51
|
Zhou Y, Zeng Z, Guo Y, Zheng X. Selective adsorption of Hg(ii) with diatomite-based mesoporous materials functionalized by pyrrole-thiophene copolymers: condition optimization, application and mechanism. RSC Adv 2022; 12:33160-33174. [PMID: 36425157 PMCID: PMC9673902 DOI: 10.1039/d2ra05938j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2023] Open
Abstract
A novel diatomite-based mesoporous material of MCM-41/co-(PPy-Tp) was prepared with MCM-41 as carrier and functionalized with the copolymer of pyrrole and thiophene. The physicochemical characteristics of the as-prepared materials were characterized by various characterization means. The removal behaviour of Hg(ii) was adequately investigated via series of single factor experiments and some vital influence factors were optimized via response surface methodology method. The results exhibit that diatomite-based materials MCM-41/co-(PPy-Tp) has an optimal adsorption capability of 537.15 mg g-1 towards Hg(ii) at pH = 7.1. The removal process of Hg(ii) onto MCM-41/co-(PPy-Tp) is controlled by monolayer chemisorption based on the fitting results of pseudo-second-order kinetic and Langmuir models. In addition, the adsorption of Hg(ii) ions onto MCM-41/co-(PPy-Tp) is mainly completed through forming a stable complex with N or S atoms in MCM-41/co-(PPy-Tp) by electrostatic attraction and chelation. The as-developed MCM-41/co-(PPy-Tp) displays excellent recyclability and stabilization, has obviously selective adsorption for Hg(ii) in the treatment of actual electroplating wastewater. Diatomite-based mesoporous material functionalized by the copolymer of pyrrole and thiophene exhibits promising application prospect.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Zheng Zeng
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Yongfu Guo
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou 215009 Jiangsu China
| | - Xinyu Zheng
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| |
Collapse
|
52
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
53
|
Liu Q, Zang GL, Zhao Q. Removal of methyl orange wastewater by Ugi multicomponent reaction functionalized UiO-66-NS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76833-76846. [PMID: 35672634 DOI: 10.1007/s11356-022-21175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The efficient and rapid removal of organic dyes from wastewater remains a complex and challenging task. In this study, UiO-66-NH2 was prepared by solvothermal synthesis, and then, UiO-66-NS was prepared by compounding L-cysteine with UiO-66-NH2 via the Ugi reaction for the efficient removal of methyl orange. UiO-66-NS was prepared by the addition of 1 mmol L-cysteine and showed good adsorption of methyl orange with 92.00% removal. Pseudo-second-order kinetics and Langmuir isotherms more accurately described the adsorption process of UiO-66-NS on methyl orange, which indicated that the adsorption process was dominated by monolayer adsorption of chemical reactions, and the maximum adsorption amounts of UiO-66-NS on methyl orange were 242.72 mg/g at 298 K. In addition, UiO-66-NS exhibited ultrahigh stability in acidic, neutral, and alkaline media (pH = 3-10), but its adsorption of methyl orange after 5 cycles was only 59.53% of the maximum adsorption amount. The adsorption mechanism is primarily electrostatic adsorption of UiO-66-NS with methyl orange, hydrogen bonding, and π-π interactions. This atomically economical Ugi multicomponent reaction provides new ideas for the preparation of structurally designable adsorbents with excellent performance.
Collapse
Affiliation(s)
- Qi Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Guo-Long Zang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.
| | - Quan Zhao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| |
Collapse
|
54
|
Askari S, Khodaei MM, Jafarzadeh M, Mikaeili A. In-situ formation of Ag NPs on the ribonic γ-lactone-modified UiO-66-NH2: An effective catalyst for organic synthesis and antibacterial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
55
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
56
|
Wang C, Xiong C, Zhang X, He Y, Xu J, Zhao Y, Wang S, Zheng J. External optimization of Zr-MOF with mercaptosuccinic acid for efficient recovery of gold from solution: Adsorption performance and DFT calculation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
57
|
Fu K, Zhang Y, Liu H, Lv C, Guo J, Luo J, Yin K, Luo S. Construction of metal-organic framework/polymer beads for efficient lead ions removal from water: Experiment studies and full-scale performance prediction. CHEMOSPHERE 2022; 303:135084. [PMID: 35618066 DOI: 10.1016/j.chemosphere.2022.135084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) show great promise in heavy metal removal; however, their applications are restricted by the poor separability and water instability. Herein, granular Zr-based MOF-polymer composite beads (MPCB(Zr)) (mean diameter ∼ 1.74 mm) were synthesized using a facile dropping method, and applied on efficient lead ions (Pb(II)) removal. The as-prepared MPCB(Zr) demonstrated deep Pb(II) removal capability by reducing its concentration to ∼ 0.002 mg L-1 after adsorption equilibrium at 360 min. The distribution coefficient for Pb(II) reached 8.0 × 106 mL g-1, and the theoretical adsorption capacity for Pb(II) was 144.5 mg g-1 (0.70 mmol g-1, 30 °C). The resulting MPCB(Zr) was highly selective for Pb(II), with the selectivity coefficient up to ∼ 1.0-3.6 × 103 for the background cations (Na(I), K(I), Ca(II), and Mg(II)). Moreover, the MPCB(Zr) exhibited a broad working pH range (3.0-6.0) and satisfactory anti-interference to dissolved organic matters (humic acid and fuvic acid). Notably, the MPCB(Zr) also demonstrated excellent reusability with the Pb(II) removal efficiency over 99.0% after 20 cycles. Combined physicochemical characterizations unveiled that the thiol and oxygen-containing groups (e.g., hydroxyl, carboxylate) were responsible for the effective Pb(II) removal. To provide guidance for engineering application, the full-scale performance of the MPCB(Zr) under varying operation conditions was systematically evaluated via the validated pore surface diffusion model. This work provides an effective methodology to construct macroscopic MOF-polymer beads for effective Pb(II) removal, and promote the actual application of MOFs in water treatment.
Collapse
Affiliation(s)
- Kaixing Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Youqin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, PR China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kai Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| |
Collapse
|
58
|
Suárez-Herrera MF, Gamero-Quijano A, Scanlon MD. Electrosynthesis of poly(2,5-dimercapto-1,3,4-thiadiazole) films and their composites with gold nanoparticles at a polarised liquid|liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Ren L, Gao X, Zhang X, Qiang T. Stable and recyclable polyporous polyurethane foam highly loaded with UIO-66-NH2 nanoparticles for removal of Cr(Ⅵ) in wastewater. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Zhou L, Liu H, Pan PH, Deng B, Zhao SY, Liu P, Wang YY, Li JL. Development of Cationic Benzimidazole-Containing UiO-66 through Step-by-Step Linker Modification to Enhance the Initial Sorption Rate and Sorption Capacities for Heavy Metal Oxo-Anions. Inorg Chem 2022; 61:11992-12002. [PMID: 35866632 DOI: 10.1021/acs.inorgchem.2c01816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective and rapid capture of heavy metal oxo-anions from wastewater is a fascinating research topic, but it remains a great challenge. Herein, benzimidazole and -CH3 groups were integrated into UiO-66 in succession via a step-by-step linker modification strategy that was performed by presynthesis modification (to give Bim-UiO-66) and subsequently by postsynthetic ionization (to give Bim-UiO-66-Me). The UiO-66s (UiO-66, Bim-UiO-66, and Bim-UiO-66-Me) were applied in the removal of heavy metal oxo-anions from water. The two benzimidazole derivatives (Bim-UiO-66 and Bim-UiO-66-Me) showed much better performance than UiO-66, as both the initial sorption rate and sorption capacities decreased in the order Bim-UiO-66-Me > Bim-UiO-66 > UiO-66. The maximum performances of Bim-UiO-66 are 5.1 and 1.7 times those of UiO-66. Remarkably, Bim-UiO-66-Me shows 7.5 and 3.0 times better performance than UiO-66. The higher absorptivity of cationic Bim-UiO-66-Me compared with UiO-66 can be attributed to a strong Coulombic interaction as well as an anion-π interaction and hydrogen bonding between the benzimidazolium functional group and heavy metal oxo-anions. The as-synthesized Bim-UiO-66-Me not only provides a promising candidate for application in removal of heavy metal oxo-anions in wastewater treatment but also opens up a new strategy for the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
61
|
Hu X, Lin S, Chen R, Zhang G, Huang T, Li J, Yang X, Chung LH, Yu L, He J. Thiol-Containing Metal-Organic Framework-Decorated Carbon Cloth as an Integrated Interlayer-Current Collector for Enhanced Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31942-31950. [PMID: 35795893 DOI: 10.1021/acsami.2c06131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium-sulfur (Li-S) batteries hold great promise for new-generation energy storage technologies owing to their overwhelming energy density. However, the poor conductivity of active sulfur and the shuttle effect limit their widespread use. Herein, a carbon cloth decorated with thiol-containing UiO-66 nanoparticles (CC@UiO-66(SH)2) was developed to substitute the traditional interlayer and current collector for Li-S batteries. One side of CC@UiO-66(SH)2 acts as a current collector to load active materials, while the other side serves as an interlayer to further restrain polysulfide shuttling. This two-in-one integrated architecture endows the sulfur cathode with fast electron/ion transport and efficient chemical confinement of polysulfides. More importantly, rich thiol groups in the pores of UiO-66(SH)2 serve to tether polysulfides by both covalent interactions and lithium bonding. Therefore, the Li-S battery equipped with this integrated interlayer-current collector not only delivers an enhanced specific capability (1209 mAh g-1 at 0.1 C) but also exhibits prominent cycling stability (an attenuation rate of 0.037% per cycle for 1000 cycles at 1 C). Meanwhile, the battery achieves a high discharge capacity of 795 mAh g-1 at a sulfur loading of 3.83 mg cm-2. The new metal-organic framework (MOF)-based electrode material reported in this study undoubtedly provides insights into the exploration of functional MOFs for robust Li-S batteries.
Collapse
Affiliation(s)
- Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangjun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruwei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Gengyuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tian Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianrong Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianghua Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
62
|
Metalloporphyrin functionalized multivariate IRMOF-74-IV analogs for photocatalytic CO2 reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
63
|
Liu J, Chen Y, Hu Y, Zhang Y, Zhang G, Wang S, Zhang L. A novel metal-organic framework-derived ZnO@ZIF-8 adsorbent with high efficiency for Pb (II) from solution: Performance and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
64
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
65
|
Adsorption-Based Removal of Sb (III) from Wastewater by Graphene Oxide-Modified Zirconium-Based Metal-Organic Framework Composites. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9222441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The treatment of Sb (III) wastewater produced from mining activities is uniquely challenging and has therefore garnered increasing attention. Here, an amino-modified zirconium-based metal-organic framework material (UiO-66-NH2) and its composites were loaded onto graphene oxide (GO@UiO-66-NH2) via the hydrothermal method, after which these materials were used to adsorb Sb (III) in mine wastewater. The effects of adsorption time, pH, initial Sb (III) concentration, temperature, and adsorbent dosage on the removal performance of Sb (III) were then investigated. The adsorption processes of Sb (III) were examined via adsorption kinetic, isotherm, and thermodynamic analyses. XRD, SEM, and FTIR analyses demonstrated the presence of a porous structure and high levels of oxygen-containing functional groups on the UiO-66-NH2 and GO@UiO-66-NH2 surfaces. During the Sb (III) adsorption process, the adsorption rates of UiO-66-NH2 and GO@UiO-66-NH2 were very fast in the first 10 minutes, and the adsorption equilibrium was achieved in 12 h, with the adsorption efficiencies of 91.76% and 93.79%, respectively. At a pH of 7.0, 25°C, an initial Sb (III) concentration of 100 mg/L, and an adsorbent dosage of 0.04 g/L, the maximum Sb (III) adsorption capacities of UiO-66-NH2 and GO@UiO-66-NH2 reached 39.23 mg/g and 61.07 mg/g, respectively. The adsorption process was accurately described by the Langmuir model, meaning that the Sb (III) was adsorbed through single-layer uniform adsorption. Moreover, the adsorption process was highly consistent with the pseudo-second-order model, which was indicative of spontaneous and endothermic chemical adsorption. Additionally, the Sb (III) removal efficiency could be maintained approximately 70% after sorption-desorption recycling four times. Therefore, our study provides an economical and effective method for the removal of Sb (III) in wastewater treatment.
Collapse
|
66
|
Zhang H, Hu X, Li T, Zhang Y, Xu H, Sun Y, Gu X, Gu C, Luo J, Gao B. MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128271. [PMID: 35093745 DOI: 10.1016/j.jhazmat.2022.128271] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
With large specific surface area, abundant adsorption sites, flexible pore structure, and good water stability, Materials of Institute Lavoisier frameworks (MILs) have attracted increasing attention as effective environmental adsorbents. This review systematically analyzes and recapitulates recent progress in the synthesis and application of MIL-based adsorbents for the removal of aqueous heavy metal ions. Commonly used solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical syntheses of MILs are first summarized and compared. Instead of focusing on adsorption process parameters, adsorption performances and governing mechanisms of virgin MILs, functional MILs, MIL-based composites, and carbonized MILs to representative metal(loid) ions (chromium, arsenic, lead, cadmium, and mercury) in water under various conditions are then systematically reviewed and discussed. In the end, this work also outlines prospects and future directions to promote the applications of MILs in treating heavy metal contaminated water.
Collapse
Affiliation(s)
- Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210023, PR China.
| | - Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China.
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
67
|
Acid/base regulated syntheses of different 1D coordination chains for selective mercury removal from aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
68
|
Tang Y, Zheng M, Xue W, Huang H, Zhang G. Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
69
|
Wang RD, He M, Li Z, Niu Z, Zhu RR, Zhang WQ, Zhang S, Du L, Zhao QH. A Novel Coordination Polymer as Adsorbent Used to Remove Hg(II) and Pb(II) from Water with Different Adsorption Mechanisms. ACS OMEGA 2022; 7:10187-10195. [PMID: 35382326 PMCID: PMC8973041 DOI: 10.1021/acsomega.1c06606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Under the hydrothermal condition, a new type of two-dimensional coordination polymer ([Cd(D-Cam)(3-bpdb)]n, Cd-CP) has been constructed. It is composed of D-(+)-Camphoric-Cd(II) (D-cam-Cd(II)) one-dimensional chain and bridging 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpdb) ligands. Cd-CP has a good removal effect for Hg(II) and Pb(II), and the maximum adsorption capacity is 545 and 450 mg/g, respectively. Interestingly, thermodynamic studies have shown that the adsorption processes of Hg(II) and Pb(II) on Cd-CP use completely different thermodynamic mechanisms, in which the adsorption of Hg(II) is due to a strong electrostatic interaction with Cd-CP, while that of Pb(II) is through a weak coordination with Cd-CP. Moreover, Cd-CP has a higher affinity for Hg(II), and when Hg(II) and Pb(II) coexist, Cd-CP preferentially adsorbs Hg(II).
Collapse
Affiliation(s)
- Rui-Dong Wang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Mei He
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zhihao Li
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zongling Niu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Rong-Rong Zhu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Wen-Qian Zhang
- College
of Pharmaceutical Engineering, Xinyang Agricultural
and Forestry University, Henan, 464000, People’s Republic
of China
| | - Suoshu Zhang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Lin Du
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| | - Qi-Hua Zhao
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
70
|
Ghobakhloo F, Azarifar D, Mohammadi M, Keypour H, Zeynali H. Copper(II) Schiff-Base Complex Modified UiO-66-NH 2(Zr) Metal-Organic Framework Catalysts for Knoevenagel Condensation-Michael Addition-Cyclization Reactions. Inorg Chem 2022; 61:4825-4841. [PMID: 35285616 DOI: 10.1021/acs.inorgchem.1c03284] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis of five- and six-membered oxygen- and nitrogen-containing heterocycles has been regarded as the most fundamental issue in organic chemistry and chemical industry because they are used in producing high-value products. In this study, an efficient, economic, sustainable, and green protocol for multicomponent synthesis has been developed. The one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences for the transformation of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin or phthalhydrazide generate the corresponding dihydropyrano[2,3-c]chromenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones over a novel mesoporous metal-organic framework-based supported Cu(II) nanocatalyst [UiO-66@Schiff-Base-Cu(II)] under ambient conditions. Moreover, the [UiO-66@Schiff-Base-Cu(II)] complex efficiently catalyzed the selectively large-scale synthesis of the target molecules with high yield and large turnover numbers. As presented, the catalyst demonstrates excellent reusability and stability and can be recycled up to six runs without noticeable loss of activity. Moreover, ICP-AES analysis showed that no leaching of Cu complex occurred during the recycling process of the heterogeneous [UiO-66@Schiff-Base-Cu(II)] nanocatalyst.
Collapse
Affiliation(s)
- Farzaneh Ghobakhloo
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Davood Azarifar
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam 6931173385, Iran
| | - Hassan Keypour
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hamid Zeynali
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| |
Collapse
|
71
|
Wang Y, Zhu X, Zhang X, Zheng J, Li H, Xie N, Guo Y, Sun HB, Zhang G. Direct sulfhydryl ligand derived UiO-66 for the removal of aqueous mercury and its subsequent application as a catalyst for transfer vinylation. Dalton Trans 2022; 51:4043-4051. [PMID: 35174835 DOI: 10.1039/d1dt04184c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of mercury pollutants in water has been wide concern. Adsorption is a promising method for mercury removal that has been extensively studied. Nevertheless, the secondary application of the immobilized Hg is seldom investigated. In this paper, the Hg adsorption behavior of UiO-66 bearing sulfhydryl groups is studied. The research shows that the porous structure and sulfhydryl groups of UiO-66-SH can effectively promote the removal of mercury from water. In addition, this work also pushes forward the sequential application of the recovered adsorbent, which contains the adsorbed mercury that may cause secondary pollution. The recovered waste adsorbent, UiO-66-S-Hg, was successfully used as an efficient catalyst for transfer vinylation, which produces value-added products, vinyl benzoates. Eight vinyl esters have been successfully synthesized with a yield of up to 89%. This methodology provides a promising way for not only the treatment of mercury contamination, but also secondary pollution protection and the resource utilization of immobilized Hg.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Xu Zhu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China. .,School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Jianwei Zheng
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Nianyi Xie
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Ying Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Gang Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| |
Collapse
|
72
|
Yang Y, Zhang Y, Zheng H, Zhang B, Zuo Q, Fan K. Functionalized dual modification of covalent organic framework for efficient and rapid trace heavy metals removal from drinking water. CHEMOSPHERE 2022; 290:133215. [PMID: 34919913 DOI: 10.1016/j.chemosphere.2021.133215] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 05/27/2023]
Abstract
A key challenge in trace heavy metals removal from drinking water by adsorption technology is to achieve high adsorption capacity and rapid uptake speed of adsorbent. Herein, we report a functionalized double modified covalent organic framework (DMTD-COF-SH) bearing high-density sulfur and nitrogen chelating groups provided simultaneously by 2,5-dimercapto-1,3,4-thiadiazole (DMTD) and 1,2-ethanedithiol, which was prepared via a facile one-pot thiol-ene "click" reaction. PXRD, FTIR, XPS, SEM, BET and 13C MAS NMR confirmed their successful graft, and DMTD was found to be more easily grafted on the COF surface layer than 1,2-ethanedithiol. The as-prepared DMTD-COF-SH showed remarkable adsorption capacity and ultrafast uptake dynamics to trace heavy metals owing to the synergistic effects resulting from densely populated sulfur and nitrogen chelating groups within ordered COF mesopores and at the COF surface. On the basis of the drinking water treatment units standard NSF/ANSI 53-2020, when the adsorbent dosage was 10 mg/30 mL and 20 mg L-1 calcium ions coexisted, the lead concentration decreased from initial 150 μg L-1 to 2.89 μg L-1 within 10 s, far below the allowable limit of world health organization (WHO) drinking water standard (10 μg L-1), and the maximum adsorption capacity meeting the standard attained 14.22 mg g-1. The adsorbent also exhibited excellent stability, wide applicable pH range and outstanding adsorption performance for coexisting trace lead, mercury, cadmium, chromium (VI) and copper in tap water, indicating that the DMTD-COF-SH material has excellent application prospect for trace heavy metals removal from drinking water.
Collapse
Affiliation(s)
- Yanan Yang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Yu Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Hong Zheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Baichao Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Qi Zuo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Kaiyue Fan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
73
|
Yang F, Du M, Yin K, Qiu Z, Zhao J, Liu C, Zhang G, Gao Y, Pang H. Applications of Metal-Organic Frameworks in Water Treatment: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105715. [PMID: 34881495 DOI: 10.1002/smll.202105715] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The ever-expanding scale of industry and agriculture has led to the gradual increase of pollutants (e.g., heavy metal ions, synthetic dyes, and antibiotics) in water resources, and the ecology and wastewater are grave problems that need to be solved urgently and has attracted widespread attention from the research community and industry in recent years. Metal-organic frameworks (MOFs) are a type of organic-inorganic hybrid material with a distinctive 3D network crystal structure. Lately, MOFs have made striking progress in the fields of adsorption, catalytic degradation, and biomedicine on account of their large specific surface and well-developed pore structure. This review summarizes the latest research achievements in the preparation of pristine MOFs, MOF composites, and MOF derivatives for various applications including the removal of heavy metal ions, organic dyes, and other harmful substances in sewage. Furthermore, the working mechanisms of utilizing adsorption, photocatalytic degradation, and membrane separation technologies are also briefly described for specific pollutants removal from sewage. It is expected that this review will provide inspiration and references for the synthesis of pristine MOFs as well as their composites and derivatives with excellent water treatment performance.
Collapse
Affiliation(s)
- Feiyu Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, P. R. China
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Kailiang Yin
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiawei Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Chunli Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
74
|
El-Wakil A, Waly SM, Abou El-Maaty WM, Waly MM, Yılmaz M, Awad FS. Triazine-Based Functionalized Activated Carbon Prepared from Water Hyacinth for the Removal of Hg 2+, Pb 2+, and Cd 2+ Ions from Water. ACS OMEGA 2022; 7:6058-6069. [PMID: 35224367 PMCID: PMC8867800 DOI: 10.1021/acsomega.1c06441] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A novel chelating adsorbent, based on the functionalization of activated carbon (AC) derived from water hyacinth (WH) with melamine thiourea (MT) to form melamine thiourea-modified activated carbon (MT-MAC), is used for the effective removal of Hg2+, Pb2+, and Cd2+ from aqueous solution. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) theory confirm the successful functionalization of AC with the melamine thiourea chelating ligand through the amidation reaction between the carboxyl groups of oxidized activated carbon (OAC) and the amino groups of melamine thiourea (MT) in the presence of dicyclohexylcarbodiimide (DCC) as a coupling agent. The prepared MT-MAC exhibited extensive potential for the adsorption of the toxic metal ions Hg2+, Pb2+, and Cd2+ from wastewater. The MT-MAC showed high capacities for the adsorption of Hg2+ (292.6 mg·g-1), Pb2+ (237.4 mg·g-1), and Cd2+ (97.9 mg·g-1) from aqueous solution. Additionally, 100% removal efficiency of Hg2+ at pH 5.5 was observed at very low initial concentrations (25-1000 ppb).The experimental sorption data could be fitted well with the Langmuir isotherm model, suggesting a monolayer adsorption behavior. The kinetic data of the chemisorption mechanism realized by the melamine thiourea groups grafted onto the activated carbon surface have a perfect match with the pseudo-second-order (PSO) kinetic model. In a mixed solution of metal ions containing 50 ppm of each ion, MT-MAC showed a removal of 97.0% Hg2+, 68% Pb2+, 45.0% Cd2+, 17.0% Cu2+, 7.0% Ni2+, and 5.0% Zn2+. Consequently, MT-MAC has exceptional selectivity for Hg2+ ions from the mixed metal ion solutions. The MT-MAC adsorbent showed high stability even after three adsorption-desorption cycles. According to the results obtained, the use of the MT-MAC adsorbent for the adsorption of Pb2+, Hg2+, and Cd2+ metal ions from polluted water is promising.
Collapse
Affiliation(s)
- Ahmad
M. El-Wakil
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Saadia M. Waly
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Weam M. Abou El-Maaty
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Mohamed M. Waly
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Murat Yılmaz
- Department
of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
75
|
Ling Ong C, Heidelberg T, Ching Juan J, Ghaffari Khaligh N. Metal-free and green synthesis of a series of new bis(2-alkylsulfanyl-[1,3,4]thiadiazolyl)-5,5′-disulfides and 2,2′-Dibenzothiazyl disulfide via oxidative self-coupling using hydrogen peroxide. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
76
|
Wang J, Zhou L, Yan J, Chi X, Kumar A, Srivastava D, Afzal M, Alarifi AA. Efficient photodegradation of dyes by a new 3D Cd(II) MOF with rare fsh topology. CrystEngComm 2022. [DOI: 10.1039/d2ce00590e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic frameworks (MOFs) can be regarded as 3D coordination polymers that adopt ordered porous structures and possess abundant active sites, which make them promising photocatalysts for the degradation of organic...
Collapse
|
77
|
Deng S, Wu S, Han X, Xia F, Xu X, Zhang L, Jiang Y, Liu Y, Yang Y. Microwave-assisted functionalization of PAN fiber by 2-amino-5-mercapto-1,3,4-thiadiazol with high efficacy for improved and selective removal of Hg 2+ from water. CHEMOSPHERE 2021; 284:131308. [PMID: 34182291 DOI: 10.1016/j.chemosphere.2021.131308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg2+) contamination in water is associated with potential toxicity to human health and ecosystems. Many research studies have been ongoing to develop new materials for the remediation of Hg2+ pollution in water. In this study, a novel thiol- and amino-containing fibrous adsorbent was prepared by grafting 2-amino-5-mercapto-1,3,4-thiadiazol (AMTD) onto PAN fiber through a microwave-assisted method. The synthesized functional fiber was characterized by FTIR, SEM, and elemental analysis. Adsorption tests depicted that for mercury uptake, PANMW-AMTD fiber exhibited enhanced adsorption capacity compared with other fibrous adsorbents and selective adsorption feature under the interference of other metal ions, including Pb2+, Cu2+, Cd2+, and Zn2+. The influence of pH on the adsorption process was investigated and the effect of temperature revealed that the adsorption sorption process was endothermic and the adsorption performance of PANMW-AMTD was elevated with the increase of temperature. Kinetic studies of PANMW-AMTD fiber followed the pseudo-second-order and the adsorption isotherm of Hg2+ was well fitted by Sips and Langmuir equations, given the maximum adsorption amount of 332.9 mg/g. XPS results suggested that a synergetic coordination effect of sulfur and nitrogen in functional fiber with mercury took responsibility for the adsorption mechanism in the uptake process. In addition, the prepared PANMW-AMTD fiber could easily be regenerated with 0.1 M HCl for five times without significant reduction of mercury removal efficiency. Thus, this study will facilitate the research on novel functional material for the removal of mercury from water.
Collapse
Affiliation(s)
- Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shuxuan Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Xu Han
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Fu Xia
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Xiangjian Xu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Liangjing Zhang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yonghai Jiang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, PR China.
| | - Yu Yang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
78
|
Li Z, Wang L, Qin L, Lai C, Wang Z, Zhou M, Xiao L, Liu S, Zhang M. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. CHEMOSPHERE 2021; 285:131432. [PMID: 34273693 DOI: 10.1016/j.chemosphere.2021.131432] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 05/24/2023]
Abstract
Heavy metals pollution in water is a global environmental issue, which has threatened the human health and environment. Thus, it is important to remove them under practical water environment. In recent years, metal-organic frameworks (MOFs) with water-stable properties have attracted wide interest with regard to the capture of hazardous heavy metal ions in water. In this review, the synthesis strategy and postsynthesis modification preparation methods are first summarized for water-stable MOFs (WMOFs), and then the recent advances on the adsorption and photocatalytic reduction of heavy metal ions in water by WMOFs are reviewed. In contrast to the conventional adsorption materials, WMOFs not only have excellent adsorption properties, but also lead to photocatalytic reduction of heavy metal ions. WMOFs have coupling and synergistic effects on the adsorption and photocatalysis of heavy metal ions in water, which make it more effective in treating single pollutants or different pollutants. In addition, by introducing appropriate functional groups into MOFs or synthesizing MOF-based composites, the stability and ability to remove heavy metal ions of MOFs can be effectively enhanced. Although WMOFs and WMOF-based composites have made great progress in removing heavy metal ions from water, they still face many problems and challenges, and their application potential needs to be further improved in future research. Finally, this review aims at promoting the development and practical application of heavy metal ions removal in water by WMOFs.
Collapse
Affiliation(s)
- Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Lei Wang
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhihong Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mi Zhou
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Linhui Xiao
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
79
|
Yan J, Li K. A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
80
|
A novel benzothiazole modified chitosan with excellent adsorption capacity for Au(III) in aqueous solutions. Int J Biol Macromol 2021; 193:1918-1926. [PMID: 34752796 DOI: 10.1016/j.ijbiomac.2021.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/20/2023]
Abstract
A novel benzothiazole modified chitosan (BCS) with excellent Au(III) adsorption performance and selectivity was prepared as adsorbents. The structure and morphology of the adsorbents were characterized by FTIR, SEM, XRD and XPS. The adsorption property of the adsorbents for Au(III) were investigated under different reaction time, initial concentration of Au(III), temperature, pH and coexisting ions. The maximum adsorption capacity of BCS for Au(III) was 1072.22 mg/g at 298 K and optimal pH = 4, which was better than that of other adsorbents reported in literature. The adsorption kinetics and isotherm models fit the pseudo-second-order and Langmuir equations. This shows that the adsorption process of Au(III) is a monolayer chemical adsorption. The adsorption process can proceed spontaneously and belong to the endothermic reaction according to the thermodynamic results. The excellent adsorption performance is mainly attributed to the ion exchange and chelation of the nitrogen, sulfur and oxygen groups on the adsorbent with gold ions. Significantly, BCS has excellent selectivity toward Au(III) and remarkable recycle performance. With the high adsorption capacity, excellent selectivity and outstanding reusability, the BCS adsorbent could be a promising candidate to adsorb Au(III) from wastewater.
Collapse
|
81
|
Gao J, Li Z, Deng Z, Liu M, Wei W, Zheng C, Zhang Y, Chen S, Deng P. Rapid Removal of Mercury from Water by Novel MOF/PP Hybrid Membrane. NANOMATERIALS 2021; 11:nano11102488. [PMID: 34684928 PMCID: PMC8539959 DOI: 10.3390/nano11102488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Mercury is one of the most toxic heavy metals that can cause terrible disease for human beings. Among different absorption materials, MOF (metal–organic framework) materials show potential as very attractive materials for the rapid removal of mercury. However, the instability and difficulty for regeneration of MOF crystals limit their applications. Here, a continuous sulfur-modified MOF (UiO-66-NHC(S)NHMe) layer was synthesized in situ on polymeric membranes (PP non-woven fabrics) by post-synthetic modification and used for rapid mercury removal. The MOF-based membrane (US-N) showed high selectivity for mercury in different aqueous systems, which is better than sulfur-modified MOF powders. A thinner MOF layer on US-N showed a much better mercury ion removal performance. US-N with a 59.3 nm MOF layer could remove more than 85% of mercury in 20 min from an aqueous solution. In addition, the US-N can simply regenerate several times for mercury removal and maintain the initial performance (removal ratio > 98%), exhibiting excellent durability and stability. This work promotes the application of MOF materials in the rapid removal of hazardous heavy metal ions from practical environments.
Collapse
Affiliation(s)
- Jian Gao
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (J.G.); (M.L.); (W.W.); (C.Z.); (P.D.)
| | - Ziming Li
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing 101149, China;
| | - Ziqi Deng
- Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China;
| | - Meihua Liu
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (J.G.); (M.L.); (W.W.); (C.Z.); (P.D.)
| | - Wei Wei
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (J.G.); (M.L.); (W.W.); (C.Z.); (P.D.)
| | - Chunbai Zheng
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (J.G.); (M.L.); (W.W.); (C.Z.); (P.D.)
| | - Yifan Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (J.G.); (M.L.); (W.W.); (C.Z.); (P.D.)
- Correspondence: (Y.Z.); (S.C.); Tel.: +86-0431-85262329 (Y.Z)
| | - Shusen Chen
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing 101149, China;
- Correspondence: (Y.Z.); (S.C.); Tel.: +86-0431-85262329 (Y.Z)
| | - Pengyang Deng
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (J.G.); (M.L.); (W.W.); (C.Z.); (P.D.)
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
82
|
Yan X, Li P, Song X, Li J, Ren B, Gao S, Cao R. Recent progress in the removal of mercury ions from water based MOFs materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Awad FS, Bakry AM, Ibrahim AA, Lin A, El-Shall MS. Thiol- and Amine-Incorporated UIO-66-NH 2 as an Efficient Adsorbent for the Removal of Mercury(II) and Phosphate Ions from Aqueous Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fathi S. Awad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ayyob M. Bakry
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Chemistry, Faculty of Science, Jazan University, Jizan 45142, Saudi Arabia
| | - Amr Awad Ibrahim
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Andrew Lin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - M. Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
84
|
Bao S, Wang Y, Wei Z, Yang W, Yu Y, Sun Y. Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr(VI) and Hg(II) from aqueous solutions under wide pH range. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125825. [PMID: 34492787 DOI: 10.1016/j.jhazmat.2021.125825] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
The adsorbents with high adsorption capacity for simultaneously removing Cr(VI) and Hg(II) from aqueous solutions under broad working pH range are highly desirable but still extremely scarce. Here, a novel adsorbent with multidentate ligands was facilely fabricated by covalently bonding 4-amino-3-hydrazino-5-mercapto- 1,2,4-triazole on graphene oxide via the Schiff's base reaction. The maximum adsorption capacities of Cr(VI) and Hg(II) on the current adsorbent were 734.2 and 1091.1 mg/g, which were 14.36 and 5.61 times higher than that of the pure graphene oxide, respectively, exceeding those of most adsorbents previously reported. More interestingly, Cr(VI) and Hg(II) concentrations were decreased from 2 mg/L to 0.0001 mg/L for Hg(II) and 0.004 mg/L for Cr(VI), far below the WHO recommended threshold for drinking water. Moreover, the adsorbent shows an excellent performance for simultaneous removal of Cr(VI) and Hg(II) with more than 99.9% and 98.6% removal efficiencies in aqueous solutions. Finally, the adsorbent was successfully applied in dealing with the real industrial effluent, implying huge potential in industrial application. This work offers a new possibility for the removal of the metallic contaminants by rational designing target groups and ligands.
Collapse
Affiliation(s)
- Shuangyou Bao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yingjun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
85
|
Prakash Tripathy S, Subudhi S, Das S, Kumar Ghosh M, Das M, Acharya R, Acharya R, Parida K. Hydrolytically stable citrate capped Fe 3O 4@UiO-66-NH 2 MOF: A hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H 2 evolution. J Colloid Interface Sci 2021; 606:353-366. [PMID: 34392031 DOI: 10.1016/j.jcis.2021.08.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Design and facile fabrication of a magnetically separable hetero-structure photocatalyst as well as an adsorbent having dual green benefits towards energy conversion and pollutant remediation are quite indispensable in the current scenario. In this regard, a composite of citrate capped Fe3O4 and UiO-66-NH2 has been designed to remediate Cr (VI) by adsorption and harvest photons from visible light for clean energy (H2) conversion. The material was prepared by the union of citrate capped Fe3O4 (CCM) and versatile aqueous stable Zr-based MOF (UiO-66-NH2) through in-situ solvothermal method. The composite of CCM with MOF (MU-2) was studied through sophisticated analysis techniques; PXRD, FT-IR, BET, UV-Visible DRS, PL, TG, HRTEM and XPS etc. to reveal the inherent characteristics of the material. BET surface analysis revealed high specific surface area (572.13 m2 g-1) of MU-2 in comparison to its pristine MOF. Furthermore, the dual function composite MU-2's VSM studies showed that its magnetic saturation is 3.07 emu g-1 that is suitable for magnetic separation after desired reaction from aqueous media. The Cr (VI) sorption studies revealed that the composite adsorbent (MU-2) showed maximum monolayer adsorption capacity (Qm) of 743 mg g-1 which followed pseudo second order kinetics. Moreover, the sorption thermodynamics revealed that the process was spontaneous and endothermic in nature. In addition to it, the synthesized composite material displayed enhanced activity towards photocatalytic H2 evolution with a maximum evolution rate of 417 µmole h-1 with an apparent conversion efficiency (ACE) of 3.12 %. Typically, MU-2 displays high adsorptions of Cr (VI) as well as some extent of Cr (VI) reduction owning to its populous active sites and free carboxylate groups respectively. Moreover, the synergistic effect of CCM and UNH in the composite resulted in Z scheme mediated charge transfer mechanism that showed enhanced H2 photo-evolution rates. Hence, MU-2 can be readily utilized as magnetically retrievable dual function composite for Cr (VI) adsorption and photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Snehaprava Das
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Malay Kumar Ghosh
- Hydro & Electrometallurgy Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Mira Das
- Department of Chemistry, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Raghunath Acharya
- Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre (BARC), Mumbai 400094, India
| | - Rashmi Acharya
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar 751030, India.
| |
Collapse
|
86
|
Bhasin H, Mishra D. Metal Organic Frameworks: A Versatile Class of Hybrid Compounds for Luminescent Detection and Adsorptive Removal of Enviromental Hazards. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
87
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
88
|
Wu J, Zhang Y, Zhou J, Cao R, Wang C, Li J, Song Y. Efficient removal of Sr2+ and Cs+ from aqueous solutions using a sulfonic acid-functionalized Zr-based metal–organic framework. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Zhu Y, Lin H, Feng Q, Zhao B, Lan W, Li T, Xue B, Li M, Zhang Z. Sulfhydryl-modified SiO2 cryogel: A pH-insensitive and selective adsorbent for efficient removal of mercury in waters. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
90
|
Singh N, Srivastava I, Dwivedi J, Sankararamakrishnan N. Ultrafast removal of ppb levels of Hg(II) and volatile Hg(0) using post modified metal organic framework. CHEMOSPHERE 2021; 270:129490. [PMID: 33418227 DOI: 10.1016/j.chemosphere.2020.129490] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
A novel MOF based adsorbent was prepared by functionalization of MIL 88A with mercapto ethanol to yield MIL88A-SH and evaluated for the removal of Hg(II) in water and Hg(0) in air. The prepared MOFs were characterized by field emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), Brunauer- Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), and zeta X-ray photoelectron microscopy (XPS). The reaction rate was found to be very fast and within 15 min 95.5% Hg(II) was removed. The kinetics data followed pseudo second order model with rate constant values at 1.19 and 2.38 g/μg/min for MIl88A and MIL88A-SH respectively. A very high adsorption capacity in the order 1111.1 mg/g of Hg(II) was found using MIL88A-SH as adsorbent. The uptake was found to be constant in a wide range of pH from 5 to 9. Furthermore, in the presence other interfering metal ions, viz., Cu(II), As(V), Cd(II), Cr(VI), Pb(II), Zn(II), MIL88A-SH demonstrated an excellent adsorption for Hg(II). Around 45.6 mg/g of Hg(0) was found to be adsorbed by MIL88A-SH. XPS, FTIR and XRD studies suggested insitu oxidation Hg(0) to Hg(II) and complexation of Hg(II) with thiol groups during adsorption. Applicability on removal of Hg(II) at ppb levels from drinking water, fast kinetics, wide pH range, a very high sorption capacity, Hg(0) removal, selectivity and recyclability makes MIL88A-SH an efficient adsorbent to tackle mercury contamination.
Collapse
Affiliation(s)
- Neha Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Department of Chemistry, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Ila Srivastava
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Nalini Sankararamakrishnan
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
91
|
Luo J, Yu D, Hristovski KD, Fu K, Shen Y, Westerhoff P, Crittenden JC. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4287-4304. [PMID: 33709709 DOI: 10.1021/acs.est.0c07936] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterial adsorbents (NAs) have shown promise to efficiently remove toxic metals from water, yet their practical use remains challenging. Limited understanding of adsorption mechanisms and scaling up evaluation are the two main obstacles. To fully realize the practical use of NAs for metal removal, we review the advanced tools and chemical principles to identify mechanisms, highlight the importance of adsorption capacity and kinetics on engineering design, and propose a systematic engineering scenario for full-scale NA implementation. Specifically, we provide in-depth insight for using density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate adsorption mechanisms in terms of active site verification and molecular interaction configuration. Furthermore, we discuss engineering issues for designing, scaling, and operating NA systems, including adsorption modeling, reactor selection, and NA regeneration, recovery, and disposal. This review also prioritizes research needs for (i) determining NA microstructure properties using DFT, XAFS, and machine learning and (ii) recovering NAs from treated water. Our critical review is expected to guide and advance the development of highly efficient NAs for engineering applications.
Collapse
Affiliation(s)
- Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Deyou Yu
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kiril D Hristovski
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona 85212, United States
| | - Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
92
|
Soltani R, Pelalak R, Pishnamazi M, Marjani A, Shirazian S. A water-stable functionalized NiCo-LDH/MOF nanocomposite: green synthesis, characterization, and its environmental application for heavy metals adsorption. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103052] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
93
|
Wang Y, Long J, Xu W, Luo H, Liu J, Zhang Y, Li J, Luo X. Removal of uranium(VI) from simulated wastewater by a novel porous membrane based on crosslinked chitosan, UiO-66-NH2 and polyvinyl alcohol. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07649-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci (China) 2021; 101:177-188. [PMID: 33334514 DOI: 10.1016/j.jes.2020.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have attracted widespread attention due to their high specific surface area, high porosity, abundant metal active sites and excellent hydrothermal stability. However, Zr-MOFs materials are mostly powdery in nature and thus difficult to separate from aqueous media, which limits their application in wastewater treatment. In this study, PDA/Zr-MOFs/PU foam was constructed by growing Zr-MOFs nanoparticles on a dopamine-modified polyurethane foam substrate by in-situ hydrothermal synthesis as an adsorbent for removing dyes from wastewater. The results demonstrated that the polydopamine coating improves the dispersion of the Zr-MOFs nanoparticles on the substrate and enhances the interaction between the Zr-MOFs nanoparticles and the PU foam substrate. As a result, compared with Zr-MOFs/PU foam, the prepared PDA/Zr-MOFs/PU foam exhibits higher adsorption capacity for crystal violet (CV) (63.38 mg/g) and rhodamine B (RB) (67.73 mg/g), with maximum adsorption efficiencies of CV and RB of 98.4% (pH=11) and 93.5% (pH=7), respectively, at a concentration of 10 mg/L. The PDA/Zr-MOFs/PU foam can simultaneously remove CV and RB from the mixed solution. Moreover, the PDA/Zr-MOFs/PU foam still exhibits high stability and reusability after five cycles.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Linqiong Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yaozhuo Su
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongwei Yu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hui Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shaoping Qian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
95
|
Yuan N, Gong X, Sun W, Yu C. Advanced applications of Zr-based MOFs in the removal of water pollutants. CHEMOSPHERE 2021; 267:128863. [PMID: 33199106 DOI: 10.1016/j.chemosphere.2020.128863] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The global water pollution is caused by the increase of industrial and agricultural activities, which have produced various toxic pollutants. Pollutants in water generally consist of metal ions, pharmaceuticals and personal care products (PPCPs), oil spills, organic dyes, and other organic pollutants. Amongst the adsorbents that have been developed to deal with pollutants in water, Zr-based metal-organic frameworks (MOFs) have drawn scientists' great attention due to their excellent stability and adjustable functionalization. Herein, the present review article introduces the synthetic methods of functionalized Zr-based MOFs and summarizes their applications in water pollution treatment. It also clarifies the interactions and removal mechanisms between pollutants and Zr-based MOFs. The use of these MOFs with eminent adsorption ability and recycling performance have been discussed in detail. Zr-based MOFs also face some challenges such as high cost, lack of real water environment applications, selective removal of pollutants, and low ability to remove composite pollutants. Future research should focus on addressing these issues. Although there is still a blank of the practical utility of Zr-based MOFs on a commercial scale, the research reported to date clearly shows that they are very promising materials for the water treatment.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xinrui Gong
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Wenduo Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
96
|
Shi G, Ruan C, He S, Pan H, Chen G, Ma Y, Dai H, Chen X, Yang X. Zr-based MOF @ carboxymethylated filter paper: Insight into construction and methylene blue removal mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
97
|
Yang C, Tian J, Jiang F, Chen Q, Hong M. Functionalized Metal-Organic Frameworks for Hg(II) and Cd(II) Capture: Progresses and Challenges. CHEM REC 2021; 21:1455-1472. [PMID: 33605537 DOI: 10.1002/tcr.202000187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Mercury and cadmium are deemed to be the most harmful heavy metal ions for elimination due to their persistent bio-accumulative and bio-expanding toxic effects. Although many technologies have been developed for capturing Hg(II) and Cd(II) ions from aqueous solution, developing efficient and practical capature technology remains a big challenge. Metal-organic frameworks (MOFs) have been considered as the most promising adsorbents for Hg(II) and Cd(II) removal due to their high porosity and easy functionalization, and various of MOF-based adsorbents based on different synthetic strategies have been prepared and studied. In this article, the progresses of MOF-based absorbents for Hg(II) and Cd(II) capture are described according to the synthetic strategies and the types of functional groups, and the comparison and practical analysis of various adsorbents are also presented.
Collapse
Affiliation(s)
- Changyin Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiayue Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Feilong Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
98
|
Yang Z, Gu Y, Yuan B, Tian Y, Shang J, Tsang DCW, Liu M, Gan L, Mao S, Li L. Thio-groups decorated covalent triazine frameworks for selective mercury removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123702. [PMID: 33264889 DOI: 10.1016/j.jhazmat.2020.123702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 06/12/2023]
Abstract
Covalent triazine frameworks (CTFs) as a kind of covalent organic framework (COF) materials show great potential for practical application by virtue of their high stability and facile large-scale synthesis. In this work, we developed three CTFs (MSCTF-1, MSCTF-2, and xSCTF-2) of different pore size decorated with S-groups using different functionalization methods for achieving selective Hg2+ removal from aqueous solutions. The material structures were comprehensively studied by gas adsorption, IR and XPS, etc. Among them, the MSCTF-2 with 24.45% S content showed the highest Hg2+ adsorption capacity of 840.5 mg g‒1, while MSCTF-1 exhibiting much larger distribution coefficient of 1.67 × 108 mL g‒1 renders an exceptionally high efficiency for reducing the concentration of Hg2+ contaminated water to less than 0.03 μg L‒1. Moreover, the MSCTFs show distinct features of: (i) high selectivity toward Hg2+ over various transition metal ions; (ii) high stability over a wide pH range from pH 1 to 12; and (iii) good recyclability with 94% of Hg2+ removal over five consecutive cycles. The Hg2+ adsorption on functionalized CTFs followed pseudo-second-order kinetics and Langmuir isotherm. Our results revealed the material structure-performance relationship that the adsorption capacities depend on the binding site density whereas the distribution coefficient is essential to the removal efficiency.
Collapse
Affiliation(s)
- Zhenlian Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yangyi Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Baoling Yuan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuanmeng Tian
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
99
|
Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111577. [PMID: 33160184 DOI: 10.1016/j.ecoenv.2020.111577] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has threatened the ecological environment and human health, therefore, effective removal of these toxic pollutants from various complex substrates is of great significance. So far, adsorption is still one of the most effective approaches. Metal-organic frameworks (MOFs), which are porous crystalline materials consisting of metal ions or metal clusters and organic ligands through coordination bonds. Due to their high surface area, porosity, as well as good chemical/thermal stability, the materials have recently attracted great attention in environmental analytical chemistry. This review mainly focused on the recent studies about the applications of UiO series MOFs and their composites as the emerging MOFs, which have been used effectively for the adsorption and removal of diverse heavy metal ions from a variety of environmental samples as novel adsorption materials. Moreover, an elaboration about UiO-MOFs and its composites including the synthetic methods and the applications of these materials in the removal of heavy metal ions were presented in detail. In addition, the adsorption characteristics and mechanism of UiO-MOFs as solid sorbents for heavy metal ions were discussed, including adsorption isotherms equation, adsorption thermodynamics, and kinetics. To this end, the developing trends of MOF-based composites for the removal of heavy metal ions had also prospected. This review will provide a new idea for the study of the adsorption mechanism of heavy metal ions on sorbents and the development of high-performance media for the efficient removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Jing Ru
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Fangbing Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinglan Cui
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
100
|
Green Synthesis of ZnO/SnO2 Nanocomposites Using Pine Leaves and Their Application for the Removal of Heavy Metals from Aqueous Media. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01960-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|