51
|
Ng SH, Stat M, Bunce M, Simmons LW. The influence of diet and environment on the gut microbial community of field crickets. Ecol Evol 2018; 8:4704-4720. [PMID: 29760910 PMCID: PMC5938447 DOI: 10.1002/ece3.3977] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The extent to which diet and environment influence gut community membership (presence or absence of taxa) and structure (individual taxon abundance) is the subject of growing interest in microbiome research. Here, we examined the gut bacterial communities of three cricket groups: (1) wild caught field crickets, (2) laboratory-reared crickets fed cat chow, and (3) laboratory-reared crickets fed chemically defined diets. We found that both environment and diet greatly altered the structure of the gut bacterial community. Wild crickets had greater gut microbial diversity and higher Firmicutes to Bacteroidetes ratios, in contrast to laboratory-reared crickets. Predictive metagenomes revealed that laboratory-reared crickets were significantly enriched in amino acid degradation pathways, while wild crickets had a higher relative abundance of peptidases that would aid in amino acid release. Although wild and laboratory animals differ greatly in their bacterial communities, we show that the community proportional membership remains stable from Phylum to Family taxonomic levels regardless of differences in environment and diet, suggesting that endogenous factors, such as host genetics, have greater control in shaping gut community membership.
Collapse
Affiliation(s)
- Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences University of Western Australia Crawley Australia
| | - Michael Stat
- Department of Biological Sciences Macquarie University Sydney Australia.,Trace and Environmental DNA (TrEnD) Laboratory Department of Environment and Agriculture Curtin University Perth Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory Department of Environment and Agriculture Curtin University Perth Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology School of Biological Sciences University of Western Australia Crawley Australia
| |
Collapse
|
52
|
Grau T, Vilcinskas A, Joop G. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. ACTA ACUST UNITED AC 2018; 72:337-349. [PMID: 28525347 DOI: 10.1515/znc-2017-0033] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023]
Abstract
The farming of edible insects is an alternative strategy for the production of protein-rich food and feed with a low ecological footprint. The industrial production of insect-derived protein is more cost-effective and energy-efficient than livestock farming or aquaculture. The mealworm Tenebrio molitor is economically among the most important species used for the large-scale conversion of plant biomass into protein. Here, we review the mass rearing of this species and its conversion into food and feed, focusing on challenges such as the contamination of food/feed products with bacteria from the insect gut and the risk of rapidly spreading pathogens and parasites. We propose solutions to prevent the outbreak of infections among farmed insects without reliance on antibiotics. Transgenerational immune priming and probiotic bacteria may provide alternative strategies for sustainable insect farming.
Collapse
|
53
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
54
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
55
|
A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS One 2017; 12:e0182533. [PMID: 28771577 PMCID: PMC5542616 DOI: 10.1371/journal.pone.0182533] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Feed security, feed quality and issues surrounding the safety of raw materials are always of interest to all livestock farmers, feed manufacturers and competent authorities. These concerns are even more important when alternative feed ingredients, new product developments and innovative feeding trends, like insect-meals, are considered. The black soldier fly (Hermetia illucens) is considered a good candidate to be used as feed ingredient for aquaculture and other farm animals, mainly as an alternative protein source. Data on transfer of contaminants from different substrates to the insects, as well as the possible occurrence of toxin-producing fungi in the gut of non-processed insects are very limited. Accordingly, we investigated the impact of the substrate/diet on the intestinal mycobiota of H. illucens larvae using culture-dependent approaches (microbiological analyses, molecular identification through the typing of isolates and the sequencing of the 26S rRNA D1/D2 domain) and amplicon-based next-generation sequencing (454 pyrosequencing). We fed five groups of H. illucens larvae at the third growing stage on two substrates: chicken feed and/or vegetable waste, provided at different timings. The obtained results indicated that Pichia was the most abundant genus associated with the larvae fed on vegetable waste, whereas Trichosporon, Rhodotorula and Geotrichum were the most abundant genera in the larvae fed on chicken feed only. Differences in the fungal communities were highlighted, suggesting that the type of substrate selects diverse yeast and mold genera, in particular vegetable waste is associated with a greater diversity of fungal species compared to chicken feed only. A further confirmation of the significant influence of diet on the mycobiota is the fact that no operational taxonomic unit common to all groups of larvae was detected. Finally, the killer phenotype of isolated yeasts was tested, showing the inhibitory activity of just one species against sensitive strains, out of the 11 tested species.
Collapse
|
56
|
Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci Rep 2017; 7:1947. [PMID: 28512315 PMCID: PMC5434009 DOI: 10.1038/s41598-017-02138-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Gut bacteria play a significant role in host insect. This study evaluated detail difference of midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible and field-caught populations of diamondback moth, and studied phenomics of the predominant midgut bacterium Enterococcus mundtii. Cultivable bacteria revealed that E. mundtii and Carnobacterium maltaromaticum dominated the bacterial populations from deltamethrin-resistant and deltamethrin-susceptible larval midguts, whereas E. mundtii was predominant in field-caught population. Illumina sequencing analysis indicated that 97% of the midgut bacteria were from the phyla Firmicutes, Proteobacteria and Cyanobacteria. Both resistant and susceptible populations had more Enterococcus and Carnobacterium. Enterococcus, Carnobacterium, Bacillus, and Pseudomonas were predominant in the field-caught population. A phenomics analysis revealed that E. mundtii was able to metabolize 25.26% of the tested carbon sources, 100% of the nitrogen sources, 100% of the phosphorus sources and 97.14% of the sulfur sources, had a wide range of osmolytes and pH conditions, and showed active deaminase activity but no decarboxylase activity. This is the first report regarding different populations of DBM midgut bacteria analyzed using both high-throughput DNA sequencing and cultivation methods, and also first report concerning the phenomics of E. mundtii. The phenomics of E. mundtii provide a basis for the future study of gut bacteria functions.
Collapse
|
57
|
Pizzolante G, Cordero C, Tredici SM, Vergara D, Pontieri P, Del Giudice L, Capuzzo A, Rubiolo P, Kanchiswamy CN, Zebelo SA, Bicchi C, Maffei ME, Alifano P. Cultivable gut bacteria provide a pathway for adaptation of Chrysolina herbacea to Mentha aquatica volatiles. BMC PLANT BIOLOGY 2017; 17:30. [PMID: 28249605 PMCID: PMC5333409 DOI: 10.1186/s12870-017-0986-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND A chemical cross-talk between plants and insects is required in order to achieve a successful co-adaptation. In response to herbivory, plants produce specific compounds, and feeding insects respond adequately7 to molecules produced by plants. Here we show the role of the gut microbial community of the mint beetle Chrysolina herbacea in the chemical cross-talk with Mentha aquatica (or watermint). RESULTS By using two-dimensional gas chromatography-mass spectrometry we first evaluated the chemical patterns of both M. aquatica leaf and frass volatiles extracted by C. herbacea males and females feeding on plants, and observed marked differences between males and females volatiles. The sex-specific chemical pattern of the frass paralleled with sex-specific distribution of cultivable gut bacteria. Indeed, all isolated gut bacteria from females belonged to either α- or γ-Proteobacteria, whilst those from males were γ-Proteobacteria or Firmicutes. We then demonstrated that five Serratia marcescens strains from females possessed antibacterial activity against bacteria from males belonging to Firmicutes suggesting competition by production of antimicrobial compounds. By in vitro experiments, we lastly showed that the microbial communities from the two sexes were associated to specific metabolic patterns with respect to their ability to biotransform M. aquatica terpenoids, and metabolize them into an array of compounds with possible pheromone activity. CONCLUSIONS Our data suggest that cultivable gut bacteria of Chrysolina herbacea males and females influence the volatile blend of herbivory induced Mentha aquatica volatiles in a sex-specific way.
Collapse
Affiliation(s)
- Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Salvatore M. Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Davide Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Paola Pontieri
- Dipartimento di Biologia, Sezione di Igiene, Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o, 80134 Naples, Italy
| | - Luigi Del Giudice
- Dipartimento di Biologia, Sezione di Igiene, Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o, 80134 Naples, Italy
| | - Andrea Capuzzo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Chidananda N. Kanchiswamy
- Research and Innovation Centre Genomics and Biology of Fruit Crop Department, Fondazione Edmund Mach (FEM), Istituto Agrario San Michele (IASMA), Via Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Simon A. Zebelo
- Department of Natural Sciences, University of Maryland Eastern Shore, 1117 Trigg Hall, Princess Anne, 21853 MD USA
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Massimo E. Maffei
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| |
Collapse
|
58
|
Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). MICROBIOME 2017; 5:13. [PMID: 28143582 PMCID: PMC5286733 DOI: 10.1186/s40168-017-0236-z] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/24/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Symbiotic bacteria affect insect physiology and ecology. They may also mediate insecticide resistance within their hosts and thereby impact pest and vector control practices. Here, we document a novel mechanism of insecticide resistance in which a gut symbiont of the tephritid pest fruit fly Bactrocera dorsalis enhances resistance to the organophosphate insecticide trichlorphon. RESULTS We demonstrated that the gut symbiont Citrobacter sp. (CF-BD) plays a key role in the degradation of trichlorphon. Based on a comparative genomics analysis with other Citrobacter species, phosphatase hydrolase genes were identified in CF-BD. These CF-BD genes had higher expression when trichlorphon was present. Bactrocera dorsalis inoculated with isolated CF-BD obtained higher trichlorphon resistance, while antibiotic-treated flies were less resistant confirming the key role of CF-BD in insecticide resistance. CONCLUSIONS Our findings suggest that symbiont-mediated insecticide resistance can readily develop in B. dorsalis and may represent a more widely relevant insecticide resistance mechanism than previously recognized.
Collapse
Affiliation(s)
- Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Zijun Guo
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Zhiyong Xi
- Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, 510080, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangwen Liang
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
59
|
Triflumuron Effects on the Physiology and Reproduction of Rhodnius prolixus Adult Females. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8603140. [PMID: 27822479 PMCID: PMC5086386 DOI: 10.1155/2016/8603140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022]
Abstract
We evaluated the efficacy of the growth regulator triflumuron (TFM) in inducing mortality and disrupting both oviposition and egg hatching in Rhodnius prolixus adult females. TFM was administered via feeding, topically or by continuous contact with impregnated surfaces. Feeding resulted in mild biological effects compared with topical and impregnated surfaces. One day after treatment, the highest mortality levels were observed with topical surface and 30 days later both topical and impregnated surfaces induced higher mortalities than feeding. Oral treatment inhibited oviposition even at lower doses, and hatching of eggs deposited by treated females was similarly affected by the three delivery modes. Topical treatment of eggs deposited by nontreated females significantly reduced hatching. However, treatment per contact of eggs oviposited by untreated females did not disrupt eclosion. Additionally, oral treatment increased the number of immature oocytes per female, and topical treatment reduced the mean size of oocytes. TFM also affected carcass chitin content, diuresis, and innate immunity of treated insects. These results suggest that TFM acts as a potent growth inhibitor of R. prolixus adult females and has the potential to be used in integrated vector control programs against hematophagous triatomine species.
Collapse
|
60
|
Li WH, Jin DC, Li FL, Cheng Y, Jin JX. Metabolic phenomics of bacterium Pantoea sp. from larval gut of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Symbiosis 2016. [DOI: 10.1007/s13199-016-0453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
61
|
Moreira NR, Cardoso C, Ribeiro AF, Ferreira C, Terra WR. Insect midgut α-mannosidases from family 38 and 47 with emphasis on those of Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:94-104. [PMID: 26187253 DOI: 10.1016/j.ibmb.2015.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
α-Mannosidases are enzymes which remove non-reducing terminal residues from glycoconjugates. Data on both GH47 and GH38 (Golgi and lysosomal) enzymes are available. Data on insect midgut α-mannosidases acting in digestion are preliminary and do not include enzyme sequences. Tenebrio molitor midgut α-mannosidases were separated by chromatography into two activity peaks: a major (Man1) and a minor (Man2). An antibody generated against a synthetic peptide corresponding to a sequence of α-mannosidase fragment recognizes Man2 but not Man1. That fragment was later found to correspond to TmMan2 (GenBank access KP892646), showing that the cDNA coding for Man2 is actually TmMan2. TmMan2 codes for a mature α-mannosidase with 107.5 kDa. Purified Man2 originates after SDS-PAGE one band of about 72 kDa and another of 51 kDa, which sums 123 kDa, in agreement with gel filtration (123 kDa) data. These results suggest that Man2 is processed into peptides that remain noncovalently linked within the functional enzyme. The physical and kinetical properties of purified Man1 and Man2 are similar. They have a molecular mass of 123 kDa (gel filtration), pH optimum (5.6) and response to inhibitors like swainsonine (Man1 Ki, 68 nM; Man2 Ki, 63 nM) and deoxymannojirimycin (Man1 Ki, 0.12 mM; Man2 Ki, 0.15 mM). Their substrate specificities are a little different as Man2 hydrolyzes α-1,3 and α-1,6 bonds better than α-1,2, whereas the contrary is true for Man1. Thus, they pertain to Class II (GH38 α-mannosidases), that are catabolic α-mannosidases similar to lysosomal α-mannosidase. However, Man2, in contrast to true lysosomal α-mannosidase, is secreted (immunocytolocalization data) into the midgut contents. There, Man2 may participate in digestion of fungal cell walls, known to have α-mannosides in their outermost layer. The amount of family 38 α-mannosidase sequences found in the transcriptome (454 pyrosequencing) of the midgut of 9 insects pertaining to 5 orders is perhaps related to the diet of these organisms, as suggested by a large number of lysosomal α-mannosidase in the T. molitor midgut.
Collapse
Affiliation(s)
- Nathalia R Moreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Alberto F Ribeiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, C.P. 11461, 05513-970 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil.
| |
Collapse
|
62
|
Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12087-93. [PMID: 26390390 DOI: 10.1021/acs.est.5b02663] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The role of gut bacteria of mealworms (the larvae of Tenebrio molitor Linnaeus) in polystyrene (PS) degradation was investigated. Gentamicin was the most effective inhibitor of gut bacteria among six antibiotics tested. Gut bacterial activities were essentially suppressed by feeding gentamicin food (30 mg/g) for 10 days. Gentamicin-feeding mealworms lost the ability to depolymerize PS and mineralize PS into CO2, as determined by characterizing worm fecula and feeding with (13)C-labeled PS. A PS-degrading bacterial strain was isolated from the guts of the mealworms, Exiguobacterium sp. strain YT2, which could form biofilm on PS film over a 28 day incubation period and made obvious pits and cavities (0.2-0.3 mm in width) on PS film surfaces associated with decreases in hydrophobicity and the formation of C-O polar groups. A suspension culture of strain YT2 (10(8) cells/mL) was able to degrade 7.4 ± 0.4% of the PS pieces (2500 mg/L) over a 60 day incubation period. The molecular weight of the residual PS pieces was lower, and the release of water-soluble daughter products was detected. The results indicated the essential role of gut bacteria in PS biodegradation and mineralization, confirmed the presence of PS-degrading gut bacteria, and demonstrated the biodegradation of PS by mealworms.
Collapse
Affiliation(s)
| | | | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Research Center, Center for Sustainable Development & Global Competitiveness, Stanford University , Stanford, California 94305-4020, United States
| | - Jiao Zhao
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen , Shenzhen, Guangdong 518083, People's Republic of China
| | | | | | - Ruifu Yang
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen , Shenzhen, Guangdong 518083, People's Republic of China
| | | |
Collapse
|
63
|
Lin XL, Kang ZW, Pan QJ, Liu TX. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae). INSECT SCIENCE 2015; 22:619-28. [PMID: 25183343 DOI: 10.1111/1744-7917.12168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/16/2014] [Indexed: 05/17/2023]
Abstract
Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method.
Collapse
Affiliation(s)
- Xiao-Li Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin-Jian Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
64
|
Stoops J, Crauwels S, Waud M, Claes J, Lievens B, Van Campenhout L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol 2015; 53:122-7. [PMID: 26678139 DOI: 10.1016/j.fm.2015.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects.
Collapse
Affiliation(s)
- J Stoops
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M²S), Lab4Food, Campus Geel, B-2440 Geel, Belgium; KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), B-3001 Leuven, Belgium
| | - S Crauwels
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M(2)S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium; KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), B-3001 Leuven, Belgium
| | - M Waud
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M(2)S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium; KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), B-3001 Leuven, Belgium
| | - J Claes
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M²S), Lab4Food, Campus Geel, B-2440 Geel, Belgium; KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), B-3001 Leuven, Belgium
| | - B Lievens
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M(2)S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium; KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), B-3001 Leuven, Belgium
| | - L Van Campenhout
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M²S), Lab4Food, Campus Geel, B-2440 Geel, Belgium; KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), B-3001 Leuven, Belgium.
| |
Collapse
|
65
|
Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities. Int J Microbiol 2015; 2015:285018. [PMID: 26379709 PMCID: PMC4563095 DOI: 10.1155/2015/285018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022] Open
Abstract
The guts of beetle larvae constitute a complex system where relationships among fungi, bacteria, and the insect host occur. In this study, we collected larvae of five families of wood-feeding Coleoptera in tropical forests of Costa Rica, isolated fungi and bacteria from their intestinal tracts, and determined the presence of five different pathways for lignocellulolytic activity. The fungal isolates were assigned to three phyla, 16 orders, 24 families, and 40 genera; Trichoderma was the most abundant genus, detected in all insect families and at all sites. The bacterial isolates were assigned to five phyla, 13 orders, 22 families, and 35 genera; Bacillus, Serratia, and Pseudomonas were the dominant genera, present in all the Coleopteran families. Positive results for activities related to degradation of wood components were determined in 65% and 48% of the fungal and bacterial genera, respectively. Our results showed that both the fungal and bacterial populations were highly diverse in terms of number of species and their phylogenetic composition, although the structure of the microbial communities varied with insect host family and the surrounding environment. The recurrent identification of some lignocellulolytic-positive inhabitants suggests that particular microbial groups play important roles in providing nutritional needs for the Coleopteran host.
Collapse
|
66
|
Sudakaran S, Retz F, Kikuchi Y, Kost C, Kaltenpoth M. Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME JOURNAL 2015; 9:2587-604. [PMID: 26023876 DOI: 10.1038/ismej.2015.75] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 11/09/2022]
Abstract
Evolutionary adaptations for the exploitation of nutritionally challenging or toxic host plants represent a major force driving the diversification of phytophagous insects. Although symbiotic bacteria are known to have essential nutritional roles for insects, examples of radiations into novel ecological niches following the acquisition of specific symbionts remain scarce. Here we characterized the microbiota across bugs of the family Pyrrhocoridae and investigated whether the acquisition of vitamin-supplementing symbionts enabled the hosts to diversify into the nutritionally imbalanced and chemically well-defended seeds of Malvales plants as a food source. Our results indicate that vitamin-provisioning Actinobacteria (Coriobacterium and Gordonibacter), as well as Firmicutes (Clostridium) and Proteobacteria (Klebsiella) are widespread across Pyrrhocoridae, but absent from the sister family Largidae and other outgroup taxa. Despite the consistent association with a specific microbiota, the Pyrrhocoridae phylogeny is neither congruent with a dendrogram based on the hosts' microbial community profiles nor phylogenies of individual symbiont strains, indicating frequent horizontal exchange of symbiotic partners. Phylogenetic dating analyses based on the fossil record reveal an origin of the Pyrrhocoridae core microbiota in the late Cretaceous (81.2-86.5 million years ago), following the transition from crypt-associated beta-proteobacterial symbionts to an anaerobic community localized in the M3 region of the midgut. The change in symbiotic syndromes (that is, symbiont identity and localization) and the acquisition of the pyrrhocorid core microbiota followed the evolution of their preferred host plants (Malvales), suggesting that the symbionts facilitated their hosts' adaptation to this imbalanced nutritional resource and enabled the subsequent diversification in a competition-poor ecological niche.
Collapse
Affiliation(s)
- Sailendharan Sudakaran
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Franziska Retz
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Japan
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
67
|
Oh SN, Seo MJ, Youn YN, Yu YM. Antifungfal Activity Against Plant Pathogenic Fungi on Insect Enterobacteriaceae. ACTA ACUST UNITED AC 2015. [DOI: 10.7585/kjps.2015.19.1.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
68
|
Kopecky J, Nesvorna M, Mareckova-Sagova M, Hubert J. The effect of antibiotics on associated bacterial community of stored product mites. PLoS One 2014; 9:e112919. [PMID: 25387104 PMCID: PMC4227874 DOI: 10.1371/journal.pone.0112919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023] Open
Abstract
Background Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria. Methodology and Principal Findings Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mgg−1 of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor. Conclusions/Significance The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mgg−1 antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.
Collapse
Affiliation(s)
- Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czechia
| | - Marta Nesvorna
- Biologically Active Substances in Crop Protection, Crop Research Institute, Prague, Czechia
| | | | - Jan Hubert
- Biologically Active Substances in Crop Protection, Crop Research Institute, Prague, Czechia
- * E-mail:
| |
Collapse
|
69
|
Paulson AR, von Aderkas P, Perlman SJ. Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus). BMC Microbiol 2014; 14:224. [PMID: 25286971 PMCID: PMC4197294 DOI: 10.1186/s12866-014-0224-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Background The success of herbivorous insects has been shaped largely by their association with microbes. Seed parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known about the microbial associates of seed-parasitic insects. We characterized the bacterial symbionts of Megastigmus (Hymenoptera: Torymidae), a lineage of seed-parasitic chalcid wasps, with the goal of identifying microbes that might play an important role in aiding development within seeds, including supplementing insect nutrition or manipulating host trees. We screened multiple populations of seven species for common facultative inherited symbionts. We also performed culture independent surveys of larvae, pupae, and adults of M. spermotrophus using 454 pyrosequencing. This major pest of Douglas-fir is the best-studied Megastigmus, and was previously shown to manipulate its tree host into redirecting resources towards unfertilized ovules. Douglas-fir ovules and the parasitoid Eurytoma sp. were also surveyed using pyrosequencing to help elucidate possible transmission mechanisms of the microbial associates of M. spermotrophus. Results Three wasp species harboured Rickettsia; two of these also harboured Wolbachia. Males and females were infected at similar frequencies, suggesting that these bacteria do not distort sex ratios. The M. spermotrophus microbiome is dominated by five bacterial OTUs, including lineages commonly found in other insect microbiomes and in environmental samples. The bacterial community associated with M. spermotrophus remained constant throughout wasp development and was dominated by a single OTU – a strain of Ralstonia, in the Betaproteobacteria, comprising over 55% of all bacterial OTUs from Megastigmus samples. This strain was also present in unparasitized ovules. Conclusions This is the first report of Ralstonia being an abundant and potentially important member of an insect microbiome, although other closely-related Betaproteobacteria, such as Burkholderia, are important insect symbionts. We speculate that Ralstonia might play a role in nutrient recycling, perhaps by redirecting nitrogen. The developing wasp larva feeds on megagametophyte tissue, which contains the seed storage reserves and is especially rich in nitrogen. Future studies using Ralstonia-specific markers will determine its distribution in other Megastigmus species, its mode of transmission, and its role in wasp nutrition. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0224-4) contains supplementary material, which is available to authorized users.
Collapse
|
70
|
Abstract
In vertebrates and invertebrates, morphological and functional features of gastrointestinal (GI) tracts generally reflect food chemistry, such as content of carbohydrates, proteins, fats, and material(s) refractory to rapid digestion (e.g., cellulose). The expression of digestive enzymes and nutrient transporters approximately matches the dietary load of their respective substrates, with relatively modest excess capacity. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. Transcriptional and posttranscriptional adjustments mediate phenotypic changes in the expression of hydrolases and transporters in response to dietary signals. Many species respond to higher food intake by flexibly increasing digestive compartment size. Fermentative processes by symbiotic microorganisms are important for cellulose degradation but are relatively slow, so animals that rely on those processes typically possess special enlarged compartment(s) to maintain a microbiota and other GI structures that slow digesta flow. The taxon richness of the gut microbiota, usually identified by 16S rRNA gene sequencing, is typically an order of magnitude greater in vertebrates than invertebrates, and the interspecific variation in microbial composition is strongly influenced by diet. Many of the nutrient transporters are orthologous across different animal phyla, though functional details may vary (e.g., glucose and amino acid transport with K+ rather than Na+ as a counter ion). Paracellular absorption is important in many birds. Natural toxins are ubiquitous in foods and may influence key features such as digesta transit, enzymatic breakdown, microbial fermentation, and absorption.
Collapse
Affiliation(s)
- William H Karasov
- Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
71
|
Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 2013; 8:e73827. [PMID: 24023907 PMCID: PMC3762729 DOI: 10.1371/journal.pone.0073827] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022] Open
Abstract
The Asian longhorned beetle (Anoplophoraglabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivore-associated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β-etherases), 36 families of glycoside hydrolases (such as cellulases and xylanases), and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community could serve as a reservoir of novel enzymes to enhance industrial cellulosic biofuels production or targets for novel control methods for this invasive and highly destructive insect.
Collapse
Affiliation(s)
- Erin D. Scully
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research Unit, United States Department of Agriculture Agriculture Research Service Pacific Basin Agricultural Research Center, Hilo, Hawaii, United States of America
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Susannah G. Tringe
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kerrie W. Barry
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Tijana Glavina del Rio
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Mansi Chovatia
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Joshua R. Herr
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John E. Carlson
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
72
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1300] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
73
|
Simon E, Baranyai E, Braun M, Fábián I, Tóthmérész B. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biol Trace Elem Res 2013; 154:81-7. [PMID: 23695727 DOI: 10.1007/s12011-013-9700-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Mealworm beetles have been used in numerous experiments as bioindicators. The aim of our experiment was to study the elemental composition in three larvae, pupae and first and second generation adult stages during their life cycle. We selected 180 larvae from a genetically similar population and put them in three groups, in two boxes (60 larvae in each box). Larvae were fed with mashed potato made of the same quality and quantity of potato powder. Then, we selected 10 individuals from each stage to the elemental analysis, using the ICP-OES method. The following elements were analysed in the studied stages: Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Sr and Zn. The results of principal component analysis demonstrated that based on elemental composition, different stages were separated with each other, but in the cases of the three larvae stages, high overlap was found. The results of the GLM ANOVA showed significant differences between the different stages of metamorphosis-based elemental composition. Our results show that the calcium and magnesium were found in a relatively high concentration, while the iron and zinc may be essential elements during the metamorphosis. Our results also show that in insect, the concentration of sodium was higher than in the pupa which may cause by hemolymph. We also demonstrated that the metamorphosis has an effect on the concentration of elements. Our study shows that in the different stages of insects, there are significant changes in the elemental composition of different stages of insects during their metamorphosis.
Collapse
Affiliation(s)
- Edina Simon
- Department of Ecology, University of Debrecen, Debrecen, P.O. Box 71, 4010, Hungary.
| | | | | | | | | |
Collapse
|
74
|
Kafil M, Bandani AR, Kaltenpoth M, Goldansaz SH, Alavi SM. Role of symbiotic bacteria in the growth and development of the Sunn pest, Eurygaster integriceps. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:99. [PMID: 24205987 PMCID: PMC3835049 DOI: 10.1673/031.013.9901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/12/2012] [Indexed: 05/10/2023]
Abstract
The Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), is the most important pest of wheat and barley in wide areas of the world. Different aspects of the insect's life history have been studied, but to date nothing is known about their microbial symbionts. Here, the contribution of symbiotic bacteria to the fitness of the bug was investigated by combining two different approaches to manipulate the host's microbial community: the supplementation of antibiotics into the insects' diet and egg surface sterilization. First, bacteria cultured from gut homogenates were subjected to antibiotic screening tests using 20 different antibiotics. Norfloxacin was the most effective antibiotic, with the greatest inhibition zone among all antibiotics tested. Feeding norfloxacin to adult E. integriceps individuals significantly impaired growth and development of the offspring in a dose-dependent manner, i.e., higher antibiotic doses increased the negative effects on nymphal growth and development. Total developmental time from first nymphal instars to adult emergence in control animals was 30.1 days, but when adults had been offered diets with 10, 20, and 30 µg antibiotic per mg diet, the offspring's developmental time was prolonged to 32.8, 34.0, and 34.8 days, respectively. In the highest two doses of norfloxacin, all of the nymphs died before reaching the fifth nymphal instar. Similar results as for the antibiotic treatment were obtained when egg surface sterilization was used to manipulate the microbial community of E. integriceps. These results indicate that bacterial symbionts play a crucial role in the successful development of the host.
Collapse
Affiliation(s)
- Maryam Kafil
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Ali Reza Bandani
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | | | - Seyed Mehdi Alavi
- Department of Plant Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O.Box: 14155-6343, Tehran, Iran
| |
Collapse
|
75
|
Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K. Endogenous Plant Cell Wall Digestion: A Key Mechanism in Insect Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160312] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevailing view that insects lack endogenous enzymes for plant cell wall (PCW) digestion had led to the hypothesis that PCW digestion evolved independently in different insect taxa through the establishment of symbiotic relationships with microorganisms. However, recent studies reporting endogenous PCW-degrading genes and enzymes for several insects, including phylogenetically basal insects and closely related arthropod groups, challenge this hypothesis. Here, we summarize the molecular and biochemical evidence on the mechanisms of PCW digestion in insects to analyze its evolutionary pathways. The evidence reveals that the symbiotic-independent mechanism may be the ancestral mechanism for PCW digestion. We discuss the implications of this alternative hypothesis in the evolution of plant-insect interactions and suggest that changes in the composition of lignocellulolytic complexes were involved in the evolution of feeding habits and diet specializations in insects, playing important roles in the evolution of plant-insect interactions and in the diversification of insects.
Collapse
Affiliation(s)
- Nancy Calderón-Cortés
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), 58190, Michoacán, México;, ,
| | - Mauricio Quesada
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), 58190, Michoacán, México;, ,
| | - Hirofumi Watanabe
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, 58262, Michoacán, México
| | - Ken Oyama
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), 58190, Michoacán, México;, ,
| |
Collapse
|
76
|
Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 2012; 21:6134-51. [PMID: 23017151 DOI: 10.1111/mec.12027] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 12/13/2022]
Abstract
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture-independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid-gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri-dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid-gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid-gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.
Collapse
Affiliation(s)
- Sailendharan Sudakaran
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
77
|
Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. MICROBIAL ECOLOGY 2012; 64:268-78. [PMID: 22234511 DOI: 10.1007/s00248-011-9999-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/13/2011] [Indexed: 05/25/2023]
Abstract
Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) is an endemic economically important insect of the Sierra Madre Occidental in Mexico. This bark beetle has an atypical behavior within the genus because just one beetle couple colonizes and kills seedlings and young trees of 11 pine species. In this work, the bacteria associated with the Dendroctonus rhizophagus gut were analyzed by culture-dependent and culture-independent methods. Analysis of 16S rRNA sequences amplified directly from isolates of gut bacteria suggests that the bacterial community associated with Dendroctonus rhizophagus, like that of other Dendroctonus spp. and Ips pini, is limited in number. Nine bacterial genera of γ-Proteobacteria and Actinobacteria classes were detected in the gut of Dendroctonus rhizophagus. Stenotrophomonas and Rahnella genera were the most frequently found bacteria from Dendroctonus rhizophagus gut throughout their life cycle. Stenotrophomonas maltophilia, Ponticoccus gilvus, and Kocuria marina showed cellulolytic activity in vitro. Stenotrophomonas maltophilia, Rahnella aquatilis, Raoultella terrigena, Ponticoccus gilvus, and Kocuria marina associated with larvae or adults of Dendroctonus rhizophagus could be implicated in nitrogen fixation and cellulose breakdown, important roles associated to insect development and fitness, especially under the particularly difficult life conditions of this beetle.
Collapse
Affiliation(s)
- Jesús Morales-Jiménez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Distrito Federal, CP, Mexico
| | | | | | | |
Collapse
|
78
|
Olivier-Espejel S, Sabree ZL, Noge K, Becerra JX. Gut microbiota in nymph and adults of the giant mesquite bug (Thasus neocalifornicus) (Heteroptera: Coreidae) is dominated by Burkholderia acquired de novo every generation. ENVIRONMENTAL ENTOMOLOGY 2011; 40:1102-1110. [PMID: 22251722 DOI: 10.1603/en10309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The coreid bug Thasus neocalifornicus Brailovsky and Barrera, commonly known as the giant mesquite bug, is a ubiquitous insect of the southwestern United States. Both nymphs and adults are often found aggregated on mesquite trees (Prosopis spp.: Fabaceae) feeding on seedpods and plant sap. We characterized the indigenous bacterial populations of nymphs and adults of this species by using molecular and phylogenetic techniques and culturing methods. Results show that this insect's bacterial gut community has a limited diversity dominated by Burkholderia associates. Phylogenetic analysis by using 16s rRNA sequences suggests that these β-Proteobacteria are closely related to those symbionts obtained from other heteropteran midgut microbial communities but not to Burkholderia symbionts associated with other insect orders. These bacteria were absent from the eggs and were not found in all younger nymphs, suggesting that they are acquired after the insects have hatched. Rearing experiments of nymphs with potentially Burkholderia contaminated soil suggested that if this symbiont is not acquired, giant mesquite bugs experience higher mortality. Egg, whole-body DNA extractions of younger nymphs, and midgut DNA extractions of fifth-instar nymphs and adults also revealed the presence of α-Proteobacteria from the Wolbachia genus. However, this bacterium was also present in reproductive organs of adults, indicating that this symbiont is not specific to the gut.
Collapse
|
79
|
Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol 2011; 77:4303-12. [PMID: 21571887 DOI: 10.1128/aem.01886-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disruption of host-symbiont interactions through the use of antibiotics can help elucidate microbial functions that go beyond short-term nutritional value. Termite gut symbionts have been studied extensively, but little is known about their impact on the termite's reproductive output. Here we describe the effect that the antibiotic rifampin has not only on the gut microbial diversity but also on the longevity, fecundity, and weight of two termite species, Zootermopsis angusticollis and Reticulitermes flavipes. We report three key findings: (i) the antibiotic rifampin, when fed to primary reproductives during the incipient stages of colony foundation, causes a permanent reduction in the diversity of gut bacteria and a transitory effect on the density of the protozoan community; (ii) rifampin treatment reduces oviposition rates of queens, translating into delayed colony growth and ultimately reduced colony fitness; and (iii) the initial dosages of rifampin had severe long-term fitness effects on Z. angusticollis. Taken together, our findings demonstrate that the antibiotic-induced perturbation of the microbial community is associated with prolonged reductions in longevity and fecundity. A causal relationship between these changes in the gut microbial population structures and fitness is suggested by the acquisition of opportunistic pathogens and incompetence of the termites to restore a pretreatment, native microbiota. Our results indicate that antibiotic treatment significantly alters the termite's microbiota, reproduction, colony establishment, and ultimately colony growth and development. We discuss the implications for antimicrobials as a new application to the control of termite pest species.
Collapse
|
80
|
Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, Mavingui P. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 2010; 75:377-89. [PMID: 21175696 DOI: 10.1111/j.1574-6941.2010.01012.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Symbiotic bacteria are known to play important roles in the biology of insects, but the current knowledge of bacterial communities associated with mosquitoes is very limited and consequently their contribution to host behaviors is mostly unknown. In this study, we explored the composition and diversity of mosquito-associated bacteria in relation with mosquitoes' habitats. Wild Aedes albopictus and Aedes aegypti were collected in three different geographic regions of Madagascar. Culturing methods and denaturing gradient gel electrophoresis (DGGE) and sequencing of the rrs amplicons revealed that Proteobacteria and Firmicutes were the major phyla. Isolated bacterial genera were dominated by Bacillus, followed by Acinetobacter, Agrobacterium and Enterobacter. Common DGGE bands belonged to Acinetobacter, Asaia, Delftia, Pseudomonas, Enterobacteriaceae and an uncultured Gammaproteobacterium. Double infection by maternally inherited Wolbachia pipientis prevailed in 98% of males (n=272) and 99% of females (n=413); few individuals were found to be monoinfected with Wolbachia wAlbB strain. Bacterial diversity (Shannon-Weaver and Simpson indices) differed significantly per habitat whereas evenness (Pielou index) was similar. Overall, the bacterial composition and diversity were influenced both by the sex of individuals and by the environment inhabited by the mosquitoes; the latter might be related to both the vegetation and the animal host populations that Aedes used as food sources.
Collapse
|
81
|
Bragatto I, Genta FA, Ribeiro AF, Terra WR, Ferreira C. Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:861-872. [PMID: 20816775 DOI: 10.1016/j.ibmb.2010.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
Spodoptera frugiperda β-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against β-1,3-glucan (laminarin), but cannot hydrolyze yeast β-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive β-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of β-1,3-glucanases and β-glucan-binding protein supports the assumption that the β-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived β-1,3-glucanases by the loss of an extended N-terminal region and the β-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells.
Collapse
Affiliation(s)
- Ivan Bragatto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
82
|
Effect of Transgenic Cotton with cry1Ac Gene on Intestinal Bacterial Community of Apis mellifera ligustica*. ACTA ACUST UNITED AC 2010. [DOI: 10.3724/sp.j.1145.2010.00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL. Prospecting for cellulolytic activity in insect digestive fluids. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:145-54. [DOI: 10.1016/j.cbpb.2009.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022]
|
84
|
Anand AAP, Vennison SJ, Sankar SG, Prabhu DIG, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SE. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:107. [PMID: 20874394 PMCID: PMC3016902 DOI: 10.1673/031.010.10701] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bombyx mori L. (Lepidoptera: Bombycidae) have been domesticated and widely used for silk production. It feeds on mulberry leaves. Mulberry leaves are mainly composed of pectin, xylan, cellulose and starch. Some of the digestive enzymes that degrade these carbohydrates might be produced by gut bacteria. Eleven isolates were obtained from the digestive tract of B. mori, including the Gram positive Bacillus circulans and Gram negative Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Serratia liquefaciens, Enterobacter sp., Pseudomonas fluorescens, P. aeruginosa, Aeromonas sp., and Erwinia sp.. Three of these isolates, P. vulgaris, K. pneumoniae, C. freundii, were cellulolytic and xylanolytic, P. fluorescens and Erwinia sp., were pectinolytic and K. pneumoniae degraded starch. Aeromonas sp. was able to utilize the CMcellulose and xylan. S. liquefaciens was able to utilize three polysaccharides including CMcellulose, xylan and pectin. B. circulans was able to utilize all four polysaccharides with different efficacy. The gut of B. mori has an alkaline pH and all of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH. The number of cellulolytic bacteria increases with each instar.
Collapse
Affiliation(s)
- A. Alwin Prem Anand
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
- Present address: University of Tübingen, Institute of Anatomy, Österbergstrasse 3, 72074 Tübingen
| | - S. John Vennison
- Dept. of Biotechnology, Anna University, Tiruchirappalli, 620 024, India
| | - S. Gowri Sankar
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
- Dept. of Biotechnology, Anna University, Tiruchirappalli, 620 024, India
| | - D. Immanual Gilwax Prabhu
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
- Dept. of Biotechnology, Anna University, Tiruchirappalli, 620 024, India
| | - P. Thirumalai Vasan
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
- Dept. of Biotechnology, Anna University, Tiruchirappalli, 620 024, India
| | - T. Raghuraman
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
| | - C. Jerome Geoffrey
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
| | - S. Ezhil Vendan
- Research Centre for Biological Sciences, Naesam Trust, Ellis Nagar, Madurai, 625016, India
- Present address: Entomology Research Institute, Loyola College, Chennai, 600034, India
| |
Collapse
|
85
|
Genta FA, Bragatto I, Terra WR, Ferreira C. Purification, characterization and sequencing of the major beta-1,3-glucanase from the midgut of Tenebrio molitor larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:861-74. [PMID: 19840850 DOI: 10.1016/j.ibmb.2009.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 05/07/2023]
Abstract
The major beta-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an endoglucanase that hydrolyzes beta-1,3-glucans as laminarin and yeast beta-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched beta-1,3-glucans or mixed beta-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections.
Collapse
Affiliation(s)
- Fernando A Genta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P 26077, 05513-970, São Paulo, Brazil; Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
86
|
Visôtto LE, Oliveira MGA, Guedes RNC, Ribon AOB, Good-God PIV. Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:185-191. [PMID: 19061893 DOI: 10.1016/j.jinsphys.2008.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 05/27/2023]
Abstract
Bacteria colonies from gut homogenates of fifth instar velvetbean caterpillars (Lepidoptera: Noctuidae) were subjected to antibiotic sensitivity experiments using discs containing 22 antibiotics. The antibiotic tetracycline provided the best results, followed by chloramphenicol. Tetracycline also provided higher inhibition of colony forming units than chloramphenicol and was therefore provided to the caterpillars in increasing diet concentrations to assess the contribution of gut bacteria to their digestion and development. The activity of proteases (general), serine-proteinases and lipases were significantly suppressed by tetracycline. Concentration-inhibition curves were successfully established for tetracycline and this antibiotic was effective in suppressing them, particularly serine-proteinases, suggesting that gut bacteria may significantly contribute with lipid- and mainly protein-digestion in velvetbean caterpillars. Increased diet concentrations of tetracycline led only to mild increase in insect mortality (ca. 20%), with the surviving insects showing faster development (< or =4 days) and higher pupa weight (<0.04 mg) with increased concentrations of tetracycline. Therefore, the gut bacteria inhibited by tetracycline does not seem to play a crucial role in the survival and development of the velvetbean caterpillar, but may be important in the adaptation of this pest species to hosts rich in protease inhibitors, such as soybean.
Collapse
Affiliation(s)
- L E Visôtto
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG 36571-000, Brazil
| | | | | | | | | |
Collapse
|
87
|
Janson EM, Stireman JO, Singer MS, Abbot P. PHYTOPHAGOUS INSECT–MICROBE MUTUALISMS AND ADAPTIVE EVOLUTIONARY DIVERSIFICATION. Evolution 2008; 62:997-1012. [DOI: 10.1111/j.1558-5646.2008.00348.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
88
|
Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim G, Saravanan V, Sa T. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutriti. J Appl Microbiol 2007; 103:2664-75. [DOI: 10.1111/j.1365-2672.2007.03506.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
89
|
Genta FA, Blanes L, Cristofoletti PT, do Lago CL, Terra WR, Ferreira C. Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:789-800. [PMID: 17027845 DOI: 10.1016/j.ibmb.2006.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/19/2006] [Accepted: 07/25/2006] [Indexed: 05/12/2023]
Abstract
Insect chitinases are involved in degradation of chitin from the exoskeleton cuticle or from midgut peritrophic membrane during molts. cDNAs coding for insect cuticular and gut chitinases were cloned, but only chitinases from moulting fluid were purified and characterized. In this study the major digestive chitinase from T. molitor midgut (TmChi) was purified to homogeneity, characterized and sequenced after cDNA cloning. TmChi is secreted by midgut epithelial cells, has a molecular weight of 44 kDa and is unstable in the presence of midgut proteinases. TmChi shows strong substrate inhibition when acting on umbelliferyl-derivatives of chitobio- and chitotriosaccharides, but has normal Michaelis kinetics with the N-acetylglucosamine derivative as substrate. TmChi has very low activity against colloidal chitin, but effectively converts oligosaccharides to shorter fragments. The best substrate for TmChi is chitopentaose, with highest k(cat)/K(M) value. Sequence analysis and chemical modification experiments showed that the TmChi active site contains carboxylic groups and a tryptophane, which are known to be important for catalysis in family 18 chitinases. Modification with p-hidroximercuribenzoate of a cysteine residue, which is exposed after substrate binding, leads to complete inactivation of the enzyme. TmChi mRNA encodes a signal peptide plus a protein with 37 kDa and high similarity with other insect chitinases from family 18. Surprisingly, this gene does not encode the C-terminal Ser-Thr-rich connector and chitin-binding domain normally present in chitinases. The special features of TmChi probably result from its adaptation to digest chitin-rich food without damaging the peritrophic membrane.
Collapse
Affiliation(s)
- Fernando A Genta
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|