51
|
Organogel composed of poloxamer 188 and passion fruit oil: Sol-gel transition, rheology, and mechanical properties. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
52
|
Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv Transl Res 2019; 9:434-443. [PMID: 29392681 DOI: 10.1007/s13346-018-0488-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
Collapse
|
53
|
Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharamaceuticals. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
54
|
Abou‐Shamat MA, Calvo‐Castro J, Stair JL, Cook MT. Modifying the Properties of Thermogelling Poloxamer 407 Solutions through Covalent Modification and the Use of Polymer Additives. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900173] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamad A. Abou‐Shamat
- Department of Clinical and Pharmaceutical Sciences School of Life and Medical Sciences University of Hertfordshire Hatfield Hertfordshire AL10 9AB UK
| | - Jesus Calvo‐Castro
- Department of Clinical and Pharmaceutical Sciences School of Life and Medical Sciences University of Hertfordshire Hatfield Hertfordshire AL10 9AB UK
| | - Jacqueline L. Stair
- Department of Clinical and Pharmaceutical Sciences School of Life and Medical Sciences University of Hertfordshire Hatfield Hertfordshire AL10 9AB UK
| | - Michael T. Cook
- Department of Clinical and Pharmaceutical Sciences School of Life and Medical Sciences University of Hertfordshire Hatfield Hertfordshire AL10 9AB UK
| |
Collapse
|
55
|
Pagano C, Ceccarini MR, Calarco P, Scuota S, Conte C, Primavilla S, Ricci M, Perioli L. Bioadhesive polymeric films based on usnic acid for burn wound treatment: Antibacterial and cytotoxicity studies. Colloids Surf B Biointerfaces 2019; 178:488-499. [DOI: 10.1016/j.colsurfb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
|
56
|
Nova MV, Nothnagel L, Thurn M, Travassos PB, Herculano LS, Bittencourt PR, Novello CR, Bazotte RB, Wacker MG, Bruschi ML. Development study of pectin/Surelease® solid microparticles for the delivery of L-alanyl-L-glutamine dipeptide. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018; 10:pharmaceutics10030159. [PMID: 30213143 PMCID: PMC6161217 DOI: 10.3390/pharmaceutics10030159] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Poloxamer 407, also known by the trademark Pluronic® F127, is a water-soluble, non-ionic triblock copolymer that is made up of a hydrophobic residue of polyoxypropylene (POP) between the two hydrophilic units of polyoxyethylene (POE). Poloxamer 407-based hydrogels exhibit an interesting reversible thermal characteristic. That is, they are liquid at room temperature, but they assume a gel form when administered at body temperature, which makes them attractive candidates as pharmaceutical drug carriers. These systems have been widely investigated in the development of mucoadhesive formulations because they do not irritate the mucosal membranes. Based on these mucoadhesive properties, a simple administration into a specific compartment should maintain the required drug concentration in situ for a prolonged period of time, decreasing the necessary dosages and side effects. Their main limitations are their modest mechanical strength and, notwithstanding their bioadhesive properties, their tendency to succumb to rapid elimination in physiological media. Various technological approaches have been investigated in the attempt to modulate these properties. This review focuses on the application of poloxamer 407-based hydrogels for mucosal drug delivery with particular attention being paid to the latest published works.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| |
Collapse
|
58
|
Campanholi KDSS, Braga G, da Silva JB, da Rocha NL, de Francisco LMB, de Oliveira ÉL, Bruschi ML, de Castro-Hoshino LV, Sato F, Hioka N, Caetano W. Biomedical Platform Development of a Chlorophyll-Based Extract for Topic Photodynamic Therapy: Mechanical and Spectroscopic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8230-8244. [PMID: 29933698 DOI: 10.1021/acs.langmuir.8b00658] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that has shown effectiveness in the inactivation of cancer cell lines and microorganisms. Treatment consists of activating the photosensitizer (PS) upon light irradiation of adequate wavelength. After reaching the excited state, the PS can handle the intersystem conversion through energy transfer to the molecular oxygen, generating reactive oxygen species. This especially applies to singlet oxygen (1O2), which is responsible for the selective destruction of the sick tissue. Photosensitizing compounds (chlorophylls and derivatives) existing in the spinach extract have applicability for PDT. This study aimed to develop and characterize the thermoresponsive bioadhesive system composed of Pluronic F127 20.0%- and Carbopol 934P 0.2% (w/w) (FC)-containing chlorophyll-based extract 0.5% (w/w) (FC-Chl). Mechanical and rheological properties, in vitro release, sol-gel transition temperature, and ex vivo permeability of the spinach extract PS components (through pig ear skin) were investigated. Furthermore, photodynamic activity of the system was accessed through uric acid and time-solved measurements. The sol-gel transition temperature obtained for the FC-Chl system was 28.8 ± 0.3 °C. Rheological and texture properties of the platform were suitable for use as a dermatological system, exhibiting easy application and good characteristics of retention in the place of administration. In vitro release studies showed the presence of two distinct mechanisms that reasonably obey the zero-order and first-order kinetics models. PS components presented skin permeability and reached a permeation depth of 830 μm (between the epidermis and dermis). The photodynamic evaluation of the FC-Chl system was effective in the degradation of uric acid. The quantum yield (ΦΔ1O2) and life time (τ1O2) of singlet oxygen showed similar values for the spinach extract and the isolated chlorophyll a species in ethanol. These results allowed for the classification of the FC-Chl platform as potentially useful for the delivery of the chlorophyll-based extract in the topic PDT, suggesting that it is worthy for in vivo evaluation.
Collapse
Affiliation(s)
| | | | | | - Nicola L da Rocha
- Institute of Chemistry , State University of Campinas , Campinas , São Paulo 13083-872 , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Salawi A, Nazzal S. The rheological and textural characterization of Soluplus®/Vitamin E composites. Int J Pharm 2018; 546:255-262. [PMID: 29792987 DOI: 10.1016/j.ijpharm.2018.05.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 11/16/2022]
Abstract
Soluplus® is a graft amphiphilic copolymer that is frequently used as an excipient in solid dosage forms as a dissolution and a solubility enhancer. We discovered that Soluplus® can be dissolved in vitamin E. The result is a tacky and highly adhesive material. Our research objective was to evaluate the rheological, adhesive, and textural properties of the Soluplus®/Vitamin E composites. In this study, Soluplus® was dissolved under heat in vitamin E at increasing concentrations from 0 to 40% (by weight). The flow behavior of the Soluplus®/Vitamin E composites was determined by applying shear stress using an advanced AR2000 rheometer. Under the linear viscoelastic region (LVR), the rheological properties of the blends such as dynamic viscosity (η'), storage modulus (G'), loss modulus (G″), and the phase angle tangent (tan δ) were measured. Hardness, adhesiveness, and cohesiveness of the blends were also measured with a TA.XT plus texture analyzer. Rheological analysis showed that the viscosity of the Soluplus®/Vitamin E composites increased with an increase in Soluplus® concentration but decreased as the temperature increased from 20 to 90 °C. The adhesiveness of the blends also significantly increased with an increase in Soluplus® concentration. The results from this study indicated that Soluplus®/Vitamin E composites have the potential to be exploited in applications where the use of highly adhesive material is desirable.
Collapse
Affiliation(s)
- Ahmad Salawi
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sami Nazzal
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
60
|
Rossi S, Vigani B, Bonferoni MC, Sandri G, Caramella C, Ferrari F. Rheological analysis and mucoadhesion: A 30 year-old and still active combination. J Pharm Biomed Anal 2018; 156:232-238. [PMID: 29729636 DOI: 10.1016/j.jpba.2018.04.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
At the end of 80s and in the early 90s, an increasing interest in the development of mucoadhesive formulations occurred in the pharmaceutical field. Such formulations, prolonging the drug permanence on the mucosa of action/absorption, improve drug availability/bioavailability and therefore its therapeutic effectiveness. Among the various methods reported in the literature for the evaluation of the mucoadhesive properties of polymers, in the early 1990s, the study of the rheological variation of the polymer solutions after mixing with a mucin solution/dispersion has been proposed as an approach to measure the strength of the mucoadhesive joint. Even today, both viscosity and viscoelastic measurements are used to evaluate the ability of polymers and formulations to adhere to the mucosa of application/action. This review aims at providing an overview of the rheological approaches employed in the development and characterization of mucoadhesive formulation, highlighting their advantages and disadvantages. To do this the scientific path that, since the beginning of the 90s, has led to the affirmation of the rheological analysis as a useful tool for the evaluation of the strength of the mucoadhesive bond is retraced.
Collapse
Affiliation(s)
- Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | | | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| |
Collapse
|
61
|
Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables. Polymers (Basel) 2018; 10:polym10030254. [PMID: 30966289 PMCID: PMC6415125 DOI: 10.3390/polym10030254] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022] Open
Abstract
The process of mucoadhesion has been widely studied using a wide variety of methods, which are influenced by instrumental variables and experiment design, making the comparison between the results of different studies difficult. The aim of this work was to standardize the conditions of the detachment test and the rheological methods of mucoadhesion assessment for semisolids, and introduce a texture profile analysis (TPA) method. A factorial design was developed to suggest standard conditions for performing the detachment force method. To evaluate the method, binary polymeric systems were prepared containing poloxamer 407 and Carbopol 971P®, Carbopol 974P®, or Noveon® Polycarbophil. The mucoadhesion of systems was evaluated, and the reproducibility of these measurements investigated. This detachment force method was demonstrated to be reproduceable, and gave different adhesion when mucin disk or ex vivo oral mucosa was used. The factorial design demonstrated that all evaluated parameters had an effect on measurements of mucoadhesive force, but the same was not observed for the work of adhesion. It was suggested that the work of adhesion is a more appropriate metric for evaluating mucoadhesion. Oscillatory rheology was more capable of investigating adhesive interactions than flow rheology. TPA method was demonstrated to be reproducible and can evaluate the adhesiveness interaction parameter. This investigation demonstrates the need for standardized methods to evaluate mucoadhesion and makes suggestions for a standard study design.
Collapse
|
62
|
Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv Transl Res 2018. [PMID: 29392681 DOI: 10.1007/s13346-018-0488-6 10.1007/s13346-018-0488-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
Collapse
|
63
|
Calixto GMF, Victorelli FD, Dovigo LN, Chorilli M. Polyethyleneimine and Chitosan Polymer-Based Mucoadhesive Liquid Crystalline Systems Intended for Buccal Drug Delivery. AAPS PharmSciTech 2018; 19:820-836. [PMID: 29019033 DOI: 10.1208/s12249-017-0890-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
The buccal mucosa is accessible, shows rapid repair, has an excellent blood supply, and shows the absence of the first-pass effect, which makes it a very attractive drug delivery route. However, this route has limitations, mainly due to the continuous secretion of saliva (0.5 to 2 L/day), which may lead to dilution, possible ingestion, and unintentional removal of the active drug. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can increase drug permeation through the mucosa and thereby improve drug delivery. This study aimed at developing and characterizing the mechanical, rheological, and mucoadhesive properties of four liquid crystalline precursor systems (LCPSs) composed of four different aqueous phases (i) water (FW), (ii) chitosan (FC), (iii) polyethyleneimine (FP), or (iv) both polymers (FPC); oleic acid was used as the oil phase, and ethoxylated and propoxylated cetyl alcohol was used as the surfactant. Polarized light microscopy and small-angle X-ray scattering indicated that all LCPSs formed liquid crystalline states after incorporation of saliva. Rheological, texture, and mucoadhesive assays showed that FPC had the most suitable characteristics for buccal application. In vitro release study showed that FPC could act as a controlled drug delivery system. Finally, based on in vitro cytotoxicity data, FPC is a safe buccal drug delivery system for the treatment of several buccal diseases.
Collapse
|
64
|
Chen X, Yan J, Yu S, Wang P. Formulation and In Vitro Release Kinetics of Mucoadhesive Blend Gels Containing Matrine for Buccal Administration. AAPS PharmSciTech 2018; 19:470-480. [PMID: 28828580 DOI: 10.1208/s12249-017-0853-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/28/2017] [Indexed: 11/30/2022] Open
Abstract
Enterovirus 71 (EV71) is a pathogenic factor of severe hand, foot, and mouth disease (HFMD). No vaccine or specific treatment is currently available for EV71 infection. Hence, we developed a buccal mucoadhesive gel containing matrine to protect against HFMD. Mucoadhesive gels were prepared by Carbopol 974P and were combined with Carbopol 971P, sodium carboxymethyl cellulose (CMC-Na), or hydroxypropylmethy cellulose (HPMC K100M). The formulations were characterized in terms of tensile testing and continuous flow techniques for mucoadhesion. The rheological studies and in vitro drug release characteristics were also investigated. The results showed that combinations of two polymers significantly improved mucoadhesion, especially Carbopol 974P blended with HPMC. Carbopol 974P to HPMC blend ratios of 1:1 and 2:1 induced better mucoadhesion in the tensile test and continuous flow method, respectively. The most sustained release was obtained at a Carbopol 974P to HPMC ratio of 2.5:1. A predominantly non-Fickian diffusion release mechanism was obtained. The gel containing 2.5% Carbopol 974P combined with 1% HPMC showed good mucoadhesion properties and sustained drug release.
Collapse
|
65
|
Villa Nova M, Ratti BA, Herculano LS, Bittencourt PRS, Novello CR, Bazotte RB, Lautenschlager SDOS, Bruschi ML. Design of composite microparticle systems based on pectin and waste material of propolis for modified l-alanyl-l-glutamine release and with immunostimulant activity. Pharm Dev Technol 2017; 24:12-23. [DOI: 10.1080/10837450.2017.1410556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mônica Villa Nova
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Bianca A. Ratti
- Postgraduate Program in Biosciences and Physiopathology, Department of Basic Sciences of Health, State University of Maringa, Maringa, Parana, Brazil
| | - Leandro S. Herculano
- Department of Physics, Federal University of Technology, Medianeira, Parana, Brazil
| | | | - Cláudio R. Novello
- Academic Department of Chemistry and Biology, Federal University of Technology, Francisco Beltrão, Parana, Brazil
| | - Roberto Barbosa Bazotte
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
- Postgraduate Program in Biosciences and Physiopathology, Department of Basic Sciences of Health, State University of Maringa, Maringa, Parana, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
66
|
De Souza Ferreira SB, Da Silva JB, Volpato Junqueira M, Belincanta Borghi-Pangoni F, Guttierres Gomes R, Luciano Bruschi M. The importance of the relationship between mechanical analyses and rheometry of mucoadhesive thermoresponsive polymeric materials for biomedical applications. J Mech Behav Biomed Mater 2017; 74:142-153. [DOI: 10.1016/j.jmbbm.2017.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 01/14/2023]
|
67
|
Fonseca-Santos B, Satake CY, Calixto GMF, dos Santos AM, Chorilli M. Trans-resveratrol-loaded nonionic lamellar liquid-crystalline systems: structural, rheological, mechanical, textural, and bioadhesive characterization and evaluation of in vivo anti-inflammatory activity. Int J Nanomedicine 2017; 12:6883-6893. [PMID: 29066884 PMCID: PMC5604573 DOI: 10.2147/ijn.s138629] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (Res) is a common phytoalexin present in a few edible materials, such as grape skin, peanuts, and red wine. Evidence has shown the beneficial effects of Res on human health, which may be attributed to its anti-inflammatory activity. However, the poor aqueous solubility of Res limits its therapeutic effectiveness. Therefore, the use of nanostructured delivery systems for Res, such as liquid-crystalline systems, could be beneficial. In this study, we aimed to develop, characterize, and determine the in vivo effectiveness of Res-loaded liquid-crystalline systems. Systems containing copaiba balsam oil, polyethylene glycol-40 hydrogenated castor oil, and water were designed. Results of polarized light microscopy, small-angle X-ray scattering, texture-profile analysis, and flow-rheology analysis showed that the Res-loaded liquid-crystalline system had a lamellar structure, textural and mechanical (hardness, compressibility, and adhesiveness) properties, and behaved as a non-Newtonian fluid, showing pseudoplastic behavior upon skin application. Furthermore, all liquid-crystalline systems presented bioadhesive properties that may have assisted in maintaining the anti-inflammatory activity of Res, since the topical application of the Res-loaded lamellar mesophase liquid crystals resulted in edema inhibition in a carrageenan-induced paw-inflammation mouse model. Therefore, Res-loaded lamellar mesophases represent a promising new therapeutic approach for inhibition of skin inflammation.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cínthia Yuka Satake
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Aline Martins dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
68
|
Ci L, Huang Z, Liu Y, Liu Z, Wei G, Lu W. Amino-functionalized poloxamer 407 with both mucoadhesive and thermosensitive properties: preparation, characterization and application in a vaginal drug delivery system. Acta Pharm Sin B 2017; 7:593-602. [PMID: 28924553 PMCID: PMC5595263 DOI: 10.1016/j.apsb.2017.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lack of mucoadhesive properties is the major drawback to poloxamer 407 (F127)-based in situ hydrogels for mucosal administration. The objective of the present study was to construct a novel mucoadhesive and thermosensitive in situ hydrogel drug delivery system based on an amino-functionalized poloxamer for vaginal administration. First, amino-functionalized poloxamer 407 (F127-NH2) was synthesized and characterized with respect to its micellization behavior and interaction with mucin. Then using acetate gossypol (AG) as model drug, AG-loaded F127-NH2-based in situ hydrogels (NFGs) were evaluated with respect to rheology, drug release, ex vivo vaginal mucosal adhesion, in vivo intravaginal retention and local irritation after vaginal administration to healthy female mice. The results show that F127-NH2 is capable of forming a thermosensitive in situ hydrogel with sustained drug release properties. An interaction between positively charged F127-NH2 and negatively charged mucin was revealed by changes in the particle size and zeta potential of mucin particles as well as an increase in the complex modulus of NFG caused by mucin. Ex vivo and in vivo fluorescence imaging and quantitative analysis of the amount of AG remaining in mouse vaginal lavage all demonstrated greater intravaginal retention of NFG than that of an unmodified F127-based in situ hydrogel. In conclusion, amino group functionalization confers valuable mucoadhesive properties on poloxamer 407.
Collapse
Key Words
- ACN, anhydrous acetonitrile
- AG, acetate gossypol
- AG-loaded FG, F127 gel-loaded with acetate gossypol
- AG-loaded NFG, F127-NH2 gel-loaded with acetate gossypol
- ANOVA, one-way analysis of variance
- Acetate gossypol
- Amino group
- C6, 6-coumarin
- CDI, carbonyl diimidazole
- CMC, critical micelle concentration
- DAPI, 2-(4-amidinophenyl)-6-indolecarbamindine dihydrochloride
- DLS, dynamic light scattering
- DPH, 1,6-diphenyl-1,3,5-hexatriene
- DTT, dithiothreitol
- DiR, 1,1ʹ-dioctadecyl-3,3,3ʹ,3ʹ-tetramethylindotricarbocyanine iodide
- EDTA, ethylenediamine tetraacetic acid
- EMS, endometriosis
- F127, Pluronic F127
- FG, F127 gel
- FTIR, Fourier transform infrared
- H&E, hematoxylin and eosin
- ICR, Institute of Cancer Research
- In situ hydrogel
- Mucoadhesive gel
- NF, amino-functionalised poloxamer 407
- NFG, aminated poloxamer 407-based temperature sensitive hydrogel
- NMR, nuclear magnetic resonance
- OCT, optical coherence tomography
- PBS, phosphate buffered saline
- PDI, polydispersity index
- PEO, poly(ethylene oxide)
- PGM, porcine gastric mucin
- PPO, poly(propylene oxide)
- Poloxamer 407
- TEM, transmission electron microscopy
- VFS, vaginal fluid stimulant
Collapse
Affiliation(s)
- Liqian Ci
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhigang Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zhepeng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| |
Collapse
|
69
|
Bartkowiak A, Rojewska M, Biadasz A, Lulek J, Prochaska K. Surface properties and morphology of selected polymers and their blends designed to mucoadhesive dosage forms. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
70
|
Borghi-Pangoni FB, Junqueira MV, de Souza Ferreira SB, Silva LL, Rabello BR, de Castro LV, Baesso ML, Diniz A, Caetano W, Bruschi ML. Preparation and characterization of bioadhesive system containing hypericin for local photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 19:284-297. [DOI: 10.1016/j.pdpdt.2017.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022]
|
71
|
da Silva JB, Khutoryanskiy VV, Bruschi ML, Cook MT. A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
72
|
Linear correlation between rheological, mechanical and mucoadhesive properties of polycarbophil polymer blends for biomedical applications. J Mech Behav Biomed Mater 2017; 68:265-275. [DOI: 10.1016/j.jmbbm.2017.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/15/2022]
|
73
|
Sharma G, Kamboj S, Thakur K, Negi P, Raza K, Katare OP. Delivery of Thermoresponsive-Tailored Mixed Micellar Nanogel of Lidocaine and Prilocaine with Improved Dermatokinetic Profile and Therapeutic Efficacy in Topical Anaesthesia. AAPS PharmSciTech 2017; 18:790-802. [PMID: 27317572 DOI: 10.1208/s12249-016-0561-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022] Open
Abstract
The topical delivery of local anaesthetics has always been a difficult task due to the limited percutaneous absorption of local anaesthetic drugs across the various barriers of the skin. In this pursuit, a thermoresponsive mixed micellar nanogel (MMNG) system of lidocaine and prilocaine has been attempted in the current piece of work. The system relies on the ability to alter its phase state (sol-to-gel) for feasibility of the topical application in response to change in temperature. The composition of MMNG entails majorly of Pluronic® F127 and Tween 80 in a fixed combination so as to provide the desired thermoreversibility for the skin application. The gels were optimized with respect to phase transition temperature (T sol/gel), turbidity and viscosity. The optimized systems were then characterized for particle size, spreadability, syringeability, bioadhesive strength, ex vivo skin permeation, retention and dermatokinetic studies. The skin compatibility revealed that no histological changes were observed for optimized formulation, while the conventional system showed changes in the skin-tissues. Further, the enhanced intensity of anaesthetic effect was noted in an in vivo rabbit model and tail flick model in mice. The overall results suggest that the prepared MMNG system possesses the potential in providing an efficacious, safe and acceptable alternative therapeutic system for topical anaesthesia.
Collapse
|
74
|
Bassi da Silva J, Ferreira SBDS, de Freitas O, Bruschi ML. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm 2017; 43:1053-1070. [DOI: 10.1080/03639045.2017.1294600] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| | - Sabrina Barbosa de Souza Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| |
Collapse
|
75
|
Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Structural Features and the Anti-Inflammatory Effect of Green Tea Extract-Loaded Liquid Crystalline Systems Intended for Skin Delivery. Polymers (Basel) 2017; 9:polym9010030. [PMID: 30970708 PMCID: PMC6431852 DOI: 10.3390/polym9010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/02/2023] Open
Abstract
Camellia sinensis, which is obtained from green tea extract (GTE), has been widely used in therapy owing to the antioxidant, chemoprotective, and anti-inflammatory activities of its chemical components. However, GTE is an unstable compound, and may undergo reactions that lead to a reduction or loss of its effectiveness and even its degradation. Hence, an attractive approach to overcome this problem to protect the GTE is its incorporation into liquid crystalline systems (LCS) that are drug delivery nanostructured systems with different rheological properties, since LCS have both fluid liquid and crystalline solid properties. Therefore, the aim of this study was to develop and characterize GTE-loaded LCS composed of polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, avocado oil, and water (F25E, F29E, and F32E) with different rheological properties and to determine their anti-inflammatory efficacy. Polarized light microscopy revealed that the formulations F25, F29, and F32 showed hexagonal, cubic, and lamellar liquid crystalline mesophases, respectively. Rheological studies showed that F32 is a viscous Newtonian liquid, while F25 and F29 are dilatant and pseudoplastic non-Newtonian fluids, respectively. All GTE-loaded LCS behaved as pseudoplastic with thixotropy; furthermore, the presence of GTE increased the S values and decreased the n values, especially in F29, indicating that this LCS has the most organized structure. Mechanical and bioadhesive properties of GTE-unloaded and -loaded LCS corroborated the rheological data, showing that F29 had the highest mechanical and bioadhesive values. Finally, in vivo inflammation assay revealed that the less elastic and consistent LCS, F25E and F32E presented statistically the same anti-inflammatory activity compared to the positive control, decreasing significantly the paw edema after 4 h; whereas, the most structured and elastic LCS, F29E, strongly limited the potential effects of GTE. Thereby, the development of drug delivery systems with suitable rheological properties may enhance GTE bioavailability, enabling its administration via the skin for the treatment of inflammation.
Collapse
|
77
|
Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 2017; 155:208-217. [DOI: 10.1016/j.carbpol.2016.08.073] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
|
78
|
Yu S, Li Q, Li Y, Wang H, Liu D, Yang X, Pan W. A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: enhanced trans-corneal permeability and bioavailability of nepafenac. NEW J CHEM 2017. [DOI: 10.1039/c7nj00112f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A schematic illustration of a novel formulation that can be instilled on the surface of eyes (A) and the results of in vivo studies (B and C).
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Qi Li
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yuenan Li
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Haiying Wang
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering
- Liaoning Institute of Science and Technology
- Benxi 117004
- P. R. China
| | - Xinggang Yang
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Weisan Pan
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
79
|
Fonseca-Santos B, Dos Santos AM, Rodero CF, Gremião MPD, Chorilli M. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int J Nanomedicine 2016; 11:4553-4562. [PMID: 27660447 PMCID: PMC5019438 DOI: 10.2147/ijn.s108675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G′>G″), as evidenced by the increased G′ values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo Brazil
| | - Camila Fernanda Rodero
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, São Paulo Brazil
| |
Collapse
|
80
|
Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain N. Mucoadhesion: A promising approach in drug delivery system. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|