51
|
Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat Struct Mol Biol 2020; 27:1125-1133. [PMID: 32989305 DOI: 10.1038/s41594-020-0505-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
The amyloid cascade hypothesis, according to which the self-assembly of amyloid-β peptide (Aβ) is a causative process in Alzheimer's disease, has driven many therapeutic efforts for the past 20 years. Failures of clinical trials investigating Aβ-targeted therapies have been interpreted as evidence against this hypothesis, irrespective of the characteristics and mechanisms of action of the therapeutic agents, which are highly challenging to assess. Here, we combine kinetic analyses with quantitative binding measurements to address the mechanism of action of four clinical stage anti-Aβ antibodies, aducanumab, gantenerumab, bapineuzumab and solanezumab. We quantify the influence of these antibodies on the aggregation kinetics and on the production of oligomeric aggregates and link these effects to the affinity and stoichiometry of each antibody for monomeric and fibrillar forms of Aβ. Our results reveal that, uniquely among these four antibodies, aducanumab dramatically reduces the flux of Aβ oligomers.
Collapse
|
52
|
Investigating the effect of sugar-terminated nanoparticles on amyloid fibrillogenesis of β-lactoglobulin. Int J Biol Macromol 2020; 165:291-307. [PMID: 32961178 DOI: 10.1016/j.ijbiomac.2020.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
In vivo tissue deposition of fibrillar protein aggregates is the cause of several degenerative diseases. Evidence suggests that interfering with the pathology-associated amyloid fibrillogenesis by inhibitory molecules is envisaged as the primary therapeutic strategy. Amyloid fibril formation of proteins has been demonstrated to be influenced by nanoparticles/nanomaterials. As compared with their molecular form counterpart, this work examined the effect of sucrose-terminated nanoparticles on the in vitro amyloid fibrillogenesis and structural properties of β-lactoglobulin at pH 2.0 and 80 °C. ThT binding and electron microscopy results demonstrated that sucrose-terminated nanoparticles were able to suppress β-lactoglobulin fibrillogenesis in a concentration-dependent fashion. Importantly, sucrose-terminated nanoparticles showed better β-lactoglobulin fibril-inhibiting ability than sucrose molecules. ANS fluorescence and right-angle light scattering results showed reduced solvent exposure and decreased aggregation, respectively, in the β-lactoglobulin samples upon treatment with sucrose-terminated nanoparticles. Moreover, fluorescence quenching analyses revealed that the static quenching mechanism and formation of a non-fluorescent fluorophore-nanoparticle complex are involved in the nanoparticle-β-lactoglobulin interaction. We believe that the results from this study may suggest that the nanoparticle form of biocompatible sugar-related osmolytes may serve as effective inhibiting/suppressing agents toward protein fibrillogenesis.
Collapse
|
53
|
Alimohammadi E, Khedri M, Miri Jahromi A, Maleki R, Rezaian M. Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson's Disease: A Molecular Dynamics Study. Int J Nanomedicine 2020; 15:6887-6903. [PMID: 32982240 PMCID: PMC7509323 DOI: 10.2147/ijn.s265140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The study of abnormal aggregation of proteins in different tissues of the body has recently earned great attention from researchers in various fields of science. Concerning neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to Parkinson's disease, a progressively severe neurodegenerative disorder. The most prominent features of this disease are the degeneration of neurons in the substantia nigra and accumulation of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. Dopamine replacement therapies and other medications have reduced motor impairment and had positive consequences on patients' quality of life. However, if these medications are stopped, symptoms of the disease will recur even more severely. Therefore, the improvement of therapies targeting more basic mechanisms like prevention of amyloid formation seems to be critical. It has been shown that the interactions between monolayers like graphene and amyloids could prevent their fibrillation. METHODS For the first time, the impact of four types of last-generation graphene-based nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this study by using molecular dynamics simulation tools. RESULTS Although all monolayers were shown to prevent amyloid fibrillation, nitrogen-doped graphene (N-Graphene) caused the most instability in the secondary structure of α-synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to present the highest absolute value of interaction energy, the lowest contact level of amyloid particles, the highest number of hydrogen bonds between water and amyloid molecules, the highest instability caused in α-synuclein particles, and the most significant decrease in the compactness of α-synuclein protein. DISCUSSION Ultimately, it was concluded that N-Graphene could be the most effective monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran1591634311, Iran
| | - Ahmad Miri Jahromi
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran1591634311, Iran
| | - Reza Maleki
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Milad Rezaian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran19839-63113, Iran
| |
Collapse
|
54
|
Shabbir S, Muslim M, Muthu SA, Pissurlenkar RRS, Fatima S, Ali A, Ahmad A, Ahmad M, Ahmad B. The cocrystal of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methyl) benzonitrile with 5-hydroxy isophthalic acid prevents protofibril formation of serum albumin. J Biomol Struct Dyn 2020; 40:538-548. [PMID: 32876543 DOI: 10.1080/07391102.2020.1815585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The formation of amyloid-like fibrils is a central problem in biophysical chemistry and medicine. Fibril formation and their deposition in various tissues and organs are associated with many human diseases. Searching for molecules able to prevent the formation of fibrils is, therefore, necessary. In this work, we examined the potential of a cocrystal (SS3) of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methy) benzonitrile with 5-hydroxy isophthalic acid, to prevent fibrillation of human serum albumin. We found that the cocrystal strongly bound to human serum albumin (HSA) with association constant (Ka) of 5.8 ± 0.7 × 105 M-1. The SS3 binding was found to cause small alterations in both secondary and tertiary structure of the protein. Transmission electron microscopy showed that the cocrystal completely prevented the formation of worm-like protofibrils by HSA at SS3/HSA molar ratio of 1:1. The molecule was found to prevent the aggregation in a concentration dependent manner. It was also observed that most of protein in the presence of SS3 remained in soluble state and the secondary structure contained native-like α-helical structure. Therefore, we conclude that the cocrystal effectively prevented conversion of HSA into worm-like protofibril. These finding suggest that combination of molecules in the form of cocrystal or other stable combination could pave a way for the development of drugs against amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadiya Shabbir
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Mohd Muslim
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shivani A Muthu
- Protein Assembly Lab, JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Raghuvir R S Pissurlenkar
- (Bio) Molecular Simulations Group, Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, India
| | - Shaista Fatima
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Arif Ali
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Aiman Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Basir Ahmad
- Protein Assembly Lab, JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
55
|
Roy R, Pradhan K, Khan J, Das G, Mukherjee N, Das D, Ghosh S. Human Serum Albumin-Inspired Glycopeptide-Based Multifunctional Inhibitor of Amyloid-β Toxicity. ACS OMEGA 2020; 5:18628-18641. [PMID: 32775865 PMCID: PMC7407538 DOI: 10.1021/acsomega.0c01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 05/07/2023]
Abstract
In Alzheimer's disease (AD), insoluble Aβ42 peptide fragments self-aggregate and form oligomers and fibrils in the brain, causing neurotoxicity. Further, the presence of redox-active metal ions such as Cu2+ enhances the aggregation process through chelation with these Aβ42 aggregates as well as generation of Aβ42-mediated reactive oxygen species (ROS). Herein, we have adopted a bioinspired strategy to design and develop a multifunctional glycopeptide hybrid molecule (Glupep), which can serve as a potential AD therapeutic. This molecule consists of a natural metal-chelating tetrapeptide motif of human serum albumin (HSA), a β-sheet breaker peptide, and a sugar moiety for better bioavailability. We performed different biophysical and docking experiments, which revealed that Glupep not only associates with Aβ42 but also prevents its self-aggregation to form toxic oligomers and fibrils. Moreover, Glupep was also shown to sequester out Cu2+ from the Aβ-Cu2+ complex, reducing the ROS formation and toxicity. Besides, this study also revealed that Glupep could protect PC12-derived neurons from Aβ-Cu2+-mediated toxicity by reducing intracellular ROS generation and stabilizing the mitochondrial membrane potential. All these exciting features show Glupep to be a potent inhibitor of Aβ42-mediated multifaceted toxicity and a prospective therapeutic lead for AD.
Collapse
Affiliation(s)
- Rajsekhar Roy
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Krishnangsu Pradhan
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Juhee Khan
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Gaurav Das
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Nabanita Mukherjee
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Durba Das
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Surajit Ghosh
- Organic
and Medicinal Chemistry and Structural Biology and Bioinformatics
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
56
|
Townsend DJ, Mala B, Hughes E, Hussain R, Siligardi G, Fullwood NJ, Middleton DA. Circular Dichroism Spectroscopy Identifies the β-Adrenoceptor Agonist Salbutamol As a Direct Inhibitor of Tau Filament Formation in Vitro. ACS Chem Neurosci 2020; 11:2104-2116. [PMID: 32520518 DOI: 10.1021/acschemneuro.0c00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Potential drug treatments for Alzheimer's disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilization and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 screened compounds. Subsequently, we tested chemically similar phenolamine drugs from the β-adrenergic receptor agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 h; however, it has little effect on the structural transition of tau into β-sheet structures over 24 h. Salbutamol also reduces the yield and rate of filament formation and additionally inhibits tau's structural change into β-sheet-rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood-brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for the in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Barbora Mala
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Giuliano Siligardi
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Nigel J. Fullwood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
57
|
Cox SJ, Lam B, Prasad A, Marietta HA, Stander NV, Joel JG, Sahoo BR, Guo F, Stoddard AK, Ivanova MI, Ramamoorthy A. High-Throughput Screening at the Membrane Interface Reveals Inhibitors of Amyloid-β. Biochemistry 2020; 59:2249-2258. [DOI: 10.1021/acs.biochem.0c00328] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah J. Cox
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian Lam
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ajay Prasad
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah A. Marietta
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas V. Stander
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph G. Joel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bikash R. Sahoo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fucheng Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrea K. Stoddard
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I. Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
58
|
Lin D, Lei J, Li S, Zhou X, Wei G, Yang X. Investigation of the Dissociation Mechanism of Single-Walled Carbon Nanotube on Mature Amyloid-β Fibrils at Single Nanotube Level. J Phys Chem B 2020; 124:3459-3468. [PMID: 32283926 DOI: 10.1021/acs.jpcb.0c00916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amyloid fibrils originating from the fibrillogenesis of misfolded amyloid proteins are associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. Carbon nanotubes have been extensively applied in our life and industry due to their unique chemical and physical properties. Nonetheless, the details between carbon nanotubes and mature amyloid fibrils remain elusive. In this study, we explored the interplay between single-walled carbon nanotubes (SWCNTs) and preformed amyloid-β (Aβ) fibrils by atomic force microscopy at the single SWCNT level, together with ThT fluorescence, cellular viability assays, infrared spectroscopy, and molecular dynamics (MD) simulations. The results demonstrated that SWCNTs could partially destroy the preformed Aβ fibrils and form the Aβ-surrounded-SWCNTs conjugates, as well as reduce the β-sheet structures. Peak force quantitative nanomechanical measurements revealed that the conjugates have lower Young's modulus than fibrils. Furthermore, our MD simulation demonstrated that the dissociation ability was dependent on the binding sites of Aβ fibrils. Overall, this study provides an insight into the dissociation mechanism between SWCNT and Aβ fibrils, which could be beneficial for the study of bionanomaterials and the development of other potential drug candidates for amyloidosis.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Jiangtao Lei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China.,Institute of Space Science and Technology, Nanchang University, Nanchang, Jiangxi Province 330031, China
| | - Shujie Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, China.,Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Gaunghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xinju Yang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
59
|
Armiento V, Spanopoulou A, Kapurniotu A. Peptide-Based Molecular Strategies To Interfere with Protein Misfolding, Aggregation, and Cell Degeneration. Angew Chem Int Ed Engl 2020; 59:3372-3384. [PMID: 31529602 PMCID: PMC7064928 DOI: 10.1002/anie.201906908] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/31/2022]
Abstract
Protein misfolding into amyloid fibrils is linked to more than 40 as yet incurable cell- and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. So far, however, only one of the numerous anti-amyloid molecules has reached patients. This Minireview gives an overview of molecular strategies and peptide chemistry "tools" to design, develop, and discover peptide-based molecules as anti-amyloid drug candidates. We focus on two major inhibitor rational design strategies: 1) the oldest and most common strategy, based on molecular recognition elements of amyloid self-assembly, and 2) a more recent approach, based on cross-amyloid interactions. We discuss why peptide-based amyloid inhibitors, in particular their advanced generations, can be promising leads or candidates for anti-amyloid drugs as well as valuable tools for deciphering amyloid-mediated cell damage and its link to disease pathogenesis.
Collapse
Affiliation(s)
- Valentina Armiento
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität MünchenEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Anna Spanopoulou
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität MünchenEmil-Erlenmeyer-Forum 585354FreisingGermany
- Current address: Coriolis Pharma Research GmbHFraunhoferstrasse 18B82152PlaneggGermany
| | - Aphrodite Kapurniotu
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität MünchenEmil-Erlenmeyer-Forum 585354FreisingGermany
| |
Collapse
|
60
|
Yang F, Zhang W, Jiang Y, Yin F, Han W, Li Z. Targeting the Amyloid-β Fibril Surface with a Constrained Helical Peptide Inhibitor. Biochemistry 2020; 59:290-296. [PMID: 31702899 DOI: 10.1021/acs.biochem.9b00800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-β (Aβ) oligomers are well-known toxic molecular species associated with Alzheimer's disease. Recent discoveries of the ability of amyloid fibril surfaces to convert soluble proteins into toxic oligomers suggested that these surfaces could serve as therapeutic targets for intervention. We have shown previously that a short helical peptide could be a key structural motif that can specifically recognize the K16-E22 region of the Aβ40 fibril surface with an affinity at the level of several micromolar. Here, we demonstrate that in-tether chiral center-induced helical stabilized peptides could also recognize the fibril surfaces, effectively inhibiting the surface-mediated oligomerization of Aβ40. Moreover, through extensive computational sampling, we observed two distinct ways in which the peptide inhibitors recognize the fibril surface. Apart from a binding mode that, in accord with the original design, involves hydrophobic side chains at the binding interface, we observed much more frequently another binding mode in which the hydrophobic staple interacts directly with the fibril surface. The affinity of the peptides for the fibril surface could be adjusted by tuning the hydrophobicity of the staple. The best candidate investigated here exhibits a submicromolar affinity (∼0.75 μM). Collectively, this work opens an avenue for the rational design of candidate drugs with stapled peptides for amyloid-related disease.
Collapse
Affiliation(s)
- Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China
| | - Wan Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China
| | - Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China.,Shenzhen Bay Laboratory , Shenzhen 518055 , China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China.,Shenzhen Bay Laboratory , Shenzhen 518055 , China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China.,Shenzhen Bay Laboratory , Shenzhen 518055 , China
| |
Collapse
|
61
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
62
|
Armiento V, Spanopoulou A, Kapurniotu A. Peptid‐basierte molekulare Strategien zum Einsatz bei Proteinfehlfaltung, Proteinaggregation und Zelldegeneration. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Valentina Armiento
- Fachgebiet PeptidbiochemieTUM School of Life SciencesTechnische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Anna Spanopoulou
- Fachgebiet PeptidbiochemieTUM School of Life SciencesTechnische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
- Aktuelle Adresse: Coriolis Pharma Research GmbH Fraunhoferstraße 18B 82152 Planegg Deutschland
| | - Aphrodite Kapurniotu
- Fachgebiet PeptidbiochemieTUM School of Life SciencesTechnische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| |
Collapse
|
63
|
Wawer J, Kaczkowska E, Karczewski J, Olszewski M, Augustin-Nowacka D, Krakowiak J. Amyloid fibril formation in the presence of water structure-affecting solutes. Biophys Chem 2019; 254:106265. [PMID: 31669866 DOI: 10.1016/j.bpc.2019.106265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
The impact of the differently hydrated non-electrolytes (protein structure destabilizers) on the fibrillation of hen egg white lysozyme (HEWL) was investigated. Two isomeric urea derivatives i.e. butylurea (BU) and N,N,N',N'-tetramethylurea (TMU) were chosen as a tested compounds. The obtained results show that butylurea exerts greater impact on HEWL and its fibrillation than tetramethylurea. Both substances decrease the time of induction of the fibrillation (lag time) but only BU increases the efficiency of amyloidogenesis. For the systems with equivalent reduction of the HEWL stability (250mM BU and 500mM TMU) the not-equivalent increase of the protein fibrillation was recorded (higher for BU). This fact suggests that specific interactions with protein, possibly water mediated, are responsible for the action of the tested substances.
Collapse
Affiliation(s)
- Jarosław Wawer
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.
| | - Emilia Kaczkowska
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Jakub Karczewski
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Marcin Olszewski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | | | - Joanna Krakowiak
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
64
|
Rational design of linear tripeptides against the aggregation of human mutant SOD1 protein causing amyotrophic lateral sclerosis. J Neurol Sci 2019; 405:116425. [PMID: 31422280 DOI: 10.1016/j.jns.2019.116425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Formation of protein aggregation is considered a hallmark feature of various neurological diseases. Amyotrophic lateral sclerosis is one such devastating neurodegenerative disorder characterized by mutation in Cu/Zn superoxide dismutase protein (SOD1). In our study, we contemplated the most aggregated and pathogenic mutant A4V in a viewpoint of finding a therapeutic regime by inhibiting the formation of the aggregates with the aid of tripeptides since new perspectives in the field of drug design in the current era are being focused on peptide-based drugs. Reports from the experimental study have stipulated that the SOD1 derived peptide, "LSGDHCIIGRTLVVHEKADD" was found to have the inhibitory activity against aggregated SOD1 protein. Moreover, it was determined that the hexapeptide, "LSGDHC" was the key factor in inhibiting the aggregates of SOD1. Accordingly, we utilized the computerized algorithms and programs on determining the binding efficiency and inhibitory activity of hexapeptide on mutant SOD1. Following that, we incorporated a cutting-edge methodology with the use of molecular docking, affinity predictions, alanine scanning, steered molecular dynamics (SMD) and discrete molecular dynamics (DMD) in designing the de novo tripeptides, which could act against the aggregated mutant SOD1 protein. Upon examining the results from the various conformational studies, we identified that CGH had an enhanced binding affinity and inhibitory activity against the aggregated mutant SOD1 protein than other tripeptides and hexapeptide. Thus, our study could be a lead for state-of-the-art design in peptide-based drugs for doctoring the cureless ALS disorder.
Collapse
|
65
|
How SC, Hsin A, Chen GY, Hsu WT, Yang SM, Chou WL, Chou SH, Wang SSS. Exploring the influence of brilliant blue G on amyloid fibril formation of lysozyme. Int J Biol Macromol 2019; 138:37-48. [PMID: 31295491 DOI: 10.1016/j.ijbiomac.2019.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022]
Abstract
Evidence suggests that amyloid fibril mitigation/inhibition is considered a promising approach toward treating amyloid diseases. In this work, we first examined how amyloid fibrillogenesis of lysozyme was affected by BBG, a safe triphenylmethane compound with nice blood-brain-barrier-permeability, and found that shorter fibrillar species were formed in the lysozyme samples treated with BBG. Next, alterations in the features including the secondary as well as tertiary structure, extent of aggregation, and molecular distribution of lysozyme triggered by the addition of BBG were examined by various spectroscopic techniques, right-angle light scattering, dynamic light scattering, and SDS-PAGE. In addition, we have investigated how BBG affected the lysozyme fibril-induced cytotoxicity in SH-SY5Y cells. We found that a large quantity of shorter fibrillar species and more lysozyme monomers were present in the samples treated with BBG. Also, the addition of BBG rescued SH-SY5Y cells from cell death induced by amyloid fibrils of lysozyme. Finally, information about the binding sites and interacting forces involved in the BBG-lysozyme interaction was further explored using synchronous fluorescence and molecular docking approaches. Molecular docking results revealed that, apart from the hydrophobic interaction(s), hydrogen bonding, electrostatic interactions, and van der Waal forces may also be involved in the binding interaction.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ai Hsin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Yu Chen
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City, Taiwan
| | - Wei-Tse Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Ming Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Lung Chou
- Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha Lu, Taichung City 433, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City, Taiwan.
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
66
|
Sorokina SA, Stroylova YY, Tishina SA, Shifrina ZB, Muronetz VI. Promising anti-amyloid behavior of cationic pyridylphenylene dendrimers: Role of structural features and mechanism of action. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
67
|
Jiang Y, Jiang X, Shi X, Yang F, Cao Y, Qin X, Hou Z, Xie M, Liu N, Fang Q, Yin F, Han W, Li Z. α-Helical Motif as Inhibitors of Toxic Amyloid-β Oligomer Generation via Highly Specific Recognition of Amyloid Surface. iScience 2019; 17:87-100. [PMID: 31255986 PMCID: PMC6606958 DOI: 10.1016/j.isci.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/10/2019] [Accepted: 06/12/2019] [Indexed: 11/15/2022] Open
Abstract
Amyloid fibril surfaces can convert soluble proteins into toxic oligomers and are attractive targets for intervention of protein aggregation diseases. Thus far, molecules identified with inhibitory activity are either large proteins or flat cyclic compounds lacking in specificity. The main design difficulty is flatness of amyloid surfaces and the lack of knowledge on binding interfaces. Here, we demonstrate, for the first time, a rational design of alpha-helical peptide inhibitors targeting the amyloid-beta 40 (Aβ40) fibril surfaces, based on our in silico finding that a helical fragment of Aβ40 interacts in a unique way with side-chain arrays on the fibril surface. We strengthen the fragment's binding capability through mutations and helicity enhancement with our Terminal Aspartic acid strategy. The resulting inhibitor shows micromolar affinity for the fibril surface, effectively impedes the surface-mediated oligomerization of Aβ40, and mitigates its cytotoxicity. This work opens up an avenue to designing aggregation modulators for amyloid diseases.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xuehan Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yang Cao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Mingsheng Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Qi Fang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
68
|
Mehrazma B, Rauk A. Exploring Amyloid-β Dimer Structure Using Molecular Dynamics Simulations. J Phys Chem A 2019; 123:4658-4670. [PMID: 31082235 DOI: 10.1021/acs.jpca.8b11251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides in the brains of people afflicted by the disease. The exact pathway to this catastrophic event is unknown. In this work, a total of 9.5 μs molecular dynamics simulations have been performed to investigate the structure and dynamics of the smallest form of toxic Aβ oligomers, i.e., the Aβ dimers. This study suggests that specific hydrophobic regions are vital in the aggregation process. Different possible structures for Aβ dimers are reported along with their relative binding affinity. These data may be used to design better Aβ-aggregation inhibitors. The diversity of the dimer structures suggests several aggregation pathways.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry , University of Calgary , Calgary AB , Canada T2N 1N4
| | - Arvi Rauk
- Department of Chemistry , University of Calgary , Calgary AB , Canada T2N 1N4
| |
Collapse
|
69
|
Lu J, Cao Q, Wang C, Zheng J, Luo F, Xie J, Li Y, Ma X, He L, Eisenberg D, Nowick J, Jiang L, Li D. Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation. Front Mol Neurosci 2019; 12:54. [PMID: 30886570 PMCID: PMC6409328 DOI: 10.3389/fnmol.2019.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Many human neurodegenerative diseases are associated with amyloid fibril formation. Inhibition of amyloid formation is of importance for therapeutics of the related diseases. However, the development of selective potent amyloid inhibitors remains challenging. Here based on the structures of amyloid β (Aβ) fibrils and their amyloid-forming segments, we designed a series of peptide inhibitors using RosettaDesign. We further utilized a chemical scaffold to constrain the designed peptides into β-strand conformation, which significantly improves the potency of the inhibitors against Aβ aggregation and toxicity. Furthermore, we show that by targeting different Aβ segments, the designed peptide inhibitors can selectively recognize different species of Aβ. Our study developed an approach that combines the structure-based rational design with chemical modification for the development of amyloid inhibitors, which could be applied to the development of therapeutics for different amyloid-related diseases.
Collapse
Affiliation(s)
- Jinxia Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Cao
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zheng
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Feng Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yichen Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| | - David Eisenberg
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - James Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Lin Jiang
- Department of Neurology, Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
70
|
Puscalau-Girtu I, Scheller JS, Claus S, Fändrich M. Cell assay for the identification of amyloid inhibitors in systemic AA amyloidosis. Amyloid 2019; 26:24-33. [PMID: 30739503 DOI: 10.1080/13506129.2019.1568978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic AA amyloidosis is still, up to this day, a life-threatening complication of chronic inflammatory diseases. Despite the success of anti-inflammatory treatment, the prognosis of some AA patients is still poor, which is why therapies directed at the amyloidogenic pathway in AA amyloidosis are being sought after. The cell culture model of amyloid formation from serum amyloid A1 (SAA1) protein remodels crucial features of AA amyloid deposit formation in vivo. We here demonstrate how the cell model can be utilized for the identification of compounds with amyloid inhibitory activity. Out of five compounds previously reported to inhibit self-assembly of various amyloidogenic proteins, we found that epigallocatechin gallate (EGCG) inhibited the formation of SAA1-derived fibrils in cell culture. From a series of compounds targeting the protein quality control machinery, the autophagy inhibitor wortmannin reduced amyloid formation, while the other tested compounds did not lead to a substantial reduction of the amyloid load. These data suggest that amyloid formation can be targeted not only via the protein self-assembly pathway directly, but also by treatment with compounds that impact the cellular protein machinery.
Collapse
Affiliation(s)
| | | | - Stephanie Claus
- a Institute of Protein Biochemistry, Ulm University , Ulm , Germany
| | - Marcus Fändrich
- a Institute of Protein Biochemistry, Ulm University , Ulm , Germany
| |
Collapse
|
71
|
Wang J, Zhang Z, Zhang H, Li C, Chen M, Liu L, Dong M. Enhanced Photoresponsive Graphene Oxide-Modified g-C 3N 4 for Disassembly of Amyloid β Fibrils. ACS APPLIED MATERIALS & INTERFACES 2019; 11:96-103. [PMID: 30532948 DOI: 10.1021/acsami.8b10343] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Protein misfolding and abnormal self-assembly lead to the aggregates of oligomers, fibrils, or senior amyloid β (Aβ) plaques, which are associated with the pathogenesis of many neurodegenerative diseases. Progressive cerebral accumulation of Aβ protein was widely proposed to explain the cause of Alzheimer's disease, for which one promising direction of the preclinical study is to convert the preformed β-sheet structure of Aβ aggregates into innocent structures. However, the conversion is even harder than the modulation of the amyloidosis process. Herein, a graphene oxide/carbon nitride composite was developed as a good photocatalyst for irreversibly disassembling the Aβ aggregates of Aβ(33-42) under UV. Quartz crystal microbalance, circular dichroism spectrum, atomic force microscopy, fluorescent spectra, and mechanical property analysis were performed to analyze this photodegradation process from different aspects for fully understanding the mechanism, which may provide an important enlightenment for the relevant research in this field and neurodegenerative disease study.
Collapse
Affiliation(s)
- Jie Wang
- Institue for Advanced Materials, School of Material Science and Engineering , Jiangsu University , Zhenjiang 212013 , China
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus C , Denmark
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus C , Denmark
| | - Hongxing Zhang
- Institue for Advanced Materials, School of Material Science and Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Chenglong Li
- Institue for Advanced Materials, School of Material Science and Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus C , Denmark
| | - Lei Liu
- Institue for Advanced Materials, School of Material Science and Engineering , Jiangsu University , Zhenjiang 212013 , China
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus C , Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus C , Denmark
| |
Collapse
|
72
|
Todorova N, Yarovsky I. The Enigma of Amyloid Forming Proteins: Insights From Molecular Simulations. Aust J Chem 2019. [DOI: 10.1071/ch19059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular level insight into the interplay between protein sequence, structure, and conformational dynamics is crucial for the comprehensive understanding of protein folding, misfolding, and aggregation phenomena that are pertinent to the formation of amyloid fibrils implicated in several degenerative diseases. Computational modelling provides insight into protein behaviour at spatial and temporal resolution still largely outside the reach of experiments. Herein we present an account of our theoretical modelling research conducted in collaboration with several experimental groups where we explored the effects of local environment on the structure and aggregation propensity of several types of amyloidogenic peptides and proteins, including apolipoprotein C-II, insulin, amylin, and amyloid-β using a variety of computational approaches.
Collapse
|
73
|
Downey MA, Giammona MJ, Lang CA, Buratto SK, Singh A, Bowers MT. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:85-93. [PMID: 29713966 PMCID: PMC6258352 DOI: 10.1007/s13361-018-1975-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/25/2023]
Abstract
Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development. Graphical Abstract.
Collapse
Affiliation(s)
- Matthew A Downey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Maxwell J Giammona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Christian A Lang
- Acelot, Inc., 5385 Hollister Ave, Suite 111, Santa Barbara, CA, 93111, USA
| | - Steven K Buratto
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Ambuj Singh
- Acelot, Inc., 5385 Hollister Ave, Suite 111, Santa Barbara, CA, 93111, USA
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
74
|
Kotormán M, Varga A, Kasi PB, Nemcsók J. Inhibition of the formation of amyloid-like fibrils with spices, especially cloves. ACTA BIOLOGICA HUNGARICA 2018; 69:385-394. [PMID: 30587021 DOI: 10.1556/018.69.2018.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too - not only phenolic compounds - which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.
Collapse
Affiliation(s)
- Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Alexandra Varga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - János Nemcsók
- Department of Biology, Pedagogical Faculty, Selye János University, Bratislavská cesta 3322, SK-94501 Komarno, Slovak Republic
| |
Collapse
|
75
|
Inhibition of amyloid fibril formation in the variable domain of λ6 light chain mutant Wil caused by the interaction between its unfolded state and epigallocatechin-3-O-gallate. Biochim Biophys Acta Gen Subj 2018; 1862:2570-2578. [DOI: 10.1016/j.bbagen.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
|
76
|
Development and In Vitro Evaluation of Linear PEI-Shelled Heparin/Berberine Nanoparticles in Human Osteosarcoma U-2 OS Cells. Molecules 2018; 23:molecules23123122. [PMID: 30487471 PMCID: PMC6320921 DOI: 10.3390/molecules23123122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
Berberine (BBR), a natural isoquinoline alkaloid derived from Chinese herbs, exerts many biological effects, including antiviral, antimicrobial, antidiarrhea, anti-inflammatory, and antitumor effects. In this study, a novel berberine nanoparticle (NP) consisting of heparin (HP) and BBR with or without being shelled with linear polyethyleneimine (LPEI) was developed to enhance its antitumor activity on osteosarcoma U-2 OS cells. With varying ratios of HP to BBR, HP/BBR NPs had a size ranging from 218.4 ± 3.9 to 282.0 ± 5.1 nm and zeta potential from -35.7 ± 0.4 to -51.9 ± 1.8 mV. After shelling with LPEI, the resultant NPs (HP/BBR/LPEI) possessed a size ranging from 226.3 ± 3.0 to 405.7 ± 85.2 nm and zeta potential from -46.5 ± 0.3 to -35.6 ± 0.5 mV; the encapsulation rate of BBR was close to 80%. The release profiles of both NPs were revealed to be slower than that of BBR solution. Results also showed that BBR and its two derived NPs reduced the viability of U-2 OS cells, and BBR NPs increased the cellular uptake of BBR. Cells were arrested at the G₁ phase when treated individually with BBR and the two NPs (HP/BBR and HP/BBR/LPEI) and DNA condensation was induced. In addition, BBR and BBR NPs reduced the expression of mouse double minute 2 homolog (MDM2) but increased that of p53, and BBR NPs enhanced apoptotic effects. In short, heparin-based nanoparticles could be potential carriers for osteosarcoma treatment.
Collapse
|
77
|
The Anti-amyloid Compound DO1 Decreases Plaque Pathology and Neuroinflammation-Related Expression Changes in 5xFAD Transgenic Mice. Cell Chem Biol 2018; 26:109-120.e7. [PMID: 30472115 DOI: 10.1016/j.chembiol.2018.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022]
Abstract
Self-propagating amyloid-β (Aβ) aggregates or seeds possibly drive pathogenesis of Alzheimer's disease (AD). Small molecules targeting such structures might act therapeutically in vivo. Here, a fluorescence polarization assay was established that enables the detection of compound effects on both seeded and spontaneous Aβ42 aggregation. In a focused screen of anti-amyloid compounds, we identified Disperse Orange 1 (DO1) ([4-((4-nitrophenyl)diazenyl)-N-phenylaniline]), a small molecule that potently delays both seeded and non-seeded Aβ42 polymerization at substoichiometric concentrations. Mechanistic studies revealed that DO1 disrupts preformed fibrillar assemblies of synthetic Aβ42 peptides and decreases the seeding activity of Aβ aggregates from brain extracts of AD transgenic mice. DO1 also reduced the size and abundance of diffuse Aβ plaques and decreased neuroinflammation-related gene expression changes in brains of 5xFAD transgenic mice. Finally, improved nesting behavior was observed upon treatment with the compound. Together, our evidence supports targeting of self-propagating Aβ structures with small molecules as a valid therapeutic strategy.
Collapse
|
78
|
Mehrazma B, Opare S, Petoyan A, Rauk A. d-Amino Acid Pseudopeptides as Potential Amyloid-Beta Aggregation Inhibitors. Molecules 2018; 23:E2387. [PMID: 30231520 PMCID: PMC6225248 DOI: 10.3390/molecules23092387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
A causative factor for neurotoxicity associated with Alzheimer's disease is the aggregation of the amyloid-β (Aβ) peptide into soluble oligomers. Two all d-amino acid pseudo-peptides, SGB1 and SGD1, were designed to stop the aggregation. Molecular dynamics (MD) simulations have been carried out to study the interaction of the pseudo-peptides with both Aβ13⁻23 (the core recognition site of Aβ) and full-length Aβ1⁻42. Umbrella sampling MD calculations have been used to estimate the free energy of binding, ∆G, of these peptides to Aβ13⁻23. The highest ∆Gbinding is found for SGB1. Each of the pseudo-peptides was also docked to Aβ1⁻42 and subjected up to seven microseconds of all atom molecular dynamics simulations. The resulting structures lend insight into how the dynamics of Aβ1⁻42 are altered by complexation with the pseudo-peptides and confirmed that SGB1 may be a better candidate for developing into a drug to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Stanley Opare
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Anahit Petoyan
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Arvi Rauk
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
79
|
Orr AA, Shaykhalishahi H, Mirecka EA, Jonnalagadda SVR, Hoyer W, Tamamis P. Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins. Comput Chem Eng 2018; 116:322-332. [PMID: 30405276 PMCID: PMC6217933 DOI: 10.1016/j.compchemeng.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-wrapins are engineered binding proteins stabilizing the β-hairpin conformations of amyloidogenic proteins islet amyloid polypeptide (IAPP), amyloid-β, and α-synuclein, thus inhibiting their amyloid propensity. Here, we use computational and experimental methods to investigate the molecular recognition of IAPP by β-wrapins. We show that the multi-targeted, IAPP, amyloid-β, and α-synuclein, binding properties of β-wrapins originate mainly from optimized interactions between β-wrapin residues and sets of residues in the three amyloidogenic proteins with similar physicochemical properties. Our results suggest that IAPP is a comparatively promiscuous β-wrapin target, probably due to the low number of charged residues in the IAPP β-hairpin motif. The sub-micromolar affinity of β-wrapin HI18, specifically selected against IAPP, is achieved in part by salt-bridge formation between HI18 residue Glu10 and the IAPP N-terminal residue Lys1, both located in the flexible N-termini of the interacting proteins. Our findings provide insights towards developing novel protein-based single- or multi-targeted therapeutics.
Collapse
Affiliation(s)
- Asuka A. Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Hamed Shaykhalishahi
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
| | - Ewa A. Mirecka
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
| | - Sai Vamshi R. Jonnalagadda
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
- Institute of Structural Biochemistry (ICS-6), Research Centre Jülich, Jülich 52425, Germany
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
80
|
Akbarian M, Ghasemi Y, Uversky VN, Yousefi R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int J Pharm 2018; 547:450-468. [DOI: 10.1016/j.ijpharm.2018.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
81
|
Kokotidou C, Jonnalagadda SVR, Orr AA, Seoane-Blanco M, Apostolidou CP, van Raaij MJ, Kotzabasaki M, Chatzoudis A, Jakubowski JM, Mossou E, Forsyth VT, Mitchell EP, Bowler MW, Llamas-Saiz AL, Tamamis P, Mitraki A. A novel amyloid designable scaffold and potential inhibitor inspired by GAIIG of amyloid beta and the HIV-1 V3 loop. FEBS Lett 2018; 592:1777-1788. [PMID: 29772603 DOI: 10.1002/1873-3468.13096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
The GAIIG sequence, common to the amyloid beta peptide (residues 29-33) and to the HIV-1 gp120 (residues 24-28 in a typical V3 loop), self-assembles into amyloid fibrils, as suggested by theory and the experiments presented here. The longer YATGAIIGNII sequence from the V3 loop also self-assembles into amyloid fibrils, of which the first three and the last two residues are outside the amyloid GAIIG core. We postulate that this sequence, with suitably selected modifications at the flexible positions, can serve as a designable scaffold for novel amyloid-based materials. Moreover, we report the single crystal X-ray structure of the beta-breaker peptide GAIPIG at 1.05 Å resolution. The structural information provided in this study could serve as the basis for structure-based design of potential inhibitors of amyloid formation.
Collapse
Affiliation(s)
- Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece.,Institute of Electronic Structure and Laser (IESL), FORTH, Heraklion, Greece
| | | | - Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Mateo Seoane-Blanco
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CSIC), Madrid, Spain
| | - Chrysanthi Pinelopi Apostolidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece.,Institute of Electronic Structure and Laser (IESL), FORTH, Heraklion, Greece
| | - Mark J van Raaij
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CSIC), Madrid, Spain
| | - Marianna Kotzabasaki
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Apostolos Chatzoudis
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Joseph M Jakubowski
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Estelle Mossou
- Institut Laue Langevin, Grenoble Cedex 9, France.,Faculty of Natural Sciences/Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - V Trevor Forsyth
- Institut Laue Langevin, Grenoble Cedex 9, France.,Faculty of Natural Sciences/Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Edward P Mitchell
- Faculty of Natural Sciences/Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK.,European Synchrotron Radiation Facility, Grenoble Cedex 9, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble, France.,Unit for Virus Host Cell Interactions, University Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Antonio L Llamas-Saiz
- X-Ray Unit, RIAIDT, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece.,Institute of Electronic Structure and Laser (IESL), FORTH, Heraklion, Greece
| |
Collapse
|
82
|
Structure-activity relationships of β-hairpin mimics as modulators of amyloid β-peptide aggregation. Eur J Med Chem 2018; 154:280-293. [DOI: 10.1016/j.ejmech.2018.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
|
83
|
Investigation of amyloid formation inhibition of chemically and biogenically from Citrus aurantium L. blossoms and Rose damascena oils of gold nanoparticles: Toxicity evaluation in rat pheochromocytoma PC12 cells. Int J Biol Macromol 2018; 112:703-711. [DOI: 10.1016/j.ijbiomac.2018.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
|
84
|
Zhang SM, Liao Y, Neo TL, Lu Y, Liu DX, Vahlne A, Tam JP. Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein. Int J Biochem Cell Biol 2018; 101:103-112. [PMID: 29800727 PMCID: PMC7108413 DOI: 10.1016/j.biocel.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg’s 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection.
Collapse
Affiliation(s)
- Si Min Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tuan Ling Neo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yanning Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
85
|
Wang J, Liu L, Ge D, Zhang H, Feng Y, Zhang Y, Chen M, Dong M. Differential Modulating Effect of MoS 2 on Amyloid Peptide Assemblies. Chemistry 2018; 24:3397-3402. [PMID: 29210123 DOI: 10.1002/chem.201704593] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 11/11/2022]
Abstract
The abnormal fibrillogenesis of amyloid peptides such as amyloid fibril and senior amyloid plaques, is associated with the pathogenesis of many amyloid diseases. Hence, modulation of amyloid assemblies is related to the possible pathogenesis of some diseases. Some two-dimensional nanomaterials, that is, graphene oxide, tungsten disulfide, exhibit strong modulation effects on the amyloid fibrillogenesis. Herein, the modulation effect of molybdenum disulfide on two amyloid peptide assemblies based on the label-free techniques is presented, including quartz crystal microbalance (QCM), AFM, and CD spectroscopy. MoS2 presents different modulating effects on the assembly of amyloid-β peptide (33-42) [Aβ (33-42)] and amylin (20-29), mainly owing to the distinct affinity between amyloid peptides and MoS2 . This is to our knowledge the first report of MoS2 as a modulator for amyloid aggregation. It enriches the variety of 2D nanomodulators of amyloid fibrillogenesis and explains the mechanism for the self-assembly of amyloid peptides, and expands the applications of MoS2 in biology.
Collapse
Affiliation(s)
- Jie Wang
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Daohan Ge
- School of Mechanical Engineering, Micro/nano Science and Technology Center, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Hongxing Zhang
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Yonghai Feng
- Institute for Advanced Materials, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Yibang Zhang
- Zhang Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 212013 Xuefu Road No. 301, Zhenjiang city, Jinagsu Province, P.R. China
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
86
|
Bode DC, Stanyon HF, Hirani T, Baker MD, Nield J, Viles JH. Serum Albumin's Protective Inhibition of Amyloid-β Fiber Formation Is Suppressed by Cholesterol, Fatty Acids and Warfarin. J Mol Biol 2018; 430:919-934. [PMID: 29409811 DOI: 10.1016/j.jmb.2018.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
Abstract
Central to Alzheimer's disease (AD) pathology is the assembly of monomeric amyloid-β peptide (Aβ) into oligomers and fibers. The most abundant protein in the blood plasma and cerebrospinal fluid is human serum albumin. Albumin can bind to Aβ and is capable of inhibiting the fibrillization of Aβ at physiological (μM) concentrations. The ability of albumin to bind Aβ has recently been exploited in a phase II clinical trial, which showed a reduction in cognitive decline in AD patients undergoing albumin-plasma exchange. Here we explore the equilibrium between Aβ monomer, oligomer and fiber in the presence of albumin. Using transmission electron microscopy and thioflavin-T fluorescent dye, we have shown that albumin traps Aβ as oligomers, 9 nm in diameter. We show that albumin-trapped Aβ oligomeric assemblies are not capable of forming ion channels, which suggests a mechanism by which albumin is protective in Aβ-exposed neuronal cells. In vivo albumin binds a variety of endogenous and therapeutic exogenous hydrophobic molecules, including cholesterol, fatty acids and warfarin. We show that these molecules bind to albumin and suppress its ability to inhibit Aβ fiber formation. The interplay between Aβ, albumin and endogenous hydrophobic molecules impacts Aβ assembly; thus, changes in cholesterol and fatty acid levels in vivo may impact Aβ fibrillization, by altering the capacity of albumin to bind Aβ. These observations are particularly intriguing given that high cholesterol or fatty acid diets are well-established risk factors for late-onset AD.
Collapse
Affiliation(s)
- David C Bode
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - Helen F Stanyon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - Trisha Hirani
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - Mark D Baker
- Blizard Institute, Queen Mary University of London, Whitechapel E1 2AT, UK
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK.
| |
Collapse
|
87
|
Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-017-1687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
88
|
Nusrat S, Zaman M, Masroor A, Siddqi MK, Zaidi N, Neelofar K, Abdelhameed AS, Khan RH. Deciphering the enhanced inhibitory, disaggregating and cytoprotective potential of promethazine towards amyloid fibrillation. Int J Biol Macromol 2018; 106:851-863. [DOI: 10.1016/j.ijbiomac.2017.08.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/12/2017] [Accepted: 08/13/2017] [Indexed: 11/26/2022]
|
89
|
Ahsan N, Siddique IA, Gupta S, Surolia A. A routinely used protein staining dye acts as an inhibitor of wild type and mutant alpha-synuclein aggregation and modulator of neurotoxicity. Eur J Med Chem 2018; 143:1174-1184. [DOI: 10.1016/j.ejmech.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
90
|
Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23974-23987. [PMID: 30214656 PMCID: PMC6130836 DOI: 10.1021/acs.jpcc.7b06164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Tatu Rojalin
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Artturi Koivuniemi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Sebastian Wachsmann Hogiu
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Intellectual Ventures/Global Good, Bellevue, WA, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
91
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
92
|
Young LJ, Kaminski Schierle GS, Kaminski CF. Imaging Aβ(1-42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys Chem Chem Phys 2017; 19:27987-27996. [PMID: 29026905 PMCID: PMC7612976 DOI: 10.1039/c7cp03412a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The major hallmark of Alzheimer's disease is the deposition of plaques of amyloid fibrils formed from amyloid-β (Aβ) peptides. Kinetic studies have contributed significantly towards a mechanistic understanding of amyloid fibril self-assembly, however dynamic features of the aggregation process cannot be captured using ensemble methods. Here we present an assay for imaging Aβ42 aggregation dynamics at the single fibril level, allowing for the quantitative extraction of concentration and temperature dependent kinetic parameters. From direct observation of elongation using TIRF and super-resolution optical microscopy, we find that Aβ42 fibril growth is strongly polarized, with fast and slow growing ends arising from different elongation rates, but also from a growth incompetent state, which dominates the process at the slow growing end. Our findings reveal the surprising complexity of the Aβ42 fibril elongation reaction at the microscopic level.
Collapse
Affiliation(s)
- Laurence J Young
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, UK.
| | | | | |
Collapse
|
93
|
Sudhakar S, Santhosh PB, Mani E. Dual Role of Gold Nanorods: Inhibition and Dissolution of Aβ Fibrils Induced by Near IR Laser. ACS Chem Neurosci 2017; 8:2325-2334. [PMID: 28737894 DOI: 10.1021/acschemneuro.7b00238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Extracellular plaques of amyloid beta (Aβ) fibrils and neurofibrillary tangles are known to be associated with neurological diseases such as Alzheimer's disease. Studies have shown that spherical nanoparticles inhibit the formation of Aβ fibrils by intercepting the nucleation and growth pathways of fibrillation. In this report, gold nanorods (AuNRs) are used to inhibit the formation of Aβ fibrils and the shape-dependent plasmonic properties of AuNRs are exploited to faciliate faster dissolution of mature Aβ fibrils. Negatively charged, lipid (DMPC) stabilized AuNRs inhibit the formation of fibrils due to selective binding to the positevly charged amyloidogenic sequence of Aβ protein. The kinetics of inhibition is characterized by thioflavin T (ThT) fluorescence, transmission electronic microscopy (TEM), atomic force microscopy (AFM), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). An increase in the aspect ratio of DMPC-AuNR in the range of 2.2-4.2 decreased the fibrils content proportionally. Further, the fibrils content is decreased by increasing the concentration of AuNR for all aspect ratios. As AuNR absorb near-infrared (NIR) light and creates a localized hotspot, NIR laser (800 nm) is applied for 2 min to facilitate the thermal dissolution of mature Aβ fibrils. Majority of Aβ fibrils are disintegrated into smaller fragments after exposure to NIR in the presence of AuNR. Thus, the DMPC-AuNRs exhibit a dual effect: inhibition of fibrillation and NIR laser facilitated dissolution of mature amyloid fibrils. This study essentially provides guidelines to design efficient nanoparticle-based therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Swathi Sudhakar
- Polymer Engineering and Colloid Science
Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600 036, India
| | - Poornima Budime Santhosh
- Polymer Engineering and Colloid Science
Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600 036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science
Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600 036, India
| |
Collapse
|
94
|
Burdukiewicz M, Sobczyk P, Rödiger S, Duda-Madej A, Mackiewicz P, Kotulska M. Amyloidogenic motifs revealed by n-gram analysis. Sci Rep 2017; 7:12961. [PMID: 29021608 PMCID: PMC5636826 DOI: 10.1038/s41598-017-13210-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022] Open
Abstract
Amyloids are proteins associated with several clinical disorders, including Alzheimer's, and Creutzfeldt-Jakob's. Despite their diversity, all amyloid proteins can undergo aggregation initiated by short segments called hot spots. To find the patterns defining the hot spots, we trained predictors of amyloidogenicity, using n-grams and random forest classifiers. Since the amyloidogenicity may not depend on the exact sequence of amino acids but on their more general properties, we tested 524,284 reduced amino acid alphabets of different lengths (three to six letters) to find the alphabet providing the best performance in cross-validation. The predictor based on this alphabet, called AmyloGram, was benchmarked against the most popular tools for the detection of amyloid peptides using an external data set and obtained the highest values of performance measures (AUC: 0.90, MCC: 0.63). Our results showed sequential patterns in the amyloids which are strongly correlated with hydrophobicity, a tendency to form β-sheets, and lower flexibility of amino acid residues. Among the most informative n-grams of AmyloGram we identified 15 that were previously confirmed experimentally. AmyloGram is available as the web-server: http://smorfland.uni.wroc.pl/shiny/AmyloGram/ and as the R package AmyloGram. R scripts and data used to produce the results of this manuscript are available at http://github.com/michbur/AmyloGramAnalysis .
Collapse
Affiliation(s)
| | - Piotr Sobczyk
- Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wrocław, Poland
| | - Stefan Rödiger
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anna Duda-Madej
- Department of Microbiology, Wrocław Medical University, Wrocław, Poland
| | | | - Małgorzata Kotulska
- Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
| |
Collapse
|
95
|
Ghaffari Sharaf M, Cetinel S, Semenchenko V, Damji KF, Unsworth LD, Montemagno C. Peptides for targeting βB2-crystallin fibrils. Exp Eye Res 2017; 165:109-117. [PMID: 28986145 DOI: 10.1016/j.exer.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 01/24/2023]
Abstract
Crystallins are a major family of proteins located within the lens of the eye. Cataracts are thought to be due to the formation of insoluble fibrillar aggregates, which are largely composed of proteins from the crystallin family. Today the only cataract treatment that exists is surgery and this can be difficult to access for individuals in the developing world. Development of novel pharmacotherapeutic approaches for the treatment of cataract rests on the specific targeting of these structures. βB2-crystallin, a member of β-crystallin family, is a large component of the crystallin proteins within the lens, and as such was used to form model fibrils in vitro. Peptides were identified, using phage display techniques, that bound to these fibrils with high affinity. Fibrillation of recombinantly expressed human βB2-crystallin was performed in 10% (v/v) trifluoroethanol (TFE) solution (pH 2.0) at various temperatures, and its amyloid-like structure was confirmed using Thioflavin-T (ThT) assay, transmission electron microscopy (TEM), and X-ray fiber diffraction (XRFD) analysis. Affinity of identified phage-displayed peptides were analyzed using enzyme-linked immunosorbent assay (ELISA). Specific binding of a cyclic peptide (CKQFKDTTC) showed the highest affinity, which was confirmed using a competitive inhibition assay.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Ingenuity Lab, University of Alberta, Edmonton, AB, Canada
| | - Sibel Cetinel
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Ingenuity Lab, University of Alberta, Edmonton, AB, Canada
| | - Valentyna Semenchenko
- National Institute of Nanotechnology, National Research Council, Edmonton, AB, Canada
| | - Karim F Damji
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; National Institute of Nanotechnology, National Research Council, Edmonton, AB, Canada.
| | - Carlo Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; National Institute of Nanotechnology, National Research Council, Edmonton, AB, Canada; Ingenuity Lab, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
96
|
Yamamoto K, Oyaizu M, Takahashi T, Watanabe Y, Shoji O. Inhibiting Aggregation of β-Amyloid by Folded and Unfolded Forms of Fimbrial Protein of Gram-Negative Bacteria. ChemistrySelect 2017. [DOI: 10.1002/slct.201700658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keisuke Yamamoto
- Department of Chemistry, Graduate School of Science; Research Center for Materials Science; Nagoya University, Furo-cho, Chikusa; Nagoya 464-8602 Japan
| | - Misa Oyaizu
- Department of Chemistry, Graduate School of Science; Research Center for Materials Science; Nagoya University, Furo-cho, Chikusa; Nagoya 464-8602 Japan
| | - Tsuyoshi Takahashi
- Department of Chemistry and Chemical Biology; School of Science and Technology; Gunma University; 1-5-1, Tenjin-cho, Kiryu Gunma 376-8515 Japan
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science; Research Center for Materials Science; Nagoya University, Furo-cho, Chikusa; Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science; Research Center for Materials Science; Nagoya University, Furo-cho, Chikusa; Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| |
Collapse
|
97
|
Enabling stop codon read-through translation in bacteria as a probe for amyloid aggregation. Sci Rep 2017; 7:11908. [PMID: 28928456 PMCID: PMC5605706 DOI: 10.1038/s41598-017-12174-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022] Open
Abstract
Amyloid aggregation of the eukaryotic translation terminator eRF3/Sup35p, the [PSI+] prion, empowers yeast ribosomes to read-through UGA stop codons. No similar functional prion, skipping a stop codon, has been found in Escherichia coli, a fact possibly due to the efficient back-up systems found in bacteria to rescue non-stop complexes. Here we report that engineering hydrophobic amyloidogenic repeats from a synthetic bacterial prion-like protein (RepA-WH1) into the E. coli releasing factor RF1 promotes its aggregation and enables ribosomes to continue with translation through a premature UAG stop codon located in a β-galactosidase reporter. To our knowledge, intended aggregation of a termination factor is a way to overcome the bacterial translation quality checkpoint that had not been reported so far. We also show the feasibility of using the amyloidogenic RF1 chimeras as a reliable, rapid and cost-effective system to screen for molecules inhibiting intracellular protein amyloidogenesis in vivo, by testing the effect on the chimeras of natural polyphenols with known anti-amyloidogenic properties. Resveratrol exhibits a clear amyloid-solubilizing effect in this assay, showing no toxicity to bacteria or interference with the enzymatic activity of β-galactosidase.
Collapse
|
98
|
Wang B, Pilkington EH, Sun Y, Davis TP, Ke PC, Ding F. Modulating protein amyloid aggregation with nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2017; 4:1772-1783. [PMID: 29230295 PMCID: PMC5722024 DOI: 10.1039/c7en00436b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Direct exposure or intake of nanopaticles (NPs) to the human body can invoke a series of biological responses, some of which are deleterious, and as such the role of NPs in vivo requires thorough examination. Over the past decade, it has been established that biomolecules such as proteins can bind NPs to form a 'corona', where the structures and dynamics of NP-associated proteins can assign new functionality, systemic distribution and toxicity. However, the behavior and fate of NPs in biological systems are still far from being fully understood. Growing evidence has shown that some natural or artificial NPs could either up- or down-regulate protein amyloid aggregation, which is associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases, as well as metabolic diseases such as type 2 diabetes. These effects can be either indirect (e.g., through a crowding effect) or direct, depending on the NP composition, size, shape and surface chemistry. However, efforts to design anti-amyloid NPs for biomedical applications have been largely hindered by insufficient understanding of the complex processes, even though proof-of-concept experiments have been conducted. Therefore, exploring the general mechanisms of NP-meditated protein aggregation marks an emerging field in bio-nano research and a new stage of handling nanotechnology that not only aids in elucidating the origin of nanotoxicity, but also provides a foundation for engineering de novo anti-amyloid nanomedicines. In this review, we summarize research on NP-mediated protein amyloid aggregation, with the goal of contributing to sustained nanotechnology and safe nanomedicine against amyloid diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| |
Collapse
|
99
|
Shamsi TN, Athar T, Parveen R, Fatima S. A review on protein misfolding, aggregation and strategies to prevent related ailments. Int J Biol Macromol 2017; 105:993-1000. [PMID: 28743576 DOI: 10.1016/j.ijbiomac.2017.07.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/28/2023]
Abstract
This review aims to highlight the fundamental mechanism of protein misfolding leading to protein aggregation and associated diseases. It also aims to anticipate novel therapeutic strategies with which to prevent or treat these highly debilitating conditions linked to these pathologies. The failure of a protein to correctly fold de novo or to remain correctly folded can have profound consequences on a living system especially when the cellular quality control processes fail to eliminate the rogue proteins. The core cause of over 20 different human diseases which have now been designated as 'conformational diseases' including neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD) etc. A comprehensive study on protein misfolding, aggregation, and the outcomes of the effects of cytotoxic aggregates will lead to understand the aggregation-mediated cell toxicity and serves as a foundation for future research in development of promising therapies and drugs. This review has also shed light on the mechanism of protein misfolding which leads to its aggregation and hence the neurodegeneration. From these considerations, one could also envisage the possibility that protein aggregation may be exploited by nature to perform specific physiological functions in differing biological contexts.
Collapse
Affiliation(s)
- Tooba Naz Shamsi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Teeba Athar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
100
|
Das S, Bhattacharyya D. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple). J Cell Biochem 2017; 118:4881-4896. [PMID: 28548677 DOI: 10.1002/jcb.26173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sromona Das
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|