51
|
Recker F, Zaniew M, Böckenhauer D, Miglietti N, Bökenkamp A, Moczulska A, Rogowska-Kalisz A, Laube G, Said-Conti V, Kasap-Demir B, Niemirska A, Litwin M, Siteń G, Chrzanowska KH, Krajewska-Walasek M, Sethi SK, Tasic V, Anglani F, Addis M, Wasilewska A, Szczepańska M, Pawlaczyk K, Sikora P, Ludwig M. Characterization of 28 novel patients expands the mutational and phenotypic spectrum of Lowe syndrome. Pediatr Nephrol 2015; 30:931-43. [PMID: 25480730 DOI: 10.1007/s00467-014-3013-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked multi-systemic disorder, almost always characterized by the triad of congenital cataract, cognitive and behavioral impairment and a proximal tubulopathy. METHODS Twenty-eight novel patients with suspected Lowe syndrome were studied. RESULTS All patients carried OCRL gene defects with mutational hot spots at CpG dinucleotides. Mutations previously unknown in Lowe syndrome were observed in ten of the 28 patients, and carriership was identified in 30.4 % of the mothers investigated. Mapping the exact breakpoints of a complete OCRL gene deletion revealed involvement of several flanking repeat elements. We noted a similar pattern of documented clinically relevant symptoms, and even though the patient cohort comprised relatively young patients, 32 % of these patients already showed advanced chronic kidney disease. Thrombocytopenia was seen in several patients, and hyperosmia and/or hyperacusis were reported recurrently. A p.Asp523Asn mutation in a Polish patient, associated with the typical cerebrorenal spectrum but with late cataract (10 year), was also evident in two milder affected Italian brothers with ocular involvement of similar progression. CONCLUSIONS We have identified clinical features in 28 patients with suspected Lowe syndrome that had not been recognized in Lowe syndrome prior to our study. We also provide further evidence that OCRL mutations cause a phenotypic continuum with selective and/or time-dependent organ involvement. At least some of these mutants might exhibit a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Florian Recker
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Goldsweig BK, Carpenter TO. Hypophosphatemic rickets: lessons from disrupted FGF23 control of phosphorus homeostasis. Curr Osteoporos Rep 2015; 13:88-97. [PMID: 25620749 DOI: 10.1007/s11914-015-0259-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor-23 (FGF23) regulates phosphate reabsorption in the kidney and therefore plays an essential role in phosphate balance in humans. There is a host of defects that ultimately lead to excess FGF23 levels and thereby cause renal phosphate wasting and hypophosphatemic rickets. We describe the genetic, pathophysiologic, and clinical aspects of this group of disorders with a focus on X-linked hypophosphatemia (XLH), the best characterized of these abnormalities. We also discuss autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR) and tumor-induced osteomalacia (TIO) in addition to other rarer FGF23-mediated conditions. We contrast the FGF23-mediated disorders with FGF23-independent hypophosphatemia, specifically hypophosphatemic rickets with hypercalciuria (HHRH). Errant diagnosis of hypophosphatemic disorders is common. This review aims to enhance the recognition and appropriate diagnosis of hypophosphatemia and to guide appropriate treatment.
Collapse
Affiliation(s)
- Bracha K Goldsweig
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT, 06520, USA,
| | | |
Collapse
|
53
|
Pusch M, Zifarelli G. ClC-5: Physiological role and biophysical mechanisms. Cell Calcium 2014; 58:57-66. [PMID: 25443653 DOI: 10.1016/j.ceca.2014.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/05/2023]
Abstract
Cl(-) transport in animal cells has fundamental physiological roles and it is mediated by a variety of protein families, one of them being the CLC family of ion channels and transporters. Besides their physiological relevance, CLC proteins show peculiar biophysical properties. This review will focus on a member of the CLC protein family, the endosomal Cl(-)/H(+) antiporter ClC-5. ClC-5 mutations cause Dent's disease, a renal syndrome due to defective protein reabsorption in the proximal tubule. This established the critical function of ClC-5 for endocytosis. However, our understanding of ClC-5's molecular role in endosomes and of its biophysical properties has proved elusive in spite of important progress achieved in the last two decades. Early models in which ClC-5 would provide a shunt conductance to enable efficient endosomal acidification conflicted with the antiport activity of ClC-5 that has more recently emerged. Currently, the physiological role of ClC-5 is hotly debated and its biophysical properties are still not fully understood.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genoa, Italy
| | | |
Collapse
|
54
|
Muscle involvement in Dent disease 2. Pediatr Nephrol 2014; 29:2127-32. [PMID: 24912603 DOI: 10.1007/s00467-014-2841-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Dent disease, an X-linked recessive renal tubulopathy, is caused by mutations in either CLCN5 (Dent disease 1) or OCRL (Dent disease 2). OCRL mutations can also cause Lowe syndrome. In some cases it is difficult to differentiate Dent disease 1 and 2 on the basis of clinical features only without genetic tests. Several studies have shown differences in serum levels of muscle enzymes between these diseases. The aim of our study was to test the validity of these findings. METHODS In total, 23 patients with Dent disease 1 (Group A), five patients with Dent disease 2 (Group B) and 19 patients with Lowe syndrome (Group C) were enrolled in our study. The serum levels of three muscle enzymes [creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST)], were measured. The levels of a hepatic enzyme, alanine aminotransferase (ALT), were also measured as a control. RESULTS One patient in Group B had muscle hypoplasia of both upper extremities. The serum levels of all three muscle enzymes assayed were higher in Group B or C patients than in Group A patients. Serum ALT levels were normal in all three groups of patients. CONCLUSIONS The serum levels of muscle enzymes in patients with Dent disease can be used as a biomarker to predict genotypes, even though the patients do not have clinical symptoms of muscle involvement.
Collapse
|
55
|
Bökenkamp A, Levtchenko E, Recker F, Ludwig M. Clinical utility gene card for: Lowe syndrome. Eur J Hum Genet 2014; 23:ejhg2014177. [PMID: 25182134 DOI: 10.1038/ejhg.2014.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/24/2014] [Accepted: 07/18/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Arend Bökenkamp
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Florian Recker
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
56
|
Nández R, Balkin DM, Messa M, Liang L, Paradise S, Czapla H, Hein MY, Duncan JS, Mann M, De Camilli P. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. eLife 2014; 3:e02975. [PMID: 25107275 PMCID: PMC4358339 DOI: 10.7554/elife.02975] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022] Open
Abstract
Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI:http://dx.doi.org/10.7554/eLife.02975.001 Oculo-Cerebro-Renal syndrome of Lowe (Lowe syndrome) is a rare genetic disorder that can cause cataracts, mental disabilities and kidney dysfunction. It is caused by mutations in the gene encoding OCRL, a protein that modifies a membrane lipid and that is found on membranes transporting molecules (cargo) into cells by a process known as endocytosis. During endocytosis, the cell outer membrane is deformed into a pit that engulfs the cargo to be taken up by the cell. The pit then pinches off from the outer membrane to form a vesicle—a bubble-like compartment—inside the cell that transports the cargo to its destination. In one type of endocytosis, this process is mediated by a basket-like coat primarily made up from the protein clathrin that assembles at the membrane patch to be internalized. After the vesicle is released from the cell membrane, the clathrin coat is broken apart and its components are shed and recycled for use by new budding endocytic vesicles. The OCRL protein had previously been observed associated to newly forming clathrin-coated vesicles, but the significance of this was not known. Now, Nández et al. have used a range of imaging and analytical techniques to further investigate the properties of OCRL, taking advantage of cells from patients with Lowe syndrome. These cells lack OCRL, and so allow the effect of OCRL's absence on cell function to be deduced. OCRL destroys the membrane lipid that helps to connect the clathrin coat to the membrane, and Nández et al. show that without OCRL the newly formed vesicle moves into the cell but fails to efficiently shed its clathrin coat. Thus, a large fraction of clathrin coat components remain trapped on the vesicles, reducing the amount of such components available to help new pits develop into vesicles. As a consequence, the cell has difficulty internalizing molecules. Collectively, the findings of Nández et al. outline that OCRL plays a role in the regulation of endocytosis in addition to its previously reported actions in the control of intracellular membrane traffic. The results also help to explain some of the symptoms seen in Lowe syndrome patients. DOI:http://dx.doi.org/10.7554/eLife.02975.002
Collapse
Affiliation(s)
- Ramiro Nández
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Daniel M Balkin
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Mirko Messa
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Liang Liang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Summer Paradise
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Heather Czapla
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - James S Duncan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
57
|
Tosetto E, Casarin A, Salviati L, Familiari A, Lieske JC, Anglani F. Complexity of the 5'UTR region of the CLCN5 gene: eleven 5'UTR ends are differentially expressed in the human kidney. BMC Med Genomics 2014; 7:41. [PMID: 25001568 PMCID: PMC4105828 DOI: 10.1186/1755-8794-7-41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/24/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Dent disease 1 represents a hereditary disorder of renal tubular epithelial function associated with mutations in the CLCN5 gene that encoded the ClC-5 Cl-/H+ antiporter. All of the reported disease-causing mutations are localized in the coding region except for one recently identified in the 5'UTR region of a single patient. This finding highlighted the possible role for genetic variability in this region in the pathogenesis of Dent disease 1.The structural complexity of the CLCN5 5'UTR region has not yet been fully characterized. To date 6 different 5' alternatively used exons--1a, 1b, 1b1 and I-IV with an alternatively spliced exon II (IIa, IIb)--have been described, but their significance and differential expression in the human kidney have not been investigated. Therefore our aim was to better characterize the CLCN5 5'UTR region in the human kidney and other tissues. METHODS To clone more of the 5' end portion of the human CLCN5 cDNA, total human kidney RNA was utilized as template and RNA ligase-mediated rapid amplification of cDNA 5' ends was applied.The expression of the different CLCN5 isoforms was studied in the kidney, leucocytes and in different tissues by quantitative comparative RT/PCR and Real--Time RT/PCR. RESULTS Eleven transcripts initiating at 3 different nucleotide positions having 3 distinct promoters of varying strength were identified. Previously identified 5'UTR isoforms were confirmed, but their ends were extended. Six additional 5'UTR ends characterized by the presence of new untranslated exons (c, V and VI) were also identified. Exon c originates exon c.1 by alternative splicing. The kidney uniquely expresses all isoforms, and the isoform containing exon c appears kidney specific. The most abundant isoforms contain exon 1a, exon IIa and exons 1b1 and c. ORF analysis predicts that all isoforms except 3 encode for the canonical 746 amino acid ClC-5 protein. CONCLUSIONS Our results confirm the structural complexity of the CLCN5 5'UTR region. Characterization of this crucial region could allow a clear genetic classification of a greater number of Dent disease patients, but also provide the basis for highlighting some as yet unexplored functions of the ClC-5 proton exchanger.
Collapse
Affiliation(s)
- Enrica Tosetto
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Department of Medicine DIMED, University of Padova, via Giustiniani, 2, 35128 Padova, (PD), Italy.
| | | | | | | | | | | |
Collapse
|
58
|
Ludwig M, Levtchenko E, Bökenkamp A. Clinical utility gene card for: Dent disease (Dent-1 and Dent-2). Eur J Hum Genet 2014; 22:ejhg201433. [PMID: 24619144 DOI: 10.1038/ejhg.2014.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael Ludwig
- Institute for Clinical Chemistry and Clinical Pharmacology, Bonn University Medical Center, Bonn, Germany
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Growth and Regeneration, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
59
|
Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic 2014; 15:471-87. [PMID: 24499450 PMCID: PMC4278560 DOI: 10.1111/tra.12160] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositide lipids play a key role in cellular physiology, participating in a wide array of cellular processes. Consequently, mutation of phosphoinositide-metabolizing enzymes is responsible for a growing number of diseases in humans. Two related disorders, oculocerebrorenal syndrome of Lowe (OCRL) and Dent-2 disease, are caused by mutation of the inositol 5-phosphatase OCRL1. Here, we review recent advances in our understanding of OCRL1 function. OCRL1 appears to regulate many processes within the cell, most of which depend upon coordination of membrane dynamics with remodeling of the actin cytoskeleton. Recently developed animal models have managed to recapitulate features of Lowe syndrome and Dent-2 disease, and revealed new insights into the underlying mechanisms of these disorders. The continued use of both cell-based approaches and animal models will be key to fully unraveling OCRL1 function, how its loss leads to disease and, importantly, the development of therapeutics to treat patients.
Collapse
Affiliation(s)
- Zenobia B Mehta
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK; Current address: Faculty of Medicine, Imperial College, London, UK
| | | | | |
Collapse
|
60
|
Russell-Eggitt I, Bockenhauer D. The blind kidney: disorders affecting kidneys and eyes. Pediatr Nephrol 2013; 28:2255-65. [PMID: 23344552 DOI: 10.1007/s00467-012-2404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Abstract
There are many disorders that can affect both the kidneys and the eyes. Awareness of the ocular manifestations of kidney disorders is important as it can guide the diagnosis and facilitate the choice of a specific treatment. Conversely, ophthalmologists need to be aware of potential renal manifestations in disorders presenting initially with visual failure. We review disorders affecting both of these organ systems, based upon cases from our clinical practice to highlight the importance of interdisciplinary collaboration.
Collapse
Affiliation(s)
- Isabelle Russell-Eggitt
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust London UK and UCL Institute of Child Health, London, WC1N 3JH, UK,
| | | |
Collapse
|
61
|
Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, Palsson R. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol 2013; 28:1923-42. [PMID: 23334384 PMCID: PMC4138059 DOI: 10.1007/s00467-012-2329-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 01/27/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) deficiency, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), and primary hyperoxaluria (PH) are rare but important causes of severe kidney stone disease and/or chronic kidney disease in children. Recurrent kidney stone disease and nephrocalcinosis, particularly in pre-pubertal children, should alert the physician to the possibility of an inborn error of metabolism as the underlying cause. Unfortunately, the lack of recognition and knowledge of the five disorders has frequently resulted in an unacceptable delay in diagnosis and treatment, sometimes with grave consequences. A high index of suspicion coupled with early diagnosis may reduce or even prevent the serious long-term complications of these diseases. In this paper, we review the epidemiology, clinical features, diagnosis, treatment, and outcome of patients with APRT deficiency, cystinuria, Dent disease, FHHNC, and PH, with an emphasis on childhood manifestations.
Collapse
MESH Headings
- Adenine Phosphoribosyltransferase/deficiency
- Adenine Phosphoribosyltransferase/genetics
- Animals
- Child
- Cystinuria/diagnosis
- Cystinuria/epidemiology
- Cystinuria/genetics
- Cystinuria/therapy
- Dent Disease/diagnosis
- Dent Disease/epidemiology
- Dent Disease/genetics
- Dent Disease/therapy
- Genetic Predisposition to Disease
- Heredity
- Humans
- Hypercalciuria/diagnosis
- Hypercalciuria/epidemiology
- Hypercalciuria/genetics
- Hypercalciuria/therapy
- Hyperoxaluria, Primary/diagnosis
- Hyperoxaluria, Primary/epidemiology
- Hyperoxaluria, Primary/genetics
- Hyperoxaluria, Primary/therapy
- Kidney Calculi/diagnosis
- Kidney Calculi/epidemiology
- Kidney Calculi/genetics
- Kidney Calculi/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/epidemiology
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/therapy
- Nephrocalcinosis/diagnosis
- Nephrocalcinosis/epidemiology
- Nephrocalcinosis/genetics
- Nephrocalcinosis/therapy
- Phenotype
- Prognosis
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/epidemiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/therapy
- Renal Tubular Transport, Inborn Errors/diagnosis
- Renal Tubular Transport, Inborn Errors/epidemiology
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/therapy
- Risk Factors
- Urolithiasis/diagnosis
- Urolithiasis/epidemiology
- Urolithiasis/genetics
- Urolithiasis/therapy
Collapse
|
62
|
Sekine T, Komoda F, Miura K, Takita J, Shimadzu M, Matsuyama T, Ashida A, Igarashi T. Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe/USA: genetic and clinical studies of 86 unrelated patients with low-molecular-weight proteinuria. Nephrol Dial Transplant 2013; 29:376-84. [PMID: 24081861 DOI: 10.1093/ndt/gft394] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dent disease is an X-linked disorder characterized by low-molecular-weight (LMW) proteinuria, hypercalciuria, nephrocalcinosis, urolithiasis and renal dysfunction. Dent disease is caused by mutations in at least two genes, i.e. CLCN5 and OCRL1, and its genetic background and phenotypes are common among European countries and the USA. However, only few studies on Dent disease in Japan, which was originally called 'low-molecular-weight proteinuric disease', have been reported thus far. In this study, we analysed genetic background and clinical phenotype and laboratory data of 86 unrelated Japanese Dent disease patients. The results demonstrated that the genetic basis of Japanese Dent disease was nearly identical to those of Dent disease in other countries. Of 86 unrelated Japanese Dent patients, 61 possessed mutations in CLCN5 (Dent-1), of which 27 were novel mutations; 11 showed mutations in OCRL1 (Dent-2), six of which were novel, and the remaining 14 patients showed no mutations in CLCN5 or OCRL1 (Dent-NI). Despite the similarity in genetic background, hypercalciuria was detected in only 51%, rickets in 2% and nephrocalcinosis in 35%. Although the patients were relatively young, six patients (8%) showed apparent renal dysfunction. Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe and the USA.
Collapse
Affiliation(s)
- Takashi Sekine
- Department of Pediatrics, Ohashi Hospital, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
64
|
Zhang YQ, Wang F, Ding J, Yan H, Yang YL. Novel OCRL mutations in Chinese children with Lowe syndrome. World J Pediatr 2013; 9:53-7. [PMID: 23389333 DOI: 10.1007/s12519-013-0406-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/04/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lowe syndrome is a rare X-linked recessive hereditary disease caused by mutations of the OCRL gene, which encodes an inositol polyphosphate-5-phosphatase. The disease is clinically characterized by congenital cataracts, psychomotor retardation, and proximal tubulopathy. METHODS We retrospectively reviewed three unrelated Chinese patients with Lowe syndrome, clinically diagnosed by the abnormalities of eyes, nervous system, and kidneys. Genetic analysis of the OCRL gene was done for the three patients as well as their family members. RESULTS Three OCRL gene mutations were detected in our study. Two of the mutations, g.1897delT in exon 18 (patient 1) and g.1470delG in exon 15 (patient 2), were novel. A missense mutation (p.Y513C) in exon 15, which had been reported previously, was found in patient 3. The mothers of all patients were heterozygous carriers of the respective mutations. CONCLUSIONS Three Chinese children were diagnosed with Lowe syndrome through clinical and genetic analyses. And two novel mutations in the OCRL gene were identified.
Collapse
Affiliation(s)
- Yan-Qin Zhang
- Department of Pediatrics, Peking University First Hospital, 100034 Beijing, China
| | | | | | | | | |
Collapse
|
65
|
Luo N, West CC, Murga-Zamalloa CA, Sun L, Anderson RM, Wells CD, Weinreb RN, Travers JB, Khanna H, Sun Y. OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum Mol Genet 2012; 21:3333-44. [PMID: 22543976 PMCID: PMC3392109 DOI: 10.1093/hmg/dds163] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oculocerebral renal syndrome of Lowe (OCRL or Lowe syndrome), a severe X-linked congenital disorder characterized by congenital cataracts and glaucoma, mental retardation and kidney dysfunction, is caused by mutations in the OCRL gene. OCRL is a phosphoinositide 5-phosphatase that interacts with small GTPases and is involved in intracellular trafficking. Despite extensive studies, it is unclear how OCRL mutations result in a myriad of phenotypes found in Lowe syndrome. Our results show that OCRL localizes to the primary cilium of retinal pigment epithelial cells, fibroblasts and kidney tubular cells. Lowe syndrome-associated mutations in OCRL result in shortened cilia and this phenotype can be rescued by the introduction of wild-type OCRL; in vivo, knockdown of ocrl in zebrafish embryos results in defective cilia formation in Kupffer vesicles and cilia-dependent phenotypes. Cumulatively, our data provide evidence for a role of OCRL in cilia maintenance and suggest the involvement of ciliary dysfunction in the manifestation of Lowe syndrome.
Collapse
Affiliation(s)
- Na Luo
- Department of Ophthalmology, Glick Eye Institute, Indiana University, 1601 W Michigan St., Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Loeffen YGT, Biebuyck N, Wamelink MMC, Jakobs C, Mulder MF, Tylki-Szymańska A, Fung CW, Valayannopoulos V, Bökenkamp A. Nephrological abnormalities in patients with transaldolase deficiency. Nephrol Dial Transplant 2012; 27:3224-7. [PMID: 22510381 DOI: 10.1093/ndt/gfs061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Transaldolase deficiency (OMIM 606003) is a multisystem disorder first described in 2001. Transaldolase is an enzyme of the reversible part of the pentose phosphate pathway. Affected patients have abnormal polyol concentrations in body fluids, mostly in urine. The clinical presentation is variable. The leading symptoms are coagulopathy, thrombocytopenia, hepatosplenomegaly, hepatic fibrosis and dysmorphic features. The objective of our study was to attempt to characterize the renal phenotype of patients with transaldolase deficiency. METHODS Clinical and laboratory data of all nine patients with transaldolase deficiency presently known were gathered by retrospective chart analysis. RESULTS Nephrological abnormalities were present in seven of the nine patients. The most common findings were low molecular weight (LMW) proteinuria and hypercalciuria. The two oldest patients had moderate chronic kidney failure. In two patients, generalized aminoaciduria was found, two patients had renal phosphate wasting and three patients had hyperchloremic metabolic acidosis. Three patients had anatomical abnormalities. CONCLUSIONS Renal tubular dysfunction is present in the majority of patients with transaldolase deficiency and may lead to chronic renal failure. The combination of unexplained liver dysfunction with LMW proteinuria should prompt metabolic screening for transaldolase deficiency by measuring urinary polyols. In patients with transaldolase deficiency, monitoring of kidney function is mandatory.
Collapse
Affiliation(s)
- Yvette G T Loeffen
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
68
|
Beara-Lasic L, Edvardsson VO, Palsson R, Lieske JC, Goldfarb DS, Milliner DS. Genetic Causes of Kidney Stones and Kidney Failure. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
69
|
Lozanovski VJ, Ristoska-Bojkovska N, Korneti P, Gucev Z, Tasic V. OCRL1 mutation in a boy with Dent disease, mild mental retardation, but without cataracts. World J Pediatr 2011; 7:280-3. [PMID: 21822997 DOI: 10.1007/s12519-011-0312-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/11/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Oculocerebrorenal (Lowe) syndrome is an X-linked multisystem disease characterized by renal proximal tubulopathy, mental retardation, and congenital cataracts. We present a 19-year-old boy who was found to have low molecular weight proteinuria, hypercalciuria, mild generalized hyperaminoaciduria and intermittent microscopic hematuria at the age of 3. METHODS Standard clinical and biochemical examinations and mutational analysis of the CLNC5 and OCRL1 gene were performed for the patient. RESULTS The patient fulfilled diagnostic criteria for Dent disease, but lacked mutation in CLCN5. Sequencing of candidate genes revealed a mutation in his OCRL1 gene, which encodes for enzyme PIP2 5-phosphatase. The enzyme was not detected by western blot analysis, and decreased activity of the enzyme PIP2 5-phosphatase was observed in cultured skin fibroblasts. The boy had only mild mental retardation, mildly elevated muscle enzymes, but no neurological deficit or congenital cataracts, which are typical for Lowe syndrome. CONCLUSIONS Children with Dent phenotype who lack CLCN5 mutation should be tested for OCRL1 mutation. OCRL1 mutations may present with mild clinical features and are not necessarily associated with congenital cataracts.
Collapse
|
70
|
Rule AD, Krambeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol 2011; 6:2069-75. [PMID: 21784825 DOI: 10.2215/cjn.10651110] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent population studies have found symptomatic kidney stone formers to be at increased risk for chronic kidney disease (CKD). Although kidney stones are not commonly identified as the primary cause of ESRD, they still may be important contributing factors. Paradoxically, CKD can be protective against forming kidney stones because of the substantial reduction in urine calcium excretion. Among stone formers, those with rare hereditary diseases (cystinuria, primary hyperoxaluria, Dent disease, and 2,8 dihydroxyadenine stones), recurrent urinary tract infections, struvite stones, hypertension, and diabetes seem to be at highest risk for CKD. The primary mechanism for CKD from kidney stones is usually attributed to an obstructive uropathy or pyelonephritis, but crystal plugs at the ducts of Bellini and parenchymal injury from shockwave lithotripsy may also contribute. The historical shift to less invasive surgical management of kidney stones has likely had a beneficial impact on the risk for CKD. Among potential kidney donors, past symptomatic kidney stones but not radiographic stones found on computed tomography scans were associated with albuminuria. Kidney stones detected by ultrasound screening have also been associated with CKD in the general population. Further studies that better classify CKD, better characterize stone formers, more thoroughly address potential confounding by comorbidities, and have active instead of passive follow-up to avoid detection bias are needed.
Collapse
Affiliation(s)
- Andrew D Rule
- Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
71
|
Recognition of the F&H motif by the Lowe syndrome protein OCRL. Nat Struct Mol Biol 2011; 18:789-95. [PMID: 21666675 PMCID: PMC3130824 DOI: 10.1038/nsmb.2071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/15/2011] [Indexed: 12/25/2022]
Abstract
Lowe syndrome and Type 2 Dent disease are caused by defects in the inositol 5-phosphatase OCRL. Most missense mutations in the OCRL ASH-RhoGAP domain found in affected patients abolish interactions with the endocytic adaptors APPL1 and Ses (both Ses1 and Ses2), which bind OCRL through a short F&H motif. Using X-ray crystallography, we have identified the F&H motif binding site on the RhoGAP domain of OCRL. We further show that clinical mutations affect F&H binding indirectly by destabilizing the RhoGAP fold. In contrast, a clinical mutation that does not perturb F&H binding and ASH-RhoGAP stability disrupts OCRL's interaction with Rab5. Additionally, OCRL's F&H binding site is conserved even in species that do not express APPL or Ses. Our study predicts the existence of other OCRL binding partners and demonstrates the critical role of the perturbation of OCRL interactions in disease.
Collapse
|
72
|
Claverie-Martín F, Ramos-Trujillo E, García-Nieto V. Dent's disease: clinical features and molecular basis. Pediatr Nephrol 2011; 26:693-704. [PMID: 20936522 DOI: 10.1007/s00467-010-1657-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 02/08/2023]
Abstract
Dent's disease is an X-linked recessive renal tubulopathy characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive renal failure. LMWP is the most constant feature, while the other clinical manifestations show wide variability. Patients also present variable manifestations of proximal tubule dysfunctions, such as aminoaciduria, glucosuria, hyperphosphaturia, kaliuresis, and uricosuria, consistent with renal Fanconi syndrome. Dent's disease affects mainly male children, and female carriers are generally asymptomatic. In two-thirds of patients, the disease is caused by mutations in the CLCN5 gene, which encodes the electrogenic chloride/proton exchanger ClC-5. A few patients have mutations in OCRL1, the gene associated with the oculocerebrorenal syndrome of Lowe, which encodes a phosphatidylinositol-4,5-biphosphate-5-phosphatase (OCRL1). Both ClC-5 and OCRL1 are involved in the endocytic pathway for reabsorption of LMW proteins in the proximal tubule. This review will provide an overview of the important phenotypic characteristics of Dent's disease and summarize the molecular data that have significantly increased our comprehension of the mechanisms causing this disease.
Collapse
Affiliation(s)
- Félix Claverie-Martín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | | | | |
Collapse
|
73
|
Clinical and laboratory features of Macedonian children with OCRL mutations. Pediatr Nephrol 2011; 26:557-62. [PMID: 21249396 DOI: 10.1007/s00467-010-1758-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
OCRL mutations, which are a hallmark of Lowe syndrome, have recently been found in patients with isolated renal phenotype (Dent-2 disease). In this report, we describe clinical and laboratory features in five Macedonian children with mutations in the OCRL gene. Children with a clinical diagnosis of Lowe syndrome or Dent disease underwent complete neurological and ophthalmological examination, imaging of the kidney and urinary tract, assessment of renal tubular function, and mutation analysis of the OCRL gene. Two children (18 months and 11 years, respectively) were diagnosed with Lowe syndrome on the basis of congenital cataracts, severe psychomotor retardation, and renal dysfunction. Both children had low molecular weight proteinuria (LMWP) and hypercalciuria, but not Fanconi syndrome. The older one had bilateral nephrolithiasis due to associated hypocitraturia and mild hyperoxaluria. Three children with asymptomatic proteinuria were diagnosed with Dent-2 disease; none had cataracts or neurological deficit. One child showed mild mental retardation. All had LMWP, hypercalciuria, and elevated enzymes (creatine phosphokinase, lactic dehydrogenase). All three children had an abnormal Tc-99m DMSA scan revealing poor visualization of the kidneys with a high radionuclide content in the bladder; none had nephrolithiasis or nephrocalcinosis. In conclusion, children with OCRL mutations may present with very mild phenotype (asymptomatic proteinuria with/without mild mental retardation) or severe classic oculocerebrorenal syndrome of Lowe. Elevated enzymes and abnormal results on the Tc-99m DMSA scan may be useful indicators for Dent-2 disease.
Collapse
|
74
|
Hichri H, Rendu J, Monnier N, Coutton C, Dorseuil O, Poussou RV, Baujat G, Blanchard A, Nobili F, Ranchin B, Remesy M, Salomon R, Satre V, Lunardi J. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat 2011; 32:379-88. [PMID: 21031565 DOI: 10.1002/humu.21391] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/06/2010] [Indexed: 01/17/2023]
Abstract
Mutations of OCRL1 are associated with both the Lowe oculocerebrorenal syndrome, a multisystemic and Dent-2 disease, a renal tubulopathy. We have identified a mutation in 130 Lowe syndrome families and 6 affected by Dent-2 disease with 51 of these mutations being novel. No founding effect was evidenced for recurrent mutations. Two mutations initially reported as causing Dent-2 disease were identified in patients, including two brothers, presenting with Lowe syndrome thus extending the clinical variability of OCRL1 mutations. mRNA levels, protein content, and PiP(2) -ase activities were analyzed in patient's fibroblasts. Although mRNA levels were normal in cells harboring a missense mutation, the OCRL1 content was markedly lowered, suggesting that enzymatic deficiency resulted mainly from protein degradation rather than from a catalytic inactivation. Analysis of a splicing mutation that led to the elimination of the initiation codon evidenced the presence of shortened forms of OCRL1 that might result from the use of alternative initiation codons. The specific mapping of the frameshift and nonsense mutations, exclusively identified in exons 1-7 and exons 8-23, respectively, for Dent disease and Lowe syndrome together with the possible use of alternative initiation codons might be related to their clinical expression, that is, Lowe syndrome or Dent-2 disease.
Collapse
Affiliation(s)
- Haifa Hichri
- CHU Grenoble, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Novel techniques and newer markers for the evaluation of “proximal tubular dysfunction”. Int Urol Nephrol 2011; 43:1107-15. [DOI: 10.1007/s11255-011-9914-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
76
|
Draaken M, Giesen CA, Kesselheim AL, Jabs R, Aretz S, Kugaudo M, Chrzanowska KH, Krajewska-Walasek M, Ludwig M. Maternal de novo triple mosaicism for two single OCRL nucleotide substitutions (c.1736A>T, c.1736A>G) in a Lowe syndrome family. Hum Genet 2011; 129:513-9. [PMID: 21225285 DOI: 10.1007/s00439-010-0944-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/30/2010] [Indexed: 11/29/2022]
Abstract
Since the identification of the Lowe's oculocerebrorenal syndrome gene, more than 100 distinct OCRL mutations have been observed. Germline mosaicism has rarely been detected in Lowe families; however, the presence of mosaic mutations, in particular triple mosaicism, may often remain undiagnosed. In the course of OCRL analysis in a Polish family, the index case showed a hemizygous nucleotide transition (c.1736A>G, p.His507Arg). Gene analysis in the patient's mother not only provided evidence that she is a carrier of the mutant allele transmitted to her son but also showed an additional c.1736A>T (p.His507Leu) transversion affecting the same base position. DNA from a mouthwash sample from the mother showed a similar fluorescence intensity pattern at the affected nucleotide. These data, together with the findings that maternal grandparents solely showed wildtype sequence, implied a de novo mosaicism in the mother. Triple X syndrome was ruled out by karyotype analysis and a partial or complete gene duplication could be excluded. Allele-specific amplification confirmed the results of three alleles being present in the mother. The amount of wildtype allele detected in qPCR implied the presence of cells solely harboring c.1736A and single-cell PCR experiments confirmed the presence of non-mutant cells in the mother's blood. These data suggest that the mutations observed are the result of two de novo events in early embryogenesis of the mother. To the best of our knowledge, this is the first observation of triple mosaicism at a single nucleotide.
Collapse
Affiliation(s)
- Markus Draaken
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bothwell SP, Chan E, Bernardini IM, Kuo YM, Gahl WA, Nussbaum RL. Mouse model for Lowe syndrome/Dent Disease 2 renal tubulopathy. J Am Soc Nephrol 2010; 22:443-8. [PMID: 21183592 DOI: 10.1681/asn.2010050565] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Lowe oculocerebrorenal syndrome is an X-linked disorder characterized by congenital cataracts, cognitive disability, and proximal tubular dysfunction. Both this syndrome and Dent Disease 2 result from loss-of-function mutations in the OCRL gene, which encodes a type II phosphatidylinositol bisphosphate 5-phosphatase. Ocrl-deficient mice are unaffected, however, which we believe reflects a difference in how humans and mice cope with the enzyme deficiency. Inpp5b and INPP5B, paralogous autosomal genes that encode another type II phosphoinositide 5-phosphatase in mice and humans, respectively, might explain the distinct phenotype in the two species because they are the closest paralogs to Ocrl and OCRL in their respective genomes yet differ between the two species with regard to expression and splicing. Here, we generated Ocrl(-/-) mice that express INPP5B but not Inpp5b. Similar to the human syndromes, all showed reduced postnatal growth, low molecular weight proteinuria, and aminoaciduria. Thus, we created an animal model for OCRL and Dent Disease 2 tubulopathy by humanizing a modifier paralog in mice already carrying the mutant disease gene.
Collapse
Affiliation(s)
- Susan P Bothwell
- University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
78
|
Bogdanović R, Draaken M, Toromanović A, Dordević M, Stajić N, Ludwig M. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency. Pediatr Nephrol 2010; 25:2363-8. [PMID: 20680351 DOI: 10.1007/s00467-010-1615-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
Dent disease is an X-linked recessive disorder affecting the proximal tubule and is characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis/nephrolithiasis with a variable number of features of Fanconi syndrome. It is most often associated with mutations in CLCN5, which encodes the endosomal electrogenic chloride/proton exchanger ClC-5. Renal acidification abnormalities are only rarely seen in Dent disease, whereas the hypokalemic metabolic alkalosis associated with hyperreninemic hyperaldosteronism (Bartter-like syndrome) has been reported in only one patient so far. We report on a 5-year-old boy with Dent disease caused by mutation in CLCN5 gene, c.1073G>A, who presented with hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism persisting over the entire follow-up. No mutations were found in NKCC2, ROMK, NCCT, or ClC-Kb genes. In addition, the patient exhibited growth failure associated with partial growth hormone (GH) deficiency. Coexistence of Bartter-like syndrome features with LMWP should prompt a clinician to search for Dent disease. The Bartter syndrome phenotype seen in Dent disease patients may represent a distinct form of Bartter syndrome, the exact mechanism of which has yet to be fully elucidated. Growth delay that persists in spite of appropriate therapy should raise suspicion of other causes, such as GH deficiency.
Collapse
Affiliation(s)
- Radovan Bogdanović
- The Institute of Mother and Child Healthcare of Serbia Dr Vukan Cupić, 8 Radoja Dakica Street, 11070, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
79
|
Copelovitch L, Kaplan BS. An expanded syndrome of dRTA with hearing loss, hyperoxaluria and beta2-microglobulinuria. NDT Plus 2010; 3:439-42. [PMID: 25984047 PMCID: PMC4421698 DOI: 10.1093/ndtplus/sfq123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/23/2010] [Indexed: 12/02/2022] Open
Abstract
We describe a 7-month-old male with atypical features of autosomal recessive distal renal tubular acidosis (dRTA) with sensorineural hearing loss. Uncharacteristically, he presented with mild acidosis, hypokalaemia and hypocalciuria as well as unilateral sensorineural hearing loss. Subsequent investigations led to the discovery of both hyperoxaluria and beta2-microglobulinuria, thereby expanding the differential diagnosis to include both primary hyperoxaluria and Dent disease. Two mutations in the ATPV1B1 gene, one of which was novel, confirmed the diagnosis of dRTA. We consider the overlapping features of and diagnostic dilemmas involved in making a diagnosis of dRTA, primary hyperoxaluria and Dent disease in patients with infantile nephrocalcinosis. We highlight the occurrence of hyperoxaluria and low-molecular-weight proteinuria in patients with dRTA and propose that the phenotype of autosomal recessive dRTA with sensorineural hearing loss be broadened to include both hyperoxaluria and increased urinary excretion of beta2-microglobulin.
Collapse
Affiliation(s)
- Lawrence Copelovitch
- Division of Nephrology, Department of Pediatrics , The Children's Hospital of Philadelphia , Philadelphia, PA , USA
| | - Bernard S Kaplan
- Division of Nephrology, Department of Pediatrics , The Children's Hospital of Philadelphia , Philadelphia, PA , USA
| |
Collapse
|
80
|
ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5. Pflugers Arch 2010; 460:543-57. [PMID: 20049483 DOI: 10.1007/s00424-009-0769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 02/03/2023]
Abstract
The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent's disease-a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.
Collapse
|