51
|
Liu Z, Easson GWD, Zhao J, Makki N, Ahituv N, Hilton MJ, Tang SY, Gray RS. Dysregulation of STAT3 signaling is associated with endplate-oriented herniations of the intervertebral disc in Adgrg6 mutant mice. PLoS Genet 2019; 15:e1008096. [PMID: 31652254 PMCID: PMC6834287 DOI: 10.1371/journal.pgen.1008096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/06/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022] Open
Abstract
Degenerative changes of the intervertebral disc (IVD) are a leading cause of disability affecting humans worldwide and has been attributed primarily to trauma and the accumulation of pathology during aging. While genetic defects have also been associated with disc degeneration, the precise mechanisms driving the initiation and progression of disease have remained elusive due to a paucity of genetic animal models. Here, we discuss a novel conditional mouse genetic model of endplate-oriented disc herniations in adult mice. Using conditional mouse genetics, we show increased mechanical stiffness and reveal dysregulation of typical gene expression profiles of the IVD in adhesion G-protein coupled receptor G6 (Adgrg6) mutant mice prior to the onset of endplate-oriented disc herniations in adult mice. We observed increased STAT3 activation prior to IVD defects and go on to demonstrate that treatment of Adgrg6 conditional mutant mice with a small molecule inhibitor of STAT3 activation ameliorates endplate-oriented herniations. These findings establish ADGRG6 and STAT3 as novel regulators of IVD endplate and growth plate integrity in the mouse, and implicate ADGRG6/STAT3 signaling as promising therapeutic targets for endplate-oriented disc degeneration. Back pain is a leading cause of disability in humans worldwide and one of the most common culprits of these issues are the consequence of degenerative changes of the intervertebral disc. Here, we demonstrate that conditional loss of the Adgrg6 gene in cartilaginous tissues of the spine results in endplate-oriented disc herniations and degenerative changes of the intervertebral disc in mice. We further establish that these obvious degenerative changes of the disc are preceded by substantial alterations in normal gene expression profiles, including upregulation of pro-inflammatory STAT3 signaling, and increased mechanical stiffness of the intervertebral disc. Increased STAT3 activation is a signal observed in other models of degenerative musculoskeletal tissues. As such, we tested whether systemic treatment with a small-molecule STAT3 inhibitor would protect against the formation of endplate-oriented disc herniations in conditional Adgrg6 mutant mice, and report a significant positive improvement of histopathology in our treatment group. Taken together, we demonstrate a novel conditional model of endplate-oriented disc herniation in mouse. We establish ADGRG6 and STAT3 as novel regulators of endplate integrity of the intervertebral disc in mouse and suggest that modulation of ADGRG6/STAT3 signaling could provide robust disease-modifying targets for endplate-oriented disc degeneration in humans.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, United States of America
| | - Garrett W. D. Easson
- Department of Orthopedics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadja Makki
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew J. Hilton
- Department of Orthopedic Surgery and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Simon Y. Tang
- Department of Orthopedics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ryan S. Gray
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
52
|
Zhao X, Ruan J, Tang H, Li J, Shi Y, Li M, Li S, Xu C, Lu Q, Dai C. Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res Ther 2019; 10:308. [PMID: 31639063 PMCID: PMC6805685 DOI: 10.1186/s13287-019-1406-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We used multimodal compositional magnetic resonance imaging (MRI) techniques, combined with clinical outcomes, to differentiate the alternations of composition in repair cartilage with allogeneic human adipose-derived mesenchymal progenitor cells (haMPCs) in knee osteoarthritis (KOA) patients. METHODS Eighteen patients participated a phase I/IIa clinical trial. All patients were divided randomly into three groups with intra-articular injections of haMPCs: the low-dose (1.0 × 107 cells), mid-dose (2.0 × 107), and high-dose (5.0 × 107) groups with six patients each. Compositional MRI examinations and clinical evaluations were performed at different time points. RESULTS Significant differences were observed in quantitative T1rho, T2, T2star, R2star, and ADC measurements in patients of three dose groups, suggesting a possible compositional changes of cartilage with the treatment of allogeneic haMPCs. Also significant reduction in WOMAC and SF-36 scores showed the symptoms might be alleviated to some extent with this new treatment. As regards sensibilities of multi-parametric mappings to detect compositional or structural changes of cartilage, T1rho mapping was most sensitive to differentiate difference between three dose groups. CONCLUSIONS These results showed that multi-compositional MRI sequences might be an effective tool to evaluate the promotion of the repair of cartilage with allogeneic haMPCs by providing information of compositional alterations of cartilage. TRIAL REGISTRATION Clinicaltrials, NCT02641860 . Registered 3 December 2015.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Jingjing Ruan
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Hui Tang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Yingxuan Shi
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Meng Li
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Cuili Xu
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China
| | - Qing Lu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China.
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai, 201210, China.
| |
Collapse
|
53
|
Importance of Rehabilitation in Primary Knee Osteoarthritis. CURRENT HEALTH SCIENCES JOURNAL 2019; 45:148-155. [PMID: 31624641 PMCID: PMC6778300 DOI: 10.12865/chsj.45.02.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
Abstract
In our observational study, we aim to highlight the role of rehabilitation program in the control and maintaining of the clinical and functional status of people with primary knee osteoarthritis and co-morbidities. We established that the complete rehabilitation program (diet, symptomatic medication and herbal products, electrotherapy measures and kinetic exercises) will give the optimal healthcare for this type of patients.
Collapse
|
54
|
Shen J, Wang C, Ying J, Xu T, McAlinden A, O’Keefe RJ. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight 2019; 4:128568. [PMID: 31534049 PMCID: PMC6795381 DOI: 10.1172/jci.insight.128568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
Recently we demonstrated that ablation of the DNA methyltransferase enzyme, Dnmt3b, resulted in catabolism and progression of osteoarthritis (OA) in murine articular cartilage through a mechanism involving increased mitochondrial respiration. In this study, we identify 4-aminobutyrate aminotransferase (Abat) as a downstream target of Dnmt3b. Abat is an enzyme that metabolizes γ-aminobutyric acid to succinate, a key intermediate in the tricarboxylic acid cycle. We show that Dnmt3b binds to the Abat promoter, increases methylation of a conserved CpG sequence just upstream of the transcriptional start site, and inhibits Abat expression. Dnmt3b deletion in articular chondrocytes results in reduced methylation of the CpG sequence in the Abat promoter, which subsequently increases expression of Abat. Increased Abat expression in chondrocytes leads to enhanced mitochondrial respiration and elevated expression of catabolic genes. Overexpression of Abat in murine knee joints via lentiviral injection results in accelerated cartilage degradation following surgical induction of OA. In contrast, lentiviral-based knockdown of Abat attenuates the expression of IL-1β-induced catabolic genes in primary murine articular chondrocytes in vitro and also protects against murine articular cartilage degradation in vivo. Strikingly, treatment with the FDA-approved small-molecule Abat inhibitor, vigabatrin, significantly prevents the development of injury-induced OA in mice. In summary, these studies establish Abat as an important new target for therapies to prevent OA.
Collapse
MESH Headings
- 4-Aminobutyrate Transaminase/antagonists & inhibitors
- 4-Aminobutyrate Transaminase/genetics
- 4-Aminobutyrate Transaminase/metabolism
- Animals
- Cartilage, Articular/cytology
- Cartilage, Articular/drug effects
- Cartilage, Articular/injuries
- Cartilage, Articular/pathology
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/drug effects
- Chondrocytes/immunology
- Chondrocytes/pathology
- CpG Islands/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Disease Models, Animal
- Gene Knockdown Techniques
- Humans
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Male
- Mice
- Mitochondria/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/etiology
- Osteoarthritis, Knee/pathology
- Oxidative Phosphorylation/drug effects
- Primary Cell Culture
- Promoter Regions, Genetic/genetics
- Transcription Initiation Site
- Transcription, Genetic
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regis J. O’Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
55
|
Nakamura S, Ikebuchi M, Saeki S, Furukawa D, Orita K, Niimi N, Tsukahara Y, Nakamura H. Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography. BMC Musculoskelet Disord 2019; 20:417. [PMID: 31492126 PMCID: PMC6731561 DOI: 10.1186/s12891-019-2789-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approach for measuring mechanical properties of articular cartilage using SR-OCSA, and to investigate the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. METHODS Anterior cruciate ligament transection surgery was performed on the left knees of 8-9-month-old New Zealand white rabbits. SR-OCSA was used to visualize and measure the viscoelastic properties of articular cartilage via attenuation coefficient of strain rate (ACSR). Using the same conditions as in the SR-OCSA test, an indentation test was conducted, and relaxation time was measured to evaluate the relationship between ACSR and relaxation time. RESULTS SR-OCSA could nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. SR-OCSA captured significant increases in ACSR in cartilage at 2 weeks after surgery, when a histologically slight osteoarthritis sign was present. As cartilage degeneration progressed, ACSR increased, whereas relaxation time decreased in a time-dependent manner. Moreover, ACSR negatively correlated with relaxation time. In particular, ACSR was elevated around the tidemark and the elevation tended to move as cartilage degeneration progressed. CONCLUSIONS SR-OCSA could tomographically and nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. The mechanical properties around the tidemark were degraded as cartilage degeneration progressed. Thus, SR-OCSA provides important data needed to understand the biomechanics of early osteoarthritis.
Collapse
Affiliation(s)
- Suguru Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi Abeno-ku, Osaka, 545-8585, Japan.
| | - Mitsuhiko Ikebuchi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi Abeno-ku, Osaka, 545-8585, Japan
| | - Souichi Saeki
- Department of Mechatronics Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Daisuke Furukawa
- Department of Intelligent Mechatronics, Faculty of Systems Science and Technology, Akita Prefectural University, 84-4 Ebinokuchi Tsuchiya, Yurihonjo, Akita, 015-0055, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi Abeno-ku, Osaka, 545-8585, Japan
| | - Nobuo Niimi
- Nippon Sigmax Co. Ltd., 33rd Floor Shinjuku Oak Tower, 6-8-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo, 163-6033, Japan
| | - Yoshito Tsukahara
- Nippon Sigmax Co. Ltd., 33rd Floor Shinjuku Oak Tower, 6-8-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo, 163-6033, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
56
|
Mao G, Kang Y, Lin R, Hu S, Zhang Z, Li H, Liao W, Zhang Z. Long Non-coding RNA HOTTIP Promotes CCL3 Expression and Induces Cartilage Degradation by Sponging miR-455-3p. Front Cell Dev Biol 2019; 7:161. [PMID: 31508417 PMCID: PMC6716540 DOI: 10.3389/fcell.2019.00161] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play pivotal roles in diseases such as osteoarthritis (OA). However, knowledge of the biological roles of lncRNAs is limited in OA. We aimed to explore the biological function and molecular mechanism of HOTTIP in chondrogenesis and cartilage degradation. We used the human mesenchymal stem cell (hMSC) model of chondrogenesis, in parallel with, tissue biopsies from normal and OA cartilage to detect HOTTIP, CCL3, and miR-455-3p expression in vitro. Biological interactions between HOTTIP and miR-455-3p were determined by RNA silencing and overexpression in vitro. We evaluated the effect of HOTTIP on chondrogenesis and degeneration, and its regulation of miR-455-3p via competing endogenous RNA (ceRNA). Our in vitro ceRNA findings were further confirmed within animal models in vivo. Mechanisms of ceRNAs were determined by bioinformatic analysis, a luciferase reporter system, RNA pull-down, and RNA immunoprecipitation (RIP) assays. We found reduced miR-455-3p expression and significantly upregulated lncRNA HOTTIP and CCL3 expression in OA cartilage tissues and chondrocytes. The expression of HOTTIP and CCL3 was increased in chondrocytes treated with interleukin-1β (IL-1β) in vitro. Knockdown of HOTTIP promoted cartilage-specific gene expression and suppressed CCL3. Conversely, HOTTIP overexpression reduced cartilage-specific genes and increased CCL3. Notably, HOTTIP negatively regulated miR-455-3p and increased CCL3 levels in human primary chondrocytes. Mechanistic investigations indicated that HOTTIP functioned as ceRNA for miR-455-3p enhanced CCL3 expression. Taken together, the ceRNA regulatory network of HOTTIP/miR-455-3p/CCL3 plays a critical role in OA pathogenesis and suggests HOTTIP is a potential target in OA therapy.
Collapse
Affiliation(s)
- Guping Mao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Kang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Lin
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu Hu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyi Li
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
57
|
Hewlings S, Kalman D, Schneider LV. A Randomized, Double-Blind, Placebo-Controlled, Prospective Clinical Trial Evaluating Water-Soluble Chicken Eggshell Membrane for Improvement in Joint Health in Adults with Knee Osteoarthritis. J Med Food 2019; 22:875-884. [PMID: 31381494 PMCID: PMC6748399 DOI: 10.1089/jmf.2019.0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a chronic condition that impacts quality of life and functionality for which consumers often seek dietary supplements to provide some relief. The purpose of this double-blind, placebo-controlled clinical trial was to assess the safety and efficacy of a water-soluble chicken eggshell membrane hydrosylate (WSEM) dietary supplement (BiovaFlex®) 450 mg daily on knee function, mobility, and general health and well-being in 88 adults with OA randomized into intervention (n = 44) or placebo (n = 44) groups. Outcomes were assessed periodically over 12 weeks, including the Western Ontario McMaster Osteoarthritis Index (WOMAC), the six-minute walk test (6MWT), knee range of motion (ROM) testing, and safety. Normalized analysis (improvement over baseline) showed that the poorest initial performers benefited the greatest from the WSEM by day 5 in the 6MWT, with the rest of the population showing significant improvement over placebo by week 12. The normalized WOMAC Stiffness score was also significantly improved over placebo by day 5 (P < .05). Without normalization, no statistically significant improvements were seen in WOMAC, 6MWT, and ROM testing. The Product was also found to be safe in this study. In conclusion, daily consumption of WSEM significantly enhanced average individual physical capacity (walking distance and ability), reduced stiffness by the fifth day of supplementation with the greatest benefit seen by the most compromised individuals, and was maintained over 12 weeks. A WSEM dietary supplement may offer a safe option for relief from symptoms and increased mobility for those with OA.
Collapse
Affiliation(s)
- Susan Hewlings
- Department of Nutrition, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Douglas Kalman
- HPD-Exercise Science, Nova Southeastern University, Davie, Florida, USA
| | - Luke V Schneider
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
58
|
Gao X, Sun Y, Li X. Identification of key gene modules and transcription factors for human osteoarthritis by weighted gene co-expression network analysis. Exp Ther Med 2019; 18:2479-2490. [PMID: 31572500 PMCID: PMC6755469 DOI: 10.3892/etm.2019.7848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent causes of joint disease. However, the pathological mechanisms of OA have remained to be completely elucidated, and further investigation into the underlying mechanisms of OA development and the identification of novel therapeutic targets are urgently required. In the present study, the dataset GSE114007 was downloaded from the Gene Expression Omnibus database. Based on weighted gene co-expression network analysis (WGCNA) and the identification of differentially expressed genes (DEGs), the microarray data were further analyzed to identify hub genes, key transcription factors (TFs) and pivotal signaling pathways involved in the pathogenesis of OA. A total of 1,898 genes were identified to be differentially expressed between OA samples and normal samples. Based on WGCNA, the present study identified 5 hub modules closely associated with OA, and the potential key TFs for hub modules were further explored based on CisTargetX. The results demonstrated that B-Cell Lymphoma 6, Myelin Gene Expression Factor 2, Activating Transcription Factor 3, CCAAT Enhancer Binding Protein γ, Nuclear Factor Interleukin-3-Regulated, FOS Like Antigen-2, FOS-Like Antigen-1, Fos Proto-Oncogene, JunD Proto-Oncogene, Transcription Factor CP2 Like 1, RELA proto-oncogene NF-kB subunit, SRY-box transcription factor 3, V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2, Interferon Regulatory Factor 4 and REL proto-oncogene, NF-kB subunit were the potential key TFs. In addition, osteoclast differentiation, FoxO, MAPK and PI3K/Akt signaling pathways were revealed to be imperative for the pathogenesis of OA, as these 4 pivotal signaling pathways were observed to be tightly linked through 4 key TFs Fos Proto-Oncogene, JUN, JunD Proto-Oncogene and MYC, and 4 DEGs Vascular Endothelial Growth Factor A, Growth Arrest and DNA Damage Inducible α, Growth Arrest and DNA Damage Inducible β and Cyclin D1. The present study identified a set of potential key genes and signaling pathways, and provided an important opportunity to advance the current understanding of OA.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yu Sun
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
59
|
The pathogenic role of connective tissue growth factor in osteoarthritis. Biosci Rep 2019; 39:BSR20191374. [PMID: 31262970 PMCID: PMC6639465 DOI: 10.1042/bsr20191374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, and connective tissue growth factor (CTGF) is found to be up-regulated in adjacent areas of cartilage surface damage. CTGF is present in osteophytes of late stage OA. In the present study, we have reviewed association of CTGF in the development and progression of OA and the potential effects of CTGF as a therapeutic agent for the treatment of OA. We have reviewed the recent articles on CTGF and OA in databases like PubMed, google scholar, and SCOPUS and collected the information for the articles. CTGF is usually up-regulated in synovial fluid of OA that stimulates the production of inflammatory cytokines. CTGF also activates nuclear factor-κB, increases the production of chemokines and cytokines, and up-regulates matrix metalloproteinases-3 (MMP-3) that in turn leads to the reduction in proteoglycan contents in joint cartilage. Consequently, cartilage homeostasis is imbalanced that might contribute to the pathogenesis of OA by developing synovial inflammation and cartilage degradation. CTGF might serve as a useful biomarker for the prognosis and treatment of OA, and recent studies have taken attempt to use CTGF as therapeutic target of OA. However, more investigations with clinical trials are necessary to validate the possibility of use of CTGF as a biomarker in OA diagnosis and therapeutic target for OA treatment.
Collapse
|
60
|
Blázquez R, Sánchez-Margallo FM, Reinecke J, Álvarez V, López E, Marinaro F, Casado JG. Conditioned Serum Enhances the Chondrogenic and Immunomodulatory Behavior of Mesenchymal Stem Cells. Front Pharmacol 2019; 10:699. [PMID: 31316380 PMCID: PMC6609570 DOI: 10.3389/fphar.2019.00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis is one of the most common chronic health conditions associated with pain and disability. Advanced therapies based on mesenchymal stem cells have become valuable options for the treatment of these pathologies. Conditioned serum (CS, “Orthokine”) has been used intra-articularly for osteoarthritic patients. In this work, we hypothesized that the rich content on anti-inflammatory proteins and growth factors of CS may exert a beneficial effect on the biological activity of human adipose-derived mesenchymal stem cells (hAdMSCs). In vitro studies were designed using hAdMSCs cocultured with CS at different concentrations (2.5, 5, and 10%). Chondrogenic differentiation assays and immunomodulatory experiments using in vitro-stimulated lymphocytes were performed. Our results demonstrated that CS significantly enhanced the differentiation of hAdMSCs toward chondrocytes. Moreover, hAdMSCs pre-sensitized with CS reduced the lymphocyte proliferation as well as their differentiation toward activated lymphocytes. These results suggest that in vivo coadministration of CS and hAdMSCs may have a beneficial effect on the therapeutic potential of hAdMSCs. Moreover, these results indicate that intra-articular administration of CS might influence the biological behavior of resident stem cells increasing their chondrogenic differentiation and inherent immunomodulatory activity. To our knowledge, this is the first in vitro study reporting this combination.
Collapse
Affiliation(s)
- Rebeca Blázquez
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Julio Reinecke
- Research and Development Department, ORTHOGEN AG, Düsseldorf, Germany
| | - Verónica Álvarez
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
61
|
Sperry MM, Kartha S, Winkelstein BA, Granquist EJ. Experimental Methods to Inform Diagnostic Approaches for Painful TMJ Osteoarthritis. J Dent Res 2019; 98:388-397. [PMID: 30819041 DOI: 10.1177/0022034519828731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis (OA) is a degenerative disease of the joint that can produce persistent orofacial pain as well as functional and structural changes to its bone, cartilage, and ligaments. Despite advances in the clinical utility and reliability of the Diagnostic Criteria for Temporomandibular Disorders, clinical tools inadequately predict which patients will develop chronic TMJ pain and degeneration, limiting clinical management. The challenges of managing and treating TMJ OA are due, in part, to a limited understanding of the mechanisms contributing to the development and maintenance of TMJ pain. OA is initiated by multiple factors, including injury, aging, abnormal joint mechanics, and atypical joint shape, which can produce microtrauma, remodeling of joint tissues, and synovial inflammation. TMJ microtrauma and remodeling can increase expression of cytokines, chemokines, and catabolic factors that damage synovial tissues and can activate free nerve endings in the joint. Although studies have separately investigated inflammation-driven orofacial pain, acute activity of the trigeminal nerve, or TMJ tissue degeneration and/or damage, the temporal mechanistic factors leading to chronic TMJ pain are undefined. Limited understanding of the interaction between degeneration, intra-articular chemical factors, and pain has further restricted the development of targeted, disease-modifying drugs to help patients avoid long-term pain and invasive procedures, like TMJ replacement. A range of animal models captures features of intra-articular inflammation, joint overloading, and tissue damage. Although those models traditionally measure peripheral sensitivity as a surrogate for pain, recent studies recognize the brain's role in integrating, modulating, and interpreting nociceptive inputs in the TMJ, particularly in light of psychosocial influences on TMJ pain. The articular and neural contributors to TMJ pain, imaging modalities with clinical potential to identify TMJ OA early, and future directions for clinical management of TMJ OA are reviewed in the context of evidence in the field.
Collapse
Affiliation(s)
- M M Sperry
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - S Kartha
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - B A Winkelstein
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - E J Granquist
- 3 Oral & Maxillofacial Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
62
|
Macfadyen MA, Daniel Z, Kelly S, Parr T, Brameld JM, Murton AJ, Jones SW. The commercial pig as a model of spontaneously-occurring osteoarthritis. BMC Musculoskelet Disord 2019; 20:70. [PMID: 30744620 PMCID: PMC6371556 DOI: 10.1186/s12891-019-2452-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Preclinical osteoarthritis models where damage occurs spontaneously may better reflect the initiation and development of human osteoarthritis. The aim was to assess the commercial pig as a model of spontaneous osteoarthritis development by examining pain-associated behaviour, joint cartilage integrity, as well as the use of porcine cartilage explants and isolated chondrocytes and osteoblasts for ex vivo and in vitro studies. METHODS Female pigs (Large white x Landrace x Duroc) were examined at different ages from 6 weeks to 3-4 years old. Lameness was assessed as a marker of pain-associated behaviour. Femorotibial joint cartilage integrity was determined by chondropathy scoring and histological staining of proteoglycan. IL-6 production and proteoglycan degradation was assessed in cartilage explants and primary porcine chondrocytes by ELISA and DMMB assay. Primary porcine osteoblasts from damaged and non-damaged joints, as determined by chondropathy scoring, were assessed for mineralisation, proliferative and mitochondrial function as a marker of metabolic capacity. RESULTS Pigs aged 80 weeks and older exhibited lameness. Osteoarthritic lesions in femoral condyle and tibial plateau cartilage were apparent from 40 weeks and increased in severity with age up to 3-4 years old. Cartilage from damaged joints exhibited proteoglycan loss, which positively correlated with chondropathy score. Stimulation of porcine cartilage explants and primary chondrocytes with either IL-1β or visfatin induced IL-6 production and proteoglycan degradation. Primary porcine osteoblasts from damaged joints exhibited reduced proliferative, mineralisation, and metabolic capacity. CONCLUSION In conclusion, the commercial pig represents an alternative model of spontaneous osteoarthritis and an excellent source of tissue for in vitro and ex vivo studies.
Collapse
Affiliation(s)
- Mhairi A Macfadyen
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Zoe Daniel
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Sara Kelly
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Tim Parr
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - John M Brameld
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Andrew J Murton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity, University of Birmingham, Birmingham, UK.
| |
Collapse
|
63
|
Wang Y, Zhang X, Niu X, Xu Y, Lu L, Li H. The genetic relationship of SOX9 polymorphisms with osteoarthritis risk in Chinese population: A case-control study. Medicine (Baltimore) 2019; 98:e14096. [PMID: 30813126 PMCID: PMC6408012 DOI: 10.1097/md.0000000000014096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This research aimed to reveal the relationship of SRY-type HMG box 9 (SOX9) gene polymorphisms with osteoarthritis (OA) risk in a Chinese population.Polymerase chain reaction and direct sequencing were used for genotyping polymorphism in 152 OA patients and 139 controls. Firstly, the conformity of genotype distribution to Hardy-Weinberg equilibrium in the control group was checked. The differences in genotype and allele frequencies of our studied polymorphism were compared between the two groups using chi-square test. Odds ratio (OR) with 95% confidence interval (95%CI) was used to appraise the strength of the relationship between the polymorphism and OA occurrence. Cross-over analysis was conducted to reveal the interaction between polymorphisms in SOX9.The AA genotype of the polymorphism rs1042667 was significantly correlated to the increased susceptibility to OA (OR = 2.075, 95%CI = 1.042-4.132). We also detected that the A allele of the polymorphism rs1042667 also obviously increased the occurrence of OA in our study (OR = 1.401, 95%CI = 1.009-1.945). Moreover, the G allele of the polymorphism rs12601701 and the A allele of the polymorphism rs1042667 could significantly elevate the risk of OA (OR = 2.075, 95%CI = 1.021-4.218).SOX9 polymorphism rs1042667 may be a risk factor for OA in Chinese Han population. The interaction between the polymorphisms rs1042667 and rs12601701 also contribute to OA risk.
Collapse
Affiliation(s)
- Yongcheng Wang
- Department of Orthopaedics Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | | | | | | | | | | |
Collapse
|
64
|
Wood MJ, Leckenby A, Reynolds G, Spiering R, Pratt AG, Rankin KS, Isaacs JD, Haniffa MA, Milling S, Hilkens CM. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 2019; 4:125325. [PMID: 30674730 DOI: 10.1172/jci.insight.125325] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of disability, globally. Despite an emerging role for synovial inflammation in OA pathogenesis, attempts to target inflammation therapeutically have had limited success. A better understanding of the cellular and molecular processes occurring in the OA synovium is needed to develop novel therapeutics. We investigated macrophage phenotype and gene expression in synovial tissue of OA and inflammatory-arthritis (IA) patients. Compared with IA, OA synovial tissue contained higher but variable proportions of macrophages (P < 0.001). These macrophages exhibited an activated phenotype, expressing folate receptor-2 and CD86, and displayed high phagocytic capacity. RNA sequencing of synovial macrophages revealed 2 OA subgroups. Inflammatory-like OA (iOA) macrophages are closely aligned to IA macrophages and are characterized by a cell proliferation signature. In contrast, classical OA (cOA) macrophages display cartilage remodeling features. Supporting these findings, when compared with cOA, iOA synovial tissue contained higher proportions of macrophages (P < 0.01), expressing higher levels of the proliferation marker Ki67 (P < 0.01). These data provide new insight into the heterogeneity of OA synovial tissue and suggest distinct roles of macrophages in pathogenesis. Our findings could lead to the stratification of OA patients for suitable disease-modifying treatments and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Matthew J Wood
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom
| | - Adam Leckenby
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom
| | - Gary Reynolds
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom.,NIHR Newcastle Biomedical Research Centre and
| | - Rachel Spiering
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom
| | - Arthur G Pratt
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom.,NIHR Newcastle Biomedical Research Centre and
| | - Kenneth S Rankin
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,NIHR Newcastle Biomedical Research Centre and
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom.,NIHR Newcastle Biomedical Research Centre and
| | - Muzlifah A Haniffa
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,NIHR Newcastle Biomedical Research Centre and.,Department of Dermatology, Newcastle Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Milling
- Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom.,Institute of Infection, Immunity and Inflammation, Glasgow University, United Kingdom
| | - Catharien Mu Hilkens
- Institute of Cellular Medicine, Newcastle University, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence, Glasgow, Birmingham, Newcastle, United Kingdom.,NIHR Newcastle Biomedical Research Centre and
| |
Collapse
|
65
|
Chen YJ, Chang WA, Wu LY, Huang CF, Chen CH, Kuo PL. Identification of Novel Genes in Osteoarthritic Fibroblast-Like Synoviocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2019; 16:1057-1071. [PMID: 31523167 PMCID: PMC6743272 DOI: 10.7150/ijms.35611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023] Open
Abstract
Synovitis in osteoarthritis (OA) the consequence of low grade inflammatory process caused by cartilage breakdown products that stimulated the production of pro-inflammatory mediators by fibroblast-like synoviocytes (FLS). FLS participate in joint homeostasis and low grade inflammation in the joint microenvironment triggers FLS transformation. In the current study, we aimed to identify differentially expressed genes and potential miRNA regulations in human OA FLS through deep sequencing and bioinformatics approaches. The 245 differentially expressed genes in OA FLS were identified, and pathway analysis using various bioinformatics databases indicated their enrichment in functions related to altered extracellular matrix organization, cell adhesion and cellular movement. Moreover, among the 14 dysregulated genes with potential miRNA regulations identified, src kinase associated phosphoprotein 2 (SKAP2), adaptor related protein complex 1 sigma 2 subunit (AP1S2), PHD finger protein 21A (PHF21A), lipoma preferred partner (LPP), and transcription factor AP-2 alpha (TFAP2A) showed similar expression patterns in OA FLS and OA synovial tissue datasets in Gene Expression Omnibus database. Ingenuity Pathway Analysis identified the dysregulated LPP participated in cell migration and cell spreading of OA FLS, which was potentially regulated by miR-141-3p. The current findings suggested new perspectives into understanding the novel molecular signatures of FLS involved in the pathogenesis of OA, which may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Fen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Center for Cancer Research, Kaohsiung Medical University
| |
Collapse
|
66
|
Mobasheri A. Future Cell and Gene Therapy for Osteoarthritis (OA): Potential for Using Mammalian Protein Production Platforms, Irradiated and Transfected Protein Packaging Cell Lines for Over-Production of Therapeutic Proteins and Growth Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:17-31. [PMID: 31884529 DOI: 10.1007/5584_2019_457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this paper I provide a personal perspective on future prospects for cell and gene therapy for osteoarthritis (OA) and how mammalian protein production platforms, virally transfected and irradiated protein packaging cell lines may be used as "cellular factories" for over-production of therapeutic proteins and growth factors, particularly in the context of intra-articular regenerative therapies. I will also speculate on future opportunities and challenges in this area of research and how new innovations in biotechnology will impact on the field of cell and gene therapy for OA, related osteoarticular disorders and the broader discipline of regenerative medicine for musculoskeletal disorders. Mammalian protein production platforms are likely to have a significant impact on synovial joint diseases that are amenable to cell and gene therapy using therapeutic proteins and growth factors. Future cell and gene therapy for OA will need to re-consider the current strategies that employ primary, aged and senescent cells with feeble regenerative properties and seriously consider the use of mammalian protein production platforms.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania. .,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Queen's Medical Centre, Nottingham, UK. .,Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
67
|
Zheng J, Li Q. Methylene blue regulates inflammatory response in osteoarthritis by noncoding long chain RNA CILinc02. J Cell Biochem 2018; 120:3331-3338. [PMID: 30548658 DOI: 10.1002/jcb.27602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 01/12/2023]
Abstract
Long noncoding RNAs serve as novel regulatory molecules involved in various biological processes, but their role in osteoarthritis (OA) remains unknown. Therefore, we aimed to reveal the inflammatory mechanisms regulated by CILinc02 and methylene blue in human osteoarthritic cartilage and to explore the potential functions of CILinc02 and methylene blue in OA. The expression level of CILinc02 in OA cartilage tissues and primary cells was obtained using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The cytokines, such as interleukin 1 (IL-1), IL-6, IL-17, tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metalloproteinase (MMPs), involved in the degradation of chondrocyte in CILinc02 knockdown OA primary cells, which were treated with methylene blue that were determined by enzyme-linked immunosorbent assay, qRT-PCR and Western blot analysis. The results showed that CILinc02 was overexpressed in osteoarthritic cartilage tissues and in OA primary cells, but methylene blue can inhibit the expression of CILinc02. In addition, overexpression of CILinc02 induced the inflammation and apoptosis in primary OA cells, however, the effect of methylene blue was reversed compared to CILinc02. Meanwhile, methylene blue can regulate the expression of TIMP-1, MMP-1, and MMP-13 proteins, thereby suppressing the degradation of chondrocyte in OA. This evidence indicates that methylene blue can act as an inflammatory inhibitor by targeting CILinc02 to regulate the inflammatory response.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Orthopedic, Southeast Hospital Affiliated to Xiamen University, ZhangZhou, China
| | - Qiang Li
- The Second Department of Orthopedics, Zhang Zhou Zhengxing Hospital, Zhangzhou, China
| |
Collapse
|
68
|
Oo WM, Yu SPC, Daniel MS, Hunter DJ. Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs 2018; 23:331-347. [PMID: 30415584 DOI: 10.1080/14728214.2018.1547706] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a leading cause of pain and disability among adults with a current prevalence of around 15% and a predicted prevalence of 35% in 2030 for symptomatic OA. It is increasingly recognized as a heterogeneous multi-faceted joint disease with multi-tissue involvement of varying severity. Current therapeutic regimens for OA are only partially effective and often have significant associated toxicities. There are no disease-modifying drugs approved by the regulatory bodies. Areas covered: We reviewed the opportunities within key OA pathogenetic mechanism: cartilage catabolism/anabolism, pathological remodeling of subchondral bone and synovial inflammation to identify targeted disease-modifying osteoarthritis drugs, based on compounds currently in Phase II and III stages of clinical development in which x-ray and/or MRI was used as the structural outcome with/without symptomatic outcomes according to regulatory requirements. Expert opinion: Given the heterogeneity of the OA disease process and complex overlapping among these phenotypes, a 'one size fits all' approach used in most clinical trials would unlikely be practical and equally effective in all patients, as well as in all anatomical OA sites. On the other hand, it is a challenge to develop a targeted drug with high activity, specificity, potency, and bioavailability in the absence of toxicity for long-term use in this chronic disease of predominantly older adults. Further research and insight into evaluation methods for drug-targeted identification of early OA and specific characterization of phenotypes, improvement of methodological designs, and development/refinement of sensitive imaging and biomarkers will help pave the way to the successful discovery of disease-modifying drugs and the optimal administration strategies in clinical practice.
Collapse
Affiliation(s)
- Win Min Oo
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| | - Shirley Pei-Chun Yu
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| | - Matthew Sean Daniel
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| | - David John Hunter
- a Rheumatology Department, Royal North Shore Hospital, and, Institute of Bone and Joint Research, Kolling Institute , University of Sydney , Sydney , Australia
| |
Collapse
|
69
|
Abstract
Osteoarthritis (OA) is one of the most common diseases, affecting more than 10% of populations and thus creating immense socioeconomic burden. The pathological changes of OA involve the entire joint, which is composed of multiple types of tissues and cells, exemplified by cartilage degradation, subchondral bone thickening, osteophyte formation, synovium inflammation and hypertrophy, and ligament degeneration. As joint homeostasis requires a complex network of growth factors to regulate anabolic and catabolic events, the dysregulation of growth factor signalling would have negative impacts on structure and function of multiple joint tissues and eventually lead to the onset and progression of OA. In this review, we will discuss TGF-β, NGF, Hedgehog and Wnt, the four growth factors which have received extensive attention in the field of OA and clinical/translational interrogation about their application in OA therapies.
Collapse
Affiliation(s)
- Jian Huang
- a Department of Orthopedic Surgery , Rush University Medical Center , Chicago , IL , USA
| | - Lan Zhao
- a Department of Orthopedic Surgery , Rush University Medical Center , Chicago , IL , USA
| | - Di Chen
- a Department of Orthopedic Surgery , Rush University Medical Center , Chicago , IL , USA
| |
Collapse
|
70
|
Adkar SS, Wu CL, Willard VP, Dicks A, Ettyreddy A, Steward N, Bhutani N, Gersbach CA, Guilak F. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing. Stem Cells 2018; 37:65-76. [PMID: 30378731 DOI: 10.1002/stem.2931] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) to prescribed cell fates enables the engineering of patient-specific tissue types, such as hyaline cartilage, for applications in regenerative medicine, disease modeling, and drug screening. In many cases, however, these differentiation approaches are poorly controlled and generate heterogeneous cell populations. Here, we demonstrate cartilaginous matrix production in three unique hiPSC lines using a robust and reproducible differentiation protocol. To purify chondroprogenitors (CPs) produced by this protocol, we engineered a COL2A1-GFP knock-in reporter hiPSC line by CRISPR-Cas9 genome editing. Purified CPs demonstrated an improved chondrogenic capacity compared with unselected populations. The ability to enrich for CPs and generate homogenous matrix without contaminating cell types will be essential for regenerative and disease modeling applications. Stem Cells 2019;37:65-76.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | | | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Adarsh Ettyreddy
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Cytex Therapeutics, Inc., Durham, North Carolina, USA
| |
Collapse
|
71
|
Long non-coding RNA PVT1, a molecular sponge for miR-149, contributes aberrant metabolic dysfunction and inflammation in IL-1β-simulated osteoarthritic chondrocytes. Biosci Rep 2018; 38:BSR20180576. [PMID: 30126849 PMCID: PMC6165834 DOI: 10.1042/bsr20180576] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA), a common form of degenerative joint disease, is typified by inflammatory response and the loss of cartilage matrix. Long non-coding RNAs (lncRNAs) are emerging as a new player in gene regulation and exert critical roles in diverse physiologic and pathogenic processes including OA. The lncRNA plasmacytoma variant translocation 1 (PVT1) has been implicated in cancer, diabetes and septic acute kidney injury. Recent research confirmed the elevation of PVT1 in patients with OA. However, its role in the development of OA remains poorly elucidated. In the present study, high expression of PVT1 was observed in cartilage of OA patients and IL-1β-stimulated chondrocytes. Moreover, cessation of PVT1 expression dramatically reversed the inhibition of IL-1β on collagen II and aggrecan expression, but suppressed IL-1β-induced elevation of matrix metalloproteinases (MMPs), including MMP-3, MMP-9 and MMP-13. Simultaneously, PVT1 inhibition also antagonized the production of inflammatory cytokines upon IL-1β stimulation, including prostaglandin E2 (PGE2), NO, IL-6, IL-8 and TNF-α. Further molecular mechanism analysis identified PVT1 as an endogenous sponge RNA that could directly bind to miR-149 and repress its expression and activity. More importantly, miR-149 inhibition reversed the protective roles of PVT1 cessation in attenuating IL-1β-evoked matrix aberrant catabolism and inflammation. Together, this research confirms that lowering PVT1 expression may ameliorate the progression of OA by alleviating cartilage imbalance toward catabolism and inflammatory response, thus supporting a promising therapeutic strategy against OA.
Collapse
|
72
|
Cooke ME, Lawless BM, Jones SW, Grover LM. Matrix degradation in osteoarthritis primes the superficial region of cartilage for mechanical damage. Acta Biomater 2018; 78:320-328. [PMID: 30059801 DOI: 10.1016/j.actbio.2018.07.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/23/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects 25% of the world's population over fifty years of age. It is a chronic disease of the synovial joints, primarily the hip and knee. The main pathologies are degradation of the articular cartilage and changes to the subchondral bone, as a result of both mechanical wear and a locally elevated inflammatory state. This study compares the viscoelastic properties of cartilage that represents the biochemical changes in OA and age-matched healthy tissue. Further, the mechanical damage induced by this compressive loading cycle was characterised and the mechanism for it was investigated. The storage modulus of OA cartilage was shown to be significantly lower than that of healthy cartilage whilst having a higher capacity to hold water. Following mechanical testing, there was a significant increase in the surface roughness of OA cartilage. This change in surface structure occurred following a reduction in sulphated glycosaminoglycan content of the superficial region in OA, as seen by alcian blue staining and quantified by micro X-ray fluorescence. These findings are important in understanding how the chemical changes to cartilage matrix in OA influence its dynamic mechanical properties and structural integrity. STATEMENT OF SIGNIFICANCE Cartilage has a very specialised tissue structure which acts to resist compressive loading. In osteoarthritis (OA), there is both mechanically- and chemically-induced damage to cartilage, resulting in severe degradation of the tissue. In this study we have undertaken a detailed mechanical and chemical analysis of macroscopically undamaged OA and healthy cartilage tissue. We have demonstrated, for the first time in human tissue, that the mechanical degradation of the tissue is attributed to a chemical change across the structure. In macroscopically undamaged OA tissue, there is a reduction in the elastic response of cartilage tissue and an associated destabilisation of the matrix that leaves it susceptible to damage. Understanding this allows us to better understand the progression of OA to design better therapeutic interventions.
Collapse
|
73
|
Pearson MJ, Jones SW. Review: Long Noncoding RNAs in the Regulation of Inflammatory Pathways in Rheumatoid Arthritis and Osteoarthritis. Arthritis Rheumatol 2018; 68:2575-2583. [PMID: 27214788 PMCID: PMC5347907 DOI: 10.1002/art.39759] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Mark J Pearson
- Institute of Inflammation and Ageing, MRC-ARK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
74
|
Chiesa E, Pisani S, Colzani B, Dorati R, Conti B, Modena T, Braekmans K, Genta I. Intra-Articular Formulation of GE11-PLGA Conjugate-Based NPs for Dexamethasone Selective Targeting-In Vitro Evaluation. Int J Mol Sci 2018; 19:E2304. [PMID: 30082640 PMCID: PMC6121689 DOI: 10.3390/ijms19082304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Selectively targeted nanoscale drug delivery systems have recently emerged as promising intravenously therapeutic option for most chronic joint diseases. Here, a newly synthetized dodecapeptide (GE11)-polylactide-co-glycolide (PLGA)-based conjugate was used to prepare smart nanoparticles (NPs) intended for intra-articular administration and for selectively targeting Epidermal Growth Factor Receptor (EGFR). GE11-PLGA conjugate-based NPs are specifically uptaken by EGFR-overexpressed fibroblast; such as synoviocytes; which are the primarily cellular component involved in the development of destructive joint inflammation. The selective uptake could help to tune drug effectiveness in joints and to decrease local and systemic side effects. Dexamethasone (DXM) is a glucorticoid drug commonly used in joint disease treatment for both systemic and local administration route. In the present research; DXM was efficiently loaded into GE11-PLGA conjugate-based NPs through an eco-friendly nanoprecipitation method set up for this purpose. DXM loaded GE11-PLGA conjugate-based NPs revealed satisfactory ex vivo cytocompatibility; with proper size (≤150 nm) and good dimensional stability in synovial fluid. Intra-articular formulation was developed embedding DXM loaded GE11-PLGA conjugate-based NPs into thermosetting chitosan-based hydrogel; forming a biocompatible composite hydrogel able to quickly turn from liquid state into gel state at physiological temperature; within 15 min. Moreover; the use of thermosetting chitosan-based hydrogel extends the local release of active agent; DXM.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| | - Barbara Colzani
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| | - Kevin Braekmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (PV), Italy.
| |
Collapse
|
75
|
Steen-Louws C, Popov-Celeketic J, Mastbergen SC, Coeleveld K, Hack CE, Eijkelkamp N, Tryfonidou M, Spruijt S, van Roon JAG, Lafeber FPJG. IL4-10 fusion protein has chondroprotective, anti-inflammatory and potentially analgesic effects in the treatment of osteoarthritis. Osteoarthritis Cartilage 2018; 26:1127-1135. [PMID: 29775732 DOI: 10.1016/j.joca.2018.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Effective disease-modifying drugs for osteoarthritis (DMOAD) should preferably have chondroprotective, anti-inflammatory, and analgesic activity combined in a single molecule. We developed a fusion protein of IL4 and IL10 (IL4-10 FP), in which the biological activity of both cytokines is preserved. The present study evaluates the chondroprotective, anti-inflammatory, and analgesic activity of IL4-10 FP in in vitro and in vivo models of osteoarthritis. METHODS Human osteoarthritic cartilage tissue and synovial tissue were cultured with IL4-10 FP. Cartilage proteoglycan turnover and release of pro-inflammatory, catabolic, and pain mediators by cartilage and synovial tissue were measured. The analgesic effect of intra-articularly injected IL4-10 FP was evaluated in a canine model of osteoarthritis by force-plate analysis. RESULTS IL4-10 FP increased synthesis (P = 0.018) and decreased release (P = 0.018) of proteoglycans by osteoarthritic cartilage. Release of pro-inflammatory IL6 and IL8 by cartilage and synovial tissue was reduced in the presence of IL4-10 FP (all P < 0.05). The release of MMP3 by osteoarthritic cartilage and synovial tissue was decreased (P = 0.018 and 0.028) whereas TIMP1 production was not significantly changed. Furthermore, IL4-10 FP protected cartilage against destructive properties of synovial tissue mediators shown by the increased cartilage proteoglycan synthesis (P = 0.0235) and reduced proteoglycan release (P = 0.0163). Finally, intra-articular injection of IL4-10 FP improved the deficient joint loading in dogs with experimentally induced osteoarthritis. CONCLUSION The results of current preliminary study suggest that IL4-10 FP has DMOAD potentials since it shows chondroprotective and anti-inflammatory effects in vitro, as well as potentially analgesic effect in a canine in vivo model of osteoarthritis.
Collapse
Affiliation(s)
- C Steen-Louws
- Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - J Popov-Celeketic
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - K Coeleveld
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - C E Hack
- Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - N Eijkelkamp
- Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands; Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - M Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, The Netherlands.
| | - S Spruijt
- St. Maartens Hospital, The Netherlands.
| | - J A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - F P J G Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| |
Collapse
|
76
|
Intra Articular Ozone Reduces Serum Uric Acid and Improves Pain, Function and Quality of Life in Knee Osteoarthritis Patients: A Before-and-After Study. ACTA ACUST UNITED AC 2018. [DOI: 10.5812/mejrh.68599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
77
|
Abdelaleem EA, Rizk YM. Health-related quality of life in Egyptian patients with knee osteoarthritis: correlation with performance-related measures. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2018. [DOI: 10.4103/1110-161x.237048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
78
|
Yasmin, Maskari RA, McEniery CM, Cleary SE, Li Y, Siew K, Figg NL, Khir AW, Cockcroft JR, Wilkinson IB, O'Shaughnessy KM. The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci Rep 2018; 8:8550. [PMID: 29867203 PMCID: PMC5986773 DOI: 10.1038/s41598-018-25851-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Stiffening of the aorta is an important independent risk factor for myocardial infarction and stroke. Yet its genetics is complex and little is known about its molecular drivers. We have identified for the first time, tagSNPs in the genes for extracellular matrix proteins, aggrecan and fibulin-1, that modulate stiffness in young healthy adults. We confirmed SNP associations with ex vivo stiffness measurements and expression studies in human donor aortic tissues. Both aggrecan and fibulin-1 were found in the aortic wall, but with marked differences in the distribution and glycosylation of aggrecan reflecting loss of chondroitin-sulphate binding domains. These differences were age-dependent but the striking finding was the acceleration of this process in stiff versus elastic young aortas. These findings suggest that aggrecan and fibulin-1 have critical roles in determining the biomechanics of the aorta and their modification with age could underpin age-related aortic stiffening.
Collapse
Affiliation(s)
- Yasmin
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Raya Al Maskari
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Carmel M McEniery
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah E Cleary
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ye Li
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - Keith Siew
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ashraf W Khir
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - John R Cockcroft
- Division of Cardiology, New York-Presbyterian Hospital, Columbia University, New York, USA
| | - Ian B Wilkinson
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
79
|
Deveza LA, Loeser RF. Is osteoarthritis one disease or a collection of many? Rheumatology (Oxford) 2018; 57:iv34-iv42. [PMID: 29267932 DOI: 10.1093/rheumatology/kex417] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 12/18/2022] Open
Abstract
OA is a multifaceted and heterogeneous syndrome that may be amenable to tailored treatment. There has been an increasing focus within the OA research community on the identification of meaningful OA phenotypes with potential implications for prognosis and treatment. Experimental and clinical data combined with sophisticated statistical approaches have been used to characterize and define phenotypes from the symptomatic and structural perspectives. An improved understanding of the existing phenotypes based on underlying disease mechanisms may shed light on the distinct entities that make up the disease. This narrative review provides an updated summary of the most recent advances in this field as well as limitations from previous approaches that can be addressed in future studies.
Collapse
Affiliation(s)
- Leticia A Deveza
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, Australia
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
80
|
Role of long noncoding RNA ZFAS1 in proliferation, apoptosis and migration of chondrocytes in osteoarthritis. Biomed Pharmacother 2018; 104:825-831. [PMID: 29703568 DOI: 10.1016/j.biopha.2018.04.124] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the role of long noncoding RNA (lncRNA) ZFAS1 in the development of osteoarthritis (OA) as well as to explore the potential molecular mechanisms. MATERIAL AND METHODS The expression of lncRNA ZFAS1 in OA chondrocytes was determined. After cell transfection, the effects of ZFAS1 overexpression on the viability, proliferation, apoptosis and migration of OA chondrocytes were detected. Additionally, the expression levels of Bcl-2, Bax, Caspase-3, and matrix metalloproteinases (MMP1 and MMP13) were determined. The expressions of Wnt3a signaling proteins, and the relationship between ZFAS1 and Wnt3a were detected as well. RESULTS The expression of ZFAS1 was down-regulated in OA chondrocytes compared with normal chondrocytes. Overexpression of ZFAS1 promoted the viability, proliferation and migration, and inhibited apoptosis and matrix synthesis of OA chondrocytes. Additionally, overexpressed ZFAS1 significantly decreased Wnt3a factors. The effects of ZFAS1 on OA chondrocytes were achieved by regulating Wnt3a signaling. CONCLUSIONS Our study demonstrates that ZFAS1 may promote chondrocyte proliferation, and migration, and decrease apoptosis and matrix synthesis in OA possible via targeting Wnt3a signaling. ZFAS1 provides a potential therapeutic target for OA treatment.
Collapse
|
81
|
Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage 2017; 25:1926-1941. [PMID: 28847624 DOI: 10.1016/j.joca.2017.08.009] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/22/2017] [Accepted: 08/18/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To systematically review the literature for studies investigating knee osteoarthritis (OA) phenotypes to examine what OA characteristics are relevant for phenotyping. METHODS A comprehensive search was performed in Medline, EMBASE, Web of Sciences, CINAHL, and Scopus databases from inception to September 2016. Inclusion was limited to observational studies of individuals with symptomatic knee OA that identified phenotypes based on any OA characteristics and assessed their association with clinically important outcomes. A descriptive synthesis of the data was performed. RESULTS Of the 2777 citations retrieved, 34 studies were included. Clinical phenotypes were investigated most frequently, followed by laboratory, imaging and aetiologic phenotypes. Eight studies defined subgroups based on outcome trajectories (pain, function and radiographic progression trajectories). Most studies used a single patient or disease characteristic to identify patients subgroups while five included characteristics from multiple domains. We found evidence from multiple studies suggesting that pain sensitization, psychological distress, radiographic severity, body mass index (BMI), muscle strength, inflammation and comorbidities are associated with clinically distinct phenotypes. Gender, obesity and other metabolic abnormalities, the pattern of cartilage damage, and inflammation may be implicated in delineating distinct structural phenotypes. Only a few studies investigated the external validity of the phenotypes or their prospective validity using longitudinal outcomes. CONCLUSIONS There is marked heterogeneity in the data selected by the studies investigating knee OA phenotypes. We identified the phenotypic characteristics that can be considered for a comprehensive phenotype classification in future studies. A framework for the investigation of phenotypes could be useful for future studies. PROTOCOL REGISTRATION PROSPERO CRD42016036220.
Collapse
|
82
|
Cooke ME, Pearson MJ, Moakes RJA, Weston CJ, Davis ET, Jones SW, Grover LM. Geometric confinement is required for recovery and maintenance of chondrocyte phenotype in alginate. APL Bioeng 2017; 1:016104. [PMID: 31069284 PMCID: PMC6481693 DOI: 10.1063/1.5006752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/01/2017] [Indexed: 11/14/2022] Open
Abstract
Human articular chondrocytes lose their native phenotype when expanded in traditional monolayer cultures. As a consequence, hydrogel encapsulation has been investigated as a means to maintain the natural phenotype. Alginate has been widely used for cartilage engineering as it has been shown to enable the recovery of a native collagen type II expressing chondrocyte phenotype. This study has evaluated whether the capacity of the materials to maintain/revert the phenotype is due to the composition of the material or the physical entrapment provided by the gel. To achieve this, an alginate “fluid gel” (a shear-thinning structured gel system) was produced of identical chemistry to a traditionally gelled alginate structure. Both were seeded with passaged primary human articular chondrocytes. Chondrocytes in quiescent alginate showed the recovery of the native phenotype and a spherical morphology. Chondrocytes in alginate fluid gel were unable to maintain the recovered phenotype despite having a spherical morphology and were shown to have a lower level of entrapment than those in quiescent alginate. These findings indicate that geometric entrapment is essential for the maintenance of a recovered chondrocyte phenotype in alginate.
Collapse
Affiliation(s)
| | - Mark J Pearson
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, QE Hospital, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Christopher J Weston
- Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Edward T Davis
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham B31 2AP, United Kingdom
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, QE Hospital, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
83
|
Zheng W, Lin P, Ma Y, Shao X, Chen H, Chen D, Liu X, Li X, Ye H. Psoralen promotes the expression of cyclin D1 in chondrocytes via the Wnt/β-catenin signaling pathway. Int J Mol Med 2017; 40:1377-1384. [PMID: 28949389 PMCID: PMC5627873 DOI: 10.3892/ijmm.2017.3148] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Psoralen (PSO), the active ingredient of Fructus Psoraleae (FP) the dried ripe fruit of Psoralea corylifolia L., has been commonly used in traditional Chinese medicine (TCM) for the treatment of osteoarthritis (OA). We found that PSO activates cartilaginous cellular functions of rat chondrocytes in vitro. However, the effect of PSO on chondrocyte proliferation and the precise mechanisms involved remain to be elucidated. We investigated the effects of PSO on chondrocytes isolated from Sprague-Dawley (SD) rats and evaluated involvement of the Wnt/β-catenin signaling pathway. The viability of chondrocytes treated with PSO was increased in a dose- and time-dependent manner, as assessed by MTT assay. We found that the gene expression and protein levels of Wnt-4, Frizzled-2, β-catenin and cyclin D1 in the PSO-treated chondrocytes were significantly upregulated, while the gene expression and protein level of glycogen synthase kinase-3β (GSK-3β) were downregulated, compared with the untreated chondrocytes. By immunofluorescence, we also found that PSO induced β-catenin nuclear translocation. Importantly, the expression of β-catenin and cyclin D1 was partly inhibited by Dickkopf-1 (DKK-1), an inhibitor of the Wnt/β-catenin signaling pathway. Additionally, Col-II expression in chondrocytes was increased after treatment with PSO. Taken together, these results indicate that PSO promotes chondrocyte proliferation by activating the Wnt/β-catenin signaling pathway, and it may play an important role in the treatment of OA.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Pingdong Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuhuan Ma
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Houhuang Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Da Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
84
|
The Effects of Morus alba and Acacia catechu on Quality of Life and Overall Function in Adults with Osteoarthritis of the Knee. J Nutr Metab 2017; 2017:4893104. [PMID: 29085676 PMCID: PMC5612321 DOI: 10.1155/2017/4893104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine the effects of UP1306 on discomfort and function in adults with osteoarthritis of the knee. In a randomized, double-blinded, placebo-controlled, parallel design, 135 subjects received UP1306, a standardized, proprietary extract of Morus alba and Acacia catechu, glucosamine chondroitin, or placebo for 12 weeks. Discomfort, stiffness, and activities of daily living measured by the WOMAC questionnaire and VAS (pain/discomfort) were improved within all groups. Range of motion and distance walked were improved. There were no changes in TNFα levels for any of the products. There was a significant difference in urinary C-telopeptides of type II collagen (CTX-II), a marker of cartilage degradation between UP1306, and placebo after 12 weeks (p = 0.029). All efficacy measurements were improved from baseline to most time-points for UP1306, the comparator, and placebo without a significant association between the products. There was a significant difference between the changes of uCTX-II for UP1306 and placebo after 12 weeks. Early intervention with UP1306 aimed at reducing bone and cartilage degradation through reported inhibition of catabolic proinflammatory pathways may help to prevent joint cartilage damage. This study is registered with Clinical Trial ID ISRCTN15418623.
Collapse
|
85
|
Hu X, Sun G, Wang W. Association of ADAM 12 polymorphisms with the risk of knee osteoarthritis: meta-analysis of 5048 cases and 6848 controls. Rheumatol Int 2017; 37:1659-1666. [PMID: 28748424 DOI: 10.1007/s00296-017-3778-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Several studies have suggested the association between ADAM 12 polymorphisms and the risk of osteoarthritis (OA), but the results remained controversial. Therefore, we designed a meta-analysis to systematically evaluate the association on this issue. A literature search for eligible studies was conducted in PubMed, Web of Science and Google Scholar databases. The association between ADAM 12 polymorphisms and knee OA risk was calculated by odds ratios (ORs) and 95% confidence intervals (CIs). Study heterogeneity, sensitivity and publication bias analyses were also conducted. Ten articles covering 5048 cases and 6848 controls met our criteria for the final analysis. We found that the rs1871054 was significantly associated with the risk of knee OA (allele model OR 1.72, 95% CI 1.43-2.07, P < 0.001; additive model: OR 2.06, 95% CI 1.19-3.56, P = 0.010; dominant model: OR 2.45, 95% CI 1.85-3.25, P < 0.001; recessive model: OR 1.54, 95% CI 1.13-2.10, P = 0.007). rs1044122 was significantly associated with knee OA susceptibility in recessive model (OR 1.45, 95% CI 1.03-2.04, P = 0.031). For rs3740199 and rs1278279, no significant associations with knee OA were found. In the stratified analysis by gender, significant association was identified with the risk of knee OA for rs3740199 in men in allele model (OR 2.41, 95% CI 1.51-3.84, P < 0.001), dominant model (OR 2.68, 95% CI 1.17-6.14, P = 0.02) and recessive model (OR 3.51, 95% CI 1.68-7.36, P = 0.001), but not for additive model (OR 1.30, 95% CI 0.81-2.08, P = 0.28). This meta-analysis suggests that the ADAM 12 genetic polymorphisms rs1871054 and rs1044122 might be associated with risk of knee OA; rs3740199 might be associated with risk of knee OA in men. Further well-designed and large scale studies are warranted to validate these associations.
Collapse
Affiliation(s)
- Xuerong Hu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Guoli Sun
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Weidong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
86
|
Steinecker-Frohnwieser B, Kaltenegger H, Weigl L, Mann A, Kullich W, Leithner A, Lohberger B. Pharmacological treatment with diacerein combined with mechanical stimulation affects the expression of growth factors in human chondrocytes. Biochem Biophys Rep 2017; 11:154-160. [PMID: 28955780 PMCID: PMC5614688 DOI: 10.1016/j.bbrep.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) as the main chronic joint disease arises from a disturbed balance between anabolic and catabolic processes leading to destructions of articular cartilage of the joints. While mechanical stress can be disastrous for the metabolism of chondrocytes, mechanical stimulation at the physiological level is known to improve cell function. The disease modifying OA drug (DMOAD) diacerein functions as a slowly-acting drug in OA by exhibiting anti-inflammatory, anti-catabolic, and pro-anabolic properties on cartilage. Combining these two treatment options revealed positive effects on OA-chondrocytes. METHODS Cells were grown on flexible silicone membranes and mechanically stimulated by cyclic tensile loading. After seven days in the presence or absence of diacerein, inflammation markers and growth factors were analyzed using quantitative real-time PCR and enzyme linked immune assays. The influence of conditioned medium was tested on cell proliferation and cell migration. RESULTS Tensile strain and diacerein treatment reduced interleukin-6 (IL-6) expression, whereas cyclooxygenase-2 (COX2) expression was increased only by mechanical stimulation. The basic fibroblast growth factor (bFGF) was down regulated by the combined treatment modalities, whereas prostaglandin E2 (PGE2) synthesis was reduced only under OA conditions. The expression of platelet-derived growth factor (PDGF) and vascular endothelial growth factor A (VEGF-A) was down-regulated by both. CONCLUSIONS From our study we conclude that moderate mechanical stimulation appears beneficial for the fate of the cell and improves the pharmacological effect of diacerein based on cross-talks between different initiated pathways. GENERAL SIGNIFICANCE Combining two different treatment options broadens the perspective to treat OA and improves chondrocytes metabolism.
Collapse
Affiliation(s)
- Bibiane Steinecker-Frohnwieser
- Ludwig Boltzmann Department for Rehabilitation of Internal Diseases, Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Thorerstrasse 26, 5760 Saalfelden, Austria
| | - Heike Kaltenegger
- Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
| | - Lukas Weigl
- Department of Special Anaesthesia and Pain Therapy, Medical University Vienna, Austria
| | - Anda Mann
- Department of Special Anaesthesia and Pain Therapy, Medical University Vienna, Austria
| | - Werner Kullich
- Ludwig Boltzmann Department for Rehabilitation of Internal Diseases, Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Thorerstrasse 26, 5760 Saalfelden, Austria
| | - Andreas Leithner
- Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
| | - Birgit Lohberger
- Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
87
|
Resistin promotes the abnormal Type I collagen phenotype of subchondral bone in obese patients with end stage hip osteoarthritis. Sci Rep 2017. [PMID: 28642544 PMCID: PMC5481425 DOI: 10.1038/s41598-017-04119-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to determine the effect of adiposity on the architecture and composition of hip OA subchondral bone, and to examine the pathological role of adipokines. Femoral heads were collected from normal-weight or over-weight/obese patients with hip OA. Structural parameters of subchondral bone were determined by MicroCT and type I collagen α1/α2 ratio was determined by SDS PAGE and by qRT-PCR in ex-vivo bone explants. The serum concentration of adipokines was determined by Luminex. The effect of resistin on primary OA osteoblasts was determined by analysis of Wnt pathway signal transduction, bone nodule formation, and osteoblast metabolic activity. Subchondral bone from over-weight/obese hip OA patients exhibited reduced trabecular thickness, increased bone surface/bone volume ratio, and an increase in the Type I collagen α1/α2, compared to normal-weight hip OA patients. The serum concentration of resistin was higher in overweight/obese OA patients, compared to normal-weight OA patients. Stimulation of normal-weight bone explant with recombinant resistin increased the Type I collagen α1/α2 ratio. Stimulation of primary OA osteoblasts with recombinant resistin increased Wnt signalling activation, osteoblast metabolic activity, and bone nodule formation. Increased adiposity in hip OA patients is associated with altered subchondral bone architecture and type I collagen composition.
Collapse
|
88
|
Pearson MJ, Herndler-Brandstetter D, Tariq MA, Nicholson TA, Philp AM, Smith HL, Davis ET, Jones SW, Lord JM. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 2017; 7:3451. [PMID: 28615667 PMCID: PMC5471184 DOI: 10.1038/s41598-017-03759-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023] Open
Abstract
Increasing evidence suggests that inflammation plays a central role in driving joint pathology in certain patients with osteoarthritis (OA). Since many patients with OA are obese and increased adiposity is associated with chronic inflammation, we investigated whether obese patients with hip OA exhibited differential pro-inflammatory cytokine signalling and peripheral and local lymphocyte populations, compared to normal weight hip OA patients. No differences in either peripheral blood or local lymphocyte populations were found between obese and normal-weight hip OA patients. However, synovial fibroblasts from obese OA patients were found to secrete greater amounts of the pro-inflammatory cytokine IL-6, compared to those from normal-weight patients (p < 0.05), which reflected the greater levels of IL-6 detected in the synovial fluid of the obese OA patients. Investigation into the inflammatory mechanism demonstrated that IL-6 secretion from synovial fibroblasts was induced by chondrocyte-derived IL-6. Furthermore, this IL-6 inflammatory response, mediated by chondrocyte-synovial fibroblast cross-talk, was enhanced by the obesity-related adipokine leptin. This study suggests that obesity enhances the cross-talk between chondrocytes and synovial fibroblasts via raised levels of the pro-inflammatory adipokine leptin, leading to greater production of IL-6 in OA patients.
Collapse
Affiliation(s)
- Mark J Pearson
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | | | - Mohammad A Tariq
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Thomas A Nicholson
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Ashleigh M Philp
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Hannah L Smith
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Edward T Davis
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, West Midlands, B31 2AP, UK
| | - Simon W Jones
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Janet M Lord
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK.
| |
Collapse
|
89
|
Jung JH, Seok H, Kim JH, Song GG, Choi SJ. Association between osteoarthritis and mental health in a Korean population: a nationwide study. Int J Rheum Dis 2017; 21:611-619. [PMID: 28544532 DOI: 10.1111/1756-185x.13098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Osteoarthritis (OA) is a chronic disease and has become a major health problem in recent years. OA causes chronic pain and disability and can induce mental disorders such as stress perception, depression and suicidal ideation. We investigated the incidence of perceived stress, depressed mood and suicidal ideation in OA patients, using the 2010-2012 Korea National Health and Nutrition Examination Survey (KNHANES). METHOD A total of 8271 participants were included (3580 male and 4691 female). OA patients were defined as participants with knee/hip joint pain and radiographic changes of the knee/hip joints. Mental disorders included stress perception, depression and suicidal ideation. Odds ratios (ORs) and 95% confidence intervals (95% CIs) for mental disorders were calculated according to the OA. RESULTS In the multiple logistic regression model, compared to the non-OA group, the ORs of high stress perception, depression and suicidal ideation were 1.59 (95% CI 1.10-2.31), 1.52 (95% CI 1.01-2.29) and 1.90 (95% CI 1.33-2.72), respectively, in male, and 1.41 (95% CI 1.19-1.68), 1.27 (95% CI 1.04-1.54) and 1.49 (95% CI 1.25-1.78), respectively, in female. CONCLUSION OA is associated with impaired mental health. OA patients had high stress perception, depression and suicidal ideation. More numbers of male with OA had much more mental disorders than female with OA.
Collapse
Affiliation(s)
- Jae Hyun Jung
- Korea University College of Medicine, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Hongdeok Seok
- Graduate School of Public Health, Yonsei University, Seoul, Korea.,Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hoon Kim
- Korea University College of Medicine, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Gwan Gyu Song
- Korea University College of Medicine, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Sung Jae Choi
- Korea University College of Medicine, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, Seoul, Korea
| |
Collapse
|
90
|
Abstract
Football is currently the most popular sporting activity in the world. Multiple reports have shown that a high incidence of osteoarthritis is found in football players. Evidence clearly shows that traumatic injury significantly predisposes players for such pathophysiology. Injuries are frequent in amateur as well as professional football players, with knee and ankle accounting for the most severe injuries. Many professional athletes lose playing time due to injuries and many are forced into early retirement. Posttraumatic osteoarthritis is a common finding among ex-football players with numbers well above the normal population. Today's surgical techniques are advanced and capable of restoring the joint to a certain extent. However, a restitution ad integrum is reached only in very rare cases. Professional football players that return to play after serious injuries perform their extremely strenuous activity on morphologically compromised joints. Incomplete rehabilitation and pressure to return to play after an injurious event clearly put the athlete at an even higher risk for joint degeneration. Prevention strategies, improved surgical management, strict rehabilitation, as well as future aspects such as early suppression of inflammation, personalized medicine, and predictive genomics DNA profiling are needed to reduce incidence and improve the health perspectives of football players.
Collapse
Affiliation(s)
- Gian M. Salzmann
- Musculoskeletal Centre, Orthopaedics Lower Extremities, Schulthess Clinic, Zurich, Switzerland,Gian M. Salzmann, Schulthess Klinik, Lengghalde 2, 8008 Zurich, Switzerland.
| | - Stefan Preiss
- Musculoskeletal Centre, Orthopaedics Lower Extremities, Schulthess Clinic, Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Department of Health Sciences and Technology, Cartilage Engineering and Regeneration Laboratory, ETH Zurich, Switzerland
| | - Laurent P. Harder
- Musculoskeletal Centre, Orthopaedics Lower Extremities, Schulthess Clinic, Zurich, Switzerland
| | - Dirk Maier
- Department for Orthopedic Surgery and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Jirí Dvorák
- Musculoskeletal Centre, Orthopaedics Lower Extremities, Schulthess Clinic, Zurich, Switzerland,FIFA Medical Assessment and Research Centre (F-MARC), FIFA, Zurich, Switzerland
| |
Collapse
|
91
|
Mobasheri A, Bay-Jensen AC, van Spil WE, Larkin J, Levesque MC. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers). Osteoarthritis Cartilage 2017; 25:199-208. [PMID: 28099838 DOI: 10.1016/j.joca.2016.12.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this "Year in Review" article is to summarize and discuss the implications of biochemical marker related articles published between the Osteoarthritis Research Society International (OARSI) 2015 Congress in Seattle and the OARSI 2016 Congress in Amsterdam. METHODS The PubMed/MEDLINE bibliographic database was searched using the combined keywords: 'biomarker' and 'osteoarthritis'. The PubMed/MEDLINE literature search was conducted using the Advanced Search Builder function (http://www.ncbi.nlm.nih.gov/pubmed/advanced). RESULTS Over two hundred new biomarker-related papers were published during the literature search period. Some papers identified new biomarkers whereas others explored the biological properties and clinical utility of existing markers. There were specific references to several adipocytokines including leptin and adiponectin. ADAM Metallopeptidase with Thrombospondin Type 1 motif 4 (ADAMTS-4) and aggrecan ARGS neo-epitope fragment (ARGS) in synovial fluid (SF) and plasma chemokine (CeC motif) ligand 3 (CCL3) were reported as potential new knee biomarkers. New and refined proteomic technologies and novel assays including a fluoro-microbead guiding chip (FMGC) for measuring C-telopeptide of type II collagen (CTX-II) in serum and urine and a novel magnetic nanoparticle-based technology (termed magnetic capture) for collecting and concentrating CTX-II, were described this past year. CONCLUSION There has been steady progress in osteoarthritis (OA) biomarker research in 2016. Several novel biomarkers were identified and new technologies have been developed for measuring existing biomarkers. However, there has been no "quantum leap" this past year and identification of novel early OA biomarkers remains challenging. During the past year, OARSI published a set of recommendations for the use of soluble biomarkers in clinical trials, which is a major step forward in the clinical use of OA biomarkers and bodes well for future OA biomarker development.
Collapse
Affiliation(s)
- A Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, United Kingdom; Faculty of Health and Medical Sciences, Duke of Kent Building, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | - A-C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience A/S, Herlev, Denmark
| | - W E van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - J Larkin
- C3 DPU, Immunoinflammation Therapeutic Area, GlaxoSmithKline, King of Prussia, PA, 19406, United States
| | - M C Levesque
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| |
Collapse
|
92
|
Abstract
BACKGROUND Precision medicine has been adopted in a range of clinical settings where omics data have led to greater characterisation of disease and stratification of patients into subcategories of phenotypes and pathologies. However, in orthopaedics, precision medicine lags behind other disciplines such as cancer. Joint registries have now amassed a huge body of data pertaining to implant performance which can be broken down into performance statistics for different material types in different cohorts of patients. The National Joint Registry of England, Wales and Northern Ireland (NJR) is now one of the largest datasets available. Other registries such as those from Sweden and Australia however contain longer follow-up. Together, these registries can provide a wealth of informative for the orthopaedics community when considering which implant to give to any particular patient. QUESTIONS/PURPOSES We aim to explore the benefits of combining multiple large data streams including joint registries, published data on osteoarthritis (OA) pathogenesis and pathology and data concerning performance of each implant material combination in terms of biocompatibility. We believe that this analysis will provide a comprehensive overview of implant performance hopefully aiding surgeons in making more informed choices about which implant should be used in which patient. METHODS Data from three joint registries were combined with established literature to highlight the heterogeneity of OA disease and the different clinical outcomes following arthroplasty with a range of material types. RESULTS This review confirms that joint registries are unable to consider differences in arthritis presentation or underlying drivers of pathology. OA is now recognised to present with varying pathology with differing morbidity in different patient populations. Equally, just as OA is a heterogeneous disease, there are disparate responses to wear debris from different material combinations used in joint replacement surgery. This has been highlighted by recent high-profile scrutiny of early failure of metal-on-metal total hip replacement (THR) implants. CONCLUSIONS Bringing together data from joint registries, biomarker analysis, phenotyping of OA patients and knowledge of how different patients respond to implant debris will lead to a truly personalised approach to treating OA patients, ensuring that the correct implant is given to the correct patient at the correct time.
Collapse
|
93
|
|
94
|
Long noncoding RNAs in osteoarthritis. Joint Bone Spine 2016; 84:553-556. [PMID: 27919571 DOI: 10.1016/j.jbspin.2016.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/07/2016] [Indexed: 02/01/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis that may affect all joint tissues. Unfortunately, the pathogenesis of OA is not fully understood yet and it cannot be cured totally. Long noncoding RNA (lncRNA) is a type of RNA molecule greater than 200 nucleotides, and deregulated expression of lncRNAs plays an important role in many types of inflammation-related diseases. In this review, we have focused on the association of lncRNAs in the development and progression of OA and the possibility of lncRNAs as a therapeutic agent for the treatment of OA. Some lncRNAs are up-regulated in OA cartilage, and plays a critical role in the degradation of chondrocyte extracellular matrix, consequently weakening the integrity of the articular cartilage. Therapeutic targeting of these lncRNAs has shown significant influence on controlling OA progression. More clinical studies are in focus for OA treatment strategy by targeting lncRNAs.
Collapse
|
95
|
Qing L, Lei P, Liu H, Xie J, Wang L, Wen T, Hu Y. Expression of hypoxia-inducible factor-1α in synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis. Exp Ther Med 2016; 13:63-68. [PMID: 28123469 PMCID: PMC5244982 DOI: 10.3892/etm.2016.3940] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to examine hypoxia-inducible factor 1α (HIF-1α) levels in the synovial fluid and articular cartilage of patients with primary knee osteoarthritis (OA) and to investigate their association with the severity of disease. A total of 36 patients with knee OA and ten healthy controls were enrolled. Anteroposterior knee radiographs and/or Mankin scores were assessed to determine the disease severity of the affected knee. Radiographic grading of OA in the knee was performed according to Kellgren-Lawrence criteria. HIF-1α levels in synovial fluid were measured using enzyme-linked immunosorbent assay, whereas HIF-1α levels in articular cartilage were assessed with immunohistochemical methods. Compared with healthy controls, OA patients exhibited an increased HIF-1α concentration in synovial fluid (218.17±25.12 vs. 156.66±7.74 pg/ml; P<0.001) and articular cartilage (P<0.05). Furthermore, synovial fluid HIF-1α levels demonstrated a positive correlation with articular cartilage HIF-1α levels (Pearson's P=0.815; P<0.001). Subsequent analysis showed that synovial fluid HIF-1α levels were significantly correlated with the severity of disease (Spearman's ρ=0.933; P<0.001). Furthermore, articular cartilage levels of HIF-1α also correlated with disease severity (Spearman's ρ=-0.967; P<0.001). The findings of the present study suggested that HIF-1α in synovial fluid and articular cartilage is associated with progressive joint damage and is likely to be a useful biomarker for determining disease severity and progression in knee OA.
Collapse
Affiliation(s)
- Liming Qing
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengfei Lei
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hao Liu
- Program of Biology and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Jie Xie
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Wang
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Wen
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
96
|
Ondrésik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C, Gonçalves C, Radhouani H, Amandi Sousa R, Oliveira JM, Reis RL. Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng 2016; 114:717-739. [DOI: 10.1002/bit.26182] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/13/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Ondrésik
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Fatima R. Azevedo Maia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Alain da Silva Morais
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Ana C. Gertrudes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Ana H. Dias Bacelar
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Cristina Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Cristiana Gonçalves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Hajer Radhouani
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Rui Amandi Sousa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| |
Collapse
|
97
|
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12:580-92. [PMID: 27539668 DOI: 10.1038/nrrheum.2016.136] [Citation(s) in RCA: 949] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. Furthermore, we now appreciate that OA pathogenesis involves not only breakdown of cartilage, but also remodelling of the underlying bone, formation of ectopic bone, hypertrophy of the joint capsule, and inflammation of the synovial lining. That is, OA is a disorder of the joint as a whole, with inflammation driving many pathologic changes. The inflammation in OA is distinct from that in rheumatoid arthritis and other autoimmune diseases: it is chronic, comparatively low-grade, and mediated primarily by the innate immune system. Current treatments for OA only control the symptoms, and none has been FDA-approved for the prevention or slowing of disease progression. However, increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies. Indeed, several anti-inflammatory therapies have shown promise in animal models of OA. Further work is needed to identify effective inhibitors of the low-grade inflammation in OA, and to determine whether therapies that target this inflammation can prevent or slow the development and progression of the disease.
Collapse
Affiliation(s)
- William H Robinson
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Christin M Lepus
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Qian Wang
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Harini Raghu
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Rong Mao
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Tamsin M Lindstrom
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Jeremy Sokolove
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
98
|
Pearson MJ, Philp AM, Heward JA, Roux BT, Walsh DA, Davis ET, Lindsay MA, Jones SW. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage. Arthritis Rheumatol 2016; 68:845-56. [PMID: 27023358 PMCID: PMC4950001 DOI: 10.1002/art.39520] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA. METHODS OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex. RESULTS RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines. CONCLUSION The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in OA.
Collapse
|
99
|
Wei J, Hettinghouse A, Liu C. The role of progranulin in arthritis. Ann N Y Acad Sci 2016; 1383:5-20. [PMID: 27505256 DOI: 10.1111/nyas.13191] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Progranulin (PGRN) is a growth factor with a unique beads-on-a-string structure that is involved in multiple pathophysiological processes, including anti-inflammation, tissue repair, wound healing, neurodegenerative diseases, and tumorigenesis. This review presents up-to-date information concerning recent studies on the role of PGRN in inflammatory arthritis and osteoarthritis, with a special focus on the involvement of the interactions and interplay between PGRN and tumor necrosis factor receptor (TNFR) family members in regulating such musculoskeletal diseases. In addition, this paper highlights the applications of atsttrin, an engineered protein comprising three TNFR-binding fragments of PGRN, as a promising intervention in treating arthritis.
Collapse
Affiliation(s)
- Jianlu Wei
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Medical School of Shandong University, Jinan, Shandong, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
100
|
ASSOCIATIONS BETWEEN AGE-RELATED MACULAR DEGENERATION, OSTEOARTHRITIS AND RHEUMATOID ARTHRITIS: RECORD LINKAGE STUDY. Retina 2016; 35:2613-8. [PMID: 25996429 DOI: 10.1097/iae.0000000000000651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The epidemiologic relationship between age-related macular degeneration (AMD) and arthritis is unknown and has implications for understanding disease pathogenesis and treatment strategies. METHODS An AMD cohort of 245,912 people was constructed from English linked hospital episode statistics (1999-2011), principally comprising neovascular AMD patients undergoing anti-vascular endothelial growth factor therapy. We compared the AMD cohort with a reference cohort (2,134,771 people) for rates of subsequent osteoarthritis (OA) and rheumatoid arthritis. Osteoarthritis (2,032,472 people) and rheumatoid arthritis (261,232 people) cohorts were also constructed and compared with the reference cohort for rates of subsequent AMD. RESULTS Risk of arthritis after AMD was not elevated. The rate ratio for OA was 0.96 (95% confidence interval 0.95-0.97) and for rheumatoid arthritis was 0.98 (0.94-1.02). However, risk of AMD after arthritis was modestly raised. For OA, the rate ratio was 1.06 (1.04-1.08), but risk increased with longer OA duration, for example, 1.15 (1.08-1.23) for >10 years. For rheumatoid arthritis, the rate ratio was also modestly elevated at 1.15 (1.12-1.19). CONCLUSION Age-related macular degeneration and arthritis are degenerative aging conditions that share some disease mechanisms and extracellular matrix involvement. However, considering arthritis after AMD, they are not positively associated. By contrast, people with OA experience modestly increased AMD risk, perhaps owing to medical treatments for OA.
Collapse
|