51
|
The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 2015; 13:68. [PMID: 25889215 PMCID: PMC4382850 DOI: 10.1186/s12916-015-0310-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia, depression, autism, and chronic fatigue syndrome. DISCUSSION While the majority of patients with multiple sclerosis appear to have widespread mitochondrial dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson's disease, autism, depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However, investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with elevated levels of pro-inflammatory cytokines. SUMMARY This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these disorders.
Collapse
|
52
|
Gutorova DA, Vasenina ED, Vasenina EE, Levin OS. [Is hyperlipidemia a risk factor of Parkinson's disease?]. Zh Nevrol Psikhiatr Im S S Korsakova 2015. [PMID: 28635787 DOI: 10.17116/jnevro20151156261-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To assess the relationship of the lipid spectrum, smoking, coffee drinking and brachiocephalic artery intima-media thickness with clinical characteristics of Parkinson's disease (PD). MATERIAL AND METHODS Authors examined 46 patients with PD, I-IV stages according to the Hoehn and Yahr scale, and 30 people without extrapyramidal pathology or cardiovascular diseases (controls). RESULTS AND CONCLUSION Patients with PD had lower levels of triglycerides and lower intima-media complex thickness compared to the controls. There was a trend towards the lower levels of total blood cholesterol, the differences were most marked in the late stage of PD. It can be suggested that the factors studied do not play a significant role in the development of degenerative process in PD. The marked differences may be related to a possible influence of antiparkinsonian treatment on the indicators of lipid metabolism.
Collapse
Affiliation(s)
| | | | - E E Vasenina
- Russian Medical Academy of Postgraduate Education, Moscow
| | - O S Levin
- Russian Medical Academy of Postgraduate Education, Moscow
| |
Collapse
|
53
|
Garrido-Maraver J, Cordero MD, Oropesa-Ávila M, Fernández Vega A, de la Mata M, Delgado Pavón A, de Miguel M, Pérez Calero C, Villanueva Paz M, Cotán D, Sánchez-Alcázar JA. Coenzyme q10 therapy. Mol Syndromol 2014; 5:187-97. [PMID: 25126052 DOI: 10.1159/000360101] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit.
Collapse
Affiliation(s)
- Juan Garrido-Maraver
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mario D Cordero
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Alejandro Fernández Vega
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Manuel de Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Pérez Calero
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Marina Villanueva Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
54
|
Del Pozo-Cruz J, Rodríguez-Bies E, Ballesteros-Simarro M, Navas-Enamorado I, Tung BT, Navas P, López-Lluch G. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 2014; 15:199-211. [PMID: 24384733 DOI: 10.1007/s10522-013-9491-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/29/2013] [Indexed: 01/11/2023]
Abstract
Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Jesús Del Pozo-Cruz
- Dpto. Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Carretera de Utrera km. 1, 41013, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
55
|
Acute restraint stress induces rapid and prolonged changes in erythrocyte and hippocampal redox status. Psychoneuroendocrinology 2013; 38:2511-9. [PMID: 23773854 DOI: 10.1016/j.psyneuen.2013.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 01/22/2023]
Abstract
The onset and consequential changes in reduction-oxidation (redox) status that take place in response to short-term stress have not been well defined. This study utilized erythrocytes and neural tissue from male Wistar rats to demonstrate the rapid redox alterations that occur following an acute restraining stress. Serial blood samples collected from catheterized animals were used to measure prolactin, corticosterone, glucose, general oxidative status, and glutathione/glutathione disulfide ratios. Restraint increased prolactin concentration by approximately 300% at 30 min and rapidly returned to baseline values by 120 min of stress. Baseline blood glucose and corticosterone increased during stress exposure by approximately 25% and 150% respectively. Over the experimental period, the erythrocytic oxidative status of restrained animals increased by approximately 10% per hour which persisted after stress exposure, while changes in the glutathione redox couple were not observed until 120 min following the onset of stress. Application of restraint stress increased hippocampal oxidative status by approximately 17% while no change was observed in the amygdala. It was concluded that while endocrine and metabolic markers of stress rapidly increase and habituate to stress exposure, redox status continues to change following stress in both peripheral and neural tissue. Studies with longer post-restraint times and the inclusion of several brain regions should further elucidate the consequential redox changes induced by acute restraint stress.
Collapse
|
56
|
Phillipson OT. Management of the aging risk factor for Parkinson's disease. Neurobiol Aging 2013; 35:847-57. [PMID: 24246717 DOI: 10.1016/j.neurobiolaging.2013.10.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023]
Abstract
The aging risk factor for Parkinson's disease is described in terms of specific disease markers including mitochondrial and gene dysfunctions relevant to energy metabolism. This review details evidence for the ability of nutritional agents to manage these aging risk factors. The combination of alpha lipoic acid, acetyl-l-carnitine, coenzyme Q10, and melatonin supports energy metabolism via carbohydrate and fatty acid utilization, assists electron transport and adenosine triphosphate synthesis, counters oxidative and nitrosative stress, and raises defenses against protein misfolding, inflammatory stimuli, iron, and other endogenous or xenobiotic toxins. These effects are supported by gene expression via the antioxidant response element (ARE; Keap/Nrf2 pathway), and by peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha), a transcription coactivator, which regulates gene expression for energy metabolism and mitochondrial biogenesis, and maintains the structural integrity of mitochondria. The effectiveness and synergies of the combination against disease risks are discussed in relation to gene action, dopamine cell loss, and the accumulation and spread of pathology via misfolded alpha-synuclein. In addition there are potential synergies to support a neurorestorative role via glial derived neurotrophic factor expression.
Collapse
Affiliation(s)
- Oliver T Phillipson
- School of Medical Sciences, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
57
|
Impact of genetic variants of apolipoprotein E on lipid profile in patients with Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:641515. [PMID: 24175296 PMCID: PMC3794554 DOI: 10.1155/2013/641515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022]
Abstract
The pathogenesis of Parkinson's disease (PD) seems to involve genetic susceptibility to neurodegeneration. APOE gene has been considered a risk factor for PD. This study aimed to evaluate the association of APOE polymorphism with PD and its influence on lipid profile. We studied 232 PD patients (PD) and 169 individuals without the disease. The studied polymorphism was analyzed by PCR/RFLP. The Fisher's exact test, chi-square, ANOVA, and t-test (P < 0.05) were applied. The APOE3/3 genotype was prevalent in PD patients and Controls (P = 0.713) followed by APOE3/4 (P = 0.772). Both groups showed recommended values for lipid profile, with increase in the values of total cholesterol and LDLc, as well as decreased values of triglycerides in PD patients compared with Controls (P < 0.05 for all of them). Increased levels of HDLc, in PD patients, were associated with the APOE3/3 versus APOE-/4 genotypes (P = 0.012). The APOE polymorphism does not distinguish PD patients from Controls, as opposed to the lipid profile alone or in association with APOE. Furthermore, a relationship between increase of HDLc levels and APOE3 in homozygous was found in PD patients only.
Collapse
|
58
|
Abdel-Salam OME, Khadrawy YA, Youness ER, Mohammed NA, Abdel-Rahman RF, Hussein JS, Shafee N. Effect of a single intrastriatal rotenone injection on oxidative stress and neurodegeneration in the rat brain. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1807-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
59
|
Determination of coenzyme Q10 tissue status via high-performance liquid chromatography with electrochemical detection in swine tissues (Sus scrofa domestica). Anal Biochem 2013; 437:88-94. [DOI: 10.1016/j.ab.2013.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
|
60
|
Xu P, Li D, Tang X, Bao X, Huang J, Tang Y, Yang Y, Xu H, Fan X. LXR Agonists: New Potential Therapeutic Drug for Neurodegenerative Diseases. Mol Neurobiol 2013; 48:715-28. [DOI: 10.1007/s12035-013-8461-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 01/04/2023]
|
61
|
Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV. Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 2013; 47:26-42. [PMID: 22711881 DOI: 10.1177/0004867412449303] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Bipolar patients frequently relapse within 12 months of their previous mood episode, even in the context of adequate treatment, suggesting that better continuation and maintenance treatments are needed. Based on recent research of the pathophysiology of bipolar disorder, we review the evidence for mitochondrial dysregulation and selected mitochondrial modulators (MM) as potential treatments. METHODS We reviewed the literature about mitochondrial dysfunction and potential MMs worthy of study that could improve the course of bipolar disorder, reduce subsyndromal symptoms, and prevent subsequent mood episodes. RESULTS MM treatment targets mitochondrial dysfunction, oxidative stress, altered brain energy metabolism and the dysregulation of multiple mitochondrial genes in patients with bipolar disorder. Several tolerable and readily available candidates include N-acetyl-cysteine (NAC), acetyl-L-carnitine (ALCAR), S-adenosylmethionine (SAMe), coenzyme Q(10) (CoQ10), alpha-lipoic acid (ALA), creatine monohydrate (CM), and melatonin. The specific metabolic pathways by which these MMs may improve the symptoms of bipolar disorder are discussed and combinations of selected MMs could be of interest as well. CONCLUSIONS Convergent data implicate mitochondrial dysfunction as an important component of the pathophysiology of bipolar disorder. Clinical trials of individual MMs as well as combinations are warranted.
Collapse
|
62
|
Agarwal PA, Stoessl AJ. Biomarkers for trials of neuroprotection in Parkinson's disease. Mov Disord 2012; 28:71-85. [DOI: 10.1002/mds.25065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 02/06/2023] Open
Affiliation(s)
- Pankaj A. Agarwal
- Pacific Parkinson's Research Centre; University of British Columbia; Vancouver; British Columbia; Canada
| | | |
Collapse
|
63
|
High-accuracy analysis system for the redox status of coenzyme Q10 by online supercritical fluid extraction–supercritical fluid chromatography/mass spectrometry. J Chromatogr A 2012; 1250:76-9. [DOI: 10.1016/j.chroma.2012.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 11/23/2022]
|
64
|
Mischley LK, Allen J, Bradley R. Coenzyme Q10 deficiency in patients with Parkinson's disease. J Neurol Sci 2012; 318:72-5. [PMID: 22542608 DOI: 10.1016/j.jns.2012.03.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2012] [Accepted: 03/28/2012] [Indexed: 11/17/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) are well known to contribute to the pathophysiology of Parkinson's disease (PD). Clinical trials of antioxidants are currently underway in PD patients, however, antioxidant research has been hindered by a lack of peripheral biomarkers. METHODS Twenty-two patients with PD elected to have a novel antioxidant assessment (Functional Intracellular Assay (FIA), SpectraCell Lab, Houston, TX) performed between 2004 and 2008. Each PD case was compared to four age- and gender-matched controls (n=88) in four separate, random iterations using laboratory data submitted during the same time period. Logistic regression was used to determine the odds of functional deficiency in antioxidant nutrients (i.e., glutathione, coenzyme Q10, selenium, vitamin E and alpha-lipoic acid) by case-control status. The proportion of cases with functional deficiency was also compared to that for controls by chi(2) test. RESULTS Compared to cases, PD patients had a significantly greater odds of deficiency in coenzyme Q10 status (OR: 4.7-5.4; 95% CI: 1.5-17.7; P=0.003-0.009) based on FIA results, but not of vitamin E, selenium, lipoic acid, or glutathione (all P>0.05). The proportion of cases with coenzyme Q10 deficiency was also significantly greater in cases than in controls (32-36% vs. 8-9%; P=0.0012-0.006). CONCLUSIONS Deficiency of coenzyme Q10 assessed via FIA should be explored as a potential peripheral biomarker of antioxidant status in PD.
Collapse
|
65
|
Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson's disease patients. Neuromolecular Med 2012; 14:84-90. [PMID: 22354693 DOI: 10.1007/s12017-012-8174-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
There is evidence that increased homocysteine (Hcy) levels might accelerate dopaminergic cell death in Parkinson's disease (PD) through neurotoxic effects. Homocysteine neurotoxicity mainly relies on redox state alterations. The present work was aimed at investigating the relationships between plasma Hcy concentrations and percent content of oxidized versus total Coenzyme Q10 (%CoQ10) in 60 PD patients and 82 healthy subjects. Both groups were screened for plasma levels of Hcy, vitamin B12, folate, %CoQ10 and C677T methylenetetrahydrofolate reductase (MTHFR) gene polymorphism. The MTHFR TT677 mutated genotype was found more frequently in patients than in controls (p = 0.01). In a multivariate analysis, Hcy levels and %CoQ10 were associated with the case/control category (p < 0.0001), MTHFR genotype (p < 0.0001) and their interaction term (p = 0.0015), even after adjusting for age, sex, folate and vitamin B12. Patients carrying the TT677 genotype exhibited the highest values of Hcy and %CoQ10 (p < 0.0001). Structural equation modelling evidenced that the TT677 genotype and levodopa daily dose were independently and directly correlated with Hcy (p < 0.0001, and p = 0.003, respectively), which, in turn, showed a significant correlation (p < 0.0001) with the %CoQ10 in PD patients. Our results suggest that increased Hcy levels act as mediator of the systemic oxidative stress occurring in PD, and %CoQ10 determination might be regarded as a predictor of toxic Hcy effects.
Collapse
|
66
|
Xue X, Zhao J, Chen L, Zhou J, Yue B, Li Y, Wu L, Liu F. Analysis of coenzyme Q10 in bee pollen using online cleanup by accelerated solvent extraction and high performance liquid chromatography. Food Chem 2012; 133:573-8. [PMID: 25683435 DOI: 10.1016/j.foodchem.2011.12.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 10/30/2011] [Accepted: 12/24/2011] [Indexed: 11/17/2022]
Abstract
A method for the determination of coenzyme Q10 in bee pollen has been developed applying an online cleanup of accelerated solvent extraction and using environmentally acceptable organic solvents. The extracted samples were analysed by high performance liquid chromatography with diode array detection. The optimised method employed 10 mL extraction cells, 1g sample size, absolute ethanol as extraction solvent, 80°C of extraction temperature, one extraction cycle, 5 min of static time, Cleanert Alumina-N as sorbent and 60% flush volume. The method was validated by means of an evaluation of the matrix effects, linearity, limit of detection (LOD) and quantification (LOQ), trueness, precision and stability. The assay was linear over the concentration range of 0.25-200mg/L and the LOD and LOQ were 0.16 and 0.35 mg/kg, respectively. The recoveries were above 90%. The inter- and intra-day precision was below 6.3%. The method has been successfully applied to the analysis of bee pollen samples. For 20 bee pollen products, the coenzyme Q10 content varied from not detectable to 192.8 mg/kg.
Collapse
Affiliation(s)
- Xiaofeng Xue
- Department of Applied chemistry, College of Science, China Agricultural University, Beijing 100193, China; Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China.
| | - Jing Zhao
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China
| | - Lanzhen Chen
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China
| | - Jinhui Zhou
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China
| | - Bing Yue
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China
| | - Yi Li
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China
| | - Liming Wu
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Apicultural Branch Center, Research and Development Center of National Agro-food Processing Technology, Beijing 102202, China
| | - Fengmao Liu
- Department of Applied chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
67
|
Tang PH, Miles MV. Measurement of oxidized and reduced coenzyme Q in biological fluids, cells, and tissues: an HPLC-EC method. Methods Mol Biol 2012; 837:149-168. [PMID: 22215546 DOI: 10.1007/978-1-61779-504-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Direct measure of coenzyme Q (CoQ) in biological specimens may provide important advantages. Precise and selective high-performance liquid chromatography (HPLC) methods with electrochemical (EC) detection have been developed for the measurement of reduced (ubiquinol) and oxidized (ubiquinone) CoQ in biological fluids, cells, and tissues. EC detection is preferred for measurement of CoQ because of its high sensitivity. Reduced and oxidized CoQ are first extracted from biological specimens using 1-propanol. After centrifugation, the 1-propanol supernatant is directly injected into HPLC and monitored at a dual-electrode. The EC reactions occur at the electrode surface. The first electrode transforms ubiquinone into ubiquinol, and the second electrode measures the current produced by the oxidation of the hydroquinone group of ubiquinol. The methods described provide rapid, precise, and simple procedures for determination of reduced and oxidized CoQ in biological fluids, cells, and tissues. The methods have been successfully adapted to meet regulatory requirements for clinical laboratories, and have been proven reliable for analysis of clinical and research samples for clinical trials and animal studies involving large numbers of specimens.
Collapse
Affiliation(s)
- Peter H Tang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
68
|
Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson's disease. Front Neurol 2011; 2:68. [PMID: 22125548 PMCID: PMC3221408 DOI: 10.3389/fneur.2011.00068] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/21/2011] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.
Collapse
Affiliation(s)
- Stacey E Seidl
- Department of Biological Sciences, DePaul University Chicago, IL, USA
| | | |
Collapse
|
69
|
Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 2011; 314:48-56. [PMID: 22113180 DOI: 10.1016/j.jns.2011.11.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/27/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
We have determined various biomarkers in the peripheral blood of Alzheimer, Parkinson and vascular dementia patients by comparing the samples with those of first-degree relatives and control subjects. Our results, together with correlation studies using data from the Mini-Mental State Examination (MMSE), suggest that the clinical evaluation of the nitrite (NOx) concentration in Alzheimer patients should be complemented by assays of protein carbonyls (PCs) levels, the ratio of reduced to oxidized glutathione (GSH/GSSG) in plasma, PCs in erythrocytes and PCs and calcium content in leukocytes. For Parkinson patients it would be useful to determine NOx, thiobarbituric-acid reactive substances (TBARS) and PCs in erythrocytes, and NOx and TBARS en leukocytes. For vascular-demented (VD) patients, determination of NOx, Cu, and GSH/GSSG in plasma and TBARS, and PCs in erythrocytes together with PCs in leukocytes should be assayed. Relatives of Alzheimer patients showed alterations in plasma Se and Zn concentrations, catalase (CAT) activity in erythrocytes and calcium content in leukocytes as possible predictive markers of the disease. Relatives of Parkinson patients showed elevated levels of NOx in leukocytes. In the case of vascular-demented patients we suggest NOx, GSH/GSSG and α-tocopherol in plasma, the CAT/superoxide dismutase ratio in erythrocytes and TBARS, GSSG and glutathione reductase in leukocytes as predictive markers. Large-scale longitudinal population-based studies using these suggested biomarkers are necessary in order to assess their level of reliability and specificity in clinical practice.
Collapse
|
70
|
Protective efficacy of coenzyme Q10 against DDVP-induced cognitive impairments and neurodegeneration in rats. Neurotox Res 2011; 21:345-57. [PMID: 22083459 DOI: 10.1007/s12640-011-9289-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 12/24/2022]
Abstract
The present study was carried out to elucidate the effects of coenzyme Q(10) (CoQ(10)) against cognitive impairments induced by dichlorvos (DDVP). We have previously shown organophosphate, DDVP-induced impairments in neurobehavioral indices viz. rota rod, passive avoidance, and water maze tests. In addition to this, we have also reported that chronic DDVP exposure leads to decreased mitochondrial electron transfer activities of cytochrome oxidase along with altered mitochondrial complexes I-III activity. Administration of CoQ(10) (4.5 mg/kg, i.p. for 12 weeks prior to DDVP administration daily) to DDVP-treated rats improved cognitive performance in passive avoidance task and Morris water maze test. Furthermore, CoQ(10) treatment also reduced oxidative stress (as evident by reduced malondialdehyde, decreased ROS and increased Mn-SOD activity) in DDVP-treated rats' hippocampus region, along with enhanced activity of complexes I-III and complex IV. Electron microscope studies of rat hippocampus mitochondria revealed that CoQ(10) administration leads to near normal physiology of mitochondria with well-defined cristae compared with DDVP-treated animals where enlarged mitochondria with distorted cristae are observed. CoQ(10) administration also attenuated neuronal damage in hippocampus as evident from histopathological studies. These results demonstrate the beneficial effects of CoQ(10) against organophosphate-induced cognitive impairments and hippocampal neuronal degeneration.
Collapse
|
71
|
Blood-based protein biomarkers for diagnosis and classification of neurodegenerative diseases: current progress and clinical potential. Mol Diagn Ther 2011; 15:83-102. [PMID: 21623645 DOI: 10.1007/bf03256398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomarker research is a rapidly advancing field in medicine. Recent advances in genomic, genetic, epigenetic, neuroscientific, proteomic, and metabolomic knowledge and technologies have opened the way to thriving research. In the most general sense, a biomarker refers to any useful characteristic that can be measured and used as an indicator of a normal biologic process, a pathogenic process, or a pharmacologic response to a therapeutic agent. Despite the extensive resources concentrated on this area, there are very few biomarkers currently available that qualify and are satisfactorily validated for mental disorders, and there is still a major lack of biomarkers for typifying neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. This article provides an overview of this field of research and focuses on recent advances in biomarker research in Alzheimer's disease and Parkinson's disease.
Collapse
|
72
|
Biomarkers of Parkinson's disease and Dementia with Lewy bodies. Prog Neurobiol 2011; 95:601-13. [PMID: 21983334 DOI: 10.1016/j.pneurobio.2011.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are progressive and disabling neurodegenerative disorders, in which signs and symptoms overlap with each other and with other neurodegenerative conditions. Currently, diagnosis, measurement of progression, and response to therapeutic intervention rely upon clinical observation. However, there remains a critical need for validated biomarkers in each of these areas. A definitive diagnostic test would improve clinical management and enrollment into clinical trials. An objective measure of progression is vitally important in identifying neuroprotective interventions. Biomarkers may also provide insight into pathogenesis, and might therefore suggest possible novel targets for therapeutic intervention. In addition, certain biomarkers might be of use in monitoring the biochemical and physiological effects of therapeutic interventions. Development of diagnostic biomarkers has focused until recently upon imaging techniques based upon measuring loss of dopamine neurons. Additionally, advances in understanding the genetic contribution to neurodegenerative disorders, in particular in PD, have identified multiple causative genes and risk factors that in some cases may help estimate PD risk. However, recent availability of increasingly sophisticated bioinformatics technology has rendered development of fluid biomarkers feasible, opening the possibility of generally accessible blood or cerebrospinal fluid (CSF) tests that could impact upon diagnosis, management, and research in PD, PDD, and DLB.
Collapse
|
73
|
Kirches E. Do mtDNA Mutations Participate in the Pathogenesis of Sporadic Parkinson's Disease? Curr Genomics 2011; 10:585-93. [PMID: 20514220 PMCID: PMC2817889 DOI: 10.2174/138920209789503879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of sporadic Parkinson’s disease (PD) remains enigmatic. Mitochondrial complex-I defects are known to occur in the substantia nigra (SN) of PD patients and are also debated in some extracerebral tissues. Early sequencing efforts of the mitochondrial DNA (mtDNA) did not reveal specific mutations, but a long lasting discussion was devoted to the issue of randomly distributed low level point mutations, caused by oxidative stress. However, a potential functional impact remained a matter of speculation, since heteroplasmy (mutational load) at any base position analyzed, remained far below the relevant functional threshold. A clearly age-dependent increase of the ‘common mtDNA deletion’ had been demonstrated in most brain regions by several authors since 1992. However, heteroplasmy did hardly exceed 1% of total mtDNA. It became necessary to exploit PCR techniques, which were able to detect any deletion in a few microdissected dopaminergic neurons of the SN. In 2006, two groups published biochemically relevant loads of somatic mtDNA deletions in these neurons. They seem to accumulate to relevant levels in the SN dopaminergic neurons of aged individuals in general, but faster in those developing PD. It is reasonable to assume that this accumulation causes mitochondrial dysfunction of the SN, although it cannot be taken as a final proof for an early pathogenetic role of this dysfunction. Recent studies demonstrate a distribution of deletion breakpoints, which does not differ between PD, aging and classical mitochondrial disorders, suggesting a common, but yet unknown mechanism.
Collapse
Affiliation(s)
- E Kirches
- Department of Neuropathology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
74
|
Effects of arterial oxygen content on oxidative stress during resuscitation in a rat hemorrhagic shock model. Resuscitation 2010; 82:110-4. [PMID: 21056525 DOI: 10.1016/j.resuscitation.2010.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/15/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To examine whether reactive oxygen species (ROS) production is affected by arterial oxygen content (CaO(2)) in attempted resuscitation to restore blood pressure from hemorrhagic shock (HS) or not. METHODS Under light anesthesia and spontaneous beating, 16 rats underwent HS for 80min, during which 3.0mL/100g of blood was withdrawn, followed by resuscitation attempt for 70min. At 80min, rats were randomized into a high-CaO(2) group (Group 1, transfusion under fractional inspired oxygen (F(I)O(2)) of 1.0, n=8) or a low-CaO(2) group (Group 2, fluid administration under F(I)O(2) of 0.21, n=8). In each group, either blood or lactate Ringer's (LR) solution was infused to maintain mean arterial pressure ≥75mmHg under each F(I)O(2) concentration. CaO(2), O(2) utilization coefficient (UC) and plasma %CoQ9 were compared between groups. RESULTS Mean infused volume for attempted resuscitation was 7.6±1.0mL of blood in Group 1, and 31.4±5.5mL of LR solution in Group 2. At the end of resuscitation, CaO(2) was 18.5±1.2 vol% in Group 1, almost double the 9.1±0.8 vol% in Group 2 (P<0.01). O(2) UC and %CoQ9 in all rats increased from baselines of 0.25±0.12 and 7.6±1.8% to 0.44±0.13 and 9.7±1.8% after resuscitation, respectively (P<0.05 vs. baseline for each), but did not differ significantly between the groups. CONCLUSION In a rat HS model, attempted resuscitation to restore blood pressure increased O(2) UC as well as %CoQ9. However, the magnitude of %CoQ9 increase that represents ROS production is not affected by CaO(2) during resuscitation from HS.
Collapse
|
75
|
Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 2010; 19:535-54. [PMID: 20367194 DOI: 10.1517/13543781003727495] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Coenzyme Q(10) (CoQ(10)) is found in blood and in all organs. CoQ(10) deficiencies are due to autosomal recessive mutations, ageing-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer and muscular and cardiovascular diseases have been associated with low CoQ(10) levels, as well as different ataxias and encephalomyopathies. AREAS COVERED IN THIS REVIEW We review the efficacy of a variety of commercial formulations which have been developed to solubilise CoQ(10) and promote its better absorption in vivo, and its use in the therapy of pathologies associated with low CoQ(10) levels, with emphasis in the results of the clinical trials. Also, we review the use of its analogues idebenone and MitoQ. WHAT THE READER WILL GAIN This review covers the most relevant aspects related with the therapeutic use of CoQ(10), including existing formulations and their effects on its bioavailability. TAKE HOME MESSAGE CoQ(10) does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ(10) absorption. Oral CoQ(10) is a viable antioxidant strategy in many diseases, providing a significant to mild symptomatic benefit. Idebenone and MitoQ are promising substitutive CoQ(10)-related drugs which are well tolerated and safe.
Collapse
Affiliation(s)
- Jose M Villalba
- Universidad de Córdoba, Facultad de Ciencias, Departamento de Biología Celular, Fisiología e Inmunología, Campus Universitario de Rabanales, Edificio Severo Ochoa, 3a planta 14014 Córdoba, Spain.
| | | | | | | |
Collapse
|
76
|
Vasta V, Sedensky M, Morgan P, Hahn SH. Altered redox status of coenzyme Q9 reflects mitochondrial electron transport chain deficiencies in Caenorhabditis elegans. Mitochondrion 2010; 11:136-8. [PMID: 20849980 DOI: 10.1016/j.mito.2010.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/26/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial disorders are often associated with primary or secondary CoQ10 decrease. In clinical practice, Coenzyme Q10 (CoQ10) levels are measured to diagnose deficiencies and to direct and monitor supplemental therapy. CoQ10 is reduced by complex I or II and oxidized by complex III in the mitochondrial respiratory chain. Therefore, the ratio between the reduced (ubiquinol) and oxidized (ubiquinone) CoQ10 may provide clinically significant information in patients with mitochondrial electron transport chain (ETC) defects. Here, we exploit mutants of Caenorhabditis elegans (C. elegans) with defined defects of the ETC to demonstrate an altered redox ratio in Coenzyme Q9 (CoQ9), the native quinone in these organisms. The percentage of reduced CoQ9 is decreased in complex I (gas-1) and complex II (mev-1) deficient animals, consistent with the diminished activity of these complexes that normally reduce CoQ9. As anticipated, reduced CoQ9 is increased in the complex III deficient mutant (isp-1), since the oxidase activity of the complex is severely defective. These data provide proof of principle of our hypothesis that an altered redox status of CoQ may be present in respiratory complex deficiencies. The assessment of CoQ10 redox status in patients with mitochondrial disorders may be a simple and useful tool to uncover and monitor specific respiratory complex defects.
Collapse
Affiliation(s)
- V Vasta
- Seattle Children's Research Institute, Seattle, WA, United States
| | | | | | | |
Collapse
|
77
|
Miyake Y, Tanaka K, Fukushima W, Sasaki S, Kiyohara C, Tsuboi Y, Yamada T, Oeda T, Miki T, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M. Case–control study of risk of Parkinson's disease in relation to hypertension, hypercholesterolemia, and diabetes in Japan. J Neurol Sci 2010; 293:82-6. [DOI: 10.1016/j.jns.2010.03.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/01/2010] [Accepted: 03/05/2010] [Indexed: 01/21/2023]
|
78
|
KAWAI K, IINO T, THANATUKSORN P, YAMAMOTO Y, KAJIWARA K. PHASE TRANSITIONS IN A BINARY SYSTEM OF COENZYME Q10 AND COCONUT OIL: A FUNDAMENTAL STUDY ON THE IMPROVEMENT OF NUTRITIONAL AVAILABILITY OF COENZYME Q10 SUPPLEMENTS. J Food Biochem 2010. [DOI: 10.1111/j.1745-4514.2010.00351.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Xun Z, Kaufman TC, Clemmer DE. Stable isotope labeling and label-free proteomics of Drosophila parkin null mutants. J Proteome Res 2010; 8:4500-10. [PMID: 19705877 DOI: 10.1021/pr9006238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and formation of intracytoplasmic Lewy bodies (LBs). Loss-of-function mutations in parkin which encodes an E3 ubiquitin protein ligase contribute to a predominant cause of a familial form of PD termed autosomal recessive juvenile Parkinsonism (AR-JP). Drosophila parkin null mutants display muscle degeneration and mitochondrial dysfunction, providing an animal model to study Parkin-associated molecular pathways in PD. To define protein alterations involved in Parkin pathogenesis, we performed quantitative proteomic analyses of Drosophila parkin null mutants and age-matched controls utilizing both global internal standard technology (GIST) and extracted ion chromatogram peak area (XICPA) label-free approaches. A total of 375 proteins were quantified with a minimum of two peptide identifications from the combination of the XICPA and GIST measurements applied to two independent biological replicates. Sixteen proteins exhibited significant alteration. Seven of the dysregulated proteins are involved in energy metabolism, of which six were down-regulated. All five proteins involved in transporter activity exhibited higher levels, of which larval serum protein 1alpha, larval serum protein 1beta, larval serum protein 1gamma, and fat body protein 1 showed >10-fold up-regulation and substantially higher level of fat body protein 1 was confirmed by Western blot analysis. These findings suggest that abnormalities in energy metabolism and protein transporter activity pathways may be associated with the pathogenesis of Parkin-associated AR-JP.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
80
|
Santos GCD, Antunes LMG, Santos ACD, Bianchi MDLP. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases. BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000400002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10) has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP). The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.
Collapse
|
81
|
Hu G. Total cholesterol and the risk of Parkinson's disease: a review for some new findings. PARKINSONS DISEASE 2009; 2010:836962. [PMID: 20975778 PMCID: PMC2957328 DOI: 10.4061/2010/836962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/18/2009] [Accepted: 10/14/2009] [Indexed: 11/20/2022]
Abstract
The studies on the association between serum cholesterol level and the risks of neurodegenerative diseases risk are debated. Some prospective studies have found that high serum cholesterol may increase the risks of dementia/Alzheimer's disease and ischemic stroke. However, other studies have found no association or a decreased risk of hemorrhagic stroke with increasing levels of serum total cholesterol. Little is known about the association between serum total cholesterol or a history of hypercholesterolemia and Parkinson's disease (PD) risk. Only a few case-control studies and four prospective epidemiological studies have examined this association, but the results are inconsistent. An inverse association between serum total cholesterol and the risk of PD has been found in one prospective study; however, no significant association is reported in the case-control studies and other two prospective studies. Recently, one large prospective study from Finland suggests that high total cholesterol at baseline is associated with an increased risk of PD. Further studies, especially large clinical trials, are needed.
Collapse
Affiliation(s)
- Gang Hu
- Chronic Disease Epidemiology Laboratory, Population Science, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
82
|
Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci 2009; 10:109. [PMID: 19723328 PMCID: PMC3152779 DOI: 10.1186/1471-2202-10-109] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 09/01/2009] [Indexed: 12/21/2022] Open
Abstract
Background Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD models effective in vivo tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment.
Collapse
Affiliation(s)
- Katharina Faust
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Takasu A, Iwamoto S, Ando S, Minagawa Y, Kashiba M, Yamamoto Y, Sakamoto T. Effects of various concentrations of inhaled oxygen on tissue dysoxia, oxidative stress, and survival in a rat hemorrhagic shock model. Resuscitation 2009; 80:826-31. [PMID: 19410357 DOI: 10.1016/j.resuscitation.2009.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/29/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To test the hypothesis that a fractional inspired oxygen (F(I)O(2)) of 1.0 compared to 0.4 during hemorrhagic shock (HS) and fluid resuscitation (FR): mitigates tissue dysoxia; however, enhances the oxidative stress; therefore, offsets the benefit on survival. METHODS Thirty rats underwent: HS for 75min, during which 3.0mL/100g of blood was withdrawn, followed by FR for 75min, during which 1.0mL/100g of shed blood and 3.0mL/100g of crystalloid solution were infused. Ten rats were randomized into one of three F(I)O(2) (0.21 vs. 0.4 vs. 1.0) groups, and observed for survival until 72h in each group. Hemodynamics, liver tissue PO(2) (P(T)O(2)), and, plasma antioxidants levels were also monitored. RESULTS Oxygen inhalation increased mean arterial pressure (MAP) and decreased heart rate (HR) during HS and FR. Liver P(T)O(2) was less than 10Torr in all groups throughout HS; while it increased to average 26-35Torr in oxygen groups during FR, it remained at 10Torr with F(I)O(2) 0.21 (P<0.01). MAP, HR, and P(T)O(2) did not differ significantly between oxygen groups. Plasma antioxidants levels did not differ among the three groups. All rats treated with oxygen, but eight of 10 rats with F(I)O(2) 0.21 survived up to 72h (NS). CONCLUSIONS Supplemental oxygen does not mitigate tissue dysoxia during HS, but does reduce tissue dysoxia without enhancing oxidative stress during subsequent FR. Increased F(I)O(2) appears to prolong survival. These beneficial effects of supplemental oxygen do not differ between an F(I)O(2) of 0.4 and 1.0.
Collapse
Affiliation(s)
- Akira Takasu
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Namiki, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
84
|
Dragonas C, Bertsch T, Sieber CC, Brosche T. Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson's disease. Clin Chem Lab Med 2009; 47:894-7. [DOI: 10.1515/cclm.2009.205] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
85
|
Spindler M, Beal MF, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 2009; 5:597-610. [PMID: 19966907 PMCID: PMC2785862 DOI: 10.2147/ndt.s5212] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson's disease and atypical Parkinson's syndromes, Huntington's disease, Alzheimer disease, Friedreich's ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Meredith Spindler
- Department of Neurology, Weill Medical, College of Cornell University, 525 east 68th Street, Suite F610, New York, NY, USA.
| | | | | |
Collapse
|
86
|
Improvement of the oral bioavailability of coenzyme Q10 by emulsification with fats and emulsifiers used in the food industry. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2008.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Miles MV, Tang PH, Miles L, Steele PE, Moye MJ, Horn PS. Validation and application of an HPLC-EC method for analysis of coenzyme Q10 in blood platelets. Biomed Chromatogr 2008; 22:1403-8. [DOI: 10.1002/bmc.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
88
|
Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 2008; 1147:93-104. [PMID: 19076434 PMCID: PMC2745097 DOI: 10.1196/annals.1427.023] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a common adult-onset neurodegenerative disorder. Typically PD is a sporadic neurological disorder, and over time affected patients see their disability growing and their quality of life declining. Oxidative stress has been hypothesized to be linked to both the initiation and the progression of PD. Preclinical findings from both in vitro and in vivo experimental models of PD suggest that the neurodegenerative process starts with otherwise healthy neurons being hit by some etiological factors, which sets into motion a cascade of deleterious events. In these models initial molecular alterations in degenerating dopaminergic neurons include increased formation of reactive oxygen species, presumably originating from both inside and outside the mitochondria. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, time-course experiments suggest that oxidative stress is an early event that may directly kill some of the dopaminergic neurons. In this model it seems that oxidative stress may play a greater role in the demise of dopaminergic neurons indirectly by activating intracellular, cell death-related, molecular pathways. As the neurodegenerative process evolves in the MPTP mouse model, indices of neuroinflammation develop, such as microglial activation. The latter increases the level of oxidative stress to which the neighboring compromised neurons are subjected to, thereby promoting their demise. However, these experimental studies have also shown that oxidative stress is not the sole deleterious factor implicated in the death of dopaminergic neurons. Should a similar multifactorial cascade underlie dopaminergic neuron degeneration in PD, then the optimal therapy for this disease may have to rely on a cocktail of agents, each targeting a different critical component of this hypothesized pathogenic cascade. If correct, this may be a reason why neuroprotective trials using a single agent, such as an antioxidant, have thus far generated disappointing results.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
89
|
Dhanasekaran M, Karuppagounder SS, Uthayathas S, Wold LE, Parameshwaran K, Jayachandra Babu R, Suppiramaniam V, Brown-Borg H. Effect of dopaminergic neurotoxin MPTP/MPP+ on coenzyme Q content. Life Sci 2008; 83:92-5. [PMID: 18565546 DOI: 10.1016/j.lfs.2008.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/04/2008] [Accepted: 04/22/2008] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10, an endogenous lipophilic antioxidant, plays an indispensable role in ATP synthesis. The therapeutic value of coenzyme Q10 in Parkinson's disease and other neurodegenerative disorders is still being tested and the preliminary results are promising. The 1-methyl-4-phenyl-1, 2, 3, 6 tetrahydropyridine (MPTP)-treated mouse is a valid and accepted animal model for Parkinson's disease. 1-methyl-4-phenylpyridinium (MPP(+)) is an active toxic metabolite of MPTP. MPP(+) and MPTP are known to induce oxidative stress and mitochondrial dysfunction. However, the effect of MPP(+) and MPTP on coenzyme Q is not clearly understood. The present study investigated the in vitro and in vivo effect of MPP(+) and MPTP on coenzyme Q content. Coenzyme Q content was measured using HPLC-UV detection methods. In the in vitro studies, MPP(+) (0-50 microM) was incubated with SH-SY5Y human neuroblastoma cells and NG-108-15 (mouse/rat, neuroblastomaxglioma hybrid) cells. MPP(+) concentration dependently increased coenzyme Q10 content in SH-SY5Y cells. In NG-108-15 cells, MPP(+) concentration dependently increased both coenzyme Q9 and Q10 content. In the in vivo study, mice were administered with MPTP (30 mg/kg, twice 16 h apart) and sacrificed one week after the last administration. Administration of MPTP to mice significantly increased coenzyme Q9 and coenzyme Q10 levels in the nigrostriatal tract. However, MPTP did not affect the coenzyme Q content in the cerebellum, cortex and pons. This study demonstrated that MPP(+)/MPTP significantly affected the coenzyme Q content in the SH-SY5Y and NG-108 cells and in the mouse nigrostriatal tract.
Collapse
Affiliation(s)
- Muralikrishnan Dhanasekaran
- Division of Pharmacology and Toxicology, Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Quantitative proteomics of a presymptomatic A53T alpha-synuclein Drosophila model of Parkinson disease. Mol Cell Proteomics 2008; 7:1191-203. [PMID: 18353766 DOI: 10.1074/mcp.m700467-mcp200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A global isotopic labeling strategy combined with multidimensional liquid chromatographies and tandem mass spectrometry was used for quantitative proteome analysis of a presymptomatic A53T alpha-synuclein Drosophila model of Parkinson disease (PD). Multiple internal standard proteins at different concentration ratios were spiked into samples from PD-like and control animals to assess quantification accuracy. Two biological replicates isotopically labeled in forward and reverse directions were analyzed. A total of 253 proteins were quantified with a minimum of two identified peptide sequences (for each protein); 180 ( approximately 71%) proteins were detected in both forward and reverse labeling measurements. Twenty-four proteins were differentially expressed in A53T alpha-synuclein Drosophila; up-regulation of troponin T and down-regulation of fat body protein 1 were confirmed by Western blot analysis. Elevated expressions of heat shock protein 70 cognate 3 and ATP synthase are known to be directly involved in A53T alpha-synuclein-mediated toxicity and PD; three up-regulated proteins (muscle LIM protein at 60A, manganese-superoxide dismutase, and troponin T) and two down-regulated proteins (chaoptin and retinal degeneration A) have literature-supported associations with cellular malfunctions. That these variations were observed in presymptomatic animals may shed light on the etiology of PD. Protein interaction network analysis indicated that seven proteins belong to a single network, which may provide insight into molecular pathways underlying PD. Gene Ontology analysis indicated that the dysregulated proteins are primarily associated with membrane, endoplasmic reticulum, actin cytoskeleton, mitochondria, and ribosome. These associations support prior findings in studies of the A30P alpha-synuclein Drosophila model (Xun, Z. Y., Sowell, R. A., Kaufman, T. C., and Clemmer, D. E. (2007) Protein expression in a Drosophila model of Parkinson's disease. J. Proteome Res. 6, 348-357; Xun, Z. Y., Sowell, R. A., Kaufman, T. C., and Clemmer, D. E. (2007) Lifetime proteomic profiling of an A30P alpha-synuclein Drosophila model of Parkinson's disease. J. Proteome Res. 6, 3729-3738) that defects in cellular components such as actin cytoskeleton and mitochondria may contribute to the development of later symptoms.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | | | |
Collapse
|
91
|
Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria? GENES, BRAIN, AND BEHAVIOR 2008; 7:129-51. [PMID: 17680806 PMCID: PMC2268956 DOI: 10.1111/j.1601-183x.2007.00342.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (alpha-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.
Collapse
Affiliation(s)
- V Bogaerts
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - J Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - C van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| |
Collapse
|
92
|
Coenzyme Q10 (ubiquinol-10) supplementation improves oxidative imbalance in children with trisomy 21. Pediatr Neurol 2007; 37:398-403. [PMID: 18021919 DOI: 10.1016/j.pediatrneurol.2007.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/14/2007] [Accepted: 08/13/2007] [Indexed: 11/21/2022]
Abstract
Endogenous coenzyme Q10 is an essential cofactor in the mitochondrial respiratory chain, a potent antioxidant, and a potential biomarker for systemic oxidative status. Evidence of oxidative stress was reported in individuals with trisomy 21. In this study, 14 children with trisomy 21 had significantly increased (P < 0.0001) plasma ubiquinone-10 (the oxidized component of coenzyme Q10) compared with 12 age- and sex-matched healthy children (historical controls). Also, the mean ratio of ubiquinol-10 (the biochemically reduced component):total coenzyme Q10 was significantly decreased (P < 0.0001). After 3 months of ubiquinol-10 supplementation (10 mg/kg/day) to 10 patients with trisomy 21, the mean ubiquinol-10:total coenzyme Q10 ratio increased significantly (P < 0.0001) above baseline values, and 80% of individual ratios were within normal range. No significant or unexpected adverse effects were reported by participants. To our knowledge, this is the first study to indicate that the pro-oxidant state in plasma of children with trisomy 21, as assessed by ubiquinol-10:total coenzyme Q10 ratio, may be normalized with ubiquinol-10 supplementation. Further studies are needed to determine whether correction of this oxidant imbalance improves clinical outcomes of children with trisomy 21.
Collapse
|
93
|
Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, Wille EJ, Beal MF. Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem 2007; 104:1613-21. [PMID: 17973981 DOI: 10.1111/j.1471-4159.2007.05097.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Coenzyme Q10 (CoQ10) is a promising agent for neuroprotection in neurodegenerative diseases. We tested the effects of various doses of two formulations of CoQ10 in food and found that administration in the diet resulted in significant protection against loss of dopamine (DA), which was accompanied by a marked increase in plasma concentrations of CoQ10. We further investigated the neuroprotective effects of CoQ10, reduced CoQ10 (ubiquinol), and CoQ10 emulsions in the (MPTP) model of Parkinson's disease (PD). We found neuroprotection against MPTP induced loss of DA using both CoQ10, and reduced CoQ10, which produced the largest increases in plasma concentrations. Lastly, we administered CoQ10 in the diet to test its effects in a chronic MPTP model induced by administration of MPTP by Alzet pump for 1 month. We found neuroprotective effects against DA depletion, loss of tyrosine hydroxylase neurons and induction of alpha-synuclein inclusions in the substantia nigra pars compacta. The finding that CoQ10 is effective in a chronic dosing model of MPTP toxicity, is of particular interest, as this may be more relevant to PD. These results provide further evidence that administration of CoQ10 is a promising therapeutic strategy for the treatment of PD.
Collapse
Affiliation(s)
- Carine Cleren
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Wada H, Goto H, Hagiwara SI, Yamamoto Y. REDOX STATUS OF COENZYME Q10 IS ASSOCIATED WITH CHRONOLOGICAL AGE. J Am Geriatr Soc 2007; 55:1141-2. [PMID: 17608895 DOI: 10.1111/j.1532-5415.2007.01209.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
Galpern WR, Cudkowicz ME. Coenzyme Q treatment of neurodegenerative diseases of aging. Mitochondrion 2007; 7 Suppl:S146-53. [PMID: 17485247 DOI: 10.1016/j.mito.2007.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/29/2007] [Indexed: 11/26/2022]
Abstract
The etiology of several neurodegenerative disorders is thought to involve impaired mitochondrial function and oxidative stress. Coenzyme Q-10 (CoQ10) acts both as an antioxidant and as an electron acceptor at the level of the mitochondria. In several animal models of neurodegenerative diseases including amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease, CoQ10 has shown beneficial effects. Based on its biochemical properties and the effects in animal models, several clinical trials evaluating CoQ10 have been undertaken in many neurodegenerative diseases. CoQ10 appears to be safe and well tolerated, and several efficacy trials are planned.
Collapse
Affiliation(s)
- Wendy R Galpern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd., Room 2225, Bethesda, MD 20892, USA.
| | | |
Collapse
|
96
|
Barshop BA, Gangoiti JA. Analysis of coenzyme Q in human blood and tissues. Mitochondrion 2007; 7 Suppl:S89-93. [PMID: 17485249 DOI: 10.1016/j.mito.2007.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 04/06/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
The major coenzyme Q species in humans is the decaprenyl quinoid derivative coenzyme Q10 (CoQ10), and its measurement is somewhat challenging owing to its hydrophobicity and tendency to be oxidized. There are three major methods which are suited for analysis of CoQ10: HPLC-coupled UV or electrochemical detection, and tandem mass spectrometry. The techniques are discussed, and results of these applications to determine CoQ10 concentrations in various human fluids and tissues are summarized.
Collapse
Affiliation(s)
- Bruce A Barshop
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0830, USA.
| | | |
Collapse
|
97
|
Li K, Shi Y, Chen S, Li W, Shang X, Huang Y. Determination of coenzyme Q10 in human seminal plasma by high-performance liquid chromatography and its clinical application. Biomed Chromatogr 2007; 20:1082-6. [PMID: 16583456 DOI: 10.1002/bmc.645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A high-performance liquid chromatographic (HPLC) method for the analysis of coenzyme Q10 (CoQ10) in human seminal plasma was developed and applied to investigate its clinical significance as a reference index relating to oxidative stress and infertile status of spermatozoa. After precipitation of proteins in seminal plasma with methanol, CoQ10 and coenzyme Q9 (CoQ9; internal standard) were extracted with hexane. The supernatant after centrifugation was evaporated to dryness with nitrogen at 45 degrees C. The residue was re-dissolved in isopropanol. HPLC separation of the sample solution was performed on a Lichrospher C(18) column with a mobile phase composed of isopropanol-methanol-tetrahydrofuran in the ratio of 55:39:6 (v/v/v) at a flow rate of 1.0 mL/min. Under the chromatographic conditions described, the CoQ10 and CoQ9 had retention times of approximately 5.83 and 4.97 min, respectively. The peaks were detected at UV 275 nm. Good separation and detectability of CoQ10 in human seminal plasma were obtained. The method was linear in the range 0.01-10.00 microg/mL. The relative standard deviations within- and between-assay for CoQ10 analysis were 0.85 and 1.86%, respectively. The average recoveries were 94.1-99.0% for the human seminal plasma samples. The CoQ10 levels in seminal plasma of 195 patients and 23 control subjects were studied. CoQ10 concentrations in the two populations were: 37.1 +/- 12.2 ng/mL in the fertile group and 48.5 +/- 20.4 ng/mL in the infertile group. The large difference (p < 0.01) between the fertile and infertile populations is evident.
Collapse
Affiliation(s)
- Ke Li
- The Center of Medical Laboratory Science, Jinling Hospital, Nanjing 210002, Jiangsu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
98
|
|
99
|
de Lau LML, Koudstaal PJ, Hofman A, Breteler MMB. Serum cholesterol levels and the risk of Parkinson's disease. Am J Epidemiol 2006; 164:998-1002. [PMID: 16905642 DOI: 10.1093/aje/kwj283] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several recent findings suggest a role of lipid and cholesterol metabolism in the pathogenesis of Parkinson's disease. Therefore, the authors examined the association between serum levels of cholesterol and the risk of Parkinson's disease in the prospective, population-based Rotterdam Study among 6,465 subjects aged 55 or more years with repeated in-person examination and on average 9.4 years of follow-up (1990-2004). Higher serum levels of total cholesterol were associated with a significantly decreased risk of Parkinson's disease (age- and sex-adjusted hazard ratio per mmol/liter increase in cholesterol = 0.77, 95% confidence interval: 0.64, 0.94), with evidence for a dose-effect relation. The association was restricted to women and remained unchanged after adjustment for multiple potential confounders. These findings may indicate a role of lipids in the pathogenesis of Parkinson's disease. Alternatively, they could reflect the strong correlation-especially in women-between levels of serum cholesterol and the antioxidant coenzyme Q10. If confirmed, this would provide further support for an important role of oxidative stress in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Lonneke M L de Lau
- Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
100
|
Oudshoorn JH, Lecluse AL, van den Berg R, Vaes WHJ, van der Laag J, Houwen RHJ. Decreased coenzyme Q10 concentration in plasma of children with cystic fibrosis. J Pediatr Gastroenterol Nutr 2006; 43:646-50. [PMID: 17130743 DOI: 10.1097/01.mpg.0000233193.77521.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Coenzyme Q10 (CoQ10) is an effective lipophilic antioxidant and protects against lipid peroxidation by scavenging radicals. Patients with cystic fibrosis generally have fat malabsorption; thus, we hypothesized that overall plasma CoQ10 concentration in pediatric patients with cystic fibrosis might be diminished. Because these patients have increased oxidative stress due to chronic pulmonary inflammation, we also assumed that the oxidized form of CoQ10 might be relatively increased. PATIENTS AND METHODS The total plasma CoQ10 levels and the oxidized and reduced form were measured by high-performance liquid chromatography in 30 children with cystic fibrosis (mean FEV1 % predicted = 88.5% +/- 18.7%) and 30 age-matched controls. RESULTS Total plasma CoQ10 levels were significantly lower in the cystic fibrosis group as compared with the control group (0.87 +/- 0.42 micromol/L and 1.35 +/- 0.39 micromol/L, respectively; P < 0.001). When correcting for the lower serum cholesterol level in patients with cystic fibrosis, this difference remained significant: the CoQ10/cholesterol ratio (micromol/mol) was 268.8 +/- 136.7 and 334.0 +/- 102.9 in patients and controls, respectively (P < 0.05). However, the CoQ10 redox status was identical in patients and controls (86.4% +/- 7.1% and 85.4% +/- 7.3%, respectively). CONCLUSIONS We found that the overall plasma CoQ10 concentration is lower in patients with cystic fibrosis, probably because of fat malabsorption. The CoQ10 redox status was not disturbed, indicating that CoQ10 could still be adequately regenerated in this group of patients with cystic fibrosis with mild-to-moderate pulmonary disease.
Collapse
Affiliation(s)
- Johanna H Oudshoorn
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, UMC Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|