51
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|
52
|
Phyo ZH, Shanbhag S, Rozati S. Update on Biology of Cutaneous T-Cell Lymphoma. Front Oncol 2020; 10:765. [PMID: 32477957 PMCID: PMC7235328 DOI: 10.3389/fonc.2020.00765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCL) comprise of a heterogeneous group of non-Hodgkin lymphomas derived from skin-homing T cells. Variation in clinical presentation and lack of definitive molecular markers make diagnosis especially challenging. The biology of CTCL remains elusive and clear links between genetic aberrations and epigenetic modifications that would result in clonal T cell expansion have not yet been identified. Nevertheless, in recent years, next generation sequencing (NGS) has enabled a much deeper understanding of the genomic landscape of CTCL by uncovering aberrant genetic pathways and epigenetic dysregulations. Additionally, single cell profiling is rapidly advancing our understanding of patients-specific tumor landscape and its interaction with the surrounding microenvironment. These studies have paved the road for future investigations that will explore the functional relevance of genetic alterations in the progression of disease. The ultimate goal of elucidating the pathogenesis of CTCL is to establish effective therapeutic targets with more durable clinical response and treat relapsing and refractory CTCL.
Collapse
Affiliation(s)
- Zaw H Phyo
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satish Shanbhag
- Departments of Oncology and Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
53
|
Blümel E, Munir Ahmad S, Nastasi C, Willerslev-Olsen A, Gluud M, Fredholm S, Hu T, Surewaard BGJ, Lindahl LM, Fogh H, Koralov SB, Rahbek Gjerdrum LM, Clark RA, Iversen L, Krejsgaard T, Bonefeld CM, Geisler C, Becker JC, Woetmann A, Andersen MH, Buus TB, Ødum N. Staphylococcus aureus alpha-toxin inhibits CD8 + T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. Oncoimmunology 2020; 9:1751561. [PMID: 32363124 PMCID: PMC7185203 DOI: 10.1080/2162402x.2020.1751561] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus and its toxins have been linked to disease progression and mortality in advanced stages of cutaneous T-cell lymphoma (CTCL). CD8+ T cells play a crucial role in anti-cancer responses and high CD8+ T cell numbers in tumor lesions are associated with a favorable prognosis in CTCL. Here, we show that CD8+ T cells from both healthy donors and Sézary syndrome patients are highly susceptible to cell death induced by Staphylococcal alpha-toxin, whereas malignant T cells are not. Importantly, alpha-toxin almost completely blocks cytotoxic killing of CTCL tumor cells by peptide-specific CD8+ T cells, leading to their escape from induced cell death and continued proliferation. These findings suggest that alpha-toxin may favor the persistence of malignant CTCL cells in vivo by inhibiting CD8+ T cell cytotoxicity. Thus, we propose a novel mechanism by which colonization with Staphylococcus aureus may contribute to cancer immune evasion and disease progression in CTCL.
Collapse
Affiliation(s)
- Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bas G. J. Surewaard
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Fogh
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, USA
| | | | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), Essen, Germany
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
54
|
Insights Into the Molecular and Cellular Underpinnings of Cutaneous T Cell Lymphoma. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:111-121. [PMID: 32226341 PMCID: PMC7087059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is a rare malignancy of skin-homing T lymphocytes. Advances in whole exome sequencing have identified a vast number of both single nucleotide variants (SNVs) and genomic copy number alterations (GCNAs) as driver mutations present in CTCL cells. These alterations cluster within several key pathways - T cell/NF-κB/JAK-STAT activation, cell cycle dysregulation/apoptosis, and DNA structural dysregulation affecting gene expression - allowing the maintenance of a population of proliferating, activated malignant T lymphocytes. While much of the clinical spectrum, genetic alterations, and oncogenic behavior of CTCL have been elucidated, little is known about the etiology that underlies CTCL malignant transformation and progression. Herein, we review the epidemiology, clinical presentation, and pathophysiology of CTCL to provide a perspective on CTCL pathogenesis. We outline a series of alterations by which mature, activated T lymphocytes are endowed with apoptosis resistance and cutaneous persistence. Subsequent genomic alterations including the loss of chromosomal structural controls further promote proliferation and constitutive T cell activation. CTCL cells are both malignant cells and highly functional T cells that can have major cutaneous and immunologic effects on the patient, including the suppression of cell-mediated immunity that facilitates malignant cell expansion. A deeper understanding of the molecular and cellular underpinnings of CTCL can help guide clinical management as well as inform prognosis and therapeutic discovery.
Collapse
|
55
|
Expression Profiles of Genes Encoding Cornified Envelope Proteins in Atopic Dermatitis and Cutaneous T-Cell Lymphomas. Nutrients 2020; 12:nu12030862. [PMID: 32213830 PMCID: PMC7146369 DOI: 10.3390/nu12030862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022] Open
Abstract
The skin barrier defect in cutaneous T-cell lymphomas (CTCL) was recently confirmed to be similar to the one observed in atopic dermatitis (AD). We have examined the expression level of cornified envelope (CE) proteins in CTCL, AD and healthy skin, to search for the differences and their relation to the courses of both diseases. The levels of FLG, FLG2, RPTN, HRNR, SPRR1A, SPRR1B, SPRR3 and LELP-1 mRNA were determined by qRT-PCR, while protein levels were examined using the ELISA method in skin samples. We have found that mRNA levels of FLG, FLG2, LOR, CRNN and SPRR3v1 were decreased (p ≤ 0.04), whereas mRNA levels of RPTN, HRNR and SPRR1Av1 were increased in lesional and nonlesional AD skin compared to the healthy control group (p ≤ 0.04). The levels of FLG, FLG2, CRNN, SPRR3v1 mRNA increased (p ≤ 0.02) and RPTN, HRNR and SPRR1Av1 mRNA decreased (p ≤ 0.005) in CTCL skin compared to the lesional AD skin. There was a strong correlation between the stage of CTCL and increased SPRR1Av1 gene expression at both mRNA (R = 0.89; p ≤ 0.05) and protein levels (R = 0.94; p ≤ 0.05). FLG, FLG2, RPTN, HRNR and SPRR1A seem to play a key role in skin barrier dysfunction in CTCL and could be considered a biomarker for differential diagnosis of AD and CTCL. SPRR1Av1 transcript levels seem to be a possible marker of CTCL stage, however, further studies on a larger study group are needed to confirm our findings.
Collapse
|
56
|
Herrera A, Fredholm S, Cheng A, Mimitou EP, Seffens A, Bar-Natan M, Sun A, Latkowski JA, Willerslew-Olsen A, Buus TB, Gluud M, Krejsgaard T, Torres-Rusillo S, Bonefeld CM, Woetmann A, Geisler C, Geskin LJ, Ouyang Z, Smibert P, Ødum N, Koralov SB. Low SATB1 Expression Promotes IL-5 and IL-9 Expression in Sézary Syndrome. J Invest Dermatol 2020; 140:713-716. [PMID: 31465740 PMCID: PMC7521737 DOI: 10.1016/j.jid.2019.07.714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Alberto Herrera
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Eleni P Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Angelina Seffens
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michal Bar-Natan
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jo-Ann Latkowski
- Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Andreas Willerslew-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sara Torres-Rusillo
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Larisa J Geskin
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Zhengqing Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
57
|
Kuen DS, Kim BS, Chung Y. IL-17-Producing Cells in Tumor Immunity: Friends or Foes? Immune Netw 2020; 20:e6. [PMID: 32158594 PMCID: PMC7049578 DOI: 10.4110/in.2020.20.e6] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological significance of IL-17-producing cells is well-studied in contexts of inflammation, autoimmunity and host defense against infection. While most of available studies in tumor immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8+ T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic potential of IL-17-producing cells. This review discusses the features of IL-17-producing cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti-tumorigenic functions in an organ-dependent context. Potential therapeutic approaches targeting these cells in the tumor microenvironment will also be discussed.
Collapse
Affiliation(s)
- Da-Sol Kuen
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
58
|
STAT3 Dysregulation in Mature T and NK Cell Lymphomas. Cancers (Basel) 2019; 11:cancers11111711. [PMID: 31684088 PMCID: PMC6896161 DOI: 10.3390/cancers11111711] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract: T cell lymphomas comprise a distinct class of non-Hodgkin's lymphomas, which include mature T and natural killer (NK) cell neoplasms. While each malignancy within this group is characterized by unique clinicopathologic features, dysregulation in the Janus tyrosine family of kinases/Signal transducer and activator of transcription (JAK/STAT) signaling pathway, specifically aberrant STAT3 activation, is a common feature among these lymphomas. The mechanisms driving dysregulation vary among T cell lymphoma subtypes and include activating mutations in upstream kinases or STAT3 itself, formation of oncogenic kinases which drive STAT3 activation, loss of negative regulators of STAT3, and the induction of a pro-tumorigenic inflammatory microenvironment. Constitutive STAT3 activation has been associated with the expression of targets able to increase pro-survival signals and provide malignant fitness. Patients with dysregulated STAT3 signaling tend to have inferior clinical outcomes, which underscores the importance of STAT3 signaling in malignant progression. Targeting of STAT3 has shown promising results in pre-clinical studies in T cell lymphoma lines, ex-vivo primary malignant patient cells, and in mouse models of disease. However, targeting this pleotropic pathway in patients has proven difficult. Here we review the recent contributions to our understanding of the role of STAT3 in T cell lymphomagenesis, mechanisms driving STAT3 activation in T cell lymphomas, and current efforts at targeting STAT3 signaling in T cell malignancies.
Collapse
|
59
|
Vonderheid EC, Hamilton RG, Kadin ME. Prevalence of atopy and staphylococcal superantigen-specific immunoglobulin E (IgE) antibodies and total serum IgE in primary cutaneous T- and B-cell lymphoma. J Dermatol 2019; 46:1170-1178. [PMID: 31587349 DOI: 10.1111/1346-8138.15059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
The prevalence of atopy was investigated in 20 patients with Sézary syndrome (SS), 20 patients with plaque phase mycosis fungoides (MF), 9 patients with primary cutaneous marginal zone lymphoma (pcMZL) and 8 patients with primary cutaneous follicle center lymphoma (pcFCL) with the Phadiatop multi-allergen test. The relationship among serologic atopy, IgE reactivity against Staphyloccocal enterotoxin superantigens, and serum total IgE (IgE-t) levels and their prognostic implications in SS was investigated. Phadiatop test was positive in 45%, 15%, 33% and 0% of samples of SS, MF, pcMZL and pcFCL, respectively. IgE-t levels were also increased in SS, pcMZL and marginally MF. No correlation was found with patients' history of atopic disorders. Staphylococcal superantigen-specific IgE ≥ 0.35 kUa/L, most often against toxic shock syndrome toxin-1, was detected in 40% of Sézary samples followed by MF (20%). In the absence of serologic atopy (negative Phadiatop test), IgE-t levels for patients with SS and MF were not significantly higher than controls whereas the levels for pcMZL remained high. Furthermore, even with a negative Phadiatop test, IgE-t values were higher in sera of patients with SSAg-IgE ≥ 0.35 kUa/L vis-à-vis < 0.35 kUa/L across all diagnostic categories including controls albeit the difference was statistically significant only for SS. The presence of specific IgE antibodies ≥ 0.35 kUa/L, IgE-t > 122 kU/L or eosinophils > 500/µL had no impact on survival of patients with SS. These results indicate that a pathogenic link may exist between an atopic diathesis and development of SS and possibly pcMZL.
Collapse
Affiliation(s)
- Eric C Vonderheid
- Sydney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland, USA
| | - Marshall E Kadin
- Department of Dermatology, Boston University and Roger Williams Medical Center, Providence, Rhode Island, USA
| |
Collapse
|
60
|
|
61
|
Hu T, Krejsgaard T, Nastasi C, Buus TB, Nansen A, Hald A, Spee P, Nielsen PR, Blümel E, Gluud M, Willerslev-Olsen A, Woetmann A, Bzorek M, Eriksen JO, Ødum N, Rahbek Gjerdrum LM. Expression of the Voltage-Gated Potassium Channel Kv1.3 in Lesional Skin from Patients with Cutaneous T-Cell Lymphoma and Benign Dermatitis. Dermatology 2019; 236:123-132. [PMID: 31536992 DOI: 10.1159/000502137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by effector memory T cells (TEM) and plays an important role in their activation and proliferation. Mycosis fungoides (MF), the most common subtype of cutaneous T-cell lymphoma (CTCL), was recently proposed to be a malignancy of skin-resident TEM. However, the expression of Kv1.3 in CTCL has not been investigated. OBJECTIVES This study aims to examine the expression of Kv1.3 in situ and in vitro in CTCL. METHODS The expression of Kv1.3 was examined by immunohistochemistry in skin lesions from 38 patients with MF, 4 patients with Sézary syndrome (SS), and 27 patients with benign dermatosis. In 4 malignant T-cell lines of CTCL (Myla2059, PB2B, SeAx, and Mac2a) and a non-malignant T-cell line (MyLa1850), the expression of Kv1.3 was determined by flow cytometry. The proliferation of those cell lines treated with various concentrations of Kv1.3 inhibitor ShK was measured by 3H-thymdine incorporation. RESULTS Half of the MF patients (19/38) displayed partial Kv1.3 expression including 1 patient with moderate Kv1.3 positivity, while the other half (19/38) exhibited Kv1.3 negativity. An almost identical distribution was observed in patients with benign conditions, that is, 44.4% (12/27) were partially positive for Kv1.3 including 1 patient with moderate Kv1.3 positivity, while 55.6% (15/27) were Kv1.3 negative. In contrast, 3 in 4 SS patients displayed partial Kv1.3 positivity including 2 patients with weak staining and 1 with moderate staining, while 1 in 4 SS patients was Kv1.3 negative. In addition, all malignant T-cell lines, and a non-malignant T-cell line, displayed low Kv1.3 surface expression with a similar pattern. Whereas 2 cell lines (PB2B and Mac2a) were sensitive to Kv1.3 blockade, the other 2 (Myla2059 and SeAx) were completely resistant. CONCLUSIONS We provide the first evidence of a heterogeneous Kv1.3 expression in situ in CTCL lesions.
Collapse
Affiliation(s)
- Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anneline Nansen
- Department of in vivo Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | - Andreas Hald
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens O Eriksen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
62
|
Moerman-Herzog AM, Acheampong DA, Brooks AG, Blair SM, Hsu PC, Wong HK. Transcriptome analysis of Sézary syndrome and lymphocytic-variant hypereosinophilic syndrome T cells reveals common and divergent genes. Oncotarget 2019; 10:5052-5069. [PMID: 31489115 PMCID: PMC6707948 DOI: 10.18632/oncotarget.27120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive cutaneous T cell lymphoma with pruritic skin inflammation and immune dysfunction, driven by neoplastic, clonal memory T cells in both peripheral blood and skin. To gain insight into abnormal gene expression promoting T cell dysfunction, lymphoproliferation and transformation in SS, we first compared functional transcriptomic profiles of both resting and activated CD4+CD45RO+ T cells from SS patients and normal donors to identified differential expressed genes. Next, a meta-analysis was performed to compare our SS data to public microarray data from a novel benign disease control, lymphocytic-variant hypereosinophilic syndrome (L-HES). L-HES is a rare, clonal lymphoproliferation of abnormal memory T cells that produces similar clinical symptoms as SS, including severe pruritus and eosinophilia. Comparison revealed gene sets specific for either SS (370 genes) or L-HES (519 genes), and a subset of 163 genes that were dysregulated in both SS and L-HES T cells compared to normal donor T cells. Genes confirmed by RT-qPCR included elevated expression of PLS3, TWIST1 and TOX only in SS, while IL17RB mRNA was increased only in L-HES. CDCA7 was increased in both diseases. In an L-HES patient who progressed to peripheral T cell lymphoma, the malignant transformation identified increases in the expression of CDCA7, TIGIT, and TOX, which are highly expressed in SS, suggesting that these genes contribute to neoplastic transformation. In summary, we have identified gene expression biomarkers that implicate a common transformative mechanism and others that are unique to differentiate SS from L-HES.
Collapse
Affiliation(s)
- Andrea M Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel A Acheampong
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda G Brooks
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Suzan M Blair
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping-Ching Hsu
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
63
|
Hu T, Buus TB, Krejsgaard T, Nansen A, Lundholt BK, Spee P, Fredholm S, Petersen DL, Blümel E, Gluud M, Monteiro MN, Willerslev-Olsen A, Andersen MH, Straten PT, Met Ö, Stolearenco V, Fogh H, Gniadecki R, Nastasi C, Litman T, Woetmann A, Gjerdrum LMR, Ødum N. Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget 2019; 10:4894-4906. [PMID: 31448055 PMCID: PMC6690676 DOI: 10.18632/oncotarget.27122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by a subset of chronically activated memory T cells and plays an important role in their activation and proliferation. Here, we show that primary malignant T cells isolated from patients with Sézary syndrome (SS) express Kv1.3 and are sensitive to potent Kv1.3 inhibitors ShK and Vm24, but not sensitive to a less potent inhibitor [N17A/F32T]-AnTx. Kv1.3 blockade inhibits CD3/CD28-induced proliferation and IL-9 expression by SS cells in a concentration-dependent manner. In parallel, CD3/CD28-mediated CD25 induction is inhibited, whereas Kv1.3 blockade has no effect on apoptosis or cell death as judged by Annexin V and PI staining. In conclusion, we provide the first evidence that malignant T cells in SS express functional Kv1.3 channels and that Kv1.3 blockade inhibits activation-induced proliferation as well as cytokine and cytokine receptor expression in malignant T cells, suggesting that Kv1.3 is a potential target for therapy in SS.
Collapse
Affiliation(s)
- Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anneline Nansen
- Department of Molecular Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | | | | | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David Leander Petersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Madalena N. Monteiro
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Per thor Straten
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Özcan Met
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Veronica Stolearenco
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Fogh
- Department of Dermatology, Copenhagen University Hospital at Bispebjerg, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Copenhagen University Hospital at Bispebjerg, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
64
|
Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 2019; 134:1072-1083. [PMID: 31331920 DOI: 10.1182/blood.2018888107] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.
Collapse
|
65
|
Blümel E, Willerslev-Olsen A, Gluud M, Lindahl LM, Fredholm S, Nastasi C, Krejsgaard T, Surewaard BGJ, Koralov SB, Hu T, Persson JL, Bonefeld CM, Geisler C, Iversen L, Becker JC, Andersen MH, Woetmann A, Buus TB, Ødum N. Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4 + T cells in cutaneous T-cell lymphoma. Oncoimmunology 2019; 8:e1641387. [PMID: 31646088 PMCID: PMC6791457 DOI: 10.1080/2162402x.2019.1641387] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus is implicated in disease progression in cutaneous T-cell lymphoma (CTCL). Here, we demonstrate that malignant T cell lines derived from CTCL patients as well as primary malignant CD4+ T cells from Sézary syndrome patients are considerably more resistant to alpha-toxin-induced cell death than their non-malignant counterparts. Thus, in a subset of Sézary syndrome patients the ratio between malignant and non-malignant CD4+ T cells increases significantly following exposure to alpha-toxin. Whereas toxin-induced cell death is ADAM10 dependent in healthy CD4+ T cells, resistance to alpha-toxin in malignant T cells involves both downregulation of ADAM10 as well as other resistance mechanisms. In conclusion, we provide first evidence that Staphylococcus aureus derived alpha-toxin can tilt the balance between malignant and non-malignant CD4+ T cells in CTCL patients. Consequently, alpha-toxin may promote disease progression through positive selection of malignant CD4+ T cells, identifying alpha-toxin as a putative drug target in CTCL.
Collapse
Affiliation(s)
- Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bas G. J. Surewaard
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jenny L. Persson
- Clinical Research Center, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Charlotte Menné Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), Essen, Germany
| | - Mads Hald Andersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
66
|
Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, Roush T, Herrera A, Papalexi E, Ouyang Z, Satija R, Sanjana NE, Koralov SB, Smibert P. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods 2019; 16:409-412. [PMID: 31011186 PMCID: PMC6557128 DOI: 10.1038/s41592-019-0392-0] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Multimodal single-cell assays provide high-resolution snapshots of complex cell populations, but are mostly limited to transcriptome plus an additional modality. Here, we describe expanded CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing (ECCITE-seq) for the high-throughput characterization of at least five modalities of information from each single cell. We demonstrate application of ECCITE-seq to multimodal CRISPR screens with robust direct single-guide RNA capture and to clonotype-aware multimodal phenotyping of cancer samples.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Mice
- NIH 3T3 Cells
- Proteins/genetics
- RNA, Guide, CRISPR-Cas Systems/genetics
- Sequence Analysis, RNA/methods
- Single-Cell Analysis/methods
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transcriptome/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Eleni P Mimitou
- Technology Innovation Laboratory, New York Genome Center, New York, NY, USA
| | - Anthony Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Antonino Montalbano
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Stephanie Hao
- Technology Innovation Laboratory, New York Genome Center, New York, NY, USA
| | - Marlon Stoeckius
- Technology Innovation Laboratory, New York Genome Center, New York, NY, USA
| | - Mateusz Legut
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Timothy Roush
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alberto Herrera
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Zhengqing Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for Systems Genomics and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Peter Smibert
- Technology Innovation Laboratory, New York Genome Center, New York, NY, USA.
| |
Collapse
|
67
|
Wu X, Hwang ST. A Microbiota-Dependent, STAT3-Driven Mouse Model of Cutaneous T-Cell Lymphoma. J Invest Dermatol 2019; 138:1022-1026. [PMID: 29681389 DOI: 10.1016/j.jid.2017.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022]
Abstract
In recent years, much has been learned about the molecular genetics of cutaneous T-cell lymphomas. Fanok et al. (2018) translate knowledge from systematic genomic and transcriptomic analyses to develop a mouse model that tests the hypothesis that activated STAT3 in CD4+ T cells may be a driver of cutaneous T-cell lymphomas. The transgenic mouse that they developed exhibits clinical features of mycosis fungoides, as well as Sezary syndrome, two well-known entities in the cutaneous T-cell lymphoma spectrum. Furthermore, these authors show that TCR engagement and microbiota are required for development of the complete clinical phenotype. This mouse model, which develops progressive disease, provides a new tool to understand cutaneous T-cell lymphoma biology and to potentially test new therapies.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California
| | - Samuel T Hwang
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California.
| |
Collapse
|
68
|
Ghazawi FM, Alghazawi N, Le M, Netchiporouk E, Glassman SJ, Sasseville D, Litvinov IV. Environmental and Other Extrinsic Risk Factors Contributing to the Pathogenesis of Cutaneous T Cell Lymphoma (CTCL). Front Oncol 2019; 9:300. [PMID: 31106143 PMCID: PMC6499168 DOI: 10.3389/fonc.2019.00300] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
The applications of disease cluster investigations in medicine have developed rather rapidly in recent decades. Analyzing the epidemiology of non-random aggregation of patients with a particular disease fostered identification of environmental and external exposures as disease triggers and promoters. Observation of patient clusters and their association with nearby exposures, such as Dr. John Snow's astute mapping analysis in the mid-1800's, which revealed proximity of cholera patients in London to a contaminated water pump infected with Vibrio cholerae, have paved the way for the field of epidemiology. This approach enabled the identification of triggers for many human diseases including infections and cancers. Cutaneous T-cell lymphomas (CTCL) represent a group of non-Hodgkin lymphomas that primarily affect the skin. The detailed pathogenesis by which CTCL develops remains largely unknown. Notably, non-random clustering of CTCL patients was reported in several areas worldwide and this rare malignancy was also described to affect multiple members of the same family. These observations indicate that external factors are possibly implicated in promoting CTCL lymphomagenesis. Here, we review the epidemiology of CTCL worldwide and the clinical characteristics of CTCL patients, as revealed by global epidemiological data. Further, we review the known risk factors including sex, age, race as well as environmental, infectious, iatrogenic and other exposures, that are implicated in CTCL lymphomagenesis and discuss conceivable mechanisms by which these factors may trigger this malignancy.
Collapse
Affiliation(s)
- Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, ON, Canada
| | - Nebras Alghazawi
- Division of Dermatology, McGill University, Montréal, QC, Canada
| | - Michelle Le
- Division of Dermatology, McGill University, Montréal, QC, Canada
| | | | | | - Denis Sasseville
- Division of Dermatology, McGill University, Montréal, QC, Canada
| | - Ivan V Litvinov
- Division of Dermatology, McGill University, Montréal, QC, Canada
| |
Collapse
|
69
|
Abstract
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL) with a median life expectancy of less than 4 years. Although initial treatment responses are often good, the vast majority of patients with SS fail to respond to ongoing therapy. We hypothesize that malignant T cells are highly heterogeneous and harbor subpopulations of SS cells that are both sensitive and resistant to treatment. Here, we investigate the presence of single-cell heterogeneity and resistance to histone deacetylase inhibitors (HDACi) within primary malignant T cells from patients with SS. Using single-cell RNA sequencing and flow cytometry, we find that malignant T cells from all investigated patients with SS display a high degree of single-cell heterogeneity at both the mRNA and protein levels. We show that this heterogeneity divides the malignant cells into distinct subpopulations that can be isolated by their expression of different surface antigens. Finally, we show that treatment with HDACi (suberanilohydroxamic acid and romidepsin) selectively eliminates some subpopulations while leaving other subpopulations largely unaffected. In conclusion, we show that patients with SS display a high degree of single-cell heterogeneity within the malignant T-cell population, and that distinct subpopulations of malignant T cells carry HDACi resistance. Our data point to the importance of understanding the heterogeneous nature of malignant SS cells in each individual patient to design combinational and new therapies to counter drug resistance and treatment failure.
Collapse
|
70
|
Stadler R, Stranzenbach R. Molecular pathogenesis of cutaneous lymphomas. Exp Dermatol 2018; 27:1078-1083. [DOI: 10.1111/exd.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Rudolf Stadler
- University Clinic for Dermatology, Venerology, Allergology and Phlebology; Johannes Wesling Medical Centre; UKRUB; University of Bochum; Minden Germany
| | - René Stranzenbach
- University Clinic for Dermatology, Venerology, Allergology and Phlebology; Johannes Wesling Medical Centre; UKRUB; University of Bochum; Minden Germany
| |
Collapse
|