51
|
Leszczyszyn OI, White CRJ, Blindauer CA. The isolated Cys2His2 site in EC metallothionein mediates metal-specific protein folding. MOLECULAR BIOSYSTEMS 2010; 6:1592-603. [PMID: 20467686 DOI: 10.1039/c002348e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The selectivity of proteins involved in metal ion homeostasis is an important part of the puzzle to understand how cells allocate the correct metal ions to the correct proteins. Due to their similar ligand-binding properties, and their frequent co-existence in soils, essential zinc and toxic cadmium are a particularly challenging couple. Thus, minimisation of competition of Cd(2+) for Zn(2+) sites is of crucial importance for organisms that are in direct contact with soil. Amongst these, plants have an especially critical role, due to their importance for nutrition and energy. We have studied an embryo-specific, zinc-binding metallothionein (E(C)) from wheat by nuclear magnetic resonance, electrospray mass spectrometry, site-directed mutagenesis, and molecular modelling. Wheat E(C) exploits differences in affinities of Cys(4) and Cys(2)His(2) sites for Cd(2+) and Zn(2+) to achieve metal-selective protein folding. We propose that this may constitute a novel mechanism to discriminate between essential Zn(2+) and toxic Cd(2+).
Collapse
|
52
|
Greenwald CJ, Kasuga T, Glass NL, Shaw BD, Ebbole DJ, Wilkinson HH. Temporal and spatial regulation of gene expression during asexual development of Neurospora crassa. Genetics 2010; 186:1217-30. [PMID: 20876563 PMCID: PMC2998306 DOI: 10.1534/genetics.110.121780] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/18/2010] [Indexed: 12/18/2022] Open
Abstract
In this study we profiled spatial and temporal transcriptional changes during asexual sporulation in the filamentous fungus Neurospora crassa. Aerial tissue was separated from the mycelium to allow detection of genes specific to each tissue. We identified 2641 genes that were differentially expressed during development, which represents ∼25% of the predicted genes in the genome of this model fungus. On the basis of the distribution of functional annotations of 1102 of these genes, we identified gene expression patterns that define key physiological events during conidial development. Not surprisingly, genes encoding transcription factors, cell wall remodeling proteins, and proteins involved in signal transduction were differentially regulated during asexual development. Among the genes differentially expressed in aerial tissues the majority were unclassified and tended to be unique to ascomycete genomes. This finding is consistent with the view that these genes evolved for asexual development in the Pezizomycotina. Strains containing deletions of several differentially expressed genes encoding transcription factors exhibited asexual development-associated phenotypes. Gene expression patterns during asexual development suggested that cAMP signaling plays a critical role in the transition from aerial growth to proconidial chain formation. This observation prompted us to characterize a deletion of the gene encoding a high-affinity cAMP phosphodiesterase (NCU00478). NCU00478 was determined to be allelic to aconidiate-2, a previously identified genetic locus controlling conidiation.
Collapse
Affiliation(s)
- Charles J. Greenwald
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Takao Kasuga
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - N. Louise Glass
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Daniel J. Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Heather H. Wilkinson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| |
Collapse
|
53
|
Miyamoto K, Togiya K. The creation of the artificial RING finger from the cross-brace zinc finger by alpha-helical region substitution. Biochem Biophys Res Commun 2010; 394:972-5. [PMID: 20307496 DOI: 10.1016/j.bbrc.2010.03.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 12/26/2022]
Abstract
The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the alpha-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD_RING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD_RING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD_RING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo 670-8524, Japan.
| | | |
Collapse
|
54
|
Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci U S A 2009; 106:13260-5. [PMID: 19651603 DOI: 10.1073/pnas.0906770106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein mediates cell transformation by deregulating host cellular processes and activating viral gene expression by recruitment of cellular proteins that include cyclic-AMP response element binding (CREB) binding protein (CBP)/p300 and the retinoblastoma protein (pRb). While E1A is capable of independent interaction with CBP/p300 or pRb, simultaneous binding of both proteins is required for maximal biological activity. To obtain insights into the mechanism by which E1A hijacks the cellular transcription machinery by competing with essential transcription factors for binding to CBP/p300, we have determined the structure of the complex between the transcriptional adaptor zinc finger-2 (TAZ2) domain of CBP and the conserved region-1 (CR1) domain of E1A. The E1A CR1 domain is unstructured in the free state and upon binding folds into a local helical structure mediated by an extensive network of intermolecular hydrophobic contacts. By NMR titrations, we show that E1A efficiently competes with the N-terminal transactivation domain of p53 for binding to TAZ2 and that pRb interacts with E1A at 2 independent sites located in CR1 and CR2. We show that pRb and the CBP TAZ2 domain can bind simultaneously to the CR1 site of E1A to form a ternary complex and propose a structural model for the pRb:E1A:CBP complex on the basis of published x-ray data for homologous binary complexes. These observations reveal the molecular basis by which E1A inhibits p53-mediated transcriptional activation and provide a rationale for the efficiency of cellular transformation by the adenoviral E1A oncoprotein.
Collapse
|
55
|
Teufel DP, Bycroft M, Fersht AR. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 2009; 28:2112-8. [PMID: 19363523 PMCID: PMC2685776 DOI: 10.1038/onc.2009.71] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The transcriptional activity of the tumor suppressor p53 requires direct binding between its transactivation domain (TAD, 1-57) and the transcriptional coactivator p300. We systematically assessed the role of TAD phosphorylation on binding of the p300 domains CH3, Taz1, Kix and IBiD. Thr18 phosphorylation increased the affinity up to 7-fold for CH3 and Taz1, with smaller increases from phosphorylation of Ser20, Ser15, Ser37, Ser33, Ser46 and Thr55. Binding of Kix and IBiD was less sensitive to phosphorylation. Strikingly, hepta-phosphorylation of all Ser and Thr residues increased binding 40- and 80-fold with CH3 and Taz1, respectively, but not with Kix or Ibid. Substitution of all phospho-sites with aspartates partially mimicked the effects of hepta-phosphorylation. Mdm2, the main negative regulator of p53, competes with p300 for binding TAD. Binding of Mdm2 to TAD was reduced significantly only on phosphorylation of Thr18 (7-fold) or by hepta-phosphorylation (24-fold). The relative affinities of Mdm2 and p300 for p53 TAD can thus be changed by up to three orders of magnitude by phosphorylation. Accordingly, phosphorylation of Thr18 and hepta-phosphorylation dramatically shifts the balance to favouring binding of p300 with p53 and is thus likely to be an important factor in its regulation.
Collapse
Affiliation(s)
- D P Teufel
- Department of Chemistry, MRC Centre for Protein Engineering and Cambridge University, MRC Centre, Cambridge, UK
| | | | | |
Collapse
|
56
|
Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. J Biol Chem 2009; 284:11237-46. [PMID: 19251701 DOI: 10.1074/jbc.m808327200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncogene-induced senescence is a tumor-suppressive defense mechanism triggered upon activation of certain oncogenes in normal cells. Recently, the senescence response to oncogene activation has been shown to act as a bona fide barrier to cancer development in vivo. Multiple previous studies have implicated the importance of the p38 MAPK pathway in oncogene-induced senescence. However, the contribution of each of the four p38 isoforms (encoded by different genes) to senescence induction is unclear. In the current study, we demonstrated that p38alpha and p38gamma, but not p38beta, play an essential role in oncogenic ras-induced senescence. Both p38alpha and p38gamma are expressed in primary human fibroblasts and are activated upon transduction of oncogenic ras. Small hairpin RNA-mediated silencing of p38alpha or p38gamma expression abrogated ras-induced senescence, whereas constitutive activation of p38alpha and p38gamma caused premature senescence. Furthermore, upon activation by oncogenic ras, p38gamma stimulated the transcriptional activity of p53 by phosphorylating p53 at Ser(33), suggesting that the ability of p38gamma to mediate senescence is at least partly achieved through p53. However, p38alpha contributed to ras-inducted senescence via a p53-indepdendent mechanism in cells by mediating ras-induced expression of p16(INK4A), another key senescence effector. These findings have identified p38alpha and p38gamma as essential components of the signaling pathway that regulates the tumor-suppressing senescence response, providing insights into the molecular mechanisms underlying the differential involvement of the p38 isoforms in senescence induction.
Collapse
Affiliation(s)
- Jinny Kwong
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California 91037, USA
| | | | | | | | | | | |
Collapse
|
57
|
Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J 2009; 28:948-58. [PMID: 19214187 DOI: 10.1038/emboj.2009.30] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022] Open
Abstract
CBP/p300 transcriptional coactivators mediate gene expression by integrating cellular signals through interactions with multiple transcription factors. To elucidate the molecular and structural basis for CBP-dependent gene expression, we determined structures of the CBP TAZ1 and TAZ2 domains in complex with the transactivation domains (TADs) of signal transducer and activator of transcription 2 (STAT2) and STAT1, respectively. Despite the topological similarity of the TAZ1 and TAZ2 domains, subtle differences in helix packing and surface grooves constitute major determinants of target selectivity. Our results suggest that TAZ1 preferentially binds long TADs capable of contacting multiple surface grooves simultaneously, whereas smaller TADs that are restricted to a single contiguous binding surface form complexes with TAZ2. Complex formation for both STAT TADs involves coupled folding and binding, driven by intermolecular hydrophobic and electrostatic interactions. Phosphorylation of S727, required for maximal transcriptional activity of STAT1, does not enhance binding to any of the CBP domains. Because the different STAT TADs recognize different regions of CBP/p300, there is a potential for multivalent binding by STAT heterodimers that could enhance the recruitment of the coactivators to promoters.
Collapse
|
58
|
Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, Barford D. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29:451-64. [PMID: 18313383 DOI: 10.1016/j.molcel.2007.12.018] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 12/22/2022]
Abstract
The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.
Collapse
Affiliation(s)
- David Komander
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
59
|
Kang HS, Nelson ML, Mackereth CD, Schärpf M, Graves BJ, McIntosh LP. Identification and structural characterization of a CBP/p300-binding domain from the ETS family transcription factor GABP alpha. J Mol Biol 2008; 377:636-46. [PMID: 18295234 DOI: 10.1016/j.jmb.2008.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 12/20/2022]
Abstract
Using NMR spectroscopy, we identified and characterized a previously unrecognized structured domain near the N-terminus (residues 35-121) of the ETS family transcription factor GABP alpha. The monomeric domain folds as a five-stranded beta-sheet crossed by a distorted helix. Although globally resembling ubiquitin, the GABP alpha fragment differs in its secondary structure topology and thus appears to represent a new protein fold that we term the OST (On-SighT) domain. The surface of the GABP alpha OST domain contains two predominant clusters of negatively-charged residues suggestive of electrostatically driven interactions with positively-charged partner proteins. Following a best-candidate approach to identify such a partner, we demonstrated through NMR-monitored titrations and glutathione S-transferase pulldown assays that the OST domain binds to the CH1 and CH3 domains of the co-activator histone acetyltransferase CBP/p300. This provides a direct structural link between GABP and a central component of the transcriptional machinery.
Collapse
Affiliation(s)
- Hyun-Seo Kang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
60
|
Nakamura Y, Umehara T, Hamana H, Hayashizaki Y, Inoue M, Kigawa T, Shirouzu M, Terada T, Tanaka A, Padmanabhan B, Yokoyama S. Crystal Structure Analysis of the PHD Domain of the Transcription Co-activator Pygopus. J Mol Biol 2007; 370:80-92. [PMID: 17499269 DOI: 10.1016/j.jmb.2007.04.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/15/2007] [Accepted: 04/11/2007] [Indexed: 01/13/2023]
Abstract
The Wnt/beta-catenin signaling pathway plays important roles in animal development and cancer. Pygopus (Pygo) and Legless (Lgs) are recently discovered core components of the Wnt/beta-catenin transcription machinery complex, and are crucially involved in the regulation of the transcription of the Arm/beta-catenin and T cell factors (TCF). Lgs/Bcl9 functions as an adaptor between Pygo and Arm/beta-catenin. Here, we report the first crystal structure of the plant homeodomain (PHD) finger of Pygopus (Pygo1 PHD), a Pygo family member, which is essential for the association with Lgs/Bcl9. The Pygo1 PHD structure forms a canonical PHD finger motif, stabilized by two Zn ions coordinated in a cross-brace scheme. Surprisingly, the Pygo1 PHD domain forms a dimer in both the crystals and solution. This is the first structural evidence for dimerization among the known PHD domain structures. The dimer formation occurs by the interactions of antiparallel beta-sheets between the symmetry-related beta3 strands of the monomers. The Pygo1 PHD dimer interface mainly comprises hydrophobic residues. Interestingly, some of the interface residues, such as Met372, Thr373, Ala376 and Leu380, are reportedly important for the association with Lgs/Bcl9 and are also critical for transcriptional activation. The M372A and L380D mutants, and several surrounding mutants such as S385A and A386D, showed decreased ability to form dimers and to interact with the homology domain 1 (HD1) of Lgs/Bcl9. These results suggest that the Pygo1 PHD dimerization is functionally important for Lgs/Bcl9 recognition as well as for the regulation of the Wnt/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Yoshihiro Nakamura
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Massiah MA, Matts JAB, Short KM, Simmons BN, Singireddy S, Yi Z, Cox TC. Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2) zinc-binding domain: insights into an evolutionarily conserved RING fold. J Mol Biol 2007; 369:1-10. [PMID: 17428496 DOI: 10.1016/j.jmb.2007.03.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 11/23/2022]
Abstract
The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.
Collapse
Affiliation(s)
- Michael A Massiah
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, Xie C, Chen J, Deng Q, Yamout M, Dong MQ, Frangou CG, Yates JR, Wright PE, Han J. PRAK is essential for ras-induced senescence and tumor suppression. Cell 2007; 128:295-308. [PMID: 17254968 DOI: 10.1016/j.cell.2006.11.050] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/21/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Like apoptosis, oncogene-induced senescence is a barrier to tumor development. However, relatively little is known about the signaling pathways mediating the senescence response. p38-regulated/activated protein kinase (PRAK) is a p38 MAPK substrate whose physiological functions are poorly understood. Here we describe a role for PRAK in tumor suppression by demonstrating that PRAK mediates senescence upon activation by p38 in response to oncogenic ras. PRAK deficiency in mice enhances DMBA-induced skin carcinogenesis, coinciding with compromised senescence induction. In primary cells, inactivation of PRAK prevents senescence and promotes oncogenic transformation. Furthermore, we show that PRAK activates p53 by direct phosphorylation. We propose that phosphorylation of p53 by PRAK following activation of p38 MAPK by ras plays an important role in ras-induced senescence and tumor suppression.
Collapse
Affiliation(s)
- Peiqing Sun
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hnia K, Zouiten D, Cantel S, Chazalette D, Hugon G, Fehrentz JA, Masmoudi A, Diment A, Bramham J, Mornet D, Winder S. ZZ domain of dystrophin and utrophin: topology and mapping of a beta-dystroglycan interaction site. Biochem J 2007; 401:667-77. [PMID: 17009962 PMCID: PMC1770854 DOI: 10.1042/bj20061051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dystrophin forms part of a vital link between actin cytoskeleton and extracellular matrix via the transmembrane adhesion receptor dystroglycan. Dystrophin and its autosomal homologue utrophin interact with beta-dystroglycan via their highly conserved C-terminal cysteine-rich regions, comprising the WW domain (protein-protein interaction domain containing two conserved tryptophan residues), EF hand and ZZ domains. The EF hand region stabilizes the WW domain providing the main interaction site between dystrophin or utrophin and dystroglycan. The ZZ domain, containing a predicted zinc finger motif, stabilizes the WW and EF hand domains and strengthens the overall interaction between dystrophin or utrophin and beta-dystroglycan. Using bacterially expressed ZZ domain, we demonstrate a conformational effect of zinc binding to the ZZ domain, and identify two zinc-binding regions within the ZZ domain by SPOTs overlay assays. Epitope mapping of the dystrophin ZZ domain was carried out with new monoclonal antibodies by ELISA, overlay assay and immunohistochemistry. One monoclonal antibody defined a discrete region of the ZZ domain that interacts with beta-dystroglycan. The epitope was localized to the conformationally sensitive second zinc-binding site in the ZZ domain. Our results suggest that residues 3326-3332 of dystrophin form a crucial part of the contact region between dystrophin and beta-dystroglycan and provide new insight into ZZ domain organization and function.
Collapse
Affiliation(s)
- Karim Hnia
- *Université Montpellier 1, Unité de Formation et de Recherche de Médecine, Laboratoire de Physiologie des Interactions, Institut de Biologie, Boulevard Henri IV, F-34062, France
- †Institut Supérieur de Biotechnologie and U.R. (Unité de Recherche) 08/39 Faculté de Médecine, Monastir, Tunisia
| | - Dora Zouiten
- †Institut Supérieur de Biotechnologie and U.R. (Unité de Recherche) 08/39 Faculté de Médecine, Monastir, Tunisia
| | - Sonia Cantel
- ‡Institut Max Mousseron, FR 1886 Laboratoire des Amino-acides, Peptides et Protéines UMR 5810, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cédex 5, France
| | - Delphine Chazalette
- *Université Montpellier 1, Unité de Formation et de Recherche de Médecine, Laboratoire de Physiologie des Interactions, Institut de Biologie, Boulevard Henri IV, F-34062, France
| | - Gérald Hugon
- *Université Montpellier 1, Unité de Formation et de Recherche de Médecine, Laboratoire de Physiologie des Interactions, Institut de Biologie, Boulevard Henri IV, F-34062, France
| | - Jean-Alain Fehrentz
- ‡Institut Max Mousseron, FR 1886 Laboratoire des Amino-acides, Peptides et Protéines UMR 5810, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cédex 5, France
| | - Ahmed Masmoudi
- †Institut Supérieur de Biotechnologie and U.R. (Unité de Recherche) 08/39 Faculté de Médecine, Monastir, Tunisia
| | - Ann Diment
- §Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, U.K
| | - Janice Bramham
- §Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, U.K
| | - Dominique Mornet
- *Université Montpellier 1, Unité de Formation et de Recherche de Médecine, Laboratoire de Physiologie des Interactions, Institut de Biologie, Boulevard Henri IV, F-34062, France
| | - Steve J. Winder
- ∥Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
64
|
Kadlec J, Guilligay D, Ravelli RB, Cusack S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA (NEW YORK, N.Y.) 2006; 12:1817-24. [PMID: 16931876 PMCID: PMC1581972 DOI: 10.1261/rna.177606] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UPF1 is an essential eukaryotic RNA helicase that plays a key role in various mRNA degradation pathways, notably nonsense-mediated mRNA decay (NMD). In combination with UPF2 and UPF3, it forms part of the surveillance complex that detects mRNAs containing premature stop codons and triggers their degradation in all organisms studied from yeast to human. We describe the 3 A resolution crystal structure of the highly conserved cysteine-histidine-rich domain of human UPF1 and show that it is a unique combination of three zinc-binding motifs arranged into two tandem modules related to the RING-box and U-box domains of ubiquitin ligases. This UPF1 domain interacts with UPF2, and we identified by mutational analysis residues in two distinct conserved surface regions of UPF1 that mediate this interaction. UPF1 residues we identify as important for the interaction with UPF2 are not conserved in UPF1 homologs from certain unicellular parasites that also appear to lack UPF2 in their genomes.
Collapse
Affiliation(s)
- Jan Kadlec
- European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
65
|
Pavan Kumar GV, Ashok Reddy BA, Arif M, Kundu TK, Narayana C. Surface-Enhanced Raman Scattering Studies of Human Transcriptional Coactivator p300. J Phys Chem B 2006; 110:16787-92. [PMID: 16913819 DOI: 10.1021/jp063071e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report for the first time the surface-enhanced Raman scattering (SERS) studies on p300, a large multidomain transcriptional coactivator protein. Vibration spectral analysis has been performed in an attempt to understand the structure of the p300 in the absence of its crystal structure. Strong Raman bands associated with amides I-III have been observed in the protein spectra. This has been confirmed by performing SERS on deuterated p300. We also observe Raman bands associated with the alpha-helix, tryptophan, phenylalanine, tyrosine, and histidine. These bands will provide an ideal tool to study the drug-protein interactions in therapeutics using SERS. We have successfully demonstrated the chloride ion effect on the SERS of p300. The Raman intensity increases in the SERS spectra upon addition of chloride ion along with appearance of new modes. We have developed a new method, namely, the "sandwich technique", which could be used to perform SERS experiments on proteins in dry conditions.
Collapse
Affiliation(s)
- G V Pavan Kumar
- Light Scattering Laboratory, Chemistry and Physics of Materials Unit, and Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | | | | | | | |
Collapse
|
66
|
Massiah MA, Simmons BN, Short KM, Cox TC. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING. J Mol Biol 2006; 358:532-45. [PMID: 16529770 DOI: 10.1016/j.jmb.2006.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/30/2006] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
B-box domains are a defining feature of the tripartite RBCC (RING, B-box, coiled-coil) or TRIM proteins, many of which are E3 ubiquitin ligases. However, little is known about the biological function of B-boxes. In some RBCC/TRIM proteins there is only a single B-box (type 2) domain, while others have both type 1 and type 2 B-box domains in tandem adjacent to their RING domain. These two types of B-boxes share little sequence similarity, except the presence of cysteine and histidine residues: eight in most B-box1 domains and seven in B-box2 domains. We report here the high-resolution solution structure of the first B-box1 domain (from the human RBCC protein, MID1) based on 670 nuclear Overhauser effect (NOE)-derived distance restraints, 12 hydrogen bonds, and 44 dihedral angles. The domain consists of a three-turn alpha-helix, two short beta-strands, and three beta-turns, encompassing Val117 to Pro164, which binds two zinc atoms. One zinc atom is coordinated by cysteine residues 119, 122, 142, 145, while cysteine 134, 137 and histidine 150, 159 coordinate the other. This topology is markedly different from the only other B-box structure reported; that of a type 2 B-box from Xenopus XNF7, which binds a single zinc atom. Of note, the B-box1 structure closely resembles the folds of the RING, ZZ and U-box domains of E3 and E4 ubiquitin enzymes, raising the possibility that the B-box1 domain either has E3 activity itself or enhances the activity of RING type E3 ligases (i.e. confers E4 enzyme activity). The structure of the MID1 B-box1 also reveals two potential protein interaction surfaces. One of these is likely to provide the binding interface for Alpha 4 that is required for the localized turnover of the catalytic subunit of PP2A, the major Ser/Thr phosphatase.
Collapse
Affiliation(s)
- Michael A Massiah
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74075 USA.
| | | | | | | |
Collapse
|
67
|
Shigi N, Sakaguchi Y, Suzuki T, Watanabe K. Identification of two tRNA thiolation genes required for cell growth at extremely high temperatures. J Biol Chem 2006; 281:14296-306. [PMID: 16547008 DOI: 10.1074/jbc.m511675200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thermostability of tRNA in thermophilic bacteria is effected by post-transcriptional modifications, such as 2-thioribothymidine (s2T) at position 54. Using a proteomics approach, we identified two genes (ttuA and ttuB; tRNA-two-thiouridine) that are essential for the synthesis of s2T in Thermus thermophilus. Mutation of either gene completely abolishes thio-modification of s2T, and these mutants exhibit a temperature-sensitive phenotype. These results suggest that bacterial growth at higher temperatures is achieved through the thermal stabilization of tRNA by a 2-thiolation modification. TtuA (TTC0106) is possibly an ATPase possessing a P-loop motif. TtuB (TTC0105) is a putative thio-carrier protein that exhibits significant sequence homology with ThiS of the thiamine synthesis pathway. Both TtuA and TtuB are required for in vitro s2T formation in the presence of cysteine and ATP. The addition of cysteine desulfurases such as IscS (TTC0087) or SufS (TTC1373) enhances the sulfur transfer reaction in vitro.
Collapse
Affiliation(s)
- Naoki Shigi
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | | | |
Collapse
|
68
|
Liu T, Golden JW, Giedroc DP. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry 2005; 44:8673-83. [PMID: 15952774 DOI: 10.1021/bi050450+] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel Zn(II)/Pb(II)/Cd(II)-responsive operon that consists of genes encoding a Zn(II)/Pb(II) CPx-ATPase efflux pump (aztA) and a Zn(II)/Cd(II)/Pb(II)-specific SmtB/ArsR family repressor (aztR) has been identified and characterized from the cyanobacterium Anabaena PCC 7120. In vivo real time quantitative RT-PCR assays reveal that both aztR and aztA expression are induced by divalent metal ions Zn(II), Cd(II), and Pb(II) but not by other divalent [Co(II), Ni(II)] or monovalent metal ions [Cu(I) and Ag(I)]. The introduction of a plasmid containing the azt operon into a Zn(II)/Cd(II)-hypersensitive Escherichia coli strain GG48 functionally restores Zn(II) and Pb(II) resistance with a limited effect on Cd(II) resistance. Gel mobility shift assays and aztR O/P-lacZ induction experiments confirm that AztR is the metal-regulated repressor of this operon. In vitro biochemical and mutagenesis studies indicate that AztR contains a sole metal-binding site, designated the alpha3N site, that binds Zn(II), Cd(II), and Pb(II) with a high affinity. Optical absorption spectra of Co(II)- and Cd(II)-substituted AztR and (113)Cd NMR spectroscopy of (113)Cd(II)-substituted AztR reveal that the sole alpha3N site in AztR is a CadC-like distorted tetrahedral S(3)(N,O) metal site. The first metal-coordination shell in the AztR alpha3N site differs from other alpha3N family members that sense Cd(II)/Pb(II) and those alpha5 repressors that sense Zn(II)/Co(II). Our results reveal that the alpha3N site in AztR mediates derepression of the azt operon in the presence of Zn(II), as well as Cd(II) and Pb(II); this might have provided Anabaena with an evolutionary advantage to adapt to heavy-metal-rich environments, while maintaining homeostasis of an essential metal ion, Zn(II).
Collapse
Affiliation(s)
- Tong Liu
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | |
Collapse
|
69
|
Ma B, Pan Y, Gunasekaran K, Keskin O, Venkataraghavan RB, Levine AJ, Nussinov R. The contribution of the Trp/Met/Phe residues to physical interactions of p53 with cellular proteins. Phys Biol 2005; 2:S56-66. [PMID: 16204849 DOI: 10.1088/1478-3975/2/2/s06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dynamic molecular interaction networks underlie biological phenomena. Among the many genes which are involved, p53 plays a central role in networks controlling cellular life and death. It not only operates as a tumor suppressor, but also helps regulate hundreds of genes in response to various types of stress. To accomplish these functions as a guardian of the genome, p53 interacts extensively with both nucleic acids and proteins. This paper examines the physical interfaces of the p53 protein with cellular proteins. Previously, in the analysis of the structures of protein-protein complexes, we have observed that amino acids Trp, Met and Phe are important for protein-protein interactions in general. Here we show that these residues are critical for the many functions of p53. Several clusters of the Trp/Met/Phe residues are involved in the p53 protein-protein interactions. Phe19/Trp23 in the TA1 region extensively binds to the transcriptional factors and the MDM2 protein. Trp53/Phe54 in the TA2 region is crucial for transactivation and DNA replication. Met243 in the core domain interacts with 53BP1, 53BP2 and Rad 51 proteins. Met384/Phe385 in the C-terminal region interacts with the S100B protein and the Bromodomain of the CBP protein. Thus, these residues may assist in elucidating the p53 interactions when structural data are not available.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Balla T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 2005; 118:2093-104. [PMID: 15890985 DOI: 10.1242/jcs.02387] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inositol lipids have emerged as universal lipid regulators of protein signaling complexes in defined membrane compartments. The number of protein modules that are known to recognise these membrane lipids is rapidly increasing. Pleckstrin homology domains, FYVE domains, PX domains, ENTH domains, CALM domains, PDZ domains, PTB domains and FERM domains are all inositide-recognition modules. The latest additions to this list are members of the clathrin adaptor protein and arrestin families. Initially, inositol lipids were believed to recruit signaling molecules to specific membrane compartments, but many of the domains clearly do not possess high enough affinity to act alone as localisation signals. Another important notion is that some (and probably most) of these protein modules also have protein binding partners, and their protein- and lipid-binding activities might influence one another through allosteric mechanisms. Comparison of the structural features of these domains not only reveals a high degree of conservation of their lipid interaction sites but also highlights their evolutionary link to protein modules known for protein-protein interactions. Protein-protein interactions involving lipid-binding domains could serve as the basis for phosphoinositide-induced conformational regulation of target proteins at biological membranes. Therefore, these modules function as crucially important signal integrators, which explains their involvement in a broad range of regulatory functions in eukaryotic cells.
Collapse
Affiliation(s)
- Tamas Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
Abstract
Estimates of the number of zinc proteins in humans are now possible and a functional annotation of the zinc proteome can begin. The catalytic and structural roles of zinc in hundreds of enzymes and thousands of so-called "zinc finger" protein domains have provided a molecular basis for the numerous biological functions of this essential element. Additional, regulatory functions of zinc/protein interactions are being recognized. They include roles of the zinc ion in signal transduction, in controlling the architecture of protein complexes, and in redox-active zinc sites, where the binding and release of zinc is under redox control. Moreover, a considerable number of proteins participate in cellular zinc homeostasis, e.g. membrane transporters, and cellular storage, sensor, and trafficking proteins. These proteins have evolved with mechanisms to handle zinc ions rather specifically and selectively. They perform their functions with a remarkably modest set: One redox state of the zinc ion and nitrogen, oxygen, and sulfur ligands from the side chains of histidine, glutamate/aspartate, and cysteine, respectively. By permutation of the ligands in this set, the functional potential of the zinc ion has been fully explored. Different coordination environments modulate the chemical characteristics of the zinc ion, control the kinetics of its binding, and allow it to be either metabolically active or inert. Insights into all these functions are building an understanding of why zinc is so critical for such a multitude of life processes.
Collapse
Affiliation(s)
- Wolfgang Maret
- Division of Human Nutrition, Departments of Preventive Medicine & Community Health and Anesthesiology, University of Texas Medical Branch, 700 Harborside Drive, Galveston, TX 77555, USA.
| |
Collapse
|