51
|
Liu Z, Liu J, Liu G, Cao W, Liu S, Chen Y, Zuo Y, Chen W, Chen J, Zhang Y, Huang S, Qiu G, Giampietro PF, Zhang F, Wu Z, Wu N. Phenotypic heterogeneity of intellectual disability in patients with congenital insensitivity to pain with anhidrosis: A case report and literature review. J Int Med Res 2018; 46:2445-2457. [PMID: 29619836 PMCID: PMC6023048 DOI: 10.1177/0300060517747164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive heterogeneous disorder mainly caused by mutations in the neurotrophic tyrosine receptor kinase 1 gene (NTRK1) and characterized by insensitivity to noxious stimuli, anhidrosis, and intellectual disability. We herein report the first north Han Chinese patient with CIPA who exhibited classic phenotypic features and severe intellectual disability caused by a homozygous c.851-33T>A mutation of NTRK1, resulting in aberrant splicing and an open reading frame shift. We reviewed the literature and performed in silico analysis to determine the association between mutations and intellectual disability in patients with CIPA. We found that intellectual disability was correlated with the specific Ntrk1 protein domain that a mutation jeopardized. Mutations located peripheral to the Ntrk1 protein do not influence important functional domains and tend to cause milder symptoms without intellectual disability. Mutations that involve critical amino acids in the protein are prone to cause severe symptoms, including intellectual disability.
Collapse
Affiliation(s)
- Zhenlei Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,2 Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China.,*These authors contributed equally to this work
| | - Jiaqi Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,3 Breast Surgical Oncology, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, PR China.,*These authors contributed equally to this work
| | - Gang Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China.,*These authors contributed equally to this work
| | - Wenjian Cao
- 5 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Sen Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| | - Yixin Chen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yuzhi Zuo
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| | - Weisheng Chen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jun Chen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yu Zhang
- 6 Berry Genomics Co., Ltd., Beijing, PR China
| | - Shishu Huang
- 7 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guixing Qiu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| | - Philip F Giampietro
- 8 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Feng Zhang
- 4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China.,5 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Zhihong Wu
- 4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China.,9 Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Nan Wu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| |
Collapse
|
52
|
Inhibiting TRK Proteins in Clinical Cancer Therapy. Cancers (Basel) 2018; 10:cancers10040105. [PMID: 29617282 PMCID: PMC5923360 DOI: 10.3390/cancers10040105] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Gene rearrangements resulting in the aberrant activity of tyrosine kinases have been identified as drivers of oncogenesis in a variety of cancers. The tropomyosin receptor kinase (TRK) family of tyrosine receptor kinases is emerging as an important target for cancer therapeutics. The TRK family contains three members, TRKA, TRKB, and TRKC, and these proteins are encoded by the genes NTRK1, NTRK2, and NTRK3, respectively. To activate TRK receptors, neurotrophins bind to the extracellular region stimulating dimerization, phosphorylation, and activation of downstream signaling pathways. Major known downstream pathways include RAS/MAPK/ERK, PLCγ, and PI3K/Akt. While being rare in most cancers, TRK fusions with other proteins have been well-established as oncogenic events in specific malignancies, including glioblastoma, papillary thyroid carcinoma, and secretory breast carcinomas. TRK protein amplification as well as alternative splicing events have also been described as contributors to cancer pathogenesis. For patients harboring alterations in TRK expression or activity, TRK inhibition emerges as an important therapeutic target. To date, multiple trials testing TRK-inhibiting compounds in various cancers are underway. In this review, we will summarize the current therapeutic trials for neoplasms involving NTKR gene alterations, as well as the promises and setbacks that are associated with targeting gene fusions.
Collapse
|
53
|
Kempfle JS, Nguyen K, Hamadani C, Koen N, Edge AS, Kashemirov BA, Jung DH, McKenna CE. Bisphosphonate-Linked TrkB Agonist: Cochlea-Targeted Delivery of a Neurotrophic Agent as a Strategy for the Treatment of Hearing Loss. Bioconjug Chem 2018; 29:1240-1250. [PMID: 29485861 DOI: 10.1021/acs.bioconjchem.8b00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss affects more than two-thirds of the elderly population, and more than 17% of all adults in the U.S. Sensorineural hearing loss related to noise exposure or aging is associated with loss of inner ear sensory hair cells (HCs), cochlear spiral ganglion neurons (SGNs), and ribbon synapses between HCs and SGNs, stimulating intense interest in therapies to regenerate synaptic function. 7,8-Dihydroxyflavone (DHF) is a selective and potent agonist of tropomyosin receptor kinase B (TrkB) and protects the neuron from apoptosis. Despite evidence that TrkB agonists can promote survival of SGNs, local delivery of drugs such as DHF to the inner ear remains a challenge. We previously demonstrated in an animal model that a fluorescently labeled bisphosphonate, 6-FAM-Zol, administered to the round window membrane penetrated the membrane and diffused throughout the cochlea. Given their affinity for bone mineral, including cochlear bone, bisphosphonates offer an intriguing modality for targeted delivery of neurotrophic agents to the SGNs to promote survival, neurite outgrowth, and, potentially, regeneration of synapses between HCs and SGNs. The design and synthesis of a bisphosphonate conjugate of DHF (Ris-DHF) is presented, with a preliminary evaluation of its neurotrophic activity. Ris-DHF increases neurite outgrowth in vitro, maintains this ability after binding to hydroxyapatite, and regenerates synapses in kainic acid-damaged cochlear organ of Corti explants dissected in vitro with attached SGNs. The results suggest that bisphosphonate-TrkB agonist conjugates have promise as a novel approach to targeted delivery of drugs to treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Otolaryngology , University of Tübingen Medical Center , Tübingen 72076 , Germany
| | - Kim Nguyen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| | - Christine Hamadani
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Nicholas Koen
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Albert S Edge
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Boris A Kashemirov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| | - David H Jung
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Charles E McKenna
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
54
|
Shahin R, Mansi I, Swellmeen L, Alwidyan T, Al-Hashimi N, Al-Qarar'h Y, Shaheen O. Ligand-based computer aided drug design reveals new tropomycin receptor kinase a (TrkA) inhibitors. J Mol Graph Model 2018; 80:327-352. [PMID: 29454290 DOI: 10.1016/j.jmgm.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Targeting tropomycin kinase A (TrkA) by small molecule inhibitors is considered as a promising strategy for treating several human cancers. To achieve this goal, a ligand based QSAR model was applied using the Discovery studio 4.5 (DS 4.5). Hence, a total list of 161 TrkA inhibitors was investigated. The TrkA inhibitors were extensively explored to detect their optimal physicochemical properties and pharmacophoric binding modes, which were converted into numeric descriptors and allowed to compete within the context of the Genetic Function Algorithm (GFA) approximations to find the subset of terms that correlates best with the activity. The resulted successful QSAR equation had statistical criteria of (r2129=0.67, r2LOO=0.61 r2PRESS against 32 external test inhibitors=0.50). Afterwards, the most successful pharmacophore: HypoB-T5-3, was used to screen compounds within the National Cancer institute (NCI) database. Only 41 compounds were retrieved and 21 of them exhibited anti-TrkA activity. The most potent hit had an IC50 value of 2.4μM. Later, upon docking the active hits into the TrkA binding pocket, important interactions were revealed including hydrogen bonding with the amino acids Asp668 and Lys544 in addition to the cation-π interactions with the sidechain of Arg559.
Collapse
Affiliation(s)
- Rand Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical sciences, Hashemite University, Zarqa, Jordan.
| | - Iman Mansi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical sciences, Hashemite University, Zarqa, Jordan.
| | - Lubna Swellmeen
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan.
| | - Tahani Alwidyan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical sciences, Hashemite University, Zarqa, Jordan
| | - Nabil Al-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical sciences, Hashemite University, Zarqa, Jordan
| | - Yaser Al-Qarar'h
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical sciences, Hashemite University, Zarqa, Jordan
| | - Omar Shaheen
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan.
| |
Collapse
|
55
|
First macrocyclic 3 rd -generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur J Med Chem 2017; 134:348-356. [DOI: 10.1016/j.ejmech.2017.04.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022]
|
56
|
Bernard-Gauthier V, Mahringer A, Vesnaver M, Fricker G, Schirrmacher R. Design and synthesis of a fluorinated quinazoline-based type-II Trk inhibitor as a scaffold for PET radiotracer development. Bioorg Med Chem Lett 2017; 27:2771-2775. [DOI: 10.1016/j.bmcl.2017.04.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022]
|
57
|
Bailey JJ, Schirrmacher R, Farrell K, Bernard-Gauthier V. Tropomyosin receptor kinase inhibitors: an updated patent review for 2010-2016 - Part I. Expert Opin Ther Pat 2017; 27:733-751. [PMID: 28270010 DOI: 10.1080/13543776.2017.1297796] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Tropomyosin receptor kinases (TrkA/B/C) play crucial roles in the development and maintenance of the nervous system, and aberrant expression of Trk has been implicated in neurological disorders as well as neural and non-neural neoplasms. Patent activity encompassing Trk inhibitors has grown substantially over the last 6 years, recognized by a rise in the number of pharmaceutical entrants to the field and the escalation of novel inhibitor chemotypes. Area covered: In Part I of this two part review, a biological and structural overview of Trk is provided in the context of Trk as a therapeutic target for cancer and pain, followed by the report of recent patent literature claiming small molecule inhibitors of Trk family kinases or which describe inhibitors developed for other kinase targets but include noteworthy Trk inhibition/application. The discussion of the patent literature continues in Part II of this review, which includes an in-depth view of the current clinical applications of Trk inhibitors. Expert opinion: Substantial synthetic efforts in Trk inhibitor development has propagated numerous and diverse inhibitor chemotypes, including TrkA-specific inhibitors. While many novel Trk inhibitors remain the original progeny of Trk-specific development programs, kinase inhibitors initially developed for other kinases have also been successfully repositioned for Trk.
Collapse
Affiliation(s)
- Justin J Bailey
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| | - Ralf Schirrmacher
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| | - Kristen Farrell
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| | - Vadim Bernard-Gauthier
- a Faculty of Medicine & Dentistry , University of Alberta, Department of Oncology , Edmonton , AB , Canada
| |
Collapse
|
58
|
Furuya N, Momose T, Katsuno K, Fushimi N, Muranaka H, Handa C, Ozawa T, Kinoshita T. The juxtamembrane region of TrkA kinase is critical for inhibitor selectivity. Bioorg Med Chem Lett 2017; 27:1233-1236. [DOI: 10.1016/j.bmcl.2017.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
|
59
|
Haddad Y, Heger Z, Adam V. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB. Front Mol Neurosci 2017; 10:7. [PMID: 28163672 PMCID: PMC5247432 DOI: 10.3389/fnmol.2017.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| |
Collapse
|
60
|
Chong CR, Bahcall M, Capelletti M, Kosaka T, Ercan D, Sim T, Sholl LM, Nishino M, Johnson BE, Gray NS, Jänne PA. Identification of Existing Drugs That Effectively Target NTRK1 and ROS1 Rearrangements in Lung Cancer. Clin Cancer Res 2017; 23:204-213. [PMID: 27370605 PMCID: PMC5203969 DOI: 10.1158/1078-0432.ccr-15-1601] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 01/02/2023]
Abstract
PURPOSE Efforts to discover drugs that overcome resistance to targeted therapies in patients with rare oncogenic alterations, such as NTRK1 and ROS1 rearrangements, are complicated by the cost and protracted timeline of drug discovery. EXPERIMENTAL DESIGN In an effort to identify inhibitors of NTRK1 and ROS1, which are aberrantly activated in some patients with non-small cell lung cancer (NSCLC), we created and screened a library of existing targeted drugs against Ba/F3 cells transformed with these oncogenes. RESULTS This screen identified the FDA-approved drug cabozantinib as a potent inhibitor of CD74-ROS1-transformed Ba/F3, including the crizotinib-resistant mutants G2032R and L2026M (IC50 = 9, 26, and 11 nmol/L, respectively). Cabozantinib inhibited CD74-ROS1-transformed Ba/F3 cells more potently than brigatinib (wild-type/G2032R/L2026M IC50 = 30/170/200 nmol/L, respectively), entrectinib (IC50 = 6/2,200/3,500 nmol/L), and PF-06463922 (IC50 = 1/270/2 nmol/L). Cabozantinib inhibited ROS1 autophosphorylation and downstream ERK activation in transformed Ba/F3 cells and in patient-derived tumor cell lines. The IGF-1R inhibitor BMS-536924 potently inhibited CD74-NTRK1-transformed compared with parental Ba/F3 cells (IC50 = 19 nmol/L vs. > 470 nmol/L). A patient with metastatic ROS1-rearranged NSCLC with progression on crizotinib was treated with cabozantinib and experienced a partial response. CONCLUSIONS While acquired resistance to targeted therapies is challenging, this study highlights that existing agents may be repurposed to overcome drug resistance and identifies cabozantinib as a promising treatment of ROS1-rearranged NSCLC after progression on crizotinib. Clin Cancer Res; 23(1); 204-13. ©2016 AACR.
Collapse
Affiliation(s)
- Curtis R Chong
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marzia Capelletti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Takayuki Kosaka
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dalia Ercan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruce E Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
61
|
Structural characterization of nonactive site, TrkA-selective kinase inhibitors. Proc Natl Acad Sci U S A 2016; 114:E297-E306. [PMID: 28039433 DOI: 10.1073/pnas.1611577114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.
Collapse
|
62
|
Crystal Structures of Neurotrophin Receptors Kinase Domain. VITAMINS AND HORMONES 2016; 104:1-18. [PMID: 28215291 DOI: 10.1016/bs.vh.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotrophins and their receptors (Trk) play key roles in the development of the nervous system and in cell survival. Trk receptors are therefore attractive pharmacological targets for brain disorders as well as for cancers. While the druggability of the extracellular domain of the receptors, that specifically binds neurotrophins, is yet to be proven, the intracellular kinase domains are attractive targets for small-molecule binding. The recent crystal structures of the three isoforms of the Trk family, TrkA, TrkB, and TrkC have been described in their apo forms and in complex with potent and selective pan-Trk inhibitors. The description of the kinase domain of each of the isoforms will be discussed in their apo forms or bound to potent inhibitors of interest in cancer therapy. Nononcology indications and selectivity issues will also be discussed.
Collapse
|
63
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
64
|
Skerratt SE, Andrews M, Bagal SK, Bilsland J, Brown D, Bungay PJ, Cole S, Gibson KR, Jones R, Morao I, Nedderman A, Omoto K, Robinson C, Ryckmans T, Skinner K, Stupple P, Waldron G. The Discovery of a Potent, Selective, and Peripherally Restricted Pan-Trk Inhibitor (PF-06273340) for the Treatment of Pain. J Med Chem 2016; 59:10084-10099. [PMID: 27766865 DOI: 10.1021/acs.jmedchem.6b00850] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neurotrophin family of growth factors, comprised of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4), is implicated in the physiology of chronic pain. Given the clinical efficacy of anti-NGF monoclonal antibody (mAb) therapies, there is significant interest in the development of small molecule modulators of neurotrophin activity. Neurotrophins signal through the tropomyosin related kinase (Trk) family of tyrosine kinase receptors, hence Trk kinase inhibition represents a potentially "druggable" point of intervention. To deliver the safety profile required for chronic, nonlife threatening pain indications, highly kinase-selective Trk inhibitors with minimal brain availability are sought. Herein we describe how the use of SBDD, 2D QSAR models, and matched molecular pair data in compound design enabled the delivery of the highly potent, kinase-selective, and peripherally restricted clinical candidate PF-06273340.
Collapse
Affiliation(s)
- Sarah E Skerratt
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Mark Andrews
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Sharan K Bagal
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - James Bilsland
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - David Brown
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Peter J Bungay
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Susan Cole
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Karl R Gibson
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Russell Jones
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Inaki Morao
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Angus Nedderman
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Kiyoyuki Omoto
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Colin Robinson
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Thomas Ryckmans
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Kimberly Skinner
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Paul Stupple
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Gareth Waldron
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| |
Collapse
|
65
|
Alam MS, Choi SU, Lee DU. Synthesis, anticancer, and docking studies of salicyl-hydrazone analogues: A novel series of small potent tropomyosin receptor kinase A inhibitors. Bioorg Med Chem 2016; 25:389-396. [PMID: 27856237 DOI: 10.1016/j.bmc.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/22/2023]
Abstract
A series of novel salicyl-hydrazone analogues were synthesized and evaluated for their in vitro cytotoxic activities in five human cancer cell lines, namely, lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), colon cancer (HCT15) and pancreatic cancer (MIA-PaCa-2) cells, and for their in vitro tropomyosin receptor kinase A (TrkA) inhibitory activities. Each of the compounds showed significant cytotoxicity against all cancer cells. Compound 3i was found to be most potent against all cancer cell lines with IC50 values of 2.46 (A549), 0.87 (SK-OV-3), 1.43 (SK-MEL-2), 0.89 (HCT15), and 0.48μM (MIA-PaCa-2), followed by compound 3l. Cytotoxicity of 3i was similar to that of doxorubicin (0.87μM) against HCT15 cells. Compounds 3i and 3l also showed highest TrkA inhibitory activities with IC50 values of 0.231 and 0.380μM, respectively. A SAR study of the series revealed that compounds with hydroxyl groups showed better cytotoxicity and TrkA inhibitory potency (in the following order 2,4-OH>2,3,4-OH>3,4-OH>4-OH) than compounds possessing electron donating or withdrawing groups on the benzylidenephenyl ring. Docking studies of compounds 3i and 3l conducted on the crystal structure of TrkA receptor (a promising target for anticancer agents) showed both had a high docking score and similar order of experimental TrkA inhibitory activities. The formation of several hydrogen bonds involving N and O containing moieties contributed most significantly to ligand binding and stabilization at the active site of the receptor. In addition, ligand-receptor complexes were further stabilized by π-cation, π-anion, amide-π stacked, and van der Waal's interactions. Conformational analyses showed ligand molecules adopted similar conformations at the receptor active site during interactions, but that the low energy optimized conformations of compounds 3i and 3l differed.
Collapse
Affiliation(s)
- Mohammad Sayed Alam
- Division of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea; Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Sang-Un Choi
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, 141 Gajeongro, Daejeon 34114, Republic of Korea
| | - Dong-Ung Lee
- Division of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea.
| |
Collapse
|
66
|
Norman BH, McDermott JS. Targeting the Nerve Growth Factor (NGF) Pathway in Drug Discovery. Potential Applications to New Therapies for Chronic Pain. J Med Chem 2016; 60:66-88. [DOI: 10.1021/acs.jmedchem.6b00964] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bryan H. Norman
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| | - Jeff S. McDermott
- Discovery Chemistry
Research and Technologies and ‡Neurophysiology, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Lilly
Corporate Center, Indiana 46285, United States
| |
Collapse
|
67
|
El-Damasy AK, Cho NC, Pae AN, Kim EE, Keum G. Novel 5-substituted-2-anilinoquinolines with 3-(morpholino or 4-methylpiperazin-1-yl)propoxy moiety as broad spectrum antiproliferative agents: Synthesis, cell based assays and kinase screening. Bioorg Med Chem Lett 2016; 26:3307-3312. [PMID: 27241691 DOI: 10.1016/j.bmcl.2016.05.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022]
Abstract
A series of new 2-anilinoquinolines possessing 3-(morpholino or 4-methylpiperazin-1-yl)propoxy moiety at C5 of quinoline has been designed and synthesized as potential anticancer agents. Their antiproliferative activities were evaluated against a panel of 60 cancer cell lines at NCI and compared with gefitinib as a reference compound. Most of the tested compounds displayed potent and broad spectrum antiproliferative activities. Compounds 7d, 7f and 7g showed strong inhibitory and lethal effects at 10μM concentration. Moreover, they manifested superior potencies and efficacies than gefitinib across the most tested cell lines. Compound 7d, with 4-chloro-3-trifluoromethylphenyl group, proved to be the most potent and efficacious derivative in this series, with mean GI50 and TGI values of 1.62μM and 3.47μM, respectively. Kinase screening of 7d against a panel of 47 oncogenic kinases revealed its selective inhibitory effect (96% inhibition) towards TrkA kinase. Furthermore, the most potent compounds showed low cytotoxic effects against HFF-1 normal cell line.
Collapse
Affiliation(s)
- Ashraf Kareem El-Damasy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon 305-350, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Nam-Chul Cho
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Ae Nim Pae
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon 305-350, Republic of Korea
| | - Eunice Eunkyeong Kim
- Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon 305-350, Republic of Korea; Biomedical Research Institute, KIST, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
68
|
Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016; 1:e000023. [PMID: 27843590 PMCID: PMC5070277 DOI: 10.1136/esmoopen-2015-000023] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022] Open
Abstract
The tropomyosin receptor kinase (Trk) receptor family comprises 3 transmembrane proteins referred to as Trk A, B and C (TrkA, TrkB and TrkC) receptors that are encoded by the NTRK1, NTRK2 and NTRK3 genes, respectively. These receptor tyrosine kinases are expressed in human neuronal tissue and play an essential role in the physiology of development and function of the nervous system through activation by neurotrophins. Gene fusions involving NTRK genes lead to transcription of chimeric Trk proteins with constitutively activated or overexpressed kinase function conferring oncogenic potential. These genetic abnormalities have recently emerged as targets for cancer therapy, because novel compounds have been developed that are selective inhibitors of the constitutively active rearranged proteins. Developments in this field are being aided by next generation sequencing methods as tools for unbiased gene fusions discovery. In this article, we review the role of NTRK gene fusions across several tumour histologies, and the promises and challenges of targeting such genetic alterations for cancer therapy.
Collapse
Affiliation(s)
- Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda , Milan , Italy
| | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
69
|
Tejeda GS, Ayuso-Dolado S, Arbeteta R, Esteban-Ortega GM, Vidaurre OG, Díaz-Guerra M. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. J Pathol 2016; 238:627-40. [PMID: 26712630 DOI: 10.1002/path.4684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sara Ayuso-Dolado
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Raquel Arbeteta
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Gema M Esteban-Ortega
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Oscar G Vidaurre
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
70
|
Bernard-Gauthier V, Schirrmacher R. Evaluation of WO2015042088 A1 - a novel urea-based scaffold for TrkA inhibition. Expert Opin Ther Pat 2015; 26:291-5. [DOI: 10.1517/13543776.2016.1118062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
71
|
Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell 2015; 26:4412-26. [PMID: 26446845 PMCID: PMC4666136 DOI: 10.1091/mbc.e15-02-0087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
GGA3 binds directly to the TrkA internal DXXLL motif and mediates TrkA endocytic recycling. This effect is dependent on the activation of Arf6. GGA3 is a key player in a novel DXXLL-mediated recycling machinery for TrkA, where it prolongs the activation of Akt signaling and survival responses. Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses.
Collapse
Affiliation(s)
- Xuezhi Li
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
72
|
Bernard-Gauthier V, Aliaga A, Aliaga A, Boudjemeline M, Hopewell R, Kostikov A, Rosa-Neto P, Thiel A, Schirrmacher R. Syntheses and evaluation of carbon-11- and fluorine-18-radiolabeled pan-tropomyosin receptor kinase (Trk) inhibitors: exploration of the 4-aza-2-oxindole scaffold as Trk PET imaging agents. ACS Chem Neurosci 2015; 6:260-76. [PMID: 25350780 DOI: 10.1021/cn500193f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tropomyosin receptor kinases (TrkA/B/C) are critically involved in the development of the nervous system, in neurological disorders as well as in multiple neoplasms of both neural and non-neural origins. The development of Trk radiopharmaceuticals would offer unique opportunities toward a more complete understanding of this emerging therapeutic target. To that end, we first developed [(11)C]GW441756 ([(11)C]9), a high affinity photoisomerizable pan-Trk inhibitor, as a lead radiotracer for our positron emission tomography (PET) program. Efficient carbon-11 radiolabeling afforded [(11)C]9 in high radiochemical yields (isolated RCY, 25.9% ± 5.7%). In vitro autoradiographic studies in rat brain and TrkB-expressing human neuroblastoma cryosections confirmed that [(11)C]9 specifically binds to Trk receptors in vitro. MicroPET studies revealed that binding of [(11)C]9 in the rodent brain was mostly nonspecific despite initial high brain uptake (SUVmax = 2.0). Modeling studies of the 4-aza-2-oxindole scaffold led to the successful identification of a small series of high affinity fluorinated and methoxy derivatized pan-Trk inhibitors based on our lead compound 9. Out of this series, the fluorinated compound 10 was selected for initial evaluation and radiolabeled with fluorine-18 (isolated RCY, 2.5% ± 0.6%). Compound [(18)F]10 demonstrated excellent Trk selectivity in a panel of cancer relevant kinase targets and a promising in vitro profile in tumors and brain sections but high oxidative metabolic susceptibility leading to nonspecific brain distribution in vivo. The information gained in this study will guide further exploration of the 4-aza-2-oxindole scaffold as a lead for Trk PET ligand development.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Experimental
Medicine, Department of Medicine, McGill University, 1110 Pine
Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department
of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Arturo Aliaga
- Translational
Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
| | - Antonio Aliaga
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Mehdi Boudjemeline
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Robert Hopewell
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Alexey Kostikov
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Pedro Rosa-Neto
- Translational
Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
| | - Alexander Thiel
- Department
of Neurology and Neurosurgery, McGill University, Jewish General Hospital, 3755 Cote St. Catherine Rd., Montreal, Quebec H2T 1E2, Canada
| | - Ralf Schirrmacher
- Department
of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
73
|
Siligardi G, Hussain R. CD spectroscopy: an essential tool for quality control of protein folding. Methods Mol Biol 2015; 1261:255-76. [PMID: 25502204 DOI: 10.1007/978-1-4939-2230-7_14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The production of diffraction quality protein crystals for X-ray crystallography has been greatly accelerated by the development of high-throughput protein (HTP) methods, which enable a large number of crystallization conditions to be rapidly investigated. Monitoring sample quality and the effect of crystallization buffers on protein behavior in solution should be considered as part of the crystallization experiment. Circular Dichroism (CD) spectroscopy is the ideal technique for these tasks as it can be operated in a high-throughput mode. Using CD to screen ligand binding interactions could show whether protein function/activity is retained, altered, or lost under different crystallization conditions. In this chapter, several methods for high-throughput CD (HTCD) applied to the preparation of proteins for crystallization will be presented. Quality control (QC) of protein batches in terms of conformational folding is often disregarded in protein production. Examples of batch-to-batch variation in the local tertiary structure of aromatic side chain residues revealed by CD will be discussed. In some of the examples, the fact that ligand binding properties were affected by changes in folding clearly shows that the characterization of folding of recombinant protein batches should not be ignored but be implemented as an important part of protein quality control.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Chilton, Oxfordshire, OX11 0DE, UK,
| | | |
Collapse
|
74
|
Bernard-Gauthier V, Bailey JJ, Aliaga A, Kostikov A, Rosa-Neto P, Wuest M, Brodeur GM, Bedell BJ, Wuest F, Schirrmacher R. Development of subnanomolar radiofluorinated (2-pyrrolidin-1-yl)imidazo[1,2-b]pyridazine pan-Trk inhibitors as candidate PET imaging probes. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00388a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dysregulation of tropomyosin receptor kinases (TrkA/B/C) expression and signalling is recognized as a hallmark of numerous neurodegenerative diseases including Parkinson's, Huntington's and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Arturo Aliaga
- Translational Neuroimaging Laboratory
- McGill Centre for Studies in Aging
- Douglas Mental Health University Institute
- Montreal
- Canada
| | - Alexey Kostikov
- McConnell Brain Imaging Centre
- Montreal Neurological Institute
- McGill University
- Montreal
- Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory
- McGill Centre for Studies in Aging
- Douglas Mental Health University Institute
- Montreal
- Canada
| | - Melinda Wuest
- Department of Oncology
- University of Alberta
- Edmonton
- Canada
| | | | - Barry J. Bedell
- Biospective Inc
- Montreal
- Canada
- Research Institute of the McGill University Health Centre
- Montreal
| | - Frank Wuest
- Department of Oncology
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
75
|
Lawn S, Krishna N, Pisklakova A, Qu X, Fenstermacher DA, Fournier M, Vrionis FD, Tran N, Chan JA, Kenchappa RS, Forsyth PA. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 2014; 290:3814-24. [PMID: 25538243 DOI: 10.1074/jbc.m114.599373] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma.
Collapse
Affiliation(s)
- Samuel Lawn
- From the Tom Baker Cancer Centre, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N2, Canada
| | | | | | | | | | - Michelle Fournier
- Tissue Core, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| | - Frank D Vrionis
- the Departments of Neuro-Oncology, the Department of Oncological Sciences, University of South Florida College of Medicine, Tampa, Florida 33612
| | - Nam Tran
- the Departments of Neuro-Oncology, the Department of Oncological Sciences, University of South Florida College of Medicine, Tampa, Florida 33612
| | - Jennifer A Chan
- From the Tom Baker Cancer Centre, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N2, Canada
| | - Rajappa S Kenchappa
- the Departments of Neuro-Oncology, the Department of Oncological Sciences, University of South Florida College of Medicine, Tampa, Florida 33612
| | - Peter A Forsyth
- From the Tom Baker Cancer Centre, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N2, Canada, the Departments of Neuro-Oncology, the Department of Oncological Sciences, University of South Florida College of Medicine, Tampa, Florida 33612
| |
Collapse
|
76
|
Frett B, McConnell N, Wang Y, Xu Z, Ambrose A, Li HY. Identification of pyrazine-based TrkA inhibitors: design, synthesis, evaluation, and computational modeling studies. MEDCHEMCOMM 2014; 5:1507-1514. [PMID: 26843921 PMCID: PMC4734651 DOI: 10.1039/c4md00251b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trk receptors play a key role in the development and maintenance of neuronal networks. Recent evidence suggests that the Trk family, specifically TrkA, is an important driver for tumour growth, inflammatory and neuropathic pain, and chemoresistance. Through a computational screen, a novel Trk active pharmacophore was identified and a series of pyrazine-based inhibitors were developed, which potently inhibited TrkA. Inhibitors displayed the highest activity on TrkA when screened against a small, tyrosine kinase panel and also exhibited a non-linear SAR. Predicted binding modes of the inhibitors were examined, which identified exploitable regions for future development of more advanced inhibitors.
Collapse
Affiliation(s)
- Brendan Frett
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Nick McConnell
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Yuanxiang Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Zhigang Xu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
- Drug Discovery Center of Innovation, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, P.R. China, 402160
| | - Andrew Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Hong-yu Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
| |
Collapse
|
77
|
5-(4-((4-[18F]fluorobenzyl)oxy)-3-methoxybenzyl)pyrimidine-2,4-diamine: A selective dual inhibitor for potential PET imaging of Trk/CSF-1R. Bioorg Med Chem Lett 2014; 24:4784-90. [DOI: 10.1016/j.bmcl.2014.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022]
|
78
|
Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J Mol Biol 2014; 426:2457-70. [PMID: 24768818 PMCID: PMC4058747 DOI: 10.1016/j.jmb.2014.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 11/25/2022]
Abstract
The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC50 of 9nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a β-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer.
Collapse
MESH Headings
- Amino Acid Sequence
- Benzamides/pharmacology
- Binding Sites
- Discoidin Domain Receptor 1
- Discoidin Domain Receptors
- Humans
- Imatinib Mesylate
- Imidazoles/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Piperazines/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Pyridazines/pharmacology
- Pyrimidines/pharmacology
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Collagen/antagonists & inhibitors
- Receptors, Collagen/chemistry
- Receptors, Collagen/genetics
- Receptors, Mitogen/antagonists & inhibitors
- Receptors, Mitogen/chemistry
- Receptors, Mitogen/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Peter Canning
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kiki Chu
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
79
|
Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng YL, Dinh D, Engstrom LD, He M, Hoffman J, Hoffman RL, Huang Q, Kania RS, Kath JC, Lam H, Lam JL, Le PT, Lingardo L, Liu W, McTigue M, Palmer CL, Sach NW, Smeal T, Smith GL, Stewart AE, Timofeevski S, Zhu H, Zhu J, Zou HY, Edwards MP. Discovery of (10R)-7-Amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a Macrocyclic Inhibitor of Anaplastic Lymphoma Kinase (ALK) and c-ros Oncogene 1 (ROS1) with Preclinical Brain Exposure and Broad-Spectrum Potency against ALK-Resistant Mutations. J Med Chem 2014; 57:4720-44. [DOI: 10.1021/jm500261q] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ted W. Johnson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Paul F. Richardson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Simon Bailey
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Alexei Brooun
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Benjamin J. Burke
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michael R. Collins
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - J. Jean Cui
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Judith G. Deal
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ya-Li Deng
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Dac Dinh
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Lars D. Engstrom
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Mingying He
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jacqui Hoffman
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Robert L. Hoffman
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Qinhua Huang
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Robert S. Kania
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - John C. Kath
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Hieu Lam
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Justine L. Lam
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Phuong T. Le
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Laura Lingardo
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Wei Liu
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michele McTigue
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Cynthia L. Palmer
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Neal W. Sach
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Tod Smeal
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Graham L. Smith
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Albert E. Stewart
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Sergei Timofeevski
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Huichun Zhu
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jinjiang Zhu
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Helen Y. Zou
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Martin P. Edwards
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
80
|
McCarthy C, Walker E. Tropomyosin receptor kinase inhibitors: a patent update 2009 - 2013. Expert Opin Ther Pat 2014; 24:731-44. [PMID: 24809946 DOI: 10.1517/13543776.2014.910195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Tropomyosin receptor kinases (Trks) are a family of three similar tyrosine kinases activated by peptide hormones of the neurotrophin family. The nerve growth factor antibody tanezumab has provided clinical proof of concept for inhibition of the TrkA pathway in pain. As an alternative modality, small-molecule inhibitors of the Trks have been pursued in recent years to probe the role of these neurotrophin pathways in pain, cancer and other indications. AREAS COVERED This paper reviews the patent literature between mid-2009 and 2013, claiming inhibitors of Trk family members as the primary biological targets. Additional patents have been reviewed where Trk is not the main kinase of interest but in which high Trk potency is observed and the chemical matter is particularly noteworthy. Patents pre-dating this period have been reviewed previously. Scifinder and Google were used to find relevant patents and clinical information using Trk or Tropomyosin as the search term. EXPERT OPINION Considerable recent progress has been made in the identification of selective pan Trk inhibitors with pharmacodynamic and pharmacokinetic properties appropriate for clinical evaluation. Inhibitors of both active and inactive conformations of the Trks as well as peripherally restricted molecules have been identified. Furthermore, TrkA-selective allosteric inhibitors have recently been disclosed, which enables the biology of this isoform to be probed. The recent identification of a TrkA gene fusion in a subset of lung cancer patients will increase further the attraction of Trk inhibition to the pharmaceutical industry.
Collapse
|
81
|
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 2014; 3:304-30. [PMID: 24758840 PMCID: PMC4092861 DOI: 10.3390/cells3020304] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan.
| |
Collapse
|
82
|
Structure-functional prediction and analysis of cancer mutation effects in protein kinases. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:653487. [PMID: 24817905 PMCID: PMC4000980 DOI: 10.1155/2014/653487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/31/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.
Collapse
|
83
|
He XP, Wen R, McNamara JO. Impairment of kindling development in phospholipase Cγ1 heterozygous mice. Epilepsia 2014; 55:456-63. [PMID: 24502564 DOI: 10.1111/epi.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Elucidating molecular mechanisms underlying limbic epileptogenesis may reveal novel targets for preventive therapy. Studies of TrkB mutant mice led us to hypothesize that signaling through a specific phospholipase (PLC), PLCγ1, promoted development of kindling. METHODS To test this hypothesis, we examined the development of kindling in PLCγ1 heterozygous mice. We also examined the cellular and subcellular location of PLCγ1 in adult wild-type mice. RESULTS The development of kindling was impaired in PLCγ1 heterozygous mice compared to wild-type controls. PLCγ1 immunoreactivity was localized to the soma and dendrites of both excitatory and inhibitory neurons in the hippocampus of adult mice. SIGNIFICANCE This study implicates PLCγ1 signaling as the dominant pathway by which TrkB activation promotes limbic epileptogenesis. Its cellular localization places PLCγ1 in a position to modify the efficacy of both excitatory and inhibitory synaptic transmission. These findings advance PLCγ1 as a novel target for therapies aimed at preventing temporal lobe epilepsy induced by status epilepticus.
Collapse
Affiliation(s)
- Xiao Ping He
- Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina, U.S.A
| | | | | |
Collapse
|
84
|
Gao L, Guo H, Ye N, Bai Y, Liu X, Yu P, Xue Y, Ma S, Wei K, Jin Y, Wen L, Xuan K. Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis. PLoS One 2013; 8:e66863. [PMID: 23799134 PMCID: PMC3682965 DOI: 10.1371/journal.pone.0066863] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/10/2013] [Indexed: 01/25/2023] Open
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is a rare inherited disorder of the peripheral nervous system resulting from mutations in neurotrophic tyrosine kinase receptor 1 gene (NTRK1), which encodes the high-affinity nerve growth factor receptor TRKA. Here, we investigated the oral and craniofacial manifestations of a Chinese patient affected by autosomal-recessive CIPA and identified compound heterozygosity in the NTRK1 gene. The affected boy has multisystemic disorder with lack of reaction to pain stimuli accompanied by self-mutilation behavior, the inability to sweat leading to defective thermoregulation, and mental retardation. Oral and craniofacial manifestations included a large number of missing teeth, nasal malformation, submucous cleft palate, severe soft tissue injuries, dental caries and malocclusion. Histopathological evaluation of the skin sample revealed severe peripheral nerve fiber loss as well as mild loss and absent innervation of sweat glands. Ultrastructural and morphometric studies of a shed tooth revealed dental abnormalities, including hypomineralization, dentin hypoplasia, cementogenesis defects and a dysplastic periodontal ligament. Genetic analysis revealed a compound heterozygosity- c.1561T>C and c.2057G>A in the NTRK1 gene. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with CIPA and provides additional insight for clinical and molecular diagnosis.
Collapse
Affiliation(s)
- Li Gao
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hao Guo
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Ye
- Department of Dentistry, Hospital of PLA 309, Beijing, People's Republic of China
| | - Yudi Bai
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xin Liu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ping Yu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yang Xue
- Department of Oral Biology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Shufang Ma
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Kewen Wei
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yan Jin
- Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
- * E-mail: (YJ); (LYW); (KX)
| | - Lingying Wen
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
- * E-mail: (YJ); (LYW); (KX)
| | - Kun Xuan
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
- * E-mail: (YJ); (LYW); (KX)
| |
Collapse
|
85
|
Hubbard SR. The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harb Perspect Biol 2013; 5:a008946. [PMID: 23457259 DOI: 10.1101/cshperspect.a008946] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unlike prototypical receptor tyrosine kinases (RTKs), which are single-chain polypeptides, the insulin receptor (InsR) is a preformed, covalently linked tetramer with two extracellular α subunits and two membrane-spanning, tyrosine kinase-containing β subunits. A single molecule of insulin binds asymmetrically to the ectodomain, triggering a conformational change that is transmitted to the cytoplasmic kinase domains, which facilitates their trans-phosphorylation. As in prototypical RTKs, tyrosine phosphorylation in the juxtamembrane region of InsR creates recruitment sites for downstream signaling proteins (IRS [InsR substrate] proteins, Shc) containing a phosphotyrosine-binding (PTB) domain, and tyrosine phosphorylation in the kinase activation loop stimulates InsR's catalytic activity. For InsR, phosphorylation of the activation loop, which contains three tyrosine residues, also creates docking sites for adaptor proteins (Grb10/14, SH2B2) that possess specialized Src homology-2 (SH2) domains, which are dimeric and engage two phosphotyrosines in the activation loop.
Collapse
Affiliation(s)
- Stevan R Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
86
|
Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Agarwal G, Fridman R. Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem 2013; 288:7430-7437. [PMID: 23335507 DOI: 10.1074/jbc.r112.444158] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets. New structural and biological information has shed light on the molecular mechanisms that regulate DDR signaling, turnover, and function. This minireview provides an overview of these areas of DDR research with the goal of fostering further investigation of these intriguing and unique receptors.
Collapse
Affiliation(s)
- Hsueh-Liang Fu
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Rajeshwari R Valiathan
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Richard Arkwright
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Anjum Sohail
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | - Cosmin Mihai
- Davis Heart and Lung Research Institute and Biomedical Engineering Department, Ohio State University, Columbus, Ohio 43210
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul Huang
- Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, United Kingdom
| | - Gunjan Agarwal
- Davis Heart and Lung Research Institute and Biomedical Engineering Department, Ohio State University, Columbus, Ohio 43210
| | - Rafael Fridman
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201.
| |
Collapse
|
87
|
Abstract
To investigate the range of autoinhibitory mechanisms used by TKDs (tyrosine kinase domains) from the insulin receptor family of RTKs (receptor tyrosine kinases), we determined crystal structures of TKDs from TrkA (tropomyosin receptor kinase A, a nerve growth factor receptor) and Ror2 (receptor tyrosine kinase-like orphan receptor 2, an unconventional Wnt receptor). TrkA autoinhibition closely resembles that seen for the insulin receptor, relying on projection of an activation loop tyrosine residue into the substrate-binding site and occlusion of the ATP-binding site by the activation loop. Ror2 employs similar mechanisms, but the unusual replacement of the phenylalanine residue in its Asp-Phe-Gly motif with leucine necessitates occlusion of the ATP-binding site by other means. The unusual Asp-Leu-Gly motif in Ror2 is displaced compared with other inactive kinases, allowing the activation loop to interact directly with the TKD's αC helix, in another mode of autoinhibition that is characteristic of the other extreme of this receptor family: ALK (anaplastic lymphoma kinase) and Met. These findings provide insight into the expected range of activating mutations in these TKDs in cancer. We also describe symmetrical dimers of the inactive TrkA TKD resembling those found in other RTKs, possibly reflecting an arrangement of kinase domains in a pre-formed TrkA dimer.
Collapse
|
88
|
Cheng Y, Diao DM, Zhang H, Song YC, Dang CX. Proliferation enhanced by NGF-NTRK1 signaling makes pancreatic cancer cells more sensitive to 2DG-induced apoptosis. Int J Med Sci 2013; 10:634-40. [PMID: 23569426 PMCID: PMC3619102 DOI: 10.7150/ijms.5547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/20/2013] [Indexed: 02/03/2023] Open
Abstract
Rapidly proliferating cancer cells rely on increased glucose consumption for survival. The glucose analog 2-deoxy-D-glucose (2DG) cannot complete glycolysis and inhibits the growth of many types of cancers. It is unknown whether reduced glycolysis inhibits the growth of pancreatic cancer. Activation of nerve growth factor (NGF)-neurotrophic tyrosine kinase receptor type 1 (NTRK1) signaling leads to enhanced proliferation of these cells. We investigated the effect of 2DG treatment on the viability of NTRK1-transfected pancreatic cancer cells. After treatment with 2DG, the viability of pancreatic cancer cells was evaluated by MTT assay. SB203580 (a specific inhibitor of the p38-MAPK pathway) and PD98059 (an MAP2K1 [mitogen-activated protein kinase kinase 1, previously, MEK1] inhibitor) were used to inhibit p38-MAPK and ERKs, respectively. The percentage of apoptotic cells was determined by flow cytometry. Overexpression of NTRK1 in pancreatic cancer cells resulted in increased cell proliferation, which was reduced by PD98059-mediated inhibition of ERKs but not by suppression of p38-MAPK with SB203580. After treatment with 2DG, the percentage of apoptotic cells was greater in those with high expression of NTRK1 than in cells with low NTRK1 expression. Blocking the p38-MAPK pathway with SB203580 effectively abolished the apoptosis induced by 2DG. We conclude that pancreatic cancer cells with a high expression of NTRK1 are more sensitive to 2DG-induced apoptosis, through the p38-MAPK pathway.
Collapse
Affiliation(s)
- Yao Cheng
- The Department of Surgical Oncology the First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, 277 W. Yanta Road, Xi'an, Shaanxi 710061, China
| | | | | | | | | |
Collapse
|
89
|
Deprez-Poulain R, Flipo M, Piveteau C, Leroux F, Dassonneville S, Florent I, Maes L, Cos P, Deprez B. Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J Med Chem 2012; 55:10909-17. [PMID: 23176597 DOI: 10.1021/jm301506h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Malaria is a severe infectious disease that causes between 655,000 and 1.2 million deaths annually. To overcome the resistance to current drugs, new biological targets are needed for drug development. Aminopeptidase M1 (PfAM1), a zinc metalloprotease, has been proposed as a new drug target to fight malaria. Herein, we disclosed the structure-activity relationships of a selective family of hydroxamate PfAM1 inhibitors based on the malonic template. In particular, we performed a "fluoro-scanning" around hit 1 that enlightened the key positions of the halogen for activity. The docking of the best inhibitor 2 is consistent with in vitro results. The stability of 2 was evaluated in microsomes, in plasma, and toward glutathione. The in vivo distribution study performed with the nanomolar hydroxamate inhibitor 2 (BDM14471) revealed that it reaches its site of action. However, it fails to kill the parasite at concentrations relevant to the enzymatic inhibitory potency, suggesting that killing the parasite remains a challenge for potent and druglike catalytic-site binding PfAM1 inhibitors. In all, this study provides important insights for the design of inhibitors of PfAM1 and the validity of this target.
Collapse
Affiliation(s)
- Rebecca Deprez-Poulain
- INSERM U761, Biostructures and Drug Discovery and Faculté de Pharmacie, Université Lille Nord de France, 3 rue du Pr Laguesse, Lille F-59000, France.
| | | | | | | | | | | | | | | | | |
Collapse
|