven and twelve target PFASs were detected in the summer and winter, respectively. The total PFASs (ΣPFASs) concentrations in the water of the Beibu Gulf were in the range of 1609-4727 pg/L and 610-4920 pg/L in summer and winter, respectively. Perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) were the predominantly detected PFASs in both seasons with maximum concentrations of 2968 pg/L, 1771 pg/L, and 1764 pg/L, respectively. Strong positive correlations between some PFASs were observed (e.g., PFBA and PFBS, PFOS and PFBS, p < 0.05), suggesting these correlated pollutants may share similar sources. PFASs contamination in the Beibu Gulf was strongly affected by ocean currents, and their concentrations were lower than most coastal waters around the world. Risk assessment indicates a low risk associated with target PFASs to aquatic organisms in the Beibu Gulf. The results of the present research provided a baseline and good overview of the spatial distribution of PFASs along the Beibu Gulf.
Collapse
Affiliation(s)
- Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Wei Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jing Guo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
69
|
Chen L, Tsui MMP, Lam JCW, Hu C, Wang Q, Zhou B, Lam PKS. Variation in microbial community structure in surface seawater from Pearl River Delta: Discerning the influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:136-144. [PMID: 30639711 DOI: 10.1016/j.scitotenv.2018.12.480] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Contamination of perfluoroalkyl acids (PFAAs) is ubiquitously detected in various environments. However, their potential effects on microbial communities remain largely unknown. In this study, surface seawater of the Pearl River Delta (PRD) is sampled to measure PFAA concentrations and profile the structure of free-living microbial community. Total PFAAs concentrations range from 131 to 1563 pg L-1 in surface seawater. PFOS (16-470 pg L-1), PFOA (27-272 pg L-1), PFHpA (18-201 pg L-1) and PFBA (25-152 pg L-1) are the major homologues, indicating continued industrial application or release of PFOS and a gradual shift towards using shorter-chain PFAAs. Concentrations of PFAAs from this recent cruise are much lower than previous reports, which may be due to the effective management of PFAA usage around PRD region. In addition, the microbial community in PRD surface seawater is predominantly colonized by the Proteobacteria phylum (27.2 to 61.5%) and the Synechococcus genus (5.6 to 38.6%). The structure of the microbial communities varies among stations, mainly resulting from different abundances of Synechococcus, Prochlorococcus and Nitrosopumilus. Geochemical parameters (e.g., nutrients and salinity) and phytoplankton are significantly associated with the microbial community dynamics in surface seawater. In the interactive network of microbiota, a subset of bacteria (i.e., Fluviicola, Nitrosopumilus, Limnohabitans, Sediminibacterium, C39 and Polynucleobacter) shows significantly positive correlations with PFAAs (R > 0.6; P < 0.001). Overall, this study gives a timely monitoring of PFAA pollution around PRD area. Shift in environmental microbiota by geochemical factors and phytoplankton is also observed, which may affect biogeochemical cycling.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
70
|
Gui D, Zhang M, Zhang T, Zhang B, Lin W, Sun X, Yu X, Liu W, Wu Y. Bioaccumulation behavior and spatiotemporal trends of per- and polyfluoroalkyl substances in Indo-Pacific humpback dolphins from the Pearl River Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1029-1038. [PMID: 30677968 DOI: 10.1016/j.scitotenv.2018.12.278] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Sixteen per- and polyfluoroalkyl substances (PFASs) were measured in liver (n = 52) and kidney (n = 18) tissues of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE) of China between 2004 and 2016. The average concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and most of other PFASs in the liver samples were respectively greater than any records previously reported in cetaceans globally. PFOS levels in 46% of dolphin liver samples exceeded the hepatic toxicity threshold in cetaceans. For the first time, we found a U-shaped trend for the distribution pattern of perfluorinated carboxylic acids (PFCAs) between liver and kidney with increasing carbon chain lengths (C5-C16), whereas a descending trend (C4-C10) was found for perfluoroalkane sulfonic acids (PFASs), which may be explained by binding efficiencies of PFAS analogues to proteins. Dolphins with the highest levels of ∑PFASs (age-corrected) were clustered near the river outlets in Lingdingyang area, which agrees with the spatial distribution of PFASs in the environment. Significant temporal trends were observed for many PFASs. Concentrations of PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA) and perfluoroheptanoic acid (PFHpA) all peaked in year 2011, followed by a decreasing trend, while a consistently descending trend was shown for perfluoroundecanoic acid (PFUdA) and perfluorodecane sulfonate (PFDS). Our findings contribute to the knowledge of tissue distribution and spatiotemporal trends of PFASs in the PRE dolphins, which are valuable for us to understand the PFASs exposure risk and their industrial emission in Southern China.
Collapse
Affiliation(s)
- Duan Gui
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Mei Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenzhi Lin
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Wen Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
71
|
Chen M, Guo T, He K, Zhu L, Jin H, Wang Q, Liu M, Yang L. Biotransformation and bioconcentration of 6:2 and 8:2 polyfluoroalkyl phosphate diesters in common carp (Cyprinus carpio): Underestimated ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:201-208. [PMID: 30504021 DOI: 10.1016/j.scitotenv.2018.11.297] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 05/18/2023]
Abstract
Polyfluoroalkyl phosphates esters (PAPs) are widely used in a variety of commercial products, and have been detected in many aquatic organisms. In this study, common carps (Cyprinus carpio) were administered with 6:2 and 8:2 diPAP in water to investigate their bio-accumulation and transformation in fish. Several degradation products, including fluorotelomer unsaturated carboxylic acids (6:2 and 8:2 FTUCA), 5:3 and 7:3 fluorotelomer carboxylic acids (5:3 and 7:3 FTCA), perfluoroalkyl carboxylates (PFCAs) were identified in the carp liver. In addition, several phase-II metabolites, such as glutathione- and glucuronide-conjugated compounds were detected in the carp bile. 8:2 diPAP displayed lower accumulation potential than 6:2 diPAP probably due to its relatively large molecular size. However, 8:2 diPAP experienced more extensive transformation (transformation rate 6.78-14.6 mol%) and produced more phase I metabolites than 6:2 diPAP (0.49-0.66 mol%). The in vitro incubation with the liver S9 fraction confirmed that biotransformation of 6:2 and 8:2 diPAP took place in the carp liver. Further analyses of enzyme activities indicated that acid phosphatase (ACP) could be involved in mediating phase I while glutathione S-transferase (GST) involved in phase II metabolism of 6:2 and 8:2 diPAP in carp.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tingting Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Keyan He
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, PR China.
| | - Hangbiao Jin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
72
|
Skaar JS, Ræder EM, Lyche JL, Ahrens L, Kallenborn R. Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7356-7363. [PMID: 29754295 DOI: 10.1007/s11356-018-2162-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/26/2018] [Indexed: 05/06/2023]
Abstract
A combination of local (i.e. firefighting training facilities) and remote sources (i.e. long-range transport) is assumed to be responsible for the occurrence of per- and polyfluoroalkyl substances (PFASs) in Svalbard (Norwegian Arctic). However, no systematic elucidation of local PFASs sources has been conducted yet. Therefore, a survey was performed aiming at identifying local PFAS pollution sources on the island of Spitsbergen (Svalbard, Norway). Soil, freshwater (lake, draining rivers), seawater, meltwater run-off, surface snow and coastal sediment samples were collected from Longyearbyen (Norwegian mining town), Ny-Ålesund (research facility) and the Lake Linnévatnet area (background site) during several campaigns (2014-2016) and analysed for 14 individual target PFASs. For background site (Linnévatnet area, sampling during April to June 2015), ΣPFAS levels ranged from 0.4 to 4 ng/L in surface lake water (n = 20). PFAS in meltwater from the contributing glaciers showed similar concentrations (~ 4 ng/L, n = 2). The short-chain perfluorobutanoate (PFBA) was predominant in lake water (60-80% of the ΣPFASs), meltwater (20-30%) and run-off water (40%). Long-range transport is assumed to be the major PFAS source. In Longyearbyen, five water samples (i.e. 2 seawater, 3 run-off) were collected near the local firefighting training site (FFTS) in November 2014 and June 2015, respectively. The highest PFAS levels were found in FFTS meltwater run-off (118 ng/L). Perfluorooctane sulfonic acid (PFOS) was the most abundant compound in the FFTS meltwater run-off (53-58% PFASs). At the research station Ny-Ålesund, seawater (n = 6), soil (n = 9) and freshwater (n = 10) were collected in June 2016. Low ΣPFAS concentrations were determined for seawater (5-6 ng/L), whereas high ΣPFAS concentrations were found in run-off water (113-119 ng/L) and soil (211-800 ng/g dry weight (dw)) collected close to the local FFTS. In addition, high ΣPFAS levels (127 ng/L) were also found in freshwater from lake Solvatnet close to former sewage treatment facility. Overall, at both FFTS-affected sites (soil, water), PFOS was the most abundant compound (60-69% of ΣPFASs). FFTS and landfill locations were identified as major PFAS sources for Svalbard settlements.
Collapse
Affiliation(s)
- Jøran Solnes Skaar
- Norwegian Institute for Air Research (NILU), 2027, Kjeller, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Erik Magnus Ræder
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0033, Oslo, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0033, Oslo, Norway
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 750 07, Uppsala, Sweden
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
- Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9171, Longyearbyen, Svalbard, Norway.
| |
Collapse
|
73
|
Chen L, Tsui MMP, Lam JCW, Wang Q, Hu C, Wai OWH, Zhou B, Lam PKS. Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:218-225. [PMID: 30423536 DOI: 10.1016/j.envpol.2018.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Environmental microbiota play essential roles in the maintenance of many biogeochemical processes, including nutrient cycling and pollutant degradation. They are also highly susceptible to changes in environmental stressors, with environmental pollutants being key disruptors of microbial dynamics. In the present study, a scientific cruise was launched on July 2017 around Pearl River Delta, a suitable studying site for perfluoroalkyl substances (PFASs) in the wake of the severe PFAS pollution. Surface sediment samples were collected from 18 representative stations to assess PFAS accumulation and profile microbial community. PFAS concentrations ranged from 24.2 to 181.4 pg/g dry weight in sediment, and perfluorooctanesulfonic acid (PFOS) was the dominant homologue. The concentrations of PFAS homologues in the current study were much lower than those reported in previous studies, implying effective management and control of pollution from PFAS-related industries. 16S rRNA gene amplicon sequencing revealed that Proteobacteria was the dominant phylum, while nitrogen-metabolizing Nitrosopumilus and sulfate-reducing Desulfococcus genera were the most abundant. Variations in microbial communities among sampling stations were mainly due to the differences in abundances of Escherichia, Nitrosopumilus, and Desulfococcus. The outbreak of Escherichia bacteria at specific coastal stations potentially indicated the discharge of fecal matter into the marine environment. Dissolved oxygen (DO) in bottom seawater significantly influenced the structure of microbial communities in the sediment, while current study failed to observe significant effects from PFAS pollutants. Positive correlations were found between DO and sulfate-reducing bacteria in Desulfococcus and GOUTA19 genera. Overall, this study explored relationships between environmental variables (e.g., PFAS pollutants) and sediment bacteria. Biogeochemical parameters significantly influenced the structure and composition of microbial communities in sediment.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Onyx W H Wai
- Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
74
|
Jiawei T, Yizhen Z, Jiajun S, Xuelu S, Chao S, Chunhui Z. Occurrence and characteristics of perfluoroalkyl substances (PFASs) in electroplating industrial wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:731-740. [PMID: 30975939 DOI: 10.2166/wst.2019.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential negative effects of perfluoroalkyl substances (PFASs) discharged into aquatic environments are drawing increasing attention. However, little research has been undertaken on PFASs in wastewater from electroplating industrial parks. In this study, the concentration profiles and geographical distribution of 11 PFASs were analyzed in water samples collected from different production workshops and an artificial landscaped lake. The total concentrations of PFASs (Σ11PFASs) at various points in the production drainage system range from 229.5 to 5410.6 ng/L, and are mainly contributed by nickel plating, pickling, and the cyanide bright silver plating procedure, which correspond to cyanide-containing and acid-alkali wastewater conditioning tanks. Wastewater treatment by oxidation and precipitation removed 52.6% and 20% of PFASs, respectively. Σ11PFASs in effluents is about 538 ng/L, which consists of perfluorooctanoic acid (PFOA, 430.5 ng/L), followed by perfluorooctane sulfonate (PFOS, 35.27 ng/L), perfluorohexane sulfonate (PFHxS, 28.05 ng/L), and perfluorohexanoic acid (PFHxA, 18.3 ng/L). Principal component analysis suggests that the Σ11PFASs in electroplating wastewater is very high and short-chain (C4-C8) PFASs have high detection and contribution rates. As a result, much attention should be paid to the increase in short-chain substitution effects and pollution around the factory area.
Collapse
Affiliation(s)
- Tang Jiawei
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China E-mail:
| | - Zhang Yizhen
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China E-mail:
| | - Sun Jiajun
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shi Xuelu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China E-mail:
| | - Sun Chao
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China E-mail:
| | - Zhang Chunhui
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China E-mail:
| |
Collapse
|
75
|
Cai Y, Wang X, Wu Y, Zhao S, Li Y, Ma L, Chen C, Huang J, Yu G. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:263-270. [PMID: 29787910 DOI: 10.1016/j.scitotenv.2018.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The seasonal variations and spatial distributions of fifteen perfluoroalkyl substances (PFASs) were investigated in the water of the subtropical Jiulong River Estuary (JRE) in Fujian, China. The concentrations and composition profiles of PFASs showed significant seasonal variations. ∑PFASs concentrations ranged from 4.8 to 37.6 ng L-1, 12.2 to 110 ng L-1 and 3.3 to 43.0 ng L-1 in the dry, medium and wet seasons, respectively. Perfluorooctane sulfonate (PFOS) was found to be the most abundant PFAS in the dry season, with a composition of 33% ± 5%, Perfluorohexanoic acid PFHxA (47% ± 13%) and perfluoropentanoic acid (PFPeA) (52% ± 15%) were the dominant compounds in the medium and wet seasons, respectively. Seasonal and spatial distributions of ∑PFASs were different in the upstream and downstream sections. High concentration of PFHxA occurred in the medium season, and showed a linear decreasing trend from upstream to downstream. The majority of other PFASs did not show clear seasonal variation. Composition profiles indicated that the JRE was mainly contaminated by short-chain perfluoroalkyl carboxylic acids (PFCAs), shipbuilding industry, multiple wastewater and river runoff were identified as major potential sources.
Collapse
Affiliation(s)
- Yizhi Cai
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Shanwei Marine Environmental Monitoring Center, State Oceanic Administration, Shanwei 516600, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Yuling Wu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Songhe Zhao
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Liya Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Can Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| |
Collapse
|
76
|
Wang G, Lu J, Li S, Liu Z, Chang H, Xie C. Pollution levels and risk assessment of perfluoroalkyl acids (PFAAs) in beef muscle and liver from southern Xinjiang. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25486-25495. [PMID: 29956257 DOI: 10.1007/s11356-018-2624-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The presence of perfluoroalkyl acids (PFAAs) in animal foods is worldwide, and their fate and spatial distribution in Xinjiang are not well understood. In this study, beef muscle and liver collected from five major cities in southern Xinjiang were analyzed (n = 70) for 13 PFAAs using an ion-pairing method combined with HPLC-MS/MS. Overall, PFAA contamination was widespread, exceeding 50% of samples with concentrations ranged from below the limits of detection to 6.118 ng/g. Perfluorooctane sulfonate, perfluorooctanoic acid, and perfluoroundecanoic acid were the predominant PFAAs of ten detected compounds, with maximum concentrations in Korla liver samples of 2.543, 0.856, and 1.386 ng/g, respectively. When comparing the five cities, the highest levels and detection frequencies were observed in samples from Korla (muscle, 0.013 ng/g; liver, 3.336 ng/g), followed by Yanqi, Akesu, Kashgar, and Hotan. The different pollution patterns and distribution profiles of PFAAs among cities were significantly related to local economy and geographical conditions. In addition, the dietary intake assessments for PFAAs showed that samples originating from Korla had the greatest impact on human health, but the total hazard ratio was 0.814 × 10-3, which is far less than 1, indicating that consumption of beef muscle and liver poses no immediate harm to local residents.
Collapse
Affiliation(s)
- Gehui Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jianjiang Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
- Environmental Monitoring and Analysis, Shihezi University, Shihezi, 832003, China.
| | - Shanman Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Zilong Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Haisha Chang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Chunbin Xie
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
77
|
Chen M, Wang Q, Shan G, Zhu L, Yang L, Liu M. Occurrence, partitioning and bioaccumulation of emerging and legacy per- and polyfluoroalkyl substances in Taihu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:251-259. [PMID: 29627548 DOI: 10.1016/j.scitotenv.2018.03.301] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
There are many studies about the occurrence of legacy perfluoroalkyl acids (PFAAs) in fresh water ecosystem, but related information about emerging per- and polyfluoroalkyl substances (PFASs) is limited. In this study, along with ten legacy PFAAs, twelve non-PFAAs, including precursors of perfluorooctane sulfonic acid (PFOS) and emerging PFASs in the water, sediment and organisms in Taihu Lake, China, were investigated. As one replacement product of PFOS, perfluorohexane sulfonic acid (PFHxS) (mean: 69.3ng/L) was the predominant PFAA in the water samples. Perfluorooctanesulfonamide (PFOSA) (mean: 0.190ng/L) and 6:2 fluorotelomer phosphate diester (6:2 diPAP) (0.034ng/L) were detected in all the water samples. Other emerging PFASs, such as N-ethyl perfluorooctanesulfonamidoa-cetic acid (NEtFOSAA), bis(perfluorohexyl) phosphinic acid (6:6 PFPiA) were frequently detected in the sediment and/or organisms. The organic carbon normalized sediment-water distribution coefficients (KOC) and bioaccumulation factors (BAFs) of the PFASs generally increased with their log KOW values. However, PFOSA, NEtFOSAA, 6:2 diPAP and 6:6 PFPiA displayed lower log BAFs, and/or lower log KOC than expected, which may be due to biotransformation potentials and/or large molecular size. PFOSA was not biomagnified in the food web. For other emerging PFASs, the low detection frequencies in the organisms hampered us to evaluate their biomagnification potentials. The lower percentage of most of the branched PFOS isomers while higher percentage of 1m-PFOS in the organisms suggested that there was indirect source of PFOS in the organisms. Similar to PFOS and PFOA, linear PFHxS isomer was preferentially enriched in organisms relative to its branched isomers.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, PR China.
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
78
|
Li L, Zheng H, Wang T, Cai M, Wang P. Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:168-176. [PMID: 29554564 DOI: 10.1016/j.envpol.2018.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 05/06/2023]
Abstract
The bioaccumulative, persistent and toxic properties of long-chain perfluoroalkyl acids (PFAAs) resulted in strict regulations on PFAAs, especially in developed countries. Consequently, the industry manufacturing of PFAAs shifts from long-chain to short-chain. In order to better understand the pollution situation of PFAAs in marine environment under this new circumstance, the occurrence of 17 linear PFAAs was investigated in 30 surface seawater samples from the North Pacific to Arctic Ocean (123°E to 24°W, 32 to 82°N) during the sixth Chinese Arctic Expedition in 2014. Total concentrations of PFAAs (∑PFAAs) were between 346.9 pg per liter (pg/L) to 3045.3 pg/L. The average concentrations of ∑PFAAs decreased in the order of East China Sea (2791.4 pg/L, n = 2), Sea of Japan (East Sea) (832.8 pg/L, n = 6), Arctic Ocean (516.9 pg/L, n = 7), Chukchi Sea (505.2 pg/L, n = 4), Bering Sea (501.2 pg/L, n = 8) and Sea of Okhotsk (417.7 pg/L, n = 3). C4 to C9 perfluoroalkyl carboxylic acids (PFCAs) were detected in more than 80% of the surface water samples. Perfluorobutanoic acid (PFBA) was the most prevalent compound and perfluorooctanoic acid (PFOA) was the second abundant homolog. The concentration of individual PFAAs in the surface seawater of East China Sea was much higher than other sampling seas. As the spatial distribution of PFAAs in the marine environment was mainly influenced by the river inflow from the basin countries, which proved the large input from China. Furthermore, the marginal seas of China were found with the greatest burden of PFOA comparing the pollution level in surface seawater worldwide. PFBA concentration in the surrounding seas of China was also high, but distributed more evenly with an obvious increase in recent years. This large-scale monitoring survey will help the improvement and development of PFAAs regulations and management, where production shift should be taken into consideration.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyuan Zheng
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Minghong Cai
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
79
|
Chen L, Hu C, Tsui MMP, Wan T, Peterson DR, Shi Q, Lam PKS, Au DWT, Lam JCW, Zhou B. Multigenerational Disruption of the Thyroid Endocrine System in Marine Medaka after a Life-Cycle Exposure to Perfluorobutanesulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4432-4439. [PMID: 29565584 DOI: 10.1021/acs.est.8b00700] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Accumulation of perfluorobutanesulfonate (PFBS) is frequently detected in biota, raising concerns about its ecological safety. However, hazardous effects of PFBS remain largely unexplored, especially for endocrine disrupting potency. In the present study, the multigenerational endocrine disrupting potential of PFBS was investigated by exposing F0 marine medaka eggs to PFBS at different concentrations (0, 1.0, 2.9, and 9.5 μg/L) until sexual maturity. The F1 and F2 generations were reared without continued exposure. Thyroidal disturbances were examined in all three generations. PFBS exposure decreased the levels of 3,5,3'-triiodothyronine (T3) in F0 female blood; however, it increased T3 or thyroxine (T4) levels in F0 brains, in which hyperthyroidism suppressed the local transcription of 5'-deiodinase 2 ( Dio2). Obviously decreased T3 was transferred to F1 eggs, although the parental influences were reversed in F1 larvae. Delayed hatching was coupled with elevated T3 levels in F1 larvae. F1 adults showed comparable symptoms of thyroidal disruption with F0 adults. A slight recovery was noted in the F2 generation, although F2 larvae still exhibited thyroid disruption and synthesized excessive T4. Our results suggested that the offspring suffered more severe dysfunction of the thyroidal axis albeit without direct exposure. This study provided the first molecular insight about PFBS toxicology on the thyroid, beneficial to both human and environmental risk assessment.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430072 , China
| | | | | | | | - Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| | | | | | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| |
Collapse
|
80
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
81
|
Tian Y, Yao Y, Chang S, Zhao Z, Zhao Y, Yuan X, Wu F, Sun H. Occurrence and Phase Distribution of Neutral and Ionizable Per- and Polyfluoroalkyl Substances (PFASs) in the Atmosphere and Plant Leaves around Landfills: A Case Study in Tianjin, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1301-1310. [PMID: 29309135 DOI: 10.1021/acs.est.7b05385] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A total of 23 per- and polyfluoroalkyl substances (PFASs) were investigated in the air, dry deposition, and plant leaves at two different landfills and one suburban reference site in Tianjin, China. The potential of landfills as sources of PFASs to the atmosphere and the phase distribution therein were evaluated. The maximum concentrations of ∑PFASs in the two landfills were up to 9.5 ng/m3 in the air, 4.1 μg/g in dry deposition, and 48 μg/g lipid in leaves with trifluoroacetic acid and perfluoropropionic acid being dominant (71%-94%). Spatially, the distribution trend of ionizable and neutral PFASs in all three kinds of media consistently showed the central landfill > the downwind > the upwind > the reference sites, indicating that landfills are important sources to PFASs in the environment. Plant leaves were found effective in uptake of a variety of airborne PFASs including polyfluoroalkyl phosphoric acid diesters, thus capable of acting as a passive air sampling approach for air monitoring.
Collapse
Affiliation(s)
- Ying Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| | - Shuai Chang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| | - Yangyang Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| | - Xiaojia Yuan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science , 100012 Beijing, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , 300350 Tianjin, China
| |
Collapse
|
82
|
Pan CG, Yu KF, Wang YH, Zhang RJ, Huang XY, Wei CS, Wang WQ, Zeng WB, Qin ZJ. Species-specific profiles and risk assessment of perfluoroalkyl substances in coral reef fishes from the South China Sea. CHEMOSPHERE 2018; 191:450-457. [PMID: 29054085 DOI: 10.1016/j.chemosphere.2017.10.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/04/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
The contamination profiles of sixteen perfluoroalkyl substances (PFAS) were examined in coral reef fish samples collected from the South China Sea (SCS) where no information about this topic was available in the literature. The results revealed that six PFAS were found in coral reef fish samples from the SCS. Perfluorooctane sulfonate (PFOS) was the most predominant PFAS contaminant detected in most of the samples, with the highest concentration value of 27.05 ng/g wet weight (ww) observed in Cephalopholis urodelus. Perfluoroundecanoic acid (PFUnDA) and Perfluorotridecanoic acid (PFTrDA) were the second and third dominant PFAS, respectively. Mean PFOS concentrations in muscle of seven coral reef fish varied from 0.29 ng/g ww in Lethrinus olivaceus to 10.78 ng/g ww in Cephalopholis urodelus. No significant linear relationship was observed between PFOS levels and coral reef fish traits (length, weight) collected in this region. Average daily intake of PFOS for the seven coral reef fishes ranged from 0.79 ng/kg/d for Lethrinus olivaceus to 29.53 ng/kg/d for Cephalopholis urodelus. The hazard ratio (HR) values for human consumption of PFOS-contaminated coral reef fishes ranged from 0.04 to 1.48, with Cephalopholis urodelus having the highest HR value of 1.18 (higher than 1) among the species, indicating frequent consumption of Cephalopholis urodelus might pose potential health risk to local population. The present work have provided the first hand data of PFAS in coral reef fishes in the SCS and indirectly demonstrated the existence of low level PFAS pollution in the SCS in China.
Collapse
Affiliation(s)
- Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Rui-Jie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xue-Yong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chao-Shuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wei-Quan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wei-Bin Zeng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen-Jun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
83
|
Zheng H, Wang F, Zhao Z, Ma Y, Yang H, Lu Z, Cai M, Cai M. Distribution profiles of per- and poly fluoroalkyl substances (PFASs) and their re-regulation by ocean currents in the East and South China Sea. MARINE POLLUTION BULLETIN 2017; 125:481-486. [PMID: 28800911 DOI: 10.1016/j.marpolbul.2017.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 05/06/2023]
Abstract
We investigated the distribution of 17 individual per- and polyfluoroalkyl substances (PFASs) in 42 surface water samples collected from the East and South China Seas (7.0-36.0°N, 110.0°N-123.0°E). Concentrations of 7 individual PFASs, including perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluoropentanoic acid (PFPA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonamide (FOSA), were quantified in the East China Sea, but only concentrations of PFOA and FOSA were quantified in the South China Sea. The total concentrations of the 17 PFASs ranged from 181 to 2658pg/L in the East China Sea and from 62 to 494pg/L in the South China Sea. We also show that river fluxes and ocean currents had a strong influence on the distribution of PFASs in the East China Sea. Using ArcGIS 10.1, we show how ocean currents control the spatial distribution of PFOA in the central South China Sea.
Collapse
Affiliation(s)
- Hongyuan Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Feng Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhen Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuxin Ma
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Haizhen Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minggang Cai
- College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China
| | - Minghong Cai
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
84
|
Zhao Z, Tang J, Mi L, Tian C, Zhong G, Zhang G, Wang S, Li Q, Ebinghaus R, Xie Z, Sun H. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:114-123. [PMID: 28472695 DOI: 10.1016/j.scitotenv.2017.04.147] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m3. Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m2/s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs.
Collapse
Affiliation(s)
- Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lijie Mi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shaorui Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qilu Li
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Max-Planck-Strasse 1, Geesthacht, 21502, Germany
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Max-Planck-Strasse 1, Geesthacht, 21502, Germany
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
85
|
Wen W, Xia X, Hu D, Zhou D, Wang H, Zhai Y, Lin H. Long-Chain Perfluoroalkyl acids (PFAAs) Affect the Bioconcentration and Tissue Distribution of Short-Chain PFAAs in Zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12358-12368. [PMID: 28988481 DOI: 10.1021/acs.est.7b03647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Short- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11). The results showed that the concentrations of the short-chain PFAAs in zebrafish tissues increased with exposure time until steady states reached in the absence of long-chain PFAAs. However, in the presence of long-chain PFAAs, these short-chain PFAAs in tissues increased until peak values reached and then decreased until steady states, and the uptake and elimination rate constants of short-chain PFAAs declined in all tissues and their BCFss decreased by 24-89%. The inhibitive effect of long-chain PFAAs may be attributed to their competition for transporters and binding sites of proteins in zebrafish with short-chain PFAAs. These results suggest that the effect of long-chain PFAAs on the bioconcentration of short-chain PFAAs should be taken into account in assessing the ecological and environmental effects of short-chain PFAAs.
Collapse
Affiliation(s)
- Wu Wen
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Diexuan Hu
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Dong Zhou
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Haotian Wang
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yawei Zhai
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Hui Lin
- School of Environment, Beijing Normal University , State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
86
|
Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. WATER RESEARCH 2017; 124:482-495. [PMID: 28800519 DOI: 10.1016/j.watres.2017.07.024] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 05/28/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) comprise a group of synthetic organic surfactants with a wide range of industrial and commercial applications. A few PFASs such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are now known to be ubiquitously present in the aquatic environment. They have become a global concern because of the toxicity and bioaccumulative properties. With the increasing availability of high-resolution mass spectrometers, many novel PFASs have been identified. Studies published between 2009 and 2017 have discovered 455 new PFASs (including nine fully and 446 partially fluorinated compounds), 45%, 29%, 17%, and 8% of which are anions, zwitterions, cations, and neutrals, respectively. They have been identified in natural waters, fish, sediments, wastewater, activated sludge, soils, aqueous film-forming foams, and commercial fluoropolymer surfactants. This article integrates and critically evaluates what is known about these newly identified PFASs. It discusses the different aspects of detection methodologies. It also surveys the removal of these compounds during conventional and advanced drinking-water and wastewater treatment, predicts the relevant physicochemical properties by means of four software programs, and identifies major knowledge gaps. Notably, a number of these newly identified PFASs are potential precursor compounds of PFOS and PFOA. Studies are critically needed to understand the removal and transformation of these compounds in natural and engineered environmental systems and their contribution, if any, to the secondary formation of PFOS and PFOA in these systems.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Civil Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States.
| |
Collapse
|
87
|
Tsui MMP, Lam JCW, Ng TY, Ang PO, Murphy MB, Lam PKS. Occurrence, Distribution, and Fate of Organic UV Filters in Coral Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4182-4190. [PMID: 28351139 DOI: 10.1021/acs.est.6b05211] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic ultraviolet (UV) filters are widely used in personal care products and occur ubiquitously in the aquatic environment. In this study, concentrations of seven commonly used organic UV filters were determined in seawater, sediment and five coral species collected from the eastern Pearl River Estuary of South China Sea. Five compounds, benzophenone-1, -3, and -8 (BP-1, -3, and -8), octocrylene (OC) and octyl dimethyl-p-aminobenzoic acid (ODPABA), were detected in the coral tissues with the highest detection frequencies (>65%) and concentrations (31.8 ± 8.6 and 24.7 ± 10.6 ng/g ww, respectively) found for BP-3 and BP-8. Significantly higher concentrations of BP-3 were observed in coral tissues in the wet season, indicating that higher inputs of sunscreen agents could be attributed to the increased coastal recreational activities. Accumulation of UV filters was only observed in soft coral tissues with bioaccumulation factors (log10-values) ranging from 2.21 to 3.01. The results of a preliminary risk assessment indicated that over 20% of coral samples from the study sites contained BP-3 concentrations exceeding the threshold values for causing larval deformities and mortality in the worst-case scenario. Higher probabilities of negative impacts of BP-3 on coral communities are predicted to occur in wet season.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
- Department of Science and Environmental Studies, The Education University of Hong of Kong , Hong Kong SAR, China
| | - T Y Ng
- Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - P O Ang
- Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
88
|
Zhuo Q, Luo M, Guo Q, Yu G, Deng S, Xu Z, Yang B, Liang X. Electrochemical Oxidation of Environmentally Persistent Perfluorooctane Sulfonate by a Novel Lead Dioxide Anode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
89
|
Lam JCW, Lyu J, Kwok KY, Lam PKS. Perfluoroalkyl Substances (PFASs) in Marine Mammals from the South China Sea and Their Temporal Changes 2002-2014: Concern for Alternatives of PFOS? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6728-36. [PMID: 26889942 DOI: 10.1021/acs.est.5b06076] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Perfluorinated sulfonic acids (PFSAs) and perfluorinated carboxylic acids (PFCAs), as well as the replacement for the phase-out C8 PFSAs were determined in the liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from the South China Sea between 2002 and 2014. Levels of total perfluoroalkyl substances (PFASs) in samples ranged from 136-15,300 and 30.5-2,720 ng/g dw for dolphin and porpoise, respectively. Significant increasing trends of several individual PFCAs and perfluorobutane sulfonate (PFBS) were found in cetacean samples from 2002 to 2014, whereas no significant temporal trends of ∑PFASs appeared over the sampling period. This pattern may be attributed to the increasing usage of PFCAs and C4-based PFSAs following the restriction/voluntary withdrawal of the production and use of perfluorooctane sulfonate (PFOS) related products. In addition, significantly increasing temporal shifting trends of PFOS to PFBS were observed in the dolphin liver samples. This pattern may be attributed to the substitution of PFOS by its alternative, PFBS. The highest levels of PFOS were observed in the liver samples of dolphin as compared with other marine mammal studies published since 2006, indicating high contamination of PFAS in the South China region. An assessment of relatively high concentrations of C8-based PFASs in the liver samples of cetaceans predicted that concentrations of PFOS would be expected to affect some proportion of the cetacean populations studied, based on the toxicity thresholds derived.
Collapse
Affiliation(s)
- James C W Lam
- State Key Laboratory in Marine Pollution (SKLMP), Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, PR China
- Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Shenzhen Research Institute Building, Shenzhen 518057, China
| | - Jinling Lyu
- State Key Laboratory in Marine Pollution (SKLMP), Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, PR China
- Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Shenzhen Research Institute Building, Shenzhen 518057, China
| | - Karen Y Kwok
- State Key Laboratory in Marine Pollution (SKLMP), Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, PR China
- Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Shenzhen Research Institute Building, Shenzhen 518057, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution (SKLMP), Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, PR China
- Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Shenzhen Research Institute Building, Shenzhen 518057, China
| |
Collapse
|
90
|
Lai S, Song J, Song T, Huang Z, Zhang Y, Zhao Y, Liu G, Zheng J, Mi W, Tang J, Zou S, Ebinghaus R, Xie Z. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:449-455. [PMID: 27112727 DOI: 10.1016/j.envpol.2016.04.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Neutral Polyfluoroalkyl substances (PFASs) in the atmosphere were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. Four groups of PFASs, i.e., fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs), fluorooctane sulfonamides (FOSAs) and fluorooctane sulfonamidoethanols (FASEs), were detected in gas samples. FTOHs was the predominant PFAS group, accounting for 95.2-99.3% of total PFASs (ΣPFASs), while the other PFASs accounted for a small fraction of ΣPFASs. The concentrations of ΣPFASs ranged from 18.0 to 109.9 pg m(-3) with an average of 54.5 pg m(-3). The concentrations are comparable to those reported in other marine atmosphere. Higher concentrations of ΣPFASs were observed in the continental-influenced samples than those in other samples, pointing to the substantial contribution of anthropogenic sources. Long-range transport is suggested to be a major pathway for introducing gaseous PFASs into the atmosphere over the northern SCS. In order to further understand the fate of gaseous PFASs during transport, the atmospheric decay of neutral PFASs under the influence of reaction with OH radicals and atmospheric physical processes were estimated. Concentrations of 8:2 FTOH, 6:2 FTOH and MeFBSE from selected source region to the atmosphere over the SCS after long-range transport were predicted and compared with the observed concentrations. It suggests that the reaction with OH radicals may play an important role in the atmospheric decay of PFAS during long-range transport, especially for shorted-lived species. Moreover, the influence of atmospheric physical processes on the decay of PFAS should be further considered.
Collapse
Affiliation(s)
- Senchao Lai
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China; Department of Multiphase Chemistry, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Junwei Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Tianli Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zhijiong Huang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yingyi Zhang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guicheng Liu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Junyu Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Wenying Mi
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht, Germany; MINJIE Analytical Laboratory, Geesthacht, Germany
| | - Jianhui Tang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht, Germany
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht, Germany.
| |
Collapse
|
91
|
Gebbink WA, Bignert A, Berger U. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6354-6362. [PMID: 27192404 DOI: 10.1021/acs.est.6b01197] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study examined the presence of perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea abiotic environment and guillemot food web, and investigated the relative importance of precursors in food web accumulation of PFAAs. Sediment, water, zooplankton, herring, sprat, and guillemot eggs were analyzed for perfluoroalkane sulfonic acids (PFSAs; C4,6,8,10) and perfluoroalkyl carboxylic acids (PFCAs; C6-15) along with six perfluoro-octane sulfonic acid (PFOS) precursors and 11 polyfluoroalkyl phosphoric acid diesters (diPAPs). FOSA, FOSAA and its methyl and ethyl derivatives (Me- and EtFOSAA), and 6:2/6:2 diPAP were detected in sediment and water. While FOSA and the three FOSAAs were detected in all biota, a total of nine diPAPs were only detected in zooplankton. Concentrations of PFOS precursors and diPAPs exceeded PFOS and PFCA concentrations, respectively, in zooplankton, but not in fish and guillemot eggs. Although PFOS precursors were present at all trophic levels, they appear to play a minor role in food web accumulation of PFOS based on PFOS precursor/PFOS ratios and PFOS and FOSA isomer patterns. The PFCA pattern in fish could not be explained by the intake pattern based on PFCAs and analyzed precursors, that is, diPAPs. Exposure to additional precursors might therefore be a dominant exposure pathway compared to direct PFCA exposure for fish.
Collapse
Affiliation(s)
- Wouter A Gebbink
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , SE 10691, Stockholm, Sweden
| | - Anders Bignert
- Swedish Museum of Natural History, SE 10691, Stockholm, Sweden
| | - Urs Berger
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , SE 10691, Stockholm, Sweden
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , DE 04318 Leipzig, Germany
| |
Collapse
|
92
|
Yao Y, Sun H, Gan Z, Hu H, Zhao Y, Chang S, Zhou Q. Nationwide Distribution of Per- and Polyfluoroalkyl Substances in Outdoor Dust in Mainland China From Eastern to Western Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3676-3685. [PMID: 26966787 DOI: 10.1021/acs.est.6b00649] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
From eastern to western areas, per- and polyfluoroalkyl substances (PFASs) were detected at substantial levels in the outdoor dust across mainland China. Urban samples generally showed higher levels compared with those of rural samples. Compared with neutral PFASs, ionizable PFASs (C4-C12 perfluoroalkyl carboxylic acids and C4/C8 perfluoroalkyl sulfonic acids) were more abundant, with the highest total concentration up to 1.6 × 10(2) ng/g and perfluorooctanoic acid (PFOA) being a predominant analogue. Fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphoric acid diesters (DiPAPs) were both detected in most samples with total concentrations of 0.12-32 and 0.030-20 ng/g, respectively. Perfluorooctane sulfonamidoethanols/sulfonamides (FOSE/As) were detected at low frequencies (<30%). In addition to partitioning to organic moiety, specific adsorption onto mineral particles can be important for PFASs to bind onto outdoor dust, especially for short-chain ionizable PFASs. The eastern plain areas were characterized by a higher contribution of long-chain ionizable PFASs; whereas the western high plateau areas were characterized by the dominating contribution of short-chain analogues. The difference suggests that the long-range atmospheric transport potential of PFASs from source regions to the inland is probably limited by the increase in altitude, and different sources from adjacent regions may influence the western border area of China.
Collapse
Affiliation(s)
- Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Zhiwei Gan
- Department of Environmental Science and Engineering, Sichuan University , Chengdu, Sichuan 610065, China
| | - Hongwei Hu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Yangyang Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Shuai Chang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
93
|
Qi Y, Huo S, Xi B, Hu S, Zhang J, He Z. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China. Sci Rep 2016; 6:22674. [PMID: 26947748 PMCID: PMC4780192 DOI: 10.1038/srep22674] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/17/2016] [Indexed: 01/15/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.
Collapse
Affiliation(s)
- Yanjie Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.,College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shibin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhuoshi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|