51
|
A β-Hairpin Motif in the Envelope Protein E2 Mediates Receptor Binding of Bovine Viral Diarrhea Virus. Viruses 2021; 13:v13061157. [PMID: 34204224 PMCID: PMC8235316 DOI: 10.3390/v13061157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Pestivirus envelope protein E2 is crucial to virus infection and accomplishes virus-receptor interaction during entry. However, mapping of E2 residues mediating these interactions has remained unexplored. In this study, to investigate the structure-function relationship for a β-hairpin motif exposed to the solvent in the crystal structure of bovine viral diarrhea virus (BVDV) E2, we designed two amino acidic substitutions that result in a change of electrostatic potential. First, using wild type and mutant E2 expressed as soluble recombinant proteins, we found that the mutant protein had reduced binding to susceptible cells compared to wild type and diminished ability to inhibit BVDV infection, suggesting a lower affinity for BVDV receptors. We then analyzed the effect of β-hairpin mutations in the context of recombinant viral particles. Mutant viruses recovered from cell culture supernatant after transfection of recombinant RNA had almost completely inhibited ability to re-infect susceptible cells, indicating an impact of mutations on BVDV infectivity. Finally, sequential passaging of the mutant virus resulted in the selection of a viral population in which β-hairpin mutations reverted to the wild type sequence to restore infectivity. Taken together, our results show that this conserved region of the E2 protein is critical for the interaction with host cell receptors.
Collapse
|
52
|
Bornstein B, Meltzer H, Adler R, Alyagor I, Berkun V, Cummings G, Reh F, Keren‐Shaul H, David E, Riemensperger T, Schuldiner O. Transneuronal Dpr12/DIP-δ interactions facilitate compartmentalized dopaminergic innervation of Drosophila mushroom body axons. EMBO J 2021; 40:e105763. [PMID: 33847376 PMCID: PMC8204868 DOI: 10.15252/embj.2020105763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
The mechanisms controlling wiring of neuronal networks are not completely understood. The stereotypic architecture of the Drosophila mushroom body (MB) offers a unique system to study circuit assembly. The adult medial MB γ-lobe is comprised of a long bundle of axons that wire with specific modulatory and output neurons in a tiled manner, defining five distinct zones. We found that the immunoglobulin superfamily protein Dpr12 is cell-autonomously required in γ-neurons for their developmental regrowth into the distal γ4/5 zones, where both Dpr12 and its interacting protein, DIP-δ, are enriched. DIP-δ functions in a subset of dopaminergic neurons that wire with γ-neurons within the γ4/5 zone. During metamorphosis, these dopaminergic projections arrive to the γ4/5 zone prior to γ-axons, suggesting that γ-axons extend through a prepatterned region. Thus, Dpr12/DIP-δ transneuronal interaction is required for γ4/5 zone formation. Our study sheds light onto molecular and cellular mechanisms underlying circuit formation within subcellular resolution.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Hagar Meltzer
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Idan Alyagor
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Victoria Berkun
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Gideon Cummings
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Fabienne Reh
- Institute of ZoologyUniversity of CologneKölnGermany
| | - Hadas Keren‐Shaul
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Life Science Core FacilityWeizmann Institute of ScienceRehovotIsrael
| | - Eyal David
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Oren Schuldiner
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
53
|
Israeli H, Degtjarik O, Fierro F, Chunilal V, Gill AK, Roth NJ, Botta J, Prabahar V, Peleg Y, Chan LF, Ben-Zvi D, McCormick PJ, Niv MY, Shalev-Benami M. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 2021; 372:808-814. [PMID: 33858992 DOI: 10.1126/science.abf7958] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Obesity is a global epidemic that causes morbidity and impaired quality of life. The melanocortin receptor 4 (MC4R) is at the crux of appetite, energy homeostasis, and body-weight control in the central nervous system and is a prime target for anti-obesity drugs. Here, we present the cryo-electron microscopy (cryo-EM) structure of the human MC4R-Gs signaling complex bound to the agonist setmelanotide, a cyclic peptide recently approved for the treatment of obesity. The work reveals the mechanism of MC4R activation, highlighting a molecular switch that initiates satiation signaling. In addition, our findings indicate that calcium (Ca2+) is required for agonist, but not antagonist, efficacy. These results fill a gap in the understanding of MC4R activation and could guide the design of future weight-management drugs.
Collapse
Affiliation(s)
- Hadar Israeli
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Oksana Degtjarik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Fabrizio Fierro
- The Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - Vidicha Chunilal
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Amandeep Kaur Gill
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Nicolas J Roth
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Joaquin Botta
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Vadivel Prabahar
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK.
| | - Masha Y Niv
- The Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel.
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
54
|
Tokarew JM, El-Kodsi DN, Lengacher NA, Fehr TK, Nguyen AP, Shutinoski B, O’Nuallain B, Jin M, Khan JM, Ng ACH, Li J, Jiang Q, Zhang M, Wang L, Sengupta R, Barber KR, Tran A, Im DS, Callaghan S, Park DS, Zandee S, Dong X, Scherzer CR, Prat A, Tsai EC, Takanashi M, Hattori N, Chan JA, Zecca L, West AB, Holmgren A, Puente L, Shaw GS, Toth G, Woulfe JM, Taylor P, Tomlinson JJ, Schlossmacher MG. Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathol 2021; 141:725-754. [PMID: 33694021 PMCID: PMC8043881 DOI: 10.1007/s00401-021-02285-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson’s-linked neurodegeneration.
Collapse
|
55
|
Abstract
Bacteria employ two-component systems (TCSs) to sense and respond to changes in their surroundings. At the core of the TCS signaling pathway is the multidomain sensor histidine kinase, where the enzymatic activity of its output domain is allosterically controlled by the input signal perceived by the sensor domain. The ability to sense and respond to environmental cues is essential for adaptation and survival in living organisms. In bacteria, this process is accomplished by multidomain sensor histidine kinases that undergo autophosphorylation in response to specific stimuli, thereby triggering downstream signaling cascades. However, the molecular mechanism of allosteric activation is not fully understood in these important sensor proteins. Here, we report the full-length crystal structure of a blue light photoreceptor LOV histidine kinase (LOV-HK) involved in light-dependent virulence modulation in the pathogenic bacterium Brucella abortus. Joint analyses of dark and light structures determined in different signaling states have shown that LOV-HK transitions from a symmetric dark structure to a highly asymmetric light state. The initial local and subtle structural signal originated in the chromophore-binding LOV domain alters the dimer asymmetry via a coiled-coil rotary switch and helical bending in the helical spine. These amplified structural changes result in enhanced conformational flexibility and large-scale rearrangements that facilitate the phosphoryl transfer reaction in the HK domain.
Collapse
|
56
|
DNase II mediates a parthanatos-like developmental cell death pathway in Drosophila primordial germ cells. Nat Commun 2021; 12:2285. [PMID: 33863891 PMCID: PMC8052343 DOI: 10.1038/s41467-021-22622-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
During Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.
Collapse
|
57
|
Yaniv SP, Meltzer H, Alyagor I, Schuldiner O. Developmental axon regrowth and primary neuron sprouting utilize distinct actin elongation factors. J Cell Biol 2021; 219:151569. [PMID: 32191286 PMCID: PMC7199854 DOI: 10.1083/jcb.201903181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 01/23/2023] Open
Abstract
Intrinsic neurite growth potential is a key determinant of neuronal regeneration efficiency following injury. The stereotypical remodeling of Drosophila γ-neurons includes developmental regrowth of pruned axons to form adult specific connections, thereby offering a unique system to uncover growth potential regulators. Motivated by the dynamic expression in remodeling γ-neurons, we focus here on the role of actin elongation factors as potential regulators of developmental axon regrowth. We found that regrowth in vivo requires the actin elongation factors Ena and profilin, but not the formins that are expressed in γ-neurons. In contrast, primary γ-neuron sprouting in vitro requires profilin and the formin DAAM, but not Ena. Furthermore, we demonstrate that DAAM can compensate for the loss of Ena in vivo. Similarly, DAAM mutants express invariably high levels of Ena in vitro. Thus, we show that different linear actin elongation factors function in distinct contexts even within the same cell type and that they can partially compensate for each other.
Collapse
Affiliation(s)
- Shiri P Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
58
|
Larimi MG, Ha JH, Loh SN, Movileanu L. Insertion state of modular protein nanopores into a membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183570. [PMID: 33529578 DOI: 10.1016/j.bbamem.2021.183570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
In the past decade, significant progress has been made in the development of new protein nanopores. Despite these advancements, there is a pressing need for the creation of nanopores equipped with relatively large functional groups for the sampling of biomolecular events on their extramembranous side. Here, we designed, produced, and analyzed protein nanopores encompassing a robust truncation of a monomeric β-barrel membrane protein. An exogenous stably folded protein was anchored within the aqueous phase via a flexible peptide tether of varying length. We have extensively examined the pore-forming properties of these modular protein nanopores using protein engineering and single-molecule electrophysiology. This study revealed distinctions in the nanopore conductance and current fluctuations that arose from tethering the exogenous protein to either the N terminus or the C terminus. Remarkably, these nanopores insert into a planar lipid membrane with one specific conductance among a set of three substate conductance values. Moreover, we demonstrate that the occurrence probabilities of these insertion substates depend on the length of the peptide tether, the orientation of the exogenous protein with respect to the nanopore opening, and the molecular mass of tethered protein. In addition, the three conductance values remain unaltered by major changes in the composition of modular nanopores. The outcomes of this work serve as a platform for further developments in areas of protein engineering of transmembrane pores and biosensor technology.
Collapse
Affiliation(s)
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY 13210, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
59
|
Elias A, Kassis H, Elkader SA, Gritsenko N, Nahmad A, Shir H, Younis L, Shannan A, Aihara H, Prag G, Yagil E, Kolot M. HK022 bacteriophage Integrase mediated RMCE as a potential tool for human gene therapy. Nucleic Acids Res 2020; 48:12804-12816. [PMID: 33270859 PMCID: PMC7736782 DOI: 10.1093/nar/gkaa1140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
HK022 coliphage site-specific recombinase Integrase (Int) can catalyze integrative site-specific recombination and recombinase-mediated cassette exchange (RMCE) reactions in mammalian cell cultures. Owing to the promiscuity of the 7 bp overlap sequence in its att sites, active ‘attB’ sites flanking human deleterious mutations were previously identified that may serve as substrates for RMCE reactions for future potential gene therapy. However, the wild type Int proved inefficient in catalyzing such RMCE reactions. To address this low efficiency, variants of Int were constructed and examined by integrative site-specific recombination and RMCE assays in human cells using native ‘attB’ sites. As a proof of concept, various Int derivatives have demonstrated successful RMCE reactions using a pair of native ‘attB’ sites that were inserted as a substrate into the human genome. Moreover, successful RMCE reactions were demonstrated in native locations of the human CTNS and DMD genes whose mutations are responsible for Cystinosis and Duchene Muscular Dystrophy diseases, respectively. This work provides a steppingstone for potential downstream therapeutic applications.
Collapse
Affiliation(s)
- Amer Elias
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hala Kassis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Suha Abd Elkader
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Natasha Gritsenko
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Alessio Nahmad
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hodaya Shir
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Liana Younis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Atheer Shannan
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota TwinCities, Minneapolis, MN, 55455, USA
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Ezra Yagil
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
60
|
Arai R. Design of helical linkers for fusion proteins and protein-based nanostructures. Methods Enzymol 2020; 647:209-230. [PMID: 33482989 DOI: 10.1016/bs.mie.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The construction of recombinant fusion/chimeric proteins has been widely used for expression of soluble proteins and protein purification in a variety of fields of protein engineering and biotechnology. Fusion proteins are constructed by the linking of two protein domains with a peptide linker. The selection of a linker sequence is important for the construction of stable and bioactive fusion proteins. Empirically designed linkers are generally classified into two categories according to their structural features: flexible linkers and rigid linkers. Rigid linkers with the α-helix-forming sequences A(EAAAK)nA (n=2-5) were first designed about two decades ago to control the distance between two protein domains and to reduce their interference. Thereafter, the helical linkers have been applied to the construction of many fusion proteins to improve expression and bioactivity. In addition, the design of fusion proteins that self-assemble into supramolecular complexes is useful for nanobiotechnology and synthetic biology. A protein that forms a self-assembling oligomer was fused by a rigid helical linker to another protein that forms another self-assembling oligomer, and the fusion protein symmetrically self-assembled into a designed protein nanoparticle or nanomaterial. Moreover, to construct chain-like polymeric nanostructures, extender protein nanobuilding blocks were designed by tandemly fusing two dimeric de novo proteins with helical or flexible linkers. The linker design of fusion proteins can affect conformation and dynamics of self-assembling nanostructures. The present review and methods focus on useful helical linkers to construct bioactive fusion proteins and protein-based nanostructures.
Collapse
Affiliation(s)
- Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
61
|
Ben‐David Y, Moraïs S, Bayer EA, Mizrahi I. Rapid adaptation for fibre degradation by changes in plasmid stoichiometry within Lactobacillus plantarum at the synthetic community level. Microb Biotechnol 2020; 13:1748-1764. [PMID: 32639625 PMCID: PMC7533337 DOI: 10.1111/1751-7915.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
The multi-enzyme cellulosome complex can mediate the valorization of lignocellulosic biomass into soluble sugars that can serve in the production of biofuels and valuable products. A potent bacterial chassis for the production of active cellulosomes displayed on the cell surface is the bacterium Lactobacillus plantarum, a lactic acid bacterium used in many applications. Here, we developed a methodological pipeline to produce improved designer cellulosomes, using a cell-consortium approach, whereby the different components self-assemble on the surface of L. plantarum. The pipeline served as a vehicle to select and optimize the secretion efficiency of potent designer cellulosome enzyme components, to screen for the most efficient enzymatic combinations and to assess attempts to grow the engineered bacterial cells on wheat straw as a sole carbon source. Using this strategy, we were able to improve the secretion efficiency of the selected enzymes and to secrete a fully functional high-molecular-weight scaffoldin component. The adaptive laboratory process served to increase significantly the enzymatic activity of the most efficient cell consortium. Internal plasmid re-arrangement towards a higher enzymatic performance attested for the suitability of the approach, which suggests that this strategy represents an efficient way for microbes to adapt to changing conditions.
Collapse
Affiliation(s)
- Yonit Ben‐David
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
| | - Sarah Moraïs
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
- Department of Life SciencesNational Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8499000Israel
| | - Edward A. Bayer
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
| | - Itzhak Mizrahi
- Department of Life SciencesNational Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8499000Israel
| |
Collapse
|
62
|
Cveticanin J, Mondal T, Meiering EM, Sharon M, Horovitz A. Insight into the Autosomal-Dominant Inheritance Pattern of SOD1-Associated ALS from Native Mass Spectrometry. J Mol Biol 2020; 432:5995-6002. [PMID: 33058881 DOI: 10.1016/j.jmb.2020.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023]
Abstract
About 20% of all familial amyotrophic lateral sclerosis (ALS) cases are associated with mutations in superoxide dismutase (SOD1), a homodimeric protein. The disease has an autosomal-dominant inheritance pattern. It is, therefore, important to determine whether wild-type and mutant SOD1 subunits self-associate randomly or preferentially. A measure for the extent of bias in subunit association is the coupling constant determined in a double-mutant cycle type analysis. Here, cell lysates containing co-expressed wild-type and mutant SOD1 subunits were analyzed by native mass spectrometry to determine these coupling constants. Strikingly, we find a linear positive correlation between the coupling constant and the reported average duration of the disease. Our results indicate that inter-subunit communication and a preference for heterodimerization greatly increase the disease severity.
Collapse
Affiliation(s)
- Jelena Cveticanin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tridib Mondal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
63
|
Uncovering targeting priority to yeast peroxisomes using an in-cell competition assay. Proc Natl Acad Sci U S A 2020; 117:21432-21440. [PMID: 32817524 PMCID: PMC7474679 DOI: 10.1073/pnas.1920078117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Half of eukaryotic proteins reside in organelles to which they are directed by dedicated targeting pathways, each recognizing unique targeting signals. Multiple proteins compete for any targeting pathway and might have different priority of reaching an organelle. However, the proteins with targeting priority, and the mechanisms underlying it, have not been explored. We developed a systematic tool to study targeting priority. We expressed a competitor protein and examined how it affects the localization of all other proteins targeted by the same pathway. We found several proteins with high targeting priority, dissected the mechanism of priority, and suggest that priority is governed by different parameters. This approach can be modified to study targeting priority in various organelles, cell types, and organisms. Approximately half of eukaryotic proteins reside in organelles. To reach their correct destination, such proteins harbor targeting signals recognized by dedicated targeting pathways. It has been shown that differences in targeting signals alter the efficiency in which proteins are recognized and targeted. Since multiple proteins compete for any single pathway, such differences can affect the priority for which a protein is catered. However, to date the entire repertoire of proteins with targeting priority, and the mechanisms underlying it, have not been explored for any pathway. Here we developed a systematic tool to study targeting priority and used the Pex5-mediated targeting to yeast peroxisomes as a model. We titrated Pex5 out by expressing high levels of a Pex5-cargo protein and examined how the localization of each peroxisomal protein is affected. We found that while most known Pex5 cargo proteins were outcompeted, several cargo proteins were not affected, implying that they have high targeting priority. This priority group was dependent on metabolic conditions. We dissected the mechanism of priority for these proteins and suggest that targeting priority is governed by different parameters, including binding affinity of the targeting signal to the cargo factor, the number of binding interfaces to the cargo factor, and more. This approach can be modified to study targeting priority in various organelles, cell types, and organisms.
Collapse
|
64
|
Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum. mBio 2020; 11:e00443-20. [PMID: 32234813 PMCID: PMC7157769 DOI: 10.1128/mbio.00443-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass.IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex.
Collapse
Affiliation(s)
- Bosmat Levi Hevroni
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonit Ben-David
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
65
|
Warszawski S, Dekel E, Campeotto I, Marshall JM, Wright KE, Lyth O, Knop O, Regev-Rudzki N, Higgins MK, Draper SJ, Baum J, Fleishman SJ. Design of a basigin-mimicking inhibitor targeting the malaria invasion protein RH5. Proteins 2020; 88:187-195. [PMID: 31325330 PMCID: PMC6904230 DOI: 10.1002/prot.25786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 11/07/2022]
Abstract
Many human pathogens use host cell-surface receptors to attach and invade cells. Often, the host-pathogen interaction affinity is low, presenting opportunities to block invasion using a soluble, high-affinity mimic of the host protein. The Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) provides an exciting candidate for mimicry: it is highly conserved and its moderate affinity binding to the human receptor basigin (KD ≥1 μM) is an essential step in erythrocyte invasion by this malaria parasite. We used deep mutational scanning of a soluble fragment of human basigin to systematically characterize point mutations that enhance basigin affinity for RH5 and then used Rosetta to design a variant within the sequence space of affinity-enhancing mutations. The resulting seven-mutation design exhibited 1900-fold higher affinity (KD approximately 1 nM) for RH5 with a very slow binding off rate (0.23 h-1 ) and reduced the effective Plasmodium growth-inhibitory concentration by at least 10-fold compared to human basigin. The design provides a favorable starting point for engineering on-rate improvements that are likely to be essential to reach therapeutically effective growth inhibition.
Collapse
Affiliation(s)
- Shira Warszawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elya Dekel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Campeotto
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jennifer M. Marshall
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Katherine E. Wright
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Oliver Lyth
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Orli Knop
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
66
|
Chen X, Shukal S, Zhang C. Integrating Enzyme and Metabolic Engineering Tools for Enhanced α-Ionone Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13451-13459. [PMID: 31079451 DOI: 10.1021/acs.jafc.9b00860] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metabolic engineering aims to balance intracellular pathways and increase the precursor supply. However, some heterologous enzymes are not evolved to support high flux. To remove the limitation, the catalytic properties of rate-limiting enzymes must be enhanced. Here, we engineered carotenoid cleavage dioxygenase 1 (CCD1), whose intrinsic promiscuity and low activity limited the production of α-ionone in Escherichia coli. Site-directed mutagenesis was carried out to mutate three structural elements of CCD1: an active site loop, η-helices, and α-helices. Furthermore, mutated CCD1 was fused with lycopene ε-cyclase to facilitate substrate channelling. Collectively, these methods improved the α-ionone concentration by >2.5-fold compared to our previously optimized strain. Lastly, the engineered enzyme was used in conjunction with the metabolic engineering strategy to further boost the α-ionone concentration by another 20%. This work deepens our understanding of CCD1 catalytic properties and proves that integrating enzyme and metabolic engineering can be synergistic for a higher microbial production yield.
Collapse
Affiliation(s)
- Xixian Chen
- Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Sudha Shukal
- Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Congqiang Zhang
- Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore
| |
Collapse
|
67
|
Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat Commun 2019; 10:5169. [PMID: 31727889 PMCID: PMC6856131 DOI: 10.1038/s41467-019-13211-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/06/2019] [Indexed: 11/09/2022] Open
Abstract
The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic. Steroidal glycoalkaloids (SGAs) accumulate in Solanum, but their hydroxylating enzymes are unknown. Here, the authors report 2-OXOGLUTARATE DEPENDENT DIOXYGENASE enzymes that catalyze the committed hydroxylation steps in the biosynthesis of leptinine insecticidal compounds in wild potato or non-bitter SGAs in cultivated tomato.
Collapse
|
68
|
Reuven N, Adler J, Broennimann K, Myers N, Shaul Y. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing. Biomolecules 2019; 9:E584. [PMID: 31597252 PMCID: PMC6843829 DOI: 10.3390/biom9100584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 is a powerful tool for genome editing in cells and organisms. Nevertheless, introducing directed templated changes by homology-directed repair (HDR) requires the cellular DNA repair machinery, such as the MRN complex (Mre11/Rad50/Nbs1). To improve the process, we tailored chimeric constructs of Cas9, in which SpCas9 was fused at its N- or C-terminus to a 126aa intrinsically disordered domain from HSV-1 alkaline nuclease (UL12) that recruits the MRN complex. The chimeric Cas9 constructs were two times more efficient in homology-directed editing of endogenous loci in tissue culture cells. This effect was dependent upon the MRN-recruiting activity of the domain and required lower amounts of the chimeric Cas9 in comparison with unmodified Cas9. The new constructs improved the yield of edited cells when making endogenous point mutations or inserting small tags encoded by oligonucleotide donor DNA (ssODN), and also with larger insertions encoded by plasmid DNA donor templates. Improved editing was achieved with both transfected plasmid-encoded Cas9 constructs as well as recombinant Cas9 protein transfected as ribonucleoprotein complexes. Our strategy was highly efficient in restoring a genetic defect in a cell line, exemplifying the possible implementation of our strategy in gene therapy. These constructs provide a simple approach to improve directed editing.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Karin Broennimann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
69
|
Warszawski S, Borenstein Katz A, Lipsh R, Khmelnitsky L, Ben Nissan G, Javitt G, Dym O, Unger T, Knop O, Albeck S, Diskin R, Fass D, Sharon M, Fleishman SJ. Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. PLoS Comput Biol 2019; 15:e1007207. [PMID: 31442220 PMCID: PMC6728052 DOI: 10.1371/journal.pcbi.1007207] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 09/05/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.
Collapse
Affiliation(s)
- Shira Warszawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Rosalie Lipsh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Orli Knop
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
70
|
Muñoz González F, Sycz G, Alonso Paiva IM, Linke D, Zorreguieta A, Baldi PC, Ferrero MC. The BtaF Adhesin Is Necessary for Full Virulence During Respiratory Infection by Brucella suis and Is a Novel Immunogen for Nasal Vaccination Against Brucella Infection. Front Immunol 2019; 10:1775. [PMID: 31402921 PMCID: PMC6676368 DOI: 10.3389/fimmu.2019.01775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella enters their hosts mostly through mucosae from where it spreads systemically. Adhesion to extracellular matrix (ECM) components or to host cells is important for the infectious process, and is mediated by several adhesins, including the BtaF trimeric autotransporter. Although Th1 responses and gamma interferon (IFN-γ) are important for protection, antibodies able to block adhesions might also contribute to prevent Brucella infection. We evaluated the importance of BtaF for respiratory Brucella infection, and characterized the immune response and protection from mucosal challenge induced by nasal vaccination with recombinant BtaF. While lung CFU numbers did not differ at day 1 p.i. between mice intratracheally inoculated with B. suis M1330 (wild type) and those receiving a ΔbtaF mutant, they were reduced in the latter group at 7 and 30 days p.i. For vaccination studies the BtaF passenger domain was engineered and expressed as a soluble trimeric protein. Mice were immunized by the nasal route with BtaF or saline (control group) plus the mucosal adjuvant c-di-AMP. Specific anti-BtaF antibodies (IgG and IgA) were increased in serum, including a mixed IgG2a/IgG1 response. In vitro, these antibodies reduced bacterial adhesion to A549 alveolar epithelial cells. Specific IgA antibodies were also increased in several mucosae. Spleen cells from BtaF immunized mice significantly increased their IL-2, IL-5, IL-17, and IFN-γ secretion upon antigen stimulation. In cervical draining lymph nodes, antigen-experienced CD4+ T cells were maintained mainly as central memory cells. A BtaF-specific delayed-type hypersensitivity response was detected in BtaF immunized mice. Lung cells from the latter produced high levels of IFN-γ upon antigen stimulation. Although nasal immunization with BtaF did not protect mice against B. suis respiratory challenge, it conferred significant protection from intragastric challenge; the splenic load of B. suis was reduced by 3.28 log CFU in immunized mice. This study shows that nasal vaccination with BtaF+c-di-AMP protects against intragastric challenge with B. suis by inducing local and systemic antibody responses, central memory CD4+ T cells and strong Th1 responses. Therefore, although BtaF vaccination did not protect from B. suis respiratory infection, this adhesin constitutes a promising immunogen against mucosal B. suis infection.
Collapse
Affiliation(s)
- Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Iván M Alonso Paiva
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dirk Linke
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Pablo C Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
71
|
Semiautomated Small-Scale Purification Method for High-Throughput Expression Analysis of Recombinant Proteins. Methods Mol Biol 2019. [PMID: 31267448 DOI: 10.1007/978-1-4939-9624-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The expression analysis of recombinant proteins is a challenging step in any high-throughput protein production pipeline. Often multiple expression systems and a variety of expression construct designs are considered for the production of a protein of interest. There is a strong need to triage constructs rapidly and systematically. This chapter describes a semiautomated method for the simultaneous purification and characterization of proteins expressed from multiple samples of expression cultures from the E. coli, baculovirus expression vector system, and mammalian transient expression systems. This method assists in the selection of the most promising expression construct(s) or the most favorable expression condition(s) to move forward into large-scale protein production.
Collapse
|
72
|
Meltzer H, Marom E, Alyagor I, Mayseless O, Berkun V, Segal-Gilboa N, Unger T, Luginbuhl D, Schuldiner O. Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat Commun 2019; 10:2113. [PMID: 31068592 PMCID: PMC6506539 DOI: 10.1038/s41467-019-10140-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Gene editing by CRISPR/Cas9 is commonly used to generate germline mutations or perform in vitro screens, but applicability for in vivo screening has so far been limited. Recently, it was shown that in Drosophila, Cas9 expression could be limited to a desired group of cells, allowing tissue-specific mutagenesis. Here, we thoroughly characterize tissue-specific (ts)CRISPR within the complex neuronal system of the Drosophila mushroom body. We report the generation of a library of gRNA-expressing plasmids and fly lines using optimized tools, which provides a valuable resource to the fly community. We demonstrate the application of our library in a large-scale in vivo screen, which reveals insights into developmental neuronal remodeling.
Collapse
Affiliation(s)
- Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Marom
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Segal-Gilboa
- Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - David Luginbuhl
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, USA
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
73
|
Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol Cell 2019; 71:178-190.e8. [PMID: 29979965 DOI: 10.1016/j.molcel.2018.06.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The TP53 gene is frequently mutated in human cancer. Research has focused predominantly on six major "hotspot" codons, which account for only ∼30% of cancer-associated p53 mutations. To comprehensively characterize the consequences of the p53 mutation spectrum, we created a synthetically designed library and measured the functional impact of ∼10,000 DNA-binding domain (DBD) p53 variants in human cells in culture and in vivo. Our results highlight the differential outcome of distinct p53 mutations in human patients and elucidate the selective pressure driving p53 conservation throughout evolution. Furthermore, while loss of anti-proliferative functionality largely correlates with the occurrence of cancer-associated p53 mutations, we observe that selective gain-of-function may further favor particular mutants in vivo. Finally, when combined with additional acquired p53 mutations, seemingly neutral TP53 SNPs may modulate phenotypic outcome and, presumably, tumor progression.
Collapse
Affiliation(s)
- Eran Kotler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Odem Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guy Goldfeld
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
74
|
Bucher T, Keren-Paz A, Hausser J, Olender T, Cytryn E, Kolodkin-Gal I. An active β-lactamase is a part of an orchestrated cell wall stress resistance network of Bacillus subtilis and related rhizosphere species. Environ Microbiol 2019; 21:1068-1085. [PMID: 30637927 DOI: 10.1111/1462-2920.14526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
A hallmark of the Gram-positive bacteria, such as the soil-dwelling bacterium Bacillus subtilis, is their cell wall. Here, we report that d-leucine and flavomycin, biofilm inhibitors targeting the cell wall, activate the β-lactamase PenP. This β-lactamase contributes to ampicillin resistance in B. subtilis under all conditions tested. In contrast, both Spo0A, a master regulator of nutritional stress, and the general cell wall stress response, differentially contribute to β-lactam resistance under different conditions. To test whether β-lactam resistance and β-lactamase genes are widespread in other Bacilli, we isolated Bacillus species from undisturbed soils, and found that their genomes can encode up to five β-lactamases with differentiated activity spectra. Surprisingly, the activity of environmental β-lactamases and PenP, as well as the general stress response, resulted in a similarly reduced lag phase of the culture in the presence of β-lactam antibiotics, with little or no impact on the logarithmic growth rate. The length of the lag phase may determine the outcome of the competition between β-lactams and β-lactamases producers. Overall, our work suggests that antibiotic resistance genes in B. subtilis and related species are ancient and widespread, and could be selected by interspecies competition in undisturbed soils.
Collapse
Affiliation(s)
- Tabitha Bucher
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Jean Hausser
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Eddie Cytryn
- Institute of Soil and Water and Environmental Sciences, Volcani Research Center, 68 HaMakabim Road, 7505101, Rishon Lezion, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| |
Collapse
|
75
|
VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites. Blood Adv 2019; 2:691-702. [PMID: 29581108 DOI: 10.1182/bloodadvances.2017006775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 01/22/2018] [Indexed: 01/11/2023] Open
Abstract
Vitamin K reduction is catalyzed by 2 enzymes in vitro: the vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) and its isozyme VKORC1-like1 (VKORC1L1). In vivo, VKORC1 reduces vitamin K to sustain γ-carboxylation of vitamin K-dependent proteins, including coagulation factors. Inhibition of VKORC1 by oral anticoagulants (OACs) is clinically used in therapy and in prevention of thrombosis. However, OACs also inhibit VKORC1L1, which was previously shown to play a role in intracellular redox homeostasis in vitro. Here, we report data for the first time on specific inhibition of both VKOR enzymes for various OACs and rodenticides examined in a cell-based assay. Effects on endogenous VKORC1 and VKORC1L1 were independently investigated in genetically engineered HEK 293T cells that were knocked out for the respective genes by CRISPR/Cas9 technology. In general, dose-responses for 4-hydroxycoumarins and 1,3-indandiones were enzyme-dependent, with lower susceptibility for VKORC1L1 compared with VKORC1. In contrast, rodenticides exhibited nearly identical dose-responses for both enzymes. To explain the distinct inhibition pattern, we performed in silico modeling suggesting different warfarin binding sites for VKORC1 and VKORC1L1. We identified arginine residues at positions 38, 42, and 68 in the endoplasmatic reticulum luminal loop of VKORC1L1 responsible for charge-stabilized warfarin binding, resulting in a binding pocket that is diametrically opposite to that of VKORC1. In conclusion, our findings provide insight into structural and molecular drug binding on VKORC1, and especially on VKORC1L1.
Collapse
|
76
|
Mutant T4 DNA polymerase for easy cloning and mutagenesis. PLoS One 2019; 14:e0211065. [PMID: 30673756 PMCID: PMC6343910 DOI: 10.1371/journal.pone.0211065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
The advent of high-fidelity DNA polymerases that can be used to linearize and amplify whole plasmids by PCR opened the door to greatly simplified cloning and mutagenesis protocols. Commercially available kits work well, but often have been optimized using undisclosed or proprietory components. Here we show that a mutant T4 DNA polymerase (Y320A) with attenuated 3’-exonuclease activity is uniquely suited to generate single-stranded DNA overhangs of uniform length in a more easily controllable manner than the wild-type enzyme, and this can be used to increase the yields of colonies containing correctly modified plasmids in cloning and mutagenesis experiments, which is particularly useful when E. coli cells are of relatively low competency. Standard protocols using the mutant T4 DNA polymerase are provided for the sequence and ligation independent cloning (SLIC) method and a modified QuikChange method, where the mutant enzyme enhances the yield of correctly mutated plasmid and further suppresses parental plasmid during digestion with DpnI. Single-stranded DNA overhangs generated by the mutant T4 DNA polymerase facilitate subsequent plasmid circularization, annealing and ligation in E. coli.
Collapse
|
77
|
Cell-to-Cell Transmission Is the Main Mechanism Supporting Bovine Viral Diarrhea Virus Spread in Cell Culture. J Virol 2019; 93:JVI.01776-18. [PMID: 30404802 DOI: 10.1128/jvi.01776-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022] Open
Abstract
After initiation of an infective cycle, spread of virus infection can occur in two fundamentally different ways: (i) viral particles can be released into the external environment and diffuse through the extracellular space until they interact with a new host cell, and (ii) virions can remain associated with infected cells, promoting the direct passage between infected and uninfected cells that is referred to as direct cell-to-cell transmission. Although evidence of cell-associated transmission has accumulated for many different viruses, the ability of members of the genus Pestivirus to use this mode of transmission has not been reported. In the present study, we used a novel recombinant virus expressing the envelope glycoprotein E2 fused to mCherry fluorescent protein to monitor the spreading of bovine viral diarrhea virus (BVDV) (the type member of the pestiviruses) infection. To demonstrate direct cell-to-cell transmission of BVDV, we developed a cell coculture system that allowed us to prove direct transmission from infected to uninfected cells in the presence of neutralizing antibodies. This mode of transmission requires cell-cell contacts and clathrin-mediated receptor-dependent endocytosis. Notably, it overcomes antibody blocking of the BVDV receptor CD46, indicating that cell-to-cell transmission of the virus involves the engagement of coreceptors on the target cell.IMPORTANCE BVDV causes one of the most economically important viral infections for the cattle industry. The virus is able to cross the placenta and infect the fetus, leading to the birth of persistently infected animals, which are reservoirs for the spread of BVDV. The occurrence of persistent infection has hampered the efficacy of vaccination because it requires eliciting levels of protection close to sterilizing immunity to prevent fetal infections. While vaccination prevents disease, BVDV can be detected if animals with neutralizing antibodies are challenged with the virus. Virus cell-to-cell transmission allows the virus to overcome barriers to free virus dissemination, such as antibodies or epithelial barriers. Here we show that BVDV exploits cell-cell contacts to propagate infection in a process that is resistant to antibody neutralization. Our results provide new insights into the mechanisms underlying the pathogenesis of BVDV infection and can aid in the design of effective control strategies.
Collapse
|
78
|
Alyagor I, Berkun V, Keren-Shaul H, Marmor-Kollet N, David E, Mayseless O, Issman-Zecharya N, Amit I, Schuldiner O. Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Dev Cell 2019; 47:38-52.e6. [PMID: 30300589 PMCID: PMC6179959 DOI: 10.1016/j.devcel.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Developmental neuronal remodeling is an evolutionarily conserved mechanism required for precise wiring of nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the underlying mechanisms are largely unknown. Here, we uncover the fine temporal transcriptional landscape of Drosophila mushroom body γ neurons undergoing stereotypical remodeling. Our data reveal rapid and dramatic changes in the transcriptional landscape during development. Focusing on DNA binding proteins, we identify eleven that are required for remodeling. Furthermore, we sequence developing γ neurons perturbed for three key transcription factors required for pruning. We describe a hierarchical network featuring positive and negative feedback loops. Superimposing the perturbation-seq on the developmental expression atlas highlights a framework of transcriptional modules that together drive remodeling. Overall, this study provides a broad and detailed molecular insight into the complex regulatory dynamics of developmental remodeling and thus offers a pipeline to dissect developmental processes via RNA profiling.
Collapse
Affiliation(s)
- Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel; Life Science Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | - Neta Marmor-Kollet
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Noa Issman-Zecharya
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel.
| |
Collapse
|
79
|
Bandyopadhyay B, Peleg Y. Facilitating circular permutation using Restriction Free (RF) cloning. Protein Eng Des Sel 2019; 31:65-68. [PMID: 29319799 DOI: 10.1093/protein/gzx061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023] Open
Abstract
Circular permutation is a powerful tool to test the role of topology in protein folding and function. Previous methods for generating circular permutants were based on rearranging gene elements using restriction enzymes-based cloning. Here, we present a Restriction Free (RF) approach to achieve circular permutation which is faster and more cost-effective.
Collapse
Affiliation(s)
| | - Yoav Peleg
- The Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
80
|
Ortega C, Abreu C, Oppezzo P, Correa A. Overview of High-Throughput Cloning Methods for the Post-genomic Era. Methods Mol Biol 2019; 2025:3-32. [PMID: 31267446 DOI: 10.1007/978-1-4939-9624-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The advent of new DNA sequencing technologies leads to a dramatic increase in the number of available genome sequences and therefore of target genes with potential for functional analysis. The insertion of these sequences into proper expression vectors requires a simple an efficient cloning method. In addition, when expressing a target protein, quite often it is necessary to evaluate different DNA constructs to achieve a soluble and homogeneous expression of the target with satisfactory yields. The development of new molecular methods made possible the cloning of a huge number of DNA sequences in a high-throughput manner, necessary for meeting the increasing demands for soluble protein expression and characterization. In this chapter several molecular methods suitable for high-throughput cloning are reviewed.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular, Cellular and Animal Technology Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
81
|
Mani RS, Mermershtain I, Abdou I, Fanta M, Hendzel MJ, Glover JNM, Weinfeld M. Domain analysis of PNKP-XRCC1 interactions: Influence of genetic variants of XRCC1. J Biol Chem 2018; 294:520-530. [PMID: 30446622 DOI: 10.1074/jbc.ra118.004262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Indexed: 12/28/2022] Open
Abstract
Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.
Collapse
Affiliation(s)
- Rajam S Mani
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Inbal Mermershtain
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ismail Abdou
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Mesfin Fanta
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Michael J Hendzel
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - J N Mark Glover
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael Weinfeld
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| |
Collapse
|
82
|
Sturlese M, Manta B, Bertarello A, Bonilla M, Lelli M, Zambelli B, Grunberg K, Mammi S, Comini MA, Bellanda M. The lineage-specific, intrinsically disordered N-terminal extension of monothiol glutaredoxin 1 from trypanosomes contains a regulatory region. Sci Rep 2018; 8:13716. [PMID: 30209332 PMCID: PMC6135854 DOI: 10.1038/s41598-018-31817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Glutaredoxins (Grx) are small proteins conserved throughout all the kingdoms of life that are engaged in a wide variety of biological processes and share a common thioredoxin-fold. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (FeS) metabolism. They contain a single thiol group in their active site and use low molecular mass thiols such as glutathione as ligand for binding FeS-clusters. In this study, we investigated molecular aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei brucei, a mitochondrial class II Grx that fulfills an indispensable role in vivo. Mitochondrial 1CGrx1 from trypanosomes differs from orthologues in several features including the presence of a parasite-specific N-terminal extension (NTE) whose role has yet to be elucidated. Previously we have solved the structure of a truncated form of 1CGrx1 containing only the conserved glutaredoxin domain but lacking the NTE. Our aim here is to investigate the effect of the NTE on the conformation of the protein. We therefore solved the NMR structure of the full-length protein, which reveals subtle but significant differences with the structure of the NTE-less form. By means of different experimental approaches, the NTE proved to be intrinsically disordered and not involved in the non-redox dependent protein dimerization, as previously suggested. Interestingly, the portion comprising residues 65–76 of the NTE modulates the conformational dynamics of the glutathione-binding pocket, which may play a role in iron-sulfur cluster assembly and delivery. Furthermore, we disclosed that the class II-strictly conserved loop that precedes the active site is critical for stabilizing the protein structure. So far, this represents the first communication of a Grx containing an intrinsically disordered region that defines a new protein subgroup within class II Grx.
Collapse
Affiliation(s)
- Mattia Sturlese
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.,Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Bruno Manta
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay.,Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4425, 11400, Montevideo, Uruguay.,New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Andrea Bertarello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Mariana Bonilla
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Moreno Lelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.,Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Karin Grunberg
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marcelo A Comini
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
83
|
Li WY, Liu CJ, Wu L, Wu JF, Yin XN, Deng KH, Zhang DY, Meng E. MCT cloning: a seamless cloning strategy for inserting DNA fragments. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1507756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Wen-Ying Li
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Chang-Jun Liu
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Lei Wu
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Jin-Feng Wu
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Xi-Nong Yin
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Kai-Hang Deng
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Dong-Yi Zhang
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| | - Er Meng
- Research Center of Biological Information, College of Science, National University of Defense Technology, Changsha, Hunan, PR China
| |
Collapse
|
84
|
Functional Analyses of a Putative, Membrane-Bound, Peroxisomal Protein Import Mechanism from the Apicomplexan Protozoan Toxoplasma gondii. Genes (Basel) 2018; 9:genes9090434. [PMID: 30158461 PMCID: PMC6162456 DOI: 10.3390/genes9090434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023] Open
Abstract
Peroxisomes are central to eukaryotic metabolism, including the oxidation of fatty acids—which subsequently provide an important source of metabolic energy—and in the biosynthesis of cholesterol and plasmalogens. However, the presence and nature of peroxisomes in the parasitic apicomplexan protozoa remains controversial. A survey of the available genomes revealed that genes encoding peroxisome biogenesis factors, so-called peroxins (Pex), are only present in a subset of these parasites, the coccidia. The basic principle of peroxisomal protein import is evolutionarily conserved, proteins harbouring a peroxisomal-targeting signal 1 (PTS1) interact in the cytosol with the shuttling receptor Pex5 and are then imported into the peroxisome via the membrane-bound protein complex formed by Pex13 and Pex14. Surprisingly, whilst Pex5 is clearly identifiable, Pex13 and, perhaps, Pex14 are apparently absent from the coccidian genomes. To investigate the functionality of the PTS1 import mechanism in these parasites, expression of Pex5 from the model coccidian Toxoplasma gondii was shown to rescue the import defect of Pex5-deleted Saccharomyces cerevisiae. In support of these data, green fluorescent protein (GFP) bearing the enhanced (e)PTS1 known to efficiently localise to peroxisomes in yeast, localised to peroxisome-like bodies when expressed in Toxoplasma. Furthermore, the PTS1-binding domain of Pex5 and a PTS1 ligand from the putatively peroxisome-localised Toxoplasma sterol carrier protein (SCP2) were shown to interact in vitro. Taken together, these data demonstrate that the Pex5–PTS1 interaction is functional in the coccidia and indicate that a nonconventional peroxisomal import mechanism may operate in the absence of Pex13 and Pex14.
Collapse
|
85
|
Zahradník J, Kolářová L, Pařízková H, Kolenko P, Schneider B. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. FISH & SHELLFISH IMMUNOLOGY 2018; 79:140-152. [PMID: 29742458 DOI: 10.1016/j.fsi.2018.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Interferon gamma (IFN-γ) is one of the key players in the immune system of vertebrates. The evolution and properties of IFN-γ and its receptors in fish species are of special interest as they point to the origin of innate immunity in vertebrates. We studied the phylogeny, biophysical and structural properties of IFN-γ and its receptors. Our phylogeny analysis suggests the existence of two groups of IFN-γ related proteins, one specific for Acanthomorpha, the other for Cypriniformes, Characiformes and Siluriformes. The analysis further shows an ancient duplication of the gene for IFN-γ receptor 1 (IFN- γR1) and the parallel existence of the duplicated genes in all current teleost fish species. In contrast, only one gene can be found for receptor 2, IFN- γR2. The specificity of the interaction between IFN- γ and both types of IFN- γR1 was determined by microscale thermophoresis measurements of the equilibrium dissociation constants for the proteins from three fish species. The measured preference of IFN- γ for one of the two forms of receptor 1agrees with the bioinformatic analysis of the coevolution between IFN- γ and receptor 1. To elucidate structural relationships between IFN-γ of fish and other vertebrate species, we determined the crystal structure of IFN-γ from olive flounder (Paralichthys olivaceus, PoliIFN-γ) at crystallographic resolution of 2.3 Å and the low-resolution structures of Takifugu rubripes, Oreochromis niloticus, and Larimichthys crocea IFN-γ by small angle X-ray diffraction. The overall PoliIFN-γ fold is the same as the fold of the other known IFN- γ structures but there are some significant structural differences, namely the additional C-terminal helix G and a different angle between helices C and D in PoliIFN-γ.
Collapse
Affiliation(s)
- Jiří Zahradník
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| | - Lucie Kolářová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Hana Pařízková
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Petr Kolenko
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| |
Collapse
|
86
|
Jiao X, Zhang Q, Zhang S, Yang X, Wang Q, Zhao ZK. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 2018; 18:5061629. [DOI: 10.1093/femsyr/foy086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Lu, Beijing 100049, China
| | - Qi Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Lu, Beijing 100049, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaobing Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Zongbao Kent Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
87
|
Ortega C, Prieto D, Abreu C, Oppezzo P, Correa A. Multi-Compartment and Multi-Host Vector Suite for Recombinant Protein Expression and Purification. Front Microbiol 2018; 9:1384. [PMID: 29997597 PMCID: PMC6030378 DOI: 10.3389/fmicb.2018.01384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Recombinant protein expression has become an invaluable tool in basic and applied research. The accumulated knowledge in this field allowed the expression of thousands of protein targets in a soluble, pure, and homogeneous state, essential for biochemical and structural analyses. A lot of progress has been achieved in the last decades, where challenging proteins were expressed in a soluble manner after evaluating different parameters such as host, strain, and fusion partner or promoter strength, among others. In this regard, we have previously developed a vector suite that allows the evaluation of different promoters and solubility enhancer-proteins, through an easy and efficient cloning strategy. Nonetheless, the proper expression of many targets remains elusive, requiring, for example, the addition of complex post-translation modifications and/or passage through specialized compartments. In order to overcome the limitations found when working with a single subcellular localization and a single host type, we herein expanded our previously developed vector suite to include the evaluation of recombinant protein expression in different cell compartments and cell hosts. In addition, these vectors also allow the assessment of alternative purification strategies for the improvement of target protein yields.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniel Prieto
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
88
|
Development of Versatile Vectors for Heterologous Expression in Bacillus. Microorganisms 2018; 6:microorganisms6020051. [PMID: 29875331 PMCID: PMC6027494 DOI: 10.3390/microorganisms6020051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
The discovery of new enzymes for industrial application relies on a robust discovery pipeline. Such a pipeline should facilitate efficient molecular cloning, recombinant expression and functional screening procedures. Previously, we have developed a vector set for heterologous expression in Escherichia coli. Here, we supplement the catalogue with vectors for expression in Bacillus. The vectors are made compatible with a versatile cloning procedure based on type IIS restriction enzymes and T4 DNA ligase, and encompass an effective counter-selection procedure and complement the set of vectors with options for secreted expression. We validate the system with expression of recombinant subtilisins, which are generally challenging to express in a heterologous system. The complementarity of the E. coli and Bacillus systems allows rapid switching between the two commonly used hosts without comprehensive intermediate cloning steps. The vectors described are not limited to the expression of certain enzymes, but could also be applied for the expression of other enzymes for more generalized enzyme discovery or development.
Collapse
|
89
|
Bräuning B, Bertosin E, Praetorius F, Ihling C, Schatt A, Adler A, Richter K, Sinz A, Dietz H, Groll M. Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Nat Commun 2018; 9:1806. [PMID: 29728606 PMCID: PMC5935710 DOI: 10.1038/s41467-018-04139-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/02/2018] [Indexed: 01/30/2023] Open
Abstract
Pore-forming toxins (PFT) are virulence factors that transform from soluble to membrane-bound states. The Yersinia YaxAB system represents a family of binary α-PFTs with orthologues in human, insect, and plant pathogens, with unknown structures. YaxAB was shown to be cytotoxic and likely involved in pathogenesis, though the molecular basis for its two-component lytic mechanism remains elusive. Here, we present crystal structures of YaxA and YaxB, together with a cryo-electron microscopy map of the YaxAB complex. Our structures reveal a pore predominantly composed of decamers of YaxA-YaxB heterodimers. Both subunits bear membrane-active moieties, but only YaxA is capable of binding to membranes by itself. YaxB can subsequently be recruited to membrane-associated YaxA and induced to present its lytic transmembrane helices. Pore formation can progress by further oligomerization of YaxA-YaxB dimers. Our results allow for a comparison between pore assemblies belonging to the wider ClyA-like family of α-PFTs, highlighting diverse pore architectures.
Collapse
Affiliation(s)
- Bastian Bräuning
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biochemistry, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany.
| | - Eva Bertosin
- Center for Integrated Protein Science Munich (CIPSM), Department of Physics, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Florian Praetorius
- Center for Integrated Protein Science Munich (CIPSM), Department of Physics, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120, Halle/Saale, Germany
| | - Alexandra Schatt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120, Halle/Saale, Germany
| | - Agnes Adler
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biochemistry, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Klaus Richter
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biotechnology, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120, Halle/Saale, Germany
| | - Hendrik Dietz
- Center for Integrated Protein Science Munich (CIPSM), Department of Physics, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biochemistry, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
90
|
Co-translational Folding Intermediate Dictates Membrane Targeting of the Signal Recognition Particle Receptor. J Mol Biol 2018; 430:1607-1620. [PMID: 29704493 DOI: 10.1016/j.jmb.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/22/2022]
Abstract
Much of our knowledge on the function of proteins is deduced from their mature, folded states. However, it is unknown whether partially synthesized nascent protein segments can execute biological functions during translation and whether their premature folding states matter. A recent observation that a nascent chain performs a distinct function, co-translational targeting in vivo, has been made with the Escherichia coli signal recognition particle receptor FtsY, a major player in the conserved pathway of membrane protein biogenesis. FtsY functions as a membrane-associated entity, but very little is known about the mode of its targeting to the membrane. Here we investigated the underlying structural mechanism of the co-translational FtsY targeting to the membrane. Our results show that helices N2-4, which mediate membrane targeting, form a stable folding intermediate co-translationally that greatly differs from its fold in the mature FtsY. These results thus resolve a long-standing mystery of how the receptor targets the membrane even when deleted of its alleged membrane targeting sequence. The structurally distinct targeting determinant of FtsY exists only co-translationally. Our studies will facilitate further efforts to seek cellular factors required for proper targeting and association of FtsY with the membrane. Moreover, the results offer a hallmark example for how co-translational nascent intermediates may dictate biological functions.
Collapse
|
91
|
Fernández I, Sycz G, Goldbaum FA, Carrica MDC. Acidic pH triggers the phosphorylation of the response regulator NtrX in alphaproteobacteria. PLoS One 2018; 13:e0194486. [PMID: 29634773 PMCID: PMC5892882 DOI: 10.1371/journal.pone.0194486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
Many signaling pathways that control cellular development, cell-cycle progression and nutritional versatility have been studied in Caulobacter crescentus. For example, it was suggested that the response regulator NtrX is conditionally essential for this bacterium and that it might be necessary for responding to a signal produced in phosphate-replete minimal medium. However, such signal has not been identified yet and the role of NtrX in C. crescentus biology remains elusive. Here, using wild-type C. crescentus and a strain with a chromosomally myc-tagged ntrX gene, we demonstrate that high concentrations of phosphate (10 mM) regulate ntrX transcription and the abundance of the protein. We also show that the pH of the medium acts as a switch able to regulate the phosphorylation status of NtrX, promoting its phosphorylation under mildly acidic conditions and its dephosphorylation at neutral pH. Moreover, we demonstrate that the ntrX gene is required for survival in environments with low pH and under acidic stress. Finally, we prove that NtrX phosphorylation is also triggered by low pH in Brucella abortus, a pathogenic alphaproteobacterium. Overall, our work contributes to deepen the general knowledge of this system and provides tools to elucidate the NtrX regulon.
Collapse
Affiliation(s)
- Ignacio Fernández
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | | | | |
Collapse
|
92
|
Lipid binding promotes the open conformation and tumor-suppressive activity of neurofibromin 2. Nat Commun 2018; 9:1338. [PMID: 29626191 PMCID: PMC5889391 DOI: 10.1038/s41467-018-03648-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/02/2018] [Indexed: 01/29/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a tumor-forming disease of the nervous system caused by deletion or by loss-of-function mutations in NF2, encoding the tumor suppressing protein neurofibromin 2 (also known as schwannomin or merlin). Neurofibromin 2 is a member of the ezrin, radixin, moesin (ERM) family of proteins regulating the cytoskeleton and cell signaling. The correlation of the tumor-suppressive function and conformation (open or closed) of neurofibromin 2 has been subject to much speculation, often based on extrapolation from other ERM proteins, and controversy. Here we show that lipid binding results in the open conformation of neurofibromin 2 and that lipid binding is necessary for inhibiting cell proliferation. Collectively, our results provide a mechanism in which the open conformation is unambiguously correlated with lipid binding and localization to the membrane, which are critical for the tumor-suppressive function of neurofibromin 2, thus finally reconciling the long-standing conformation and function debate. Neurofibromin 2 (NF2) is a tumour suppressor that inhibits cell growth. Here the authors combine functional, biochemical, and structural studies and show that lipid-bound NF2 adopts an open conformation and that NF2 lipid binding is required for inhibition of cell proliferation.
Collapse
|
93
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
94
|
Multitalented EspB of enteropathogenic Escherichia coli (EPEC) enters cells autonomously and induces programmed cell death in human monocytic THP-1 cells. Int J Med Microbiol 2018; 308:387-404. [PMID: 29550166 DOI: 10.1016/j.ijmm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.
Collapse
|
95
|
Elias S, Kahlon S, Kotzur R, Kaynan N, Mandelboim O. Obinutuzumab activates FcγRI more potently than other anti-CD20 antibodies in chronic lymphocytic leukemia (CLL). Oncoimmunology 2018; 7:e1428158. [PMID: 29872553 PMCID: PMC5980409 DOI: 10.1080/2162402x.2018.1428158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 11/03/2022] Open
Abstract
Treatment with monoclonal antibodies has revolutionized clinical medicine, especially in the fields of cancer and immunology. One of the oldest antibodies, which is widely used for the treatment of lymphomas and autoimmune diseases, is the anti-CD20 antibody rituximab. In recent years, new antibodies against CD20 have been developed including ofatumumab and obinutuzumab. An important mechanism of action of therapeutic monoclonal antibodies is activation of immune cells via Fc receptors (FcγRs). However, surprisingly, little is known about triggering of FcγRs by different therapeutic antibodies in general and anti-CD20 antibodies in particular. Here we establish a reporter assay to assess whether a particular antibody activates a certain Fc receptor. Using this assay we corroborated previous reports demonstrating obinutuzumab's ability to highly activate FcγRIIIa (CD16a). Importantly, we discovered that obinutuzumab also activates FcγRI (CD64) significantly more than rituximab and ofatumumab in response to chronic lymphocytic leukemia (CLL) cells obtained from patients. Mechanistically we show that this is due to the lack of FcγRIIb-mediated internalization of obinutuzumab following binding to CD20. Moreover, we show that obinutuzumab induces increased phagocytosis by primary macrophages in an FcγRI-dependent manner. Beyond the discovery of a new mechanism of obinutuzumab activity, the reporter assay can be applied to other therapeutic antibodies and may assist in developing antibodies with improved immunological properties.
Collapse
Affiliation(s)
- Shlomo Elias
- Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.,The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shira Kahlon
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rebecca Kotzur
- Department of Transfusion Medicine, Institute of Immunogenetics, Hannover Medical School, Hannover, Germany
| | - Noah Kaynan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
96
|
The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis 2017. [DOI: 10.1007/s13199-017-0536-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
97
|
Rimon O, Suss O, Goldenberg M, Fassler R, Yogev O, Amartely H, Propper G, Friedler A, Reichmann D. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk. Antioxid Redox Signal 2017; 27:1252-1267. [PMID: 28394178 DOI: 10.1089/ars.2016.6900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS A recently discovered group of conditionally disordered chaperones share a very unique feature; they need to lose structure to become active as chaperones. This activation mechanism makes these chaperones particularly suited to respond to protein-unfolding stress conditions, such as oxidative unfolding. However, the role of this disorder in stress-related activation, chaperone function, and the crosstalk with other chaperone systems is not yet clear. Here, we focus on one of the members of the conditionally disordered chaperones, a thiol-redox switch of the bacterial proteostasis system, Hsp33. RESULTS By modifying the Hsp33's sequence, we reveal that the metastable region has evolved to abolish redox-dependent chaperone activity, rather than enhance binding affinity for client proteins. The intrinsically disordered region of Hsp33 serves as an anchor for the reduced, inactive state of Hsp33, and it dramatically affects the crosstalk with the synergetic chaperone system, DnaK/J. Using mass spectrometry, we describe the role that the metastable region plays in determining client specificity during normal and oxidative stress conditions in the cell. Innovation and Conclusion: We uncover a new role of protein plasticity in Hsp33's inactivation, client specificity, crosstalk with the synergistic chaperone system DnaK/J, and oxidative stress-specific interactions in bacteria. Our results also suggest that Hsp33 might serve as a member of the house-keeping proteostasis machinery, tasked with maintaining a "healthy" proteome during normal conditions, and that this function does not depend on the metastable linker region. Antioxid. Redox Signal. 27, 1252-1267.
Collapse
Affiliation(s)
- Oded Rimon
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Ohad Suss
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Mor Goldenberg
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Rosi Fassler
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Ohad Yogev
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Hadar Amartely
- 2 Institute of Chemistry, The Hebrew University of Jerusalem , Safra Campus Givat Ram, Jerusalem, Israel
| | - Guy Propper
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Assaf Friedler
- 2 Institute of Chemistry, The Hebrew University of Jerusalem , Safra Campus Givat Ram, Jerusalem, Israel
| | - Dana Reichmann
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| |
Collapse
|
98
|
Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun 2017; 8:1589. [PMID: 29150609 PMCID: PMC5693986 DOI: 10.1038/s41467-017-01664-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Leishmania is a single-celled eukaryotic parasite afflicting millions of humans worldwide, with current therapies limited to a poor selection of drugs that mostly target elements in the parasite's cell envelope. Here we determined the atomic resolution electron cryo-microscopy (cryo-EM) structure of the Leishmania ribosome in complex with paromomycin (PAR), a highly potent compound recently approved for treatment of the fatal visceral leishmaniasis (VL). The structure reveals the mechanism by which the drug induces its deleterious effects on the parasite. We further show that PAR interferes with several aspects of cytosolic translation, thus highlighting the cytosolic rather than the mitochondrial ribosome as the primary drug target. The results also highlight unique as well as conserved elements in the PAR-binding pocket that can serve as hotspots for the development of novel therapeutics.
Collapse
|
99
|
Segev N, Gerst JE. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J Cell Biol 2017; 217:117-126. [PMID: 29118025 PMCID: PMC5748985 DOI: 10.1083/jcb.201706059] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins exist mainly as paralog pairs in eukaryotes, yet the reasons for maintaining duplication are unclear. By using a novel proteomic approach, Segev and Gerst show paralog-specific regulation of the translation of mitochondrial proteins using specialized ribosomes. Genome duplication in eukaryotes created paralog pairs of ribosomal proteins (RPs) that show high sequence similarity/identity. However, individual paralogs can confer vastly different effects upon cellular processes, e.g., specific yeast paralogs regulate actin organization, bud site selection, and mRNA localization, although how specificity is conferred is unknown. Changes in the RP composition of ribosomes might allow for specialized translation of different subsets of mRNAs, yet it is unclear whether specialized ribosomes exist and if paralog specificity controls translation. Using translatome analyses, we show that the translation of mitochondrial proteins is highly down-regulated in yeast lacking RP paralogs required for normal mitochondrial function (e.g., RPL1b). Although RPL1a and RPL1b encode identical proteins, Rpl1b-containing ribosomes confer more efficient translation of respiration-related proteins. Thus, ribosomes varying in RP composition may confer specialized functions, and RP paralog specificity defines a novel means of translational control.
Collapse
Affiliation(s)
- Nadav Segev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
100
|
Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y. A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus. Sci Rep 2017; 7:14553. [PMID: 29109463 PMCID: PMC5674062 DOI: 10.1038/s41598-017-15112-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Small secreted proteins (SSPs), along with lignocellulose degrading enzymes, are integral components of the secretome of Pleurotus ostreatus, a white rot fungus. In this study, we identified 3 genes (ssp1, 2 and 3) encoding proteins that are annotated as SSPs and that exhibited of ~4,500- fold expression, 24 hr following exposure to the toxic compound 5-hydroxymethylfurfural (HMF). Homologues to genes encoding these SSPs are present in the genomes of other basidiomycete fungi, however the role of SSPs is not yet understood. SSPs, aryl-alcohol oxidases (AAO) and the intracellular aryl-alcohol dehydrogenases (AAD) were also produced after exposure to other aryl-alcohols, known substrates and inducers of AAOs, and during idiophase (after the onset of secondary metabolism). A knockdown strain of ssp1 exhibited reduced production of AAO-and AAD-encoding genes after HMF exposure. Conversely, a strain overexpressing ssp1 exhibited elevated expression of genes encoding AAOs and ADD, resulting in a 3-fold increase in enzymatic activity of AAOs, as well as increased expression and protein abundance of versatile peroxidase 1, which directly degrades lignin. We propose that in addition to symbionts and pathogens, SSPs also have roles in saprophytes and function in P. ostreatus as components of the ligninolytic system.
Collapse
Affiliation(s)
- Daria Feldman
- The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Department of Plant Pathology and Microbiology, Rehovot, 76100, Israel
| | - David J Kowbel
- University of California at Berkeley UC Berkeley, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California, 94720, USA
| | - N Louise Glass
- University of California at Berkeley UC Berkeley, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California, 94720, USA
| | - Oded Yarden
- The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Department of Plant Pathology and Microbiology, Rehovot, 76100, Israel
| | - Yitzhak Hadar
- The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Department of Plant Pathology and Microbiology, Rehovot, 76100, Israel.
| |
Collapse
|