51
|
Stark H, Chari A. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf) 2015; 65:23-34. [PMID: 26671943 DOI: 10.1093/jmicro/dfv367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/05/2015] [Indexed: 01/04/2023] Open
Abstract
Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination.
Collapse
Affiliation(s)
- Holger Stark
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37070, Germany
| | - Ashwin Chari
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37070, Germany
| |
Collapse
|
52
|
Sari D, Gupta K, Thimiri Govinda Raj DB, Aubert A, Drncová P, Garzoni F, Fitzgerald D, Berger I. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 896:199-215. [PMID: 27165327 PMCID: PMC7122245 DOI: 10.1007/978-3-319-27216-0_13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiprotein complexes regulate most if not all cellular functions. Elucidating the structure and function of these complex cellular machines is essential for understanding biology. Moreover, multiprotein complexes by themselves constitute powerful reagents as biologics for the prevention and treatment of human diseases. Recombinant production by the baculovirus/insect cell expression system is particularly useful for expressing proteins of eukaryotic origin and their complexes. MultiBac, an advanced baculovirus/insect cell system, has been widely adopted in the last decade to produce multiprotein complexes with many subunits that were hitherto inaccessible, for academic and industrial research and development. The MultiBac system, its development and numerous applications are presented. Future opportunities for utilizing MultiBac to catalyze discovery are outlined.
Collapse
Affiliation(s)
- Duygu Sari
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Kapil Gupta
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Deepak Balaji Thimiri Govinda Raj
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Alice Aubert
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Petra Drncová
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Frederic Garzoni
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Daniel Fitzgerald
- Geneva Biotech SARL, Avenue de la Roseraie 64, 1205, Genève, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
53
|
Chari A, Haselbach D, Kirves JM, Ohmer J, Paknia E, Fischer N, Ganichkin O, Möller V, Frye JJ, Petzold G, Jarvis M, Tietzel M, Grimm C, Peters JM, Schulman BA, Tittmann K, Markl J, Fischer U, Stark H. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat Methods 2015; 12:859-65. [PMID: 26237227 DOI: 10.1038/nmeth.3493] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/17/2015] [Indexed: 01/04/2023]
Abstract
Molecular machines or macromolecular complexes are supramolecular assemblies of biomolecules with a variety of functions. Structure determination of these complexes in a purified state is often tedious owing to their compositional complexity and the associated relative structural instability. To improve the stability of macromolecular complexes in vitro, we present a generic method that optimizes the stability, homogeneity and solubility of macromolecular complexes by sparse-matrix screening of their thermal unfolding behavior in the presence of various buffers and small molecules. The method includes the automated analysis of thermal unfolding curves based on a biophysical unfolding model for complexes. We found that under stabilizing conditions, even large multicomponent complexes reveal an almost ideal two-state unfolding behavior. We envisage an improved biochemical understanding of purified macromolecules as well as a substantial boost in successful macromolecular complex structure determination by both X-ray crystallography and cryo-electron microscopy.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - David Haselbach
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan-Martin Kirves
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juergen Ohmer
- Department of Biochemistry, Theodor-Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Elham Paknia
- Department of Biochemistry, Theodor-Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Niels Fischer
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Oleg Ganichkin
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Vanessa Möller
- Institut für Zoologie - Abteilung für Molekular Tierphysiologie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Jeremiah J Frye
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Georg Petzold
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Marc Jarvis
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Michael Tietzel
- Department for Bioanalytics, Georg-August University Göttingen, Göttingen, Germany
| | - Clemens Grimm
- Department of Biochemistry, Theodor-Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kai Tittmann
- Department for Bioanalytics, Georg-August University Göttingen, Göttingen, Germany
| | - Jürgen Markl
- Institut für Zoologie - Abteilung für Molekular Tierphysiologie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor-Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Holger Stark
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
54
|
Zorman S, Botte M, Jiang Q, Collinson I, Schaffitzel C. Advances and challenges of membrane–protein complex production. Curr Opin Struct Biol 2015; 32:123-30. [DOI: 10.1016/j.sbi.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 01/14/2023]
|
55
|
Crépin T, Swale C, Monod A, Garzoni F, Chaillet M, Berger I. Polyproteins in structural biology. Curr Opin Struct Biol 2015; 32:139-46. [PMID: 25996897 PMCID: PMC7125721 DOI: 10.1016/j.sbi.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Structures have been determined for natural and recombinant polyproteins. Native HIV Gag polyprotein architecture was revealed by cryo-EM of immature capsids. Recombinant polyprotein technology has resolved sample preparation bottlenecks. The high-resolution structure of influenza polymerase has been solved. Single-molecule analysis of polyproteins revealed their folding characteristics.
Polyproteins are chains of covalently conjoined smaller proteins that occur in nature as versatile means to organize the proteome of viruses including HIV. During maturation, viral polyproteins are typically cleaved into the constituent proteins with different biological functions by highly specific proteases, and structural analyses at defined stages of this maturation process can provide clues for antiviral intervention strategies. Recombinant polyproteins that use similar mechanisms are emerging as powerful tools for producing hitherto inaccessible protein targets such as the influenza polymerase, for high-resolution structure determination by X-ray crystallography. Conversely, covalent linking of individual protein subunits into single polypeptide chains are exploited to overcome sample preparation bottlenecks. Moreover, synthetic polyproteins provide a promising tool to dissect dynamic folding of polypeptide chains into three-dimensional architectures in single-molecule structure analysis by atomic force microscopy (AFM). The recent use of natural and synthetic polyproteins in structural biology and major achievements are highlighted in this contribution.
Collapse
Affiliation(s)
- Thibaut Crépin
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Christopher Swale
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Alexandre Monod
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frederic Garzoni
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Maxime Chaillet
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Imre Berger
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France; The School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
56
|
Komar J, Botte M, Collinson I, Schaffitzel C, Berger I. ACEMBLing a multiprotein transmembrane complex: the functional SecYEG-SecDF-YajC-YidC Holotranslocon protein secretase/insertase. Methods Enzymol 2015; 556:23-49. [PMID: 25857776 DOI: 10.1016/bs.mie.2014.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane proteins constitute about one third of the proteome. The ubiquitous Sec machinery facilitates protein movement across or integration of proteins into the cytoplasmic membrane. In Escherichia coli post- and co-translational targeting pathways converge at the protein-conducting channel, consisting of a central pore, SecYEG, which can recruit accessory domains SecDF-YajC and YidC, to form the holotranslocon (HTL) supercomplex. Detailed analysis of HTL function and architecture remained elusive until recently, largely due to the lack of a purified, recombinant complex. ACEMBL is an advanced DNA recombineering-based expression vector system we developed for producing challenging multiprotein complexes. ACEMBL affords the means to combine multiple expression elements including promoter DNAs, tags, genes of interest, and terminators in a combinatorial manner until optimal multigene expression plasmids are constructed that yield correctly assembled, homogenous, and active multiprotein complex specimens. We utilized ACEMBL for recombinant HTL overproduction. We developed protocols for detergent solubilizing and purifying the HTL. Highly purified complex was then used to reveal HTL function and the interactions between its constituents. HTL activity in protein secretion and membrane protein insertion was analyzed in both the presence and absence of the proton-motive force. Setting up ACEMBL for the assembly of multigene expression constructs that achieve high yields of functional multisubunit membrane protein complex is straightforward. Here, we used ACEMBL for obtaining active HTL supercomplex in high quality and quantity. The concept can likewise be applied to obtain many other assemblies of similar complexity, by overexpression in prokaryotic, and also eukaryotic hosts.
Collapse
Affiliation(s)
- Joanna Komar
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Mathieu Botte
- European Molecular Biology Laboratory, Grenoble, France; Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Unité mixte de Recherche, Grenoble, France
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; European Molecular Biology Laboratory, Grenoble, France; Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Unité mixte de Recherche, Grenoble, France
| | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; European Molecular Biology Laboratory, Grenoble, France; Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Unité mixte de Recherche, Grenoble, France.
| |
Collapse
|
57
|
Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution. Proc Natl Acad Sci U S A 2015; 112:E1181-90. [PMID: 25733868 DOI: 10.1073/pnas.1417573112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agonist binding to G-protein-coupled receptors (GPCRs) triggers signal transduction cascades involving heterotrimeric G proteins as key players. A major obstacle for drug design is the limited knowledge of conformational changes upon agonist binding, the details of interaction with the different G proteins, and the transmission to movements within the G protein. Although a variety of different GPCR/G protein complex structures would be needed, the transient nature of this complex and the intrinsic instability against dissociation make this endeavor very challenging. We have previously evolved GPCR mutants that display higher stability and retain their interaction with G proteins. We aimed at finding all G-protein combinations that preferentially interact with neurotensin receptor 1 (NTR1) and our stabilized mutants. We first systematically analyzed by coimmunoprecipitation the capability of 120 different G-protein combinations consisting of αi1 or αsL and all possible βγ-dimers to form a heterotrimeric complex. This analysis revealed a surprisingly unrestricted ability of the G-protein subunits to form heterotrimeric complexes, including βγ-dimers previously thought to be nonexistent, except for combinations containing β5. A second screen on coupling preference of all G-protein heterotrimers to NTR1 wild type and a stabilized mutant indicated a preference for those Gαi1βγ combinations containing γ1 and γ11. Heterotrimeric G proteins, including combinations believed to be nonexistent, were purified, and complexes with the GPCR were prepared. Our results shed new light on the combinatorial diversity of G proteins and their coupling to GPCRs and open new approaches to improve the stability of GPCR/G-protein complexes.
Collapse
|
58
|
Characterization and production of protein complexes by co-expression in Escherichia coli. Methods Mol Biol 2015; 1261:63-89. [PMID: 25502194 DOI: 10.1007/978-1-4939-2230-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functional units within cells are often macromolecular complexes rather than single species. Production of these complexes as assembled homogenous samples is a prerequisite for their biophysical and structural characterization and hence an understanding of their function in molecular terms. Co-expression in Escherichia coli has been used routinely to decipher the subunit composition, assembly, and production of whole protein complexes. Such complexes can then be used to reconstitute protein/nucleic acid complexes in vitro. In this chapter we present protocols for the widely utilized ACEMBL and pET-MCN/pET-MCP vector series which enable the rapid and automated co-expression of protein complexes in Escherichia coli.
Collapse
|
59
|
Osz-Papai J, Radu L, Abdulrahman W, Kolb-Cheynel I, Troffer-Charlier N, Birck C, Poterszman A. Insect cells-baculovirus system for the production of difficult to express proteins. Methods Mol Biol 2015; 1258:181-205. [PMID: 25447865 DOI: 10.1007/978-1-4939-2205-5_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of sufficient quantities of homogenous protein not only is an essential prelude for structural investigations but also represents a rate-limiting step for many human functional studies. Although technologies for expression of recombinant proteins and complexes have been improved tremendously, in many cases, protein production remains a challenge and can be associated with considerable investment. This chapter describes simple and efficient protocols for expression screening and optimization of protein production in insect cells using the baculovirus expression system. We describe the procedure, starting from the cloning of a gene of interest into an expression transfer baculovirus vector, followed by generation of the recombinant virus by homologous recombination, evaluation of protein expression, and scale-up. Handling of insect cell cultures and preparation of bacmid for co-transfection are also detailed.
Collapse
Affiliation(s)
- Judit Osz-Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, BP 163, Illkirch, Cedex 67404, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Abdulrahman W, Radu L, Garzoni F, Kolesnikova O, Gupta K, Osz-Papai J, Berger I, Poterszman A. The production of multiprotein complexes in insect cells using the baculovirus expression system. Methods Mol Biol 2015; 1261:91-114. [PMID: 25502195 DOI: 10.1007/978-1-4939-2230-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of a homogeneous protein sample in sufficient quantities is an essential prerequisite not only for structural investigations but represents also a rate-limiting step for many functional studies. In the cell, a large fraction of eukaryotic proteins exists as large multicomponent assemblies with many subunits, which act in concert to catalyze specific activities. Many of these complexes cannot be obtained from endogenous source material, so recombinant expression and reconstitution are then required to overcome this bottleneck. This chapter describes current strategies and protocols for the efficient production of multiprotein complexes in large quantities and of high quality, using the baculovirus/insect cell expression system.
Collapse
Affiliation(s)
- Wassim Abdulrahman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, BP 163, 67404, Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
62
|
Abstract
For about 30 years X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography. Landmarks of new virus structures determinations, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated to methodological breakthroughs in X-ray crystallography. In this chapter we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus studies. For example, the solution of the phase problem, a central issue in X-ray diffraction, has benefited enormously from the presence of non-crystallographic symmetry in virus crystals.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, c/Baldiri i Reixac 10, 08028, Barcelona, Spain,
| | | | | |
Collapse
|
63
|
Mansouri M, Berger P. Strategies for multigene expression in eukaryotic cells. Plasmid 2014; 75:12-7. [PMID: 25034976 DOI: 10.1016/j.plasmid.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Multigene delivery systems for heterologous multiprotein expression in mammalian cells are a key technology in contemporary biological research. Multiprotein expression is essential for a variety of applications, including multiparameter analysis of living cells in vitro, changing the fate of stem cells, or production of multiprotein complexes for structural biology. Depending on the application, these expression systems have to fulfill different requirements. For some applications, homogenous expression in all cells with defined stoichiometry is necessary, whereas other applications need long term expression or require that the proteins are not modified at the N- and C-terminus. Here we summarize available multiprotein expression systems and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen PSI, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
64
|
Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 2014; 33:1855-68. [PMID: 24986880 PMCID: PMC4158905 DOI: 10.15252/embj.201488792] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic dynein is an approximately 1.4 MDa multi-protein complex that transports many cellular cargoes towards the minus ends of microtubules. Several in vitro studies of mammalian dynein have suggested that individual motors are not robustly processive, raising questions about how dynein-associated cargoes can move over long distances in cells. Here, we report the production of a fully recombinant human dynein complex from a single baculovirus in insect cells. Individual complexes very rarely show directional movement in vitro. However, addition of dynactin together with the N-terminal region of the cargo adaptor BICD2 (BICD2N) gives rise to unidirectional dynein movement over remarkably long distances. Single-molecule fluorescence microscopy provides evidence that BICD2N and dynactin stimulate processivity by regulating individual dynein complexes, rather than by promoting oligomerisation of the motor complex. Negative stain electron microscopy reveals the dynein–dynactin–BICD2N complex to be well ordered, with dynactin positioned approximately along the length of the dynein tail. Collectively, our results provide insight into a novel mechanism for coordinating cargo binding with long-distance motor movement.
Collapse
Affiliation(s)
- Max A Schlager
- Division of Structural Studies, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Ha Thi Hoang
- Division of Cell Biology, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Linas Urnavicius
- Division of Structural Studies, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Simon L Bullock
- Division of Cell Biology, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P Carter
- Division of Structural Studies, MRC-Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
65
|
Thimiri Govinda Raj DB, Vijayachandran LS, Berger I. OmniBac: universal multigene transfer plasmids for baculovirus expression vector systems. Methods Mol Biol 2014; 1091:123-130. [PMID: 24203327 DOI: 10.1007/978-1-62703-691-7_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Current baculovirus expression vector systems (BEVS) rely on either using homologous recombination or site specific transposition (Tn7 transposition) to obtain recombinant baculovirus. Each approach has its own merits. To date, the choice of transfer plasmids limited expression of target proteins to only one of the two types of BEVS. Here we describe OmniBac, comprising novel universal multigene transfer plasmids that can access all BEVS currently in use for protein production in the community. Detailed protocols are presented for integrating OmniBac plasmids into baculoviral genomes used for heterologous protein production in insect cells.
Collapse
|
66
|
Abstract
A powerful approach utilizing polyproteins for balancing stoichiometry of recombinant multiprotein complexes overproduced in baculovirus expression vector systems (BEVS) is described. This procedure has been implemented here in the MultiBac system but can also be directly adapted to all commonly used BEVS. The protocol details the design principles of polyprotein-expressing DNA constructs, the generation of composite baculovirus for polyprotein production, and the expression and in vivo processing of polyproteins in baculovirus infected insect cells.
Collapse
Affiliation(s)
- Yu Wai Chen
- King's College London, London, United Kingdom
| |
Collapse
|
67
|
Wang J, Zhu K, Zhao G, Ren J, Yue C, Gao D. Dual dependence of cryobiogical properties of Sf21 cell membrane on the temperature and the concentration of the cryoprotectant. PLoS One 2013; 8:e72836. [PMID: 24023781 PMCID: PMC3762842 DOI: 10.1371/journal.pone.0072836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/14/2013] [Indexed: 11/25/2022] Open
Abstract
The Sf21 cell line is extensively used for virus research and producing heterologous recombinant proteins. To develop optimal strategies for minimizing cell injury due to intracellular ice formation and excessive volume shrinkage during cryopreservation, the fundamental transport properties including the osmotic inactive volume (Vb), the hydraulic conductivity (Lp), and the glycerol permeability (Ps) of Sf21 cell membrane at 25, 15, 5 and −2°C were characterized using a micro-perfusion chamber. The effects of temperature on the hydraulic conductivity and the glycerol permeability of Sf21 cell membrane, reflected by the activation energies, were quantitatively investigated. It was found that the hydraulic conductivity decreases along with the increase of the final CPA concentration at a given temperature, and quantitative analysis indicates that the hydraulic conductivity has a significant linear attenuation along with the increase of the concentration of glycerol. Therefore, we incorporate the concentration dependence of the hydraulic conductivity into the classic Arrhenius relationship by replacing the constant reference value of the hydraulic conductivity at the reference temperature with a function that is linearly dependent on the CPA concentration. Consequently, the prediction of the Arrhenius relationship is improved, and the novel Arrhenius relationship could be very important to the development of optimal strategies for cell cryopreservation.
Collapse
Affiliation(s)
- Jianye Wang
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Kaixuan Zhu
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Gang Zhao
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
- * E-mail:
| | - Jian Ren
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Cui Yue
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| | - Dayong Gao
- Institute of Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, People’s Republic China
| |
Collapse
|
68
|
Berger I, Garzoni F, Chaillet M, Haffke M, Gupta K, Aubert A. The multiBac protein complex production platform at the EMBL. J Vis Exp 2013:e50159. [PMID: 23892976 DOI: 10.3791/50159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many scientists from academia and industry to accelerate protein complex research projects.
Collapse
|
69
|
Barford D, Takagi Y, Schultz P, Berger I. Baculovirus expression: tackling the complexity challenge. Curr Opin Struct Biol 2013; 23:357-64. [PMID: 23628287 PMCID: PMC7125881 DOI: 10.1016/j.sbi.2013.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/18/2013] [Accepted: 03/29/2013] [Indexed: 10/26/2022]
Abstract
Most essential functions in eukaryotic cells are catalyzed by complex molecular machines built of many subunits. To fully understand their biological function in health and disease, it is imperative to study these machines in their entirety. The provision of many essential multiprotein complexes of higher eukaryotes including humans, can be a considerable challenge, as low abundance and heterogeneity often rule out their extraction from native source material. The baculovirus expression vector system (BEVS), specifically tailored for multiprotein complex production, has proven itself to be uniquely suited for overcoming this impeding bottleneck. Here we highlight recent major achievements in multiprotein complex structure research that were catalyzed by this versatile recombinant complex expression tool.
Collapse
Affiliation(s)
- David Barford
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
70
|
Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Ylä-Herttuala S. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013; 21:739-49. [PMID: 23439502 PMCID: PMC3616530 DOI: 10.1038/mt.2012.286] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/11/2012] [Indexed: 01/23/2023] Open
Abstract
Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Thomas A Kost
- Biological Reagents and Assay Development, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, USA
| | - Richard H Smith
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert M Kotin
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
71
|
Vincentelli R, Romier C. Expression in Escherichia coli: becoming faster and more complex. Curr Opin Struct Biol 2013; 23:326-34. [PMID: 23422067 DOI: 10.1016/j.sbi.2013.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 12/23/2022]
Abstract
Escherichia coli is the major expression host for the production of homogeneous protein samples for structural studies. The introduction of high-throughput technologies in the last decade has further revitalized E. coli expression, with rapid assessment of different expression strategies and successful production of an ever-increasing number of proteins. In addition, miniaturization of biophysical characterizations should soon help choosing expression strategies based on quantitative and qualitative observations. Since many proteins form larger assemblies in vivo, dedicated co-expression systems for E. coli are now addressing the reconstitution of protein complexes. Yet, co-expression approaches show an increasing experimental combinatorial intricacy when considering larger complexes. The current combination of high-throughput and co-expression technologies paves the way, however, for tackling larger and more complex macromolecular assemblies.
Collapse
Affiliation(s)
- Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, UMR7257 CNRS, Université Aix-Marseille, Case 932, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
72
|
Vijayachandran LS, Thimiri Govinda Raj DB, Edelweiss E, Gupta K, Maier J, Gordeliy V, Fitzgerald DJ, Berger I. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering. Bioengineered 2013; 4:279-87. [PMID: 23328086 DOI: 10.4161/bioe.22966] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach.
Collapse
Affiliation(s)
- Lakshmi S Vijayachandran
- European Molecular Biology Laboratory (EMBL); Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI); UJF-EMBL-CNRS, UMR 5233; Grenoble, France; Institut de Biologie Structurale (IBS); UMR5075 CEA-CNRS-Université Joseph Fourier; Grenoble, France; Information Services to Life Science (IStLS); Oberndorf am Neckar, Germany; Geneva Biotech; Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Trowitzsch S, Palmberger D, Fitzgerald D, Takagi Y, Berger I. MultiBac complexomics. Expert Rev Proteomics 2013; 9:363-73. [PMID: 22967074 DOI: 10.1586/epr.12.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recombinant production of multiprotein complexes is an emerging focus in academic and pharmaceutical research and is expected to play a key role in addressing complex biological questions in health and disease. Here we describe MultiBac, a state-of-the-art eukaryotic expression technology utilizing an engineered baculovirus to infect insect cells. The robust and flexible concept of MultiBac allows for simultaneous expression of multiple proteins in a single cell, which can be used to produce protein complexes and to recapitulate metabolic pathways. The MultiBac system has been set up as an open-access platform technology at the European Molecular Biology Laboratory (EMBL) in Grenoble, France. The performance of this platform and its access modalities to the scientific community are detailed in this article. The MultiBac system has been instrumental for unlocking the function of a number of essential multiprotein complexes and recent examples are discussed. This article presents a novel concept for the customized production of glycosylated protein targets using SweetBac, a modified MultiBac vector system. Finally, this article outlines how MultiBac may further develop in the future to serve applications in both academic and industrial research and development.
Collapse
Affiliation(s)
- Simon Trowitzsch
- European Molecular Biology Laboratory and Unit of Virus Host Cell Interactions, CNRS-EMBL-UJF UMR 5322, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
74
|
Zhang Z, Yang J, Kong EH, Chao WCH, Morris EP, da Fonseca PCA, Barford D. Recombinant expression, reconstitution and structure of human anaphase-promoting complex (APC/C). Biochem J 2013; 449:365-71. [PMID: 23078409 DOI: 10.1042/bj20121374] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanistic and structural studies of large multi-subunit assemblies are greatly facilitated by their reconstitution in heterologous recombinant systems. In the present paper, we describe the generation of recombinant human APC/C (anaphase-promoting complex/cyclosome), an E3 ubiquitin ligase that regulates cell-cycle progression. Human APC/C is composed of 14 distinct proteins that assemble into a complex of at least 19 subunits with a combined molecular mass of ~1.2 MDa. We show that recombinant human APC/C is correctly assembled, as judged by its capacity to ubiquitinate the budding yeast APC/C substrate Hsl1 (histone synthetic lethal 1) dependent on the APC/C co-activator Cdh1 [Cdc (cell division cycle) 20 homologue 1], and its three-dimensional reconstruction by electron microscopy and single-particle analysis. Successful reconstitution validates the subunit composition of human APC/C. The structure of human APC/C is compatible with the Saccharomyces cerevisiae APC/C homology model, and in contrast with endogenous human APC/C, no evidence for conformational flexibility of the TPR (tetratricopeptide repeat) lobe is observed. Additional density present in the human APC/C structure, proximal to Apc3/Cdc27 of the TPR lobe, is assigned to the TPR subunit Apc7, a subunit specific to vertebrate APC/C.
Collapse
Affiliation(s)
- Ziguo Zhang
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
75
|
Haffke M, Viola C, Nie Y, Berger I. Tandem recombineering by SLIC cloning and Cre-LoxP fusion to generate multigene expression constructs for protein complex research. Methods Mol Biol 2013; 1073:131-140. [PMID: 23996444 DOI: 10.1007/978-1-62703-625-2_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A robust protocol to generate recombinant DNA containing multigene expression cassettes by using sequence and ligation independent cloning (SLIC) followed by multiplasmid Cre-LoxP recombination in tandem for multiprotein complex research is described. The protocol includes polymerase chain reaction (PCR) amplification of the desired genes, seamless insertion into the target vector via SLIC, and Cre-LoxP recombination of specific donor and acceptor plasmid molecules, optionally in a robotic setup. This procedure, called tandem recombineering, has been implemented for multiprotein expression in E. coli and mammalian cells, and also for insect cells using a recombinant baculovirus.
Collapse
Affiliation(s)
- Matthias Haffke
- European Molecular Biology Laboratory (EMBL), BP 181, Polygone Scientifique, Grenoble, France
| | | | | | | |
Collapse
|
76
|
Zhou Y, Meng X, Zhang S, Lee EYC, Lee MYWT. Characterization of human DNA polymerase delta and its subassemblies reconstituted by expression in the MultiBac system. PLoS One 2012; 7:e39156. [PMID: 22723953 PMCID: PMC3377666 DOI: 10.1371/journal.pone.0039156] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
Mammalian DNA polymerase δ (Pol δ), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and DNA repair processes. We have reconstituted human Pol δ complexes in insect cells infected with a single baculovirus into which one or more subunits were assembled. This system allowed for the efficient expression of the tetrameric Pol δ holoenzyme, the p125/p50 core dimer, the core+p68 trimer and the core+p12 trimer, as well as the p125 catalytic subunit. These were isolated in milligram amounts with reproducible purity and specific activities by a highly standardized protocol. We have systematically compared their activities in order to gain insights into the roles of the p12 and p68 subunits, as well as their responses to PCNA. The relative specific activities (apparent k(cat)) of the Pol δ holoenzyme, core+p68, core+p12 and p125/p50 core were 100, 109, 40, and 29. The corresponding apparent K(d)'s for PCNA were 7.1, 8.7, 9.3 and 73 nM. Our results support the hypothesis that Pol δ interacts with PCNA through multiple interactions, and that there may be a redundancy in binding interactions that may permit Pol δ to adopt flexible configurations with PCNA. The abilities of the Pol δ complexes to fully extend singly primed M13 DNA were examined. All the subassemblies except the core+p68 were defective in their abilities to completely extend the primer, showing that the p68 subunit has an important function in synthesis of long stretches of DNA in this assay. The core+p68 trimer could be reconstituted by addition of p12.
Collapse
Affiliation(s)
- Yajing Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiao Meng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
| | - Ernest Y. C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
| | - Marietta Y. W. T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
77
|
Transient transfection coupled to baculovirus infection for rapid protein expression screening in insect cells. J Struct Biol 2012; 179:46-55. [PMID: 22580066 DOI: 10.1016/j.jsb.2012.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Abstract
Baculovirus infected insect cells are widely used for heterologous protein expression. Despite the power of this system, the use of baculovirus techniques for protein expression screening is hampered by the time and resources needed to generate each recombinant baculovirus. Here, we show that a transfection/infection based expression system is suitable for screening of expression constructs in insect cells and represents a valid alternative to other traditional screening methodologies using recombinant baculovirus. The described method is based on gene delivery by transfection coupled to the induction of protein expression by non-recombinant baculovirus infection. Vectors that control expression by a combination of the baculovirus promoters ie1 and p10 and the enhancer element hr5 are among the ones suitable for this method. Infection with non-recombinant baculovirus drastically increases the basal activity of these elements, leading to protein over-expression. Multiple vectors can be simultaneously co-transfected/infected, making transfection/infection amenable for screening of multiple co-expressed proteins and protein complexes. Taken together, our results prove that the transfection/infection protocol is a valid and innovative approach for increasing speed and reducing costs of protein expression screening for structural and functional studies.
Collapse
|
78
|
|
79
|
Bieniossek C, Imasaki T, Takagi Y, Berger I. MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 2011; 37:49-57. [PMID: 22154230 PMCID: PMC7127121 DOI: 10.1016/j.tibs.2011.10.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022]
Abstract
Protein complexes composed of many subunits carry out most essential processes in cells and, therefore, have become the focus of intense research. However, deciphering the structure and function of these multiprotein assemblies imposes the challenging task of producing them in sufficient quality and quantity. To overcome this bottleneck, powerful recombinant expression technologies are being developed. In this review, we describe the use of one of these technologies, MultiBac, a baculovirus expression vector system that is particularly tailored for the production of eukaryotic multiprotein complexes. Among other applications, MultiBac has been used to produce many important proteins and their complexes for their structural characterization, revealing fundamental cellular mechanisms.
Collapse
Affiliation(s)
- Christoph Bieniossek
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, UJF-CNRS-EMBL Unite Mixte International UMI 3265, rue Jules Horowitz, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
80
|
Trowitzsch S, Klumpp M, Thoma R, Carralot JP, Berger I. Light it up: highly efficient multigene delivery in mammalian cells. Bioessays 2011; 33:946-55. [PMID: 22002169 DOI: 10.1002/bies.201100109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multigene delivery and expression systems are emerging as key technologies for many applications in contemporary biology. We have developed new methods for multigene delivery and expression in eukaryotic hosts for a variety of applications, including production of protein complexes for structural biology and drug development, provision of multicomponent protein biologics, and cell-based assays. We implemented tandem recombineering to facilitate rapid generation of multicomponent gene expression constructs for efficient transformation of mammalian cells, resulting in homogenous cell populations. Analysis of multiple parameters in living cells may require co-expression of fluorescently tagged sensors simultaneously in a single cell, at defined and ideally controlled ratios. Our method enables such applications by overcoming currently limiting challenges. Here, we review recent multigene delivery and expression strategies and their exploitation in mammalian cells. We discuss applications in drug discovery assays, interaction studies, and biologics production, which may benefit in the future from our novel approach.
Collapse
|
81
|
Berger I, Blanco AG, Boelens R, Cavarelli J, Coll M, Folkers GE, Nie Y, Pogenberg V, Schultz P, Wilmanns M, Moras D, Poterszman A. Structural insights into transcription complexes. J Struct Biol 2011; 175:135-46. [DOI: 10.1016/j.jsb.2011.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/09/2011] [Accepted: 04/27/2011] [Indexed: 01/24/2023]
|