51
|
Masawat P, Harfield A, Srihirun N, Namwong A. Green Determination of Total Iron in Water by Digital Image Colorimetry. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1174869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
52
|
Bandodkar AJ, Jeerapan I, Wang J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00250] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Amay J. Bandodkar
- Department
of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department
of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department
of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
53
|
Lim H, Ju Y, Kim J. Tailoring Catalytic Activity of Pt Nanoparticles Encapsulated Inside Dendrimers by Tuning Nanoparticle Sizes with Subnanometer Accuracy for Sensitive Chemiluminescence-Based Analyses. Anal Chem 2016; 88:4751-8. [DOI: 10.1021/acs.analchem.6b00073] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hyojung Lim
- Department of Chemistry, ‡KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Youngwon Ju
- Department of Chemistry, ‡KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, ‡KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
54
|
Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor. Anal Bioanal Chem 2016; 408:8761-8770. [DOI: 10.1007/s00216-016-9490-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
55
|
Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1841-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Zangheri M, Mirasoli M, Nascetti A, Caputo D, Bonvicini F, Gallinella G, de Cesare G, Roda A. Microfluidic cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection of viral DNA. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
57
|
Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens Bioelectron 2016; 76:145-63. [DOI: 10.1016/j.bios.2015.06.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/23/2023]
|
58
|
Roda A, Mirasoli M, Michelini E, Di Fusco M, Zangheri M, Cevenini L, Roda B, Simoni P. Progress in chemical luminescence-based biosensors: A critical review. Biosens Bioelectron 2016; 76:164-79. [DOI: 10.1016/j.bios.2015.06.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022]
|
59
|
Juang YJ, Chang JS. Applications of microfluidics in microalgae biotechnology: A review. Biotechnol J 2016; 11:327-35. [DOI: 10.1002/biot.201500278] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/29/2015] [Accepted: 12/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yi-Je Juang
- Department of Chemical Engineering; National Cheng Kung University; Tainan Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
60
|
Gorjikhah F, Davaran S, Salehi R, Bakhtiari M, Hasanzadeh A, Panahi Y, Emamverdy M, Akbarzadeh A. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:1609-14. [PMID: 26758969 DOI: 10.3109/21691401.2015.1129619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.
Collapse
Affiliation(s)
- Fatemeh Gorjikhah
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran ;,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran ;,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iranl
| | - Roya Salehi
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohsen Bakhtiari
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Arash Hasanzadeh
- d Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz , Iran
| | - Yunes Panahi
- f Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Masumeh Emamverdy
- d Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran ;,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iranl ;,e Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,f Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
61
|
Li H, Zhao M, Liu W, Chu W, Guo Y. Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G. Talanta 2016; 147:430-6. [DOI: 10.1016/j.talanta.2015.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
62
|
Lin CH, Su SY. Depth position detection for fast moving objects in sealed microchannel utilizing chromatic aberration. BIOMICROFLUIDICS 2016; 10:011904. [PMID: 26858810 PMCID: PMC4723411 DOI: 10.1063/1.4939943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
This research reports a novel method for depth position measurement of fast moving objects inside a microfluidic channel based on the chromatic aberration effect. Two band pass filters and two avalanche photodiodes (APD) are used for rapid detecting the scattered light from the passing objected. Chromatic aberration results in the lights of different wavelengths focus at different depth positions in a microchannel. The intensity ratio of two selected bands of 430 nm-470 nm (blue band) and 630 nm-670 nm (red band) scattered from the passing object becomes a significant index for the depth information of the passing object. Results show that microspheres with the size of 20 μm and 2 μm can be resolved while using PMMA (Abbe number, V = 52) and BK7 (V = 64) as the chromatic aberration lens, respectively. The throughput of the developed system is greatly enhanced by the high sensitive APDs as the optical detectors. Human erythrocytes are also successfully detected without fluorescence labeling at a high flow velocity of 2.8 mm/s. With this approach, quantitative measurement for the depth position of rapid moving objects inside a sealed microfluidic channel can be achieved in a simple and low cost way.
Collapse
Affiliation(s)
- Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University , Kaohsiung 804, Taiwan
| | - Shin-Yu Su
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University , Kaohsiung 804, Taiwan
| |
Collapse
|
63
|
A portable device for on site detection of chicken ovalbumin in artworks by chemiluminescent immunochemical contact imaging. Microchem J 2016. [DOI: 10.1016/j.microc.2015.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
64
|
Cao J, Seegmiller J, Hanson NQ, Zaun C, Li D. A microfluidic multiplex proteomic immunoassay device for translational research. Clin Proteomics 2015; 12:28. [PMID: 26692826 PMCID: PMC4676148 DOI: 10.1186/s12014-015-9101-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Objective Microfluidic technology has the potential to miniaturize and automate complex laboratory procedures. The objective of this study was to assess a microfluidic immunoassay device, Simple Plex, which simultaneously measured IL-1β, TNF-α, IL-6, and IL-10 in serum samples. This assessment is important to understanding the potentials of this microfluidic device as a valuable tool in translational research efforts. Methods We studied the operational characteristics of Simple Plex, and compared to other immunoassay systems including bead-based (i.e., Bio-Plex® from Bio-Rad) and planar micro-spot based (i.e., Multi-Array from Meso Scale Discovery) multiplex assays. We determined imprecisions for each of the Simple Plex assays and evaluated the ability of Simple Plex to detect IL-1β, TNF-α, IL-6, and IL-10 in serum samples. Results Simple Plex assays required 25 µL serum, and 1.5 h to run 16 samples per cartridge per instrument. Assay imprecisions, evaluated by measurement of 6 replicates in duplicate from a serum pool using three different cartridges, were less than 10 % for all 4 cytokine protein biomarkers, comparable to the imprecisions of traditional ELISAs. The Simple Plex assays were able to detect 32, 95, 97, and 100 % [i.e., percentages of the results within the respective analytical measurement ranges (AMRs)] of IL-1β, TNF-α, IL-6, and IL-10, respectively, in 66 serum samples. Conclusions Simple Plex is a microfluidic multiplex immunoassay device that offers miniaturized, and automated analysis of protein biomarkers. Microfluidic devices such as Simple Plex represent a promising platform to be used in translational research to measure protein biomarkers in real clinical samples.
Collapse
Affiliation(s)
- Jing Cao
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Jesse Seegmiller
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Naomi Q Hanson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Christopher Zaun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Danni Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| |
Collapse
|
65
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
66
|
Shamsi MH, Choi K, Ng AHC, Chamberlain MD, Wheeler AR. Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosens Bioelectron 2015; 77:845-52. [PMID: 26516684 DOI: 10.1016/j.bios.2015.10.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
Electrochemiluminescence (ECL) is a sensitive analytical technique with great promise for biological applications, especially when combined with microfluidics. Here, we report the first integration of ECL with digital microfluidics (DMF). ECL detectors were fabricated into the ITO-coated top plates of DMF devices, allowing for the generation of light from electrically excited luminophores in sample droplets. The new system was characterized by making electrochemical and ECL measurements of soluble mixtures of tris(phenanthroline)ruthenium(II) and tripropylamine (TPA) solutions. The system was then validated by application to an oligonucleotide hybridization assay, using magnetic particles bearing 21-mer, deoxyribose analogues of the complement to microRNA-143 (miRNA-143). The system detects single nucleotide mismatches with high specificity, and has a limit of detection of 1.5 femtomoles. The system is capable of detecting miRNA-143 in cancer cell lysates, allowing for the discrimination between the MCF-7 (less aggressive) and MDA-MB-231 (more aggressive) cell lines. We propose that DMF-ECL represents a valuable new tool in the microfluidics toolbox for a wide variety of applications.
Collapse
Affiliation(s)
- Mohtashim H Shamsi
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
| | - Kihwan Choi
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
| | - Alphonsus H C Ng
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, Canada M5S 3G9
| | - M Dean Chamberlain
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, Canada M5S 3G9.
| |
Collapse
|
67
|
Liu Y, Huang X, Ren J. Recent advances in chemiluminescence detection coupled with capillary electrophoresis and microchip capillary electrophoresis. Electrophoresis 2015; 37:2-18. [DOI: 10.1002/elps.201500314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Xiangyi Huang
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jicun Ren
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
68
|
|
69
|
Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 2015; 113:72-96. [DOI: 10.1016/j.jpba.2015.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
|
70
|
Nejdl L, Nguyen HV, Richtera L, Krizkova S, Guran R, Masarik M, Hynek D, Heger Z, Lundberg K, Erikson K, Adam V, Kizek R. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis 2015; 36:1894-904. [PMID: 26033737 DOI: 10.1002/elps.201500069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 12/12/2022]
Abstract
A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 μL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 μg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.
Collapse
Affiliation(s)
- Lukas Nejdl
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Hoai Viet Nguyen
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Roman Guran
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Hynek
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Karin Lundberg
- Lab on a Bead AΒ, Division of Research and Development, Uppsala, Sweden
| | - Kristofer Erikson
- Lab on a Bead AΒ, Division of Research and Development, Uppsala, Sweden.,Department of Engineering Sciences, Division of Solid State Physics, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
71
|
Lahdenperä S, Spangar A, Lempainen AM, Joki L, Soukka T. An integrated closed-tube 2-plex PCR amplification and hybridization assay with switchable lanthanide luminescence based spatial detection. Analyst 2015; 140:3960-8. [PMID: 25882638 DOI: 10.1039/c5an00253b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switchable lanthanide luminescence is a binary probe technology that inherently enables a high signal modulation in separation-free detection of DNA targets. A luminescent lanthanide complex is formed only when the two probes hybridize adjacently to their target DNA. We have now further adapted this technology for the first time in the integration of a 2-plex polymerase chain reaction (PCR) amplification and hybridization-based solid-phase detection of the amplification products of the Staphylococcus aureus gyrB gene and an internal amplification control (IAC). The assay was performed in a sealed polypropylene PCR chip containing a flat-bottom reaction chamber with two immobilized capture probe spots. The surface of the reaction chamber was functionalized with NHS-PEG-azide and alkyne-modified capture probes for each amplicon, labeled with a light harvesting antenna ligand, and covalently attached as spots to the azide-modified reaction chamber using a copper(i)-catalyzed azide-alkyne cycloaddition. Asymmetric duplex-PCR was then performed with no template, one template or both templates present and with a europium ion carrier chelate labeled probe for each amplicon in the reaction. After amplification europium fluorescence was measured by scanning the reaction chamber as a 10 × 10 raster with 0.6 mm resolution in time-resolved mode. With this assay we were able to co-amplify and detect the amplification products of the gyrB target from 100, 1000 and 10,000 copies of isolated S. aureus DNA together with the amplification products from the initial 5000 copies of the synthetic IAC template in the same sealed reaction chamber. The addition of 10,000 copies of isolated non-target Escherichia coli DNA in the same reaction with 5000 copies of the synthetic IAC template did not interfere with the amplification or detection of the IAC. The dynamic range of the assay for the synthetic S. aureus gyrB target was three orders of magnitude and the limit of detection of 8 pM was obtained. This proof-of-concept study shows that the switchable lanthanide luminescent probes enable separation-free array-based multiplexed detection of the amplification products in a closed-tube PCR which can enable a higher degree of multiplexing than is currently feasible by using different spectrally separated fluorescent probes.
Collapse
Affiliation(s)
- Susanne Lahdenperä
- Department of Biotechnology, University of Turku, Tykistökatu 6 A 6th floor, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
72
|
Zhang G, Tang Y, Sun Y, Yu H, Du W, Fu Q. A chemiluminescence method to detect hydroquinone with water-soluble sulphonato-(salen)manganese(III) complex as catalyst. LUMINESCENCE 2015; 31:195-201. [DOI: 10.1002/bio.2945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Guangbin Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 Shaanxi, People's Republic of China
- School of Science; Xi'an Jiaotong University; Xi'an 710049 Shaanxi, People's Republic of China
| | - Yuhai Tang
- School of Science; Xi'an Jiaotong University; Xi'an 710049 Shaanxi, People's Republic of China
| | - Yang Sun
- School of Science; Xi'an Jiaotong University; Xi'an 710049 Shaanxi, People's Republic of China
| | - Hua Yu
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 Shaanxi, People's Republic of China
| | - Wei Du
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 Shaanxi, People's Republic of China
| | - Qiang Fu
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 Shaanxi, People's Republic of China
| |
Collapse
|
73
|
Kirschbaum SEK, Baeumner AJ. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Anal Bioanal Chem 2015; 407:3911-26. [DOI: 10.1007/s00216-015-8557-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
|
74
|
Lebiga E, Edwin Fernandez R, Beskok A. Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper–plastic disposable microfluidic device using a smartphone. Analyst 2015; 140:5006-11. [DOI: 10.1039/c5an00720h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design and characterization of a disposable light shielded paper–plastic microfluidic device that can detect nanomolar levels of H2O2 using a smartphone camera and a light sealed accessory.
Collapse
Affiliation(s)
- Elise Lebiga
- Department of Mechanical Engineering
- Lyle School of Engineering
- Southern Methodist University
- Dallas
- USA
| | - Renny Edwin Fernandez
- Department of Mechanical Engineering
- Lyle School of Engineering
- Southern Methodist University
- Dallas
- USA
| | - Ali Beskok
- Department of Mechanical Engineering
- Lyle School of Engineering
- Southern Methodist University
- Dallas
- USA
| |
Collapse
|
75
|
Zangheri M, Di Nardo F, Anfossi L, Giovannoli C, Baggiani C, Roda A, Mirasoli M. A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 2015; 140:358-65. [DOI: 10.1039/c4an01613k] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multiplex chemiluminescence biosensor based on a lateral flow immunoassay was developed for on-site quantitative detection of fumonisins and aflatoxin B1 in maize.
Collapse
Affiliation(s)
- Martina Zangheri
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Fabio Di Nardo
- Department of Chemistry
- University of Turin
- 10125 Torino
- Italy
| | - Laura Anfossi
- Department of Chemistry
- University of Turin
- 10125 Torino
- Italy
| | | | | | - Aldo Roda
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
- National Institute for Biostructures and Biosystems (INBB)
| | - Mara Mirasoli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
- National Institute for Biostructures and Biosystems (INBB)
| |
Collapse
|
76
|
Funano SI, Sugahara M, Henares TG, Sueyoshi K, Endo T, Hisamoto H. A single-step enzyme immunoassay capillary sensor composed of functional multilayer coatings for the diagnosis of marker proteins. Analyst 2015; 140:1459-65. [DOI: 10.1039/c4an01781a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single-step, easy-to-use enzyme immunoassay capillary sensor, composed of substrate-immobilized hydrophobic coating, hydrogel coating, and soluble coating containing an enzyme-labeled antibody, was developed.
Collapse
Affiliation(s)
- Shun-ichi Funano
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Masato Sugahara
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Terence G. Henares
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Kenji Sueyoshi
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Tatsuro Endo
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Hideaki Hisamoto
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| |
Collapse
|
77
|
YOUNGVISES N, THANURAK P, CHAIDA T, JUKMUNEE J, ALSUHAIMI A. Double-sided Microfluidic Device for Speciation Analysis of Iron in Water Samples: Towards Greener Analytical Chemistry. ANAL SCI 2015; 31:365-70. [DOI: 10.2116/analsci.31.365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Napaporn YOUNGVISES
- Innovative Green Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University
| | - Porapichcha THANURAK
- Innovative Green Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University
| | - Thanatcha CHAIDA
- Center of Scientific Equipment for Advanced Research, Thammasat University
- Innovative Green Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University
| | - Jaroon JUKMUNEE
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University
| | - Awadh ALSUHAIMI
- Department of Chemistry, Faculty of Science, Taibah University
| |
Collapse
|
78
|
Li L, Xia LR, Wang HY, Bi XD. New method for fabricating an α-fetoprotein affinity monolithic polymer array. J Appl Polym Sci 2014. [DOI: 10.1002/app.41792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Li
- Institute of Facilities and Equipment in Agriculture; Jiangsu Academy of Agricultural Sciences; Nanjing 210014 China
| | - Li-Ru Xia
- Institute of Facilities and Equipment in Agriculture; Jiangsu Academy of Agricultural Sciences; Nanjing 210014 China
| | - He-Ye Wang
- Institute of Facilities and Equipment in Agriculture; Jiangsu Academy of Agricultural Sciences; Nanjing 210014 China
| | - Xiao-Dong Bi
- Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| |
Collapse
|
79
|
Di Fusco M, Quintavalla A, Lombardo M, Guardigli M, Mirasoli M, Trombini C, Roda A. Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Anal Bioanal Chem 2014; 407:1567-76. [DOI: 10.1007/s00216-014-8406-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/25/2022]
|
80
|
Magnetic separation techniques in sample preparation for biological analysis: A review. J Pharm Biomed Anal 2014; 101:84-101. [DOI: 10.1016/j.jpba.2014.04.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/16/2022]
|
81
|
Gracioso Martins AM, Glass NR, Harrison S, Rezk AR, Porter NA, Carpenter PD, Du Plessis J, Friend JR, Yeo LY. Toward Complete Miniaturisation of Flow Injection Analysis Systems: Microfluidic Enhancement of Chemiluminescent Detection. Anal Chem 2014; 86:10812-9. [DOI: 10.1021/ac502878p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ana M. Gracioso Martins
- Centre
for Environmental Science and Remediation, School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nick R. Glass
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- Monash University, Clayton, Victoria 3800, Australia
| | - Sally Harrison
- Centre
for Environmental Science and Remediation, School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amgad R. Rezk
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nichola A. Porter
- Centre
for Environmental Science and Remediation, School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter D. Carpenter
- Centre
for Environmental Science and Remediation, School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - Johan Du Plessis
- Centre
for Environmental Science and Remediation, School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - James R. Friend
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
82
|
Huebner M, Ben Haddada M, Méthivier C, Niessner R, Knopp D, Boujday S. Layer-by-layer generation of PEG-based regenerable immunosensing surfaces for small-sized analytes. Biosens Bioelectron 2014; 67:334-41. [PMID: 25201037 DOI: 10.1016/j.bios.2014.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Small molecules (haptens) like pharmaceuticals or peptides can serve as targets for antibody binding in competitive immunoassay-based flow-through assays. In this work, a strategy for preparing polyethylene glycol (PEG) coatings for subsequent hapten immobilization on glass-type silica surfaces is presented and characterized in detail. Two substrates bearing terminal silanol groups were utilized, a glass slide and a silicon wafer. First, surfaces were thoroughly cleaned and pretreated to generate additional silanol groups. Then, a silane layer with terminal epoxy groups was created using 3-glycidyloxypropyltrimethoxysilane (GOPTS). Epoxy groups were used to bind a layer of diamino-poly(ethylene glycol) (DAPEG) with terminal amino groups. Finally, the low molecular weight compound diclofenac was bound to the surface to be used as model ligand for competitive biosensing of haptens. The elementary steps were characterized using atomic force microscopy (AFM), water contact angle measurement, grazing-angle attenuated total reflection (GA-ATR) FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS). The data collected using these techniques have confirmed the successive grafting of the molecular species, evidencing, that homogeneous monolayers were created on the silica surfaces and validated the proposed mechanism of functionalization. The resulting surfaces were used to investigate polyclonal anti-diclofenac antibodies recognition and reversibility using quartz crystal microbalance with dissipation (QCM-D) measurements or an automated flow-through immunoassay with chemiluminescence (CL) read-out. For both techniques, recognition and reversibility of the antibody binding were observed. The stability of sensors over time was also assessed and no decrease in CL response was observed upon 14 days in aqueous solution. The herein presented strategy for surface functionalization can be used in the future as reproducible and reusable universal platform for hapten biosensors.
Collapse
Affiliation(s)
- Maria Huebner
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Marchioninistr. 17, Munich, Germany
| | - Maroua Ben Haddada
- Sorbonne Universités, UPMC Univ Paris 6, UMR CNRS 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France; CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France
| | - Christophe Méthivier
- Sorbonne Universités, UPMC Univ Paris 6, UMR CNRS 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France; CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France
| | - Reinhard Niessner
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Marchioninistr. 17, Munich, Germany
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Marchioninistr. 17, Munich, Germany.
| | - Souhir Boujday
- Sorbonne Universités, UPMC Univ Paris 6, UMR CNRS 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France; CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France.
| |
Collapse
|
83
|
|
84
|
Pinto da Silva L, Esteves da Silva JC. Structural and electronic characterization of a Fridericia heliota luciferin-related derivative, based on quantum chemistry. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
85
|
Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 2014; 406:5589-612. [DOI: 10.1007/s00216-014-7968-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022]
|
86
|
Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph. Anal Bioanal Chem 2014; 406:5645-56. [DOI: 10.1007/s00216-014-7971-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/12/2014] [Indexed: 11/24/2022]
|