51
|
Sarker M, Jhung SH. Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
52
|
Sarker M, Shin S, Jhung SH. Adsorptive removal of nitroimidazole antibiotics from water using porous carbons derived from melamine-loaded MAF-6. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120761. [PMID: 31228708 DOI: 10.1016/j.jhazmat.2019.120761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Nitrogen-containing carbons were obtained via pyrolysis of melamine-loaded metal azolate frameworks (named mela@MAF-6), a sub-class of metal organic frameworks. The porosity and defect concentration of the obtained carbons (named as CDM@M-6) were dependent on the quantity of melamine loaded in the mela@MAF-6. The CDM@M-6 s were applied for the adsorptive removal of nitroimidazole antibiotics (NIABs) from water; the performance of CDM@M-6, particularly CDM(0.25)@M-6, was outstanding for the elimination of NIABs such as dimetridazole (DMZ), metronidazole (MNZ), and menidazole (MZ)) from water. The adsorption capacity of CDM(0.25)@M-6 for DMZ, MNZ, and MZ was higher than that of any adsorbent reported so far. The highest adsorptive performance of CDM(0.25)@M-6 for DMZ (Q0: 621 mg/g) and MNZ (Q0: 702 mg/g) was explained by hydrogen bonding, where CDM@M-6 and DMZ/MNZ acted as a H-donor and H-acceptor, respectively. In addition, CDM(0.25)@M-6 could be regenerated via ethanol washing and reused for next cycles without any severe decrease in performance. Therefore, CDM@M-6 is recommended as a suitable adsorbent for the elimination of NIABs from water.
Collapse
Affiliation(s)
- Mithun Sarker
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Subin Shin
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
53
|
Li Z, Liu X, Jin W, Hu Q, Zhao Y. Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures. J Colloid Interface Sci 2019; 554:692-704. [DOI: 10.1016/j.jcis.2019.07.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/06/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
|
54
|
Zhuang S, Liu Y, Wang J. Mechanistic insight into the adsorption of diclofenac by MIL-100: Experiments and theoretical calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:616-624. [PMID: 31330353 DOI: 10.1016/j.envpol.2019.07.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
The development of high-efficiency adsorbents and the exploration of their adsorption mechanisms are major challenges in environmental remediation. Herein, MIL-100 was prepared, characterized, and utilized for the adsorptive removal of diclofenac sodium (DCF) from aqueous solutions. A high monolayer adsorption capacity of 773 mg g-1 was recorded. The adsorption mechanism was proposed based on different contributions of two types of pore structure of MIL-100 to the adsorption of DCF from aqueous solutions according to the experimental results and theoretical calculation. During adsorption process, DCF (5.2 × 7.4 × 10.3 Å) diffused through the free area of hexagonal pores (8.6 × 8.6 Å) into the cages of MIL-100, whilst it was adsorbed by the pentagonal pores (4.8 × 5.8 Å) preferentially. Internal mass transfer resistance, which was identified as one of the dominant rate-limiting steps by the mass transfer resistance kinetic models based on the Sips model, will be derived from the diffusion process, which was affected by the size-sieving effect of the pore structure of MIL-100. The successful diffusion of DCF into the interior of MIL-100 and the stable configuration between MIL-100 and DCF accounted for the high adsorption capacity. The capture of DCF into MIL-100 also resulted in the pore size distribution variation of adsorbent, which provided vital experimental evidence for the proposed mechanism. This study may offer deeper insights into other pollutants removal by metal-organic frameworks type adsorbents.
Collapse
Affiliation(s)
- Shuting Zhuang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
55
|
Gao Y, Liu G, Gao M, Huang X, Xu D. Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Crit Rev Anal Chem 2019; 50:472-484. [DOI: 10.1080/10408347.2019.1653166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| |
Collapse
|
56
|
Wang C, Luan J, Wu C. Metal-organic frameworks for aquatic arsenic removal. WATER RESEARCH 2019; 158:370-382. [PMID: 31055017 DOI: 10.1016/j.watres.2019.04.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Effective remediation of arsenic contaminated water remains a critical task from the environmental perspective, owing to the harmful effects of arsenic on human health and the environment. Recently, highly porous metal-organic frameworks (MOFs) with excellent chemical stability and abundant functional groups represent a significant new addition to the area of capturing aquatic arsenic pollutants. This review focuses on the development of MOF-based materials for the efficient removal of toxic arsenic species from aqueous solutions. Aspects related to the materials' characteristics, application performance and interaction mechanisms are systematically studied, referencing the macroscopic experimental behaviors and microscopic spectroscopy analyses. The properties of various MOF-based materials are assessed and compared with those of other conventionally used materials. At last, insights and perspectives are suggested in terms of future research directions and development challenges. Overall, this class of materials demonstrates a promising potential for aquatic arsenic removal, and with a proper up-scaling development might it be used for practical applications in the near future.
Collapse
Affiliation(s)
- C Wang
- Beijing Research Institute of Chemical Industry, SINOPEC Group, Beijing, 100013, People's Republic of China.
| | - J Luan
- Beijing Research Institute of Chemical Industry, SINOPEC Group, Beijing, 100013, People's Republic of China
| | - C Wu
- Beijing Research Institute of Chemical Industry, SINOPEC Group, Beijing, 100013, People's Republic of China.
| |
Collapse
|
57
|
Abo El Naga AO, El Saied M, Shaban SA, El Kady FY. Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
58
|
Functionalized mesoporous metal-organic framework PCN-100: An efficient carrier for vitamin E storage and delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
59
|
Liu G, Huang X, Lu M, Li L, Li T, Xu D. Facile synthesis of magnetic zinc metal-organic framework for extraction of nitrogen-containing heterocyclic fungicides from lettuce vegetable samples. J Sep Sci 2019; 42:1451-1458. [PMID: 30677235 DOI: 10.1002/jssc.201801169] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/26/2018] [Accepted: 01/19/2019] [Indexed: 12/26/2022]
Abstract
We present a simple method for the fabrication of a magnetic amino-functionalized zinc metal-organic framework based on a magnetic graphene oxide composite. The resultant framework exhibited a porous 3D structure, high surface area and good adsorption properties for nitrogen-containing heterocyclic fungicides. The adsorption process and capacity indicated that the primary adsorption mechanism might be hydrogen bonding and π-π conjugation. In addition, an optimized protocol for magnetic solid phase extraction was developed (such as adsorbent content, pH, and desorption solvent), and utilized for the extraction of nitrogen-containing heterocyclic fungicides from vegetable samples. Quantitation by high performance liquid chromatography coupled with tandem mass spectrometry offered a detection limit of 0.21-1.0 μg/L (S/N = 3) with correlation coefficients larger than 0.9975. These results demonstrate that magnetic amino-functionalized zinc metal-organic framewor is a promising adsorbent for the extraction and quantitation of nitrogen-containing heterocyclic fungicides.
Collapse
Affiliation(s)
- Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, P. R. China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, P. R. China
| | - Meng Lu
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan, P. R. China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, P. R. China
| | - Tengfei Li
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan, P. R. China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, P. R. China
| |
Collapse
|
60
|
Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.10.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
61
|
Farkhondeh T, Samarghandian S, Azimi-Nezhad M. The role of arsenic in obesity and diabetes. J Cell Physiol 2019; 234:12516-12529. [PMID: 30667058 DOI: 10.1002/jcp.28112] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
As many individuals worlwide are exposed to arsenic, it is necessary to unravel the role of arsenic in the risk of obesity and diabetes. Therefore, the present study reviewed the effects of arsenic exposure on the risk and potential etiologic mechanisms of obesity and diabetes. It has been suggested that inflammation, oxidative stress, and apoptosis contribute to the pathogenesis of arsenic-induced diabetes and obesity. Though arsenic is known to cause diabetes through different mechanisms, the role of adipose tissue in diabetes is still unclear. This review exhibited the effects of arsenic on the metabolism and signaling pathways within adipose tissue (such as sirtuin 3 [SIRT3]- forkhead box O3 [FOXO3a], mitogen-activated protein kinase [MAPK], phosphoinositide-dependant kinase-1 [PDK-1], unfolded protein response, and C/EBP homologous protein [CHOP10]). Different types of adipokines involved in arsenic-induced diabetes are yet to be elucidated. Arsenic exerts negative effects on the white adipose tissue by decreasing adipogenesis and enhancing lipolysis. Some epidemiological studies have shown that arsenic can promote obesity. Nevertheless, few studies have indicated that arsenic may induce lipodystrophy. Arsenic multifactorial effects include accelerating birth and postnatal weight gains, elevated body fat content, glucose intolerance, insulin resistance, and increased serum lipid profile. Arsenic also elevated cord blood and placental, as well as postnatal serum leptin levels. The data from human studies indicate an association between inorganic arsenic exposure and the risk of diabetes and obesity. However, the currently available evidence is insufficient to conclude that low-moderate dose arsenic is associated with diabetes or obesity development. Therefore, more investigations are needed to determine biological mechanisms linking arsenic exposure to obesity and diabetes.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
62
|
Ali I. Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
63
|
Shahrin S, Lau WJ, Goh PS, Jaafar J, Ismail AF. Adsorptive Removal of As(V) Ions from Water using Graphene Oxide-Manganese Ferrite and Titania Nanotube-Manganese Ferrite Hybrid Nanomaterials. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201800322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sazreen Shahrin
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Woei-Jye Lau
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Pei-Sean Goh
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Juhana Jaafar
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Ahmad Fauzi Ismail
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| |
Collapse
|
64
|
Fei J, Wang T, Zhou Y, Wang Z, Min X, Ke Y, Hu W, Chai L. Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods. CHEMOSPHERE 2018; 207:665-675. [PMID: 29857198 DOI: 10.1016/j.chemosphere.2018.05.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Many researchers at home and abroad have made a body of researches and have gained great achievements on the environmental occurrence, fate, and toxicity of inorganic arsenic. But there is less research on the use of aromatic organoarsenic compounds (AOCs), which are common feed additives for livestock in the poultry industry. In this review, we outline the current state of knowledge acquired on the occurrence and remediation of AOCs, respectively. We also identify knowledge gaps and research needs, including the elucidation of the environmental fate of AOCs, metabolic pathway, the impact of metabolic modification on toxicity, and advanced analytical or repaired methods that allows for monitoring, identification or removal of the degradation products.
Collapse
Affiliation(s)
- Jiangchi Fei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Ting Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Wenyong Hu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
65
|
Hao L, Wang N, Wang C, Li G. Arsenic removal from water and river water by the combined adsorption - UF membrane process. CHEMOSPHERE 2018; 202:768-776. [PMID: 29609177 DOI: 10.1016/j.chemosphere.2018.03.159] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, a pilot-scale adsorption-UF process equipped with an aerated system is established for arsenic removal from As-spiked Songhua river water. A newly synthesized amino-functionalized coffee cellulose adsorbent (PEI-coffee) which is derived from spent coffee powder is fully characterized and used for arsenic removal from water. The batch experiments revealed that the adsorption process could be well described by Langmuir model with a maximum adsorption capacity of 13.2 and 46.1 mg/g for As(III) and As(V), respectively. The negative value of △H and △G indicated the exothermic and spontaneous nature of As adsorption on PEI-coffee. The effects of operating parameters such as pH, initial concentration and adsorbent dosage, were optimized by response surface methodology (RSM) based on a central composite design (CCD). The combined adsorption - UF process was employed for arsenic removal from As-spiked Songhua river water. It was demonstrated that aeration not only increased the removal efficiency by oxidizing As(III) to As(V), but mitigated the membrane fouling process. Besides of the adsorption process, UF membrane could also reject arsenic through the electrostatic repulsion between arsenic species and membrane surface. After UF filtration, the dissolved As, suspended solids (SS), and TOC can be effectively eliminated. The saturated adsorbent was regenerated by using an eluting agent of 10 wt% NaCl and 10 wt% NaOH, the regenerated adsorbent still sustained a very high adsorption capacity after 6 cycles of adsorption-regeneration process.
Collapse
Affiliation(s)
- Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China; School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR. China.
| | - Nannan Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing, 102617, PR China
| | - Chang Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Guiju Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
66
|
Liu C, Yu LQ, Zhao YT, Lv YK. Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Mikrochim Acta 2018; 185:342. [PMID: 29951844 DOI: 10.1007/s00604-018-2879-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/17/2018] [Indexed: 01/11/2023]
Abstract
This review (with 85 refs.) summarizes the recent literature on the adsorption of common aromatic pollutants by using modified metal-organic frameworks (MOFs). Four kinds of aromatic pollutants are discussed, namely benzene homologues, polycyclic aromatic hydrocarbons (PAHs), organic dyes and their intermediates, and pharmaceuticals and personal care products (PPCPs). MOFs are shown to be excellent adsorbents that can be employed to both the elimination of pollutants and to their extraction and quantitation. Adsorption mechanisms and interactions between aromatic pollutants and MOFs are discussed. Finally, the actual challenges of existence and the perspective routes towards future improvements in the field are addressed. Graphical abstract Recent advance on adsorption of common aromatic pollutants including benzene series, polycyclic aromatic hydrocarbons, organic dyes and their intermediates, pharmaceuticals and personal care products by metal-organic frameworks.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China
| | - Li-Qing Yu
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ya-Ting Zhao
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
67
|
Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 2018; 47:2322-2356. [PMID: 29498381 DOI: 10.1039/c7cs00543a] [Citation(s) in RCA: 889] [Impact Index Per Article: 148.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Highly efficient removal of metal ion pollutants, such as toxic and nuclear waste-related metal ions, remains a serious task from the biological and environmental standpoint because of their harmful effects on human health and the environment. Recently, highly porous metal-organic frameworks (MOFs), with excellent chemical stability and abundant functional groups, have represented a new addition to the area of capturing various types of hazardous metal ion pollutants. This review focuses on recent progress in reported MOFs and MOF-based composites as superior adsorbents for the efficient removal of toxic and nuclear waste-related metal ions. Aspects related to the interaction mechanisms between metal ions and MOF-based materials are systematically summarized, including macroscopic batch experiments, microscopic spectroscopy analysis, and theoretical calculations. The adsorption properties of various MOF-based materials are assessed and compared with those of other widely used adsorbents. Finally, we propose our personal insights into future research opportunities and challenges in the hope of stimulating more researchers to engage in this new field of MOF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Jie Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Sarker M, Song JY, Jeong AR, Min KS, Jhung SH. Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:593-601. [PMID: 29102642 DOI: 10.1016/j.jhazmat.2017.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/07/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
A highly porous metal-organic framework (MOF), MIL-101, was modified for the first time with the nucleobase adenine (Ade) by grafting onto the MOF. The Ade-grafted MOF, Ade-MIL-101, was further protonated to obtain P-Ade-MIL-101, and these MOFs were utilized to remove nitrogen-containing compounds (NCCs) (such as indole (IND) and quinoline (QUI)) from a model fuel by adsorption. These functionalized MOFs exhibited remarkable adsorption performance for NCCs compared with that shown by commercial activated carbon (AC) and pristine MIL-101, even though the porosities of the functionalized-MOFs were lower than that of pristine MIL-101. P-Ade-MIL-101 has 12.0 and 10.8 times capacity to that of AC for IND and QUI adsorption, respectively; its adsorption performance was competitive with that of other reported adsorbents. The remarkable adsorption of IND and QUI by Ade-MIL-101 was attributed to H-bonding. H-bonding combined with cation-π interactions was proposed as the mechanism for the removal of IND by P-Ade-MIL-101, whereas acid-base interactions were thought to be responsible for QUI adsorption by P-Ade-MIL-101. Moreover, P-Ade-MIL-101 can be regenerated without any severe degradation and used for successive adsorptions. Therefore, P-Ade-MIL-101 was recommended as an effective adsorbent for fuel purification by adsorptive removal of NCCs.
Collapse
Affiliation(s)
- Mithun Sarker
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Yoon Song
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah Rim Jeong
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
69
|
Bhadra BN, Song JY, Lee SK, Hwang YK, Jhung SH. Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1069-1077. [PMID: 30216966 DOI: 10.1016/j.jhazmat.2017.11.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/08/2023]
Abstract
Metal azolate framework-6 (MAF-6) was pyrolyzed at 1000°C to yield MOF-derived carbons (MCs). The obtained MCs were used to eliminate aromatic hydrocarbons, including polyaromatic hydrocarbons (PAHs; e.g., naphthalene (NAP), anthracene (ATC), and pyrene (PRN)) and benzene (BZ) from water via adsorption. The adsorption results over the MCs were compared with that of pristine MAF-6 and commercial activated carbon (AC). MC obtained after 24h (MC-24) exhibited a remarkable adsorption efficiency compared to that of the other MCs (obtained after different durations), MAF-6, and AC. For example, MC-24 led to adsorptions of NAP around 17 and 2.5 times those of pristine MAF-6 and AC, respectively. Or, the maximum adsorption capacities (Q0) of MAF-6, AC and MC-24 for NAP were 14, 104 and 237mg/g, respectively. Moreover, Q0 values of MC-24 for ATC and PRN were also very high of 284 and 307mg/g, respectively. Based on the properties of PAHs and the hydrophobicity of MC-24, hydrophobic interaction was suggested as the main mechanism for the adsorption of PAHs and BZ. In addition, MC-24 can be recycled by washing with acetone with little loss in performance. Therefore, MC-24 is recommended as a competitive adsorbent for aromatic hydrocarbon removal from water.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Ji Yoon Song
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Su-Kyung Lee
- Research Group for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea; Department of Chemistry, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Young Kyu Hwang
- Research Group for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea; Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong, Daejeon 34113, South Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
70
|
Sherlala AIA, Raman AAA, Bello MM, Asghar A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. CHEMOSPHERE 2018; 193:1004-1017. [PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 11/18/2017] [Indexed: 05/28/2023]
Abstract
Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
Collapse
Affiliation(s)
- A I A Sherlala
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemical Engineering, College of Engineering Technology-Janzour, Libya.
| | - A A A Raman
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - M M Bello
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - A Asghar
- Department of Chemical Engineering, University of Engineering & Technology, G.T. Road, 54890, Lahore, Pakistan.
| |
Collapse
|
71
|
Bhadra BN, Jhung SH. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:179-188. [PMID: 28715741 DOI: 10.1016/j.jhazmat.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
A series of metal-azolate frameworks or MAFs-MAF-4, -5, and -6-were synthesized and pyrolyzed to prepare porous carbons derived from MAFs (CDM-4, -5, -6, respectively). Not only the obtained carbons but also MAFs were characterized and applied for the adsorption of organic contaminants of emerging concern (CECs, including pharmaceuticals and personal care products) such as salicylic acid, clofibric acid, diclofenac sodium, bisphenol-A, and oxybenzone (OXB) from water. CDM-6 was found to be the most remarkable adsorbent among the tested ones (including activated carbon) for all the adsorbates. OXB was taken as a representative adsorbate for detailed adsorption studies as well as understanding the adsorption mechanism. H-bonding (H-acceptor: CDM; H-donor: CECs) was suggested as the principal mechanism for the adsorption of tested adsorbates. Finally, CDMs, especially CDM-6, were suggested as highly efficient and easily recyclable adsorbents for water purification.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|