51
|
Rücker B, Almeida ME, Libermann TA, Zerbini LF, Wink MR, Sarkis JJF. Biochemical characterization of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat heart left ventricle. Mol Cell Biochem 2007; 306:247-54. [PMID: 17786543 DOI: 10.1007/s11010-007-9576-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/10/2007] [Indexed: 12/28/2022]
Abstract
In the present study we investigate the biochemical properties of the members of NPP family in synaptosomes prepared from rat heart left ventricles. Using p-nitrophenyl-5'-thymidine monophosphate (p-Nph-5'-TMP) as substrate for E-NPPs in rat cardiac synaptosomes, we observed an alkaline pH dependence, divalent cation dependence and the K ( M ) value corresponded to 91.42 +/- 13.97 microM and the maximal velocity (V ( max )) value calculated was 63.79 +/- 3.59 nmol p-nitrophenol released/min/mg of protein (mean +/- SD, n = 4). Levamisole (1 mM), was ineffective as inhibitor of p-Nph-5'-TMP hydrolysis in pH 8.9 (optimum pH for the enzyme characterized). Suramin (0.25 mM) strongly reduced the hydrolysis of p-Nph-5'-TMP by about 46%. Sodium azide (10 and 20 mM) and gadolinium chloride (0.3 and 0.5 mM), E-NTPases inhibitors, had no effects on p-Nph-5'-TMP hydrolysis. RT-PCR analysis of left ventricle demonstrated the expression of NPP2 and NPP3 enzymes, but excluded the presence of NPP1 member. By quantitative real-time PCR we identified the NPP3 as the enzyme with the highest expression in rat left ventricle. The demonstration of the presence of the E-NPP family in cardiac system, suggest that these enzymes could contribute with the fine-tuning control of the nucleotide levels at the nerve terminal endings of left ventricles that are involved in several cardiac pathologies.
Collapse
Affiliation(s)
- Bárbara Rücker
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600 - Prédio ANEXO, Porto Alegre, RS CEP 90035-003, Brazil
| | | | | | | | | | | |
Collapse
|
52
|
Pedrazza EL, Senger MR, Rico EP, Zimmermann FF, Pedrazza L, de Freitas Sarkis JJ, Bonan CD. Fluoxetine and nortriptyline affect NTPDase and 5′-nucleotidase activities in rat blood serum. Life Sci 2007; 81:1205-10. [PMID: 17889906 DOI: 10.1016/j.lfs.2007.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/01/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Depression is a serious condition associated with considerable morbidity and mortality. Selective serotonin reuptake inhibitors and tricyclic antidepressants, such as fluoxetine and nortriptyline, respectively, were commonly used in treatment for depression. Selective serotonin reuptake inhibitors have been associated with increased risk of bleeding complications, possibly as a result of inhibition of platelet aggregation. ATP, ADP and adenosine are signaling molecules in the vascular system and nucleotidases activities are considered an important thromboregulatory system which functions in the maintenance of blood fluidity. Therefore, here we investigate the effect of in vivo (acute and chronic) and in vitro treatments with the antidepressant drugs on nucleotidases activities in rat blood serum. In acute treatment, nortriptyline decreased ATP hydrolysis (41%), but not altered ADP and AMP hydrolysis. In contrast, fluoxetine did not alter NTPDase and ecto-5'-nucleotidase activities. A significant inhibition of ATP, ADP, and AMP hydrolysis were observed in chronic treatment with fluoxetine (60%, 32%, and 42% for ATP, ADP, and AMP hydrolysis, respectively). Similar effects were shown in chronic treatment with nortriptyline (37%, 41%, and 30% for ATP, ADP, and AMP hydrolysis, respectively). In addition, there were no significant changes in NTPDase and ecto-5'-nucleotidase activities when fluoxetine and nortriptyline (100, 250, and 500 microM) were tested in vitro. Our results have shown that fluoxetine and nortriptyline changed the nucleotide catabolism, suggesting that homeostasis of vascular system can be altered by antidepressant treatments.
Collapse
Affiliation(s)
- Eduardo Luiz Pedrazza
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
53
|
Schmidt AP, Lara DR, Souza DO. Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 2007; 116:401-16. [PMID: 17884172 DOI: 10.1016/j.pharmthera.2007.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 01/06/2023]
Abstract
Guanine-based purines have been traditionally studied as modulators of intracellular processes, mainly G-protein activity. However, they also exert several extracellular effects not related to G proteins, including modulation of glutamatergic activity, trophic effects on neural cells, and behavioral effects. In this article, the putative roles of guanine-based purines on the nervous system are reviewed, and we propose a specific guanine-based purinergic system in addition to the well-characterized adenine-based purinergic system. Current evidence suggest that guanine-based purines modulate glutamatergic parameters, such as glutamate uptake by astrocytes and synaptic vesicles, seizures induced by glutamatergic agents, response to ischemia and excitotoxicity, and are able to affect learning, memory and anxiety. Additionally, guanine-based purines have important trophic functions affecting the development, structure, or maintenance of neural cells. Although studies addressing the mechanism of action (receptors and second messenger systems) of guanine-based purines are still insufficient, these findings point to the guanine-based purines (nucleotides and guanosine) as potential new targets for neuroprotection and neuromodulation.
Collapse
Affiliation(s)
- André P Schmidt
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
54
|
Henz SL, Fürstenau CR, Chiarelli RA, Sarkis JJF. Kinetic and biochemical characterization of an ecto-nucleotide pyrophosphatase/phosphodiesterase (EC 3.1.4.1) in cells cultured from submandibular salivary glands of rats. Arch Oral Biol 2007; 52:916-23. [PMID: 17499574 DOI: 10.1016/j.archoralbio.2007.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/08/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
The participation of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activity in the nucleotide hydrolysis by salivary gland cells of rats was evaluated using p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as a substrate for this enzyme. We investigated the biochemical characteristics of this ectoenzyme in cells cultured from submandibular salivary glands of rats. Primary cell cultures demonstrated ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activities, which could be observed by extracellular hydrolysis of p-Nph-5'-TMP and other biochemical characteristics such as dependence of metal ions, dependence of pH alkaline and inactivation by a metal ion chelator. The Km value for the hydrolysis of p-Nph-5'-TMP was 280.7+/-34.2 microM (mean+/-S.D., n=4) and Vmax was 721.31+/-225nmol p-nitrophenol/min/mg (mean+/-S.D., n=4). We suggest that E-NPP is co-localized with an ecto-ATP diphosphohydrolase/ecto-NTPDase and an ecto-5'-nucleotidase, since these enzymes probably act under different conditions. It may be postulated that the physiological role for these ecto-enzymes is to terminate the action of the co-transmitter ATP, generating adenosine.
Collapse
Affiliation(s)
- Sandra Liana Henz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo,90035-003, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
55
|
Fürstenau CR, Trentin DS, Barreto-Chaves MLM, Sarkis JJF. The effects of angiotensin II and genetic hypertension upon extracellular nucleotide hydrolysis by rat platelet ectoenzymes. Thromb Res 2007; 120:877-84. [PMID: 17343900 DOI: 10.1016/j.thromres.2007.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 11/19/2022]
Abstract
The extracellular nucleotides, ATP and ADP, as well as adenosine have been implicated in a great number of physiological functions. ADP is one of the major platelet recruiting factors, whereas ATP is considered to be a competitive inhibitor of ADP-induced platelet aggregation and adenosine is able to induce vasodilatation and to inhibit platelet aggregation. The di- and triphosphate nucleosides can be hydrolyzed by members of several families of ectonucleotidases, including ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) that, together with an ecto-5'-nucleotidase, catalyze adenosine formation. The renin-angiotensin system is the most important regulator of renal and cardiovascular functions and angiotensin II induces, physiologically, platelet activation. The aim of this study was to clarify the effects of ANGII and genetic hypertension upon extracellular nucleotide hydrolysis by rat platelet ectoenzymes. ANGII, in all tested doses (5, 50, 500 and 5000 pmol), was able to increase ATP (21, 31, 44 and 27%, respectively), ADP (22, 28, 78 and 37%, respectively) and AMP (40, 64, 60 and 64%, respectively) hydrolysis by rat platelets. Furthermore, losartan, a specific antagonist of the AT1 angiotensin-receptor, prevented the nucleotide hydrolysis effects. Additionally, an increase in AMP (about 144%) hydrolysis and a decrease in p-Nph-5'TMP (about 27%) hydrolysis were observed in platelets from spontaneously hypertensive rats (SHR) when compared to Wistar normotensive rats. We, herein, present data to demonstrate interactions between rat platelet angiotensinergic and adenosinergic systems that could contribute to the understanding and treatment of cardiovascular diseases such as hypertension, thrombosis and arteriosclerosis.
Collapse
Affiliation(s)
- Cristina R Fürstenau
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
56
|
Delwing D, Delwing D, Sarkis JJF, Wyse ATS. Proline induces alterations on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. Brain Res 2007; 1149:210-5. [PMID: 17407768 DOI: 10.1016/j.brainres.2007.02.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
In the present study we investigated the in vivo (acute and chronic) and in vitro effects of proline on NTPDase and 5'-nucleotidase activities in synaptosomes obtained from cerebral cortex of rats. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. For chronic treatment, buffered proline was injected subcutaneously into rats twice a day at 10 h intervals from the 6th to the 28th day of age. Rats were killed 12 h after the last injection. Results showed that acute and chronic proline administration provoked a reduction (25%) of ATP hydrolysis, but did not alter ADP and AMP hydrolysis. We also verified the in vitro effect of proline (3.0 microM-1.0 mM) on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. In contrast to the in vivo studies, it was not observed any statistically significant alteration on ATP, ADP and AMP hydrolysis. In conclusion, according to our results, it seems reasonable to postulate that proline administration alters the hydrolysis of ATP and probably affects the responses mediated by adenine nucleotides in the central nervous system of proline treated rats.
Collapse
Affiliation(s)
- Daniela Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
57
|
Vuaden FC, de Paula Cognato G, Bonorino C, Bogo MR, de Freitas Sarkis JJ, Bonan CD. Lipopolysaccharide alters nucleotidase activities from lymphocytes and serum of rats. Life Sci 2007; 80:1784-91. [PMID: 17363004 DOI: 10.1016/j.lfs.2007.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/21/2022]
Abstract
ATP exerts a proinflammatory role and induces cytokine release by acting at P2X(7) receptors. The product of ATP hydrolysis is the nucleoside adenosine, an important immunomodulator. The main source of extracellular adenosine is the hydrolysis of extracellular ATP by a group of ecto-enzymes: ENTPDase family, NPP family and ecto-5'-nucleotidase. Considering the role of ATP and adenosine in inflammatory processes, we investigated the effect of lipopolysaccharide on ectonucleotidases activities and expression in lymphocytes from mesenteric lymph nodes and serum of rats, in order to better understand the involvement of extracellular nucleotide hydrolysis in an endotoxemia model. We observed significant changes on nucleotidase activities from lymphocytes and serum of rats after in vitro and in vivo exposure to LPS. In vitro results have shown an increase on nucleotide hydrolysis in lymphocytes and a decrease on the enzyme activity of NPP in blood serum. In vivo, we observed an increase on nucleotide hydrolysis in lymphocytes and a decrease in the hydrolysis of all nucleotides tested in blood serum. After 24 and 48 h of LPS treatment, there was a reduction in NTPDase1, 2, 3 and ecto-5'-nucleotidase transcripts. These results suggest that there is a time-dependent enhancement of extracellular nucleotides metabolism in lymphocytes and blood serum after the induction of an endotoxemic model. The changes observed suggest that these enzymes can act in the regulation of extracellular nucleosides and nucleotides in a model able to trigger inflammatory process.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
58
|
Torres ILS, Fürstenau CR, Rossi G, Dallegrave E, Dallegrave G, Stenzel B, Dantas G, Battastini AMO, Sarkis JJF, Ferreira MBC. Methylprednisolone administration alters adenine nucleotide hydrolysis in rat blood serum. Eur J Pharmacol 2007; 560:212-5. [PMID: 17292883 DOI: 10.1016/j.ejphar.2006.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
The effect of methylprednisolone on the hydrolysis of adenine nucleotides by rat blood serum enzymes was studied. Adult male Wistar rats were submitted to three different treatments with synthetic steroid methylprednisolone: one dose of 50 mg/kg, i.p. (acute); or oral doses of 6 mg/kg dissolved in drinking water for 15 (sub-chronic) or 30 (chronic) days. Decreased ADP hydrolysis was observed after acute and sub-chronic treatments. Furthermore, ATP, ADP and AMP hydrolysis decreased after chronic treatment. These alterations may constitute one of the mechanisms that mediate the development of some of the side effects associated with corticosteroid use.
Collapse
Affiliation(s)
- Iraci Lucena S Torres
- Departamentos de Farmacologia, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Sarmiento Leite 500, 90050-170 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Spier AP, Bavaresco CS, Wyse ÂT, Carvalho D, Freitas Sarkis JJ. Effects of resveratrol and purple grape juice on nucleotide hydrolysis by adult rat serum. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
60
|
Schetinger MRC, Morsch VM, Bonan CD, Wyse ATS. NTPDase and 5'-nucleotidase activities in physiological and disease conditions: new perspectives for human health. Biofactors 2007; 31:77-98. [PMID: 18806312 DOI: 10.1002/biof.5520310205] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular nucleotides and nucleosides act as signaling molecules involved in a wide spectrum of biological effects. Their levels are controlled by a complex cell surface-located group of enzymes called ectonucleotidases. There are four major families of ectonucleotidases, nucleoside triphosphate diphosphohydrolases (NTPDases/CD39), ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs), alkaline phosphatases and ecto-5'-nucleotidase. In the last few years, substantial progress has been made toward the molecular identification of members of the ectonucleotidase families and their enzyme structures and functions. In this review, there is an emphasis on the involvement of NTPDase and 5'-nucleotidase activities in disease processes in several tissues and cell types. Brief background information is given about the general characteristics of these enzymes, followed by a discussion of their roles in thromboregulatory events in diabetes, hypertension, hypercholesterolemia and cancer, as well as in pathological conditions where platelets are less responsive, such as in chronic renal failure. In addition, immunomodulation and cell-cell interactions involving these enzymes are considered, as well as ATP and ADP hydrolysis under different clinical conditions related with alterations in the immune system, such as acute lymphoblastic leukemia (ALL), B-chronic lymphocytic leukemia (B-CLL) and infections associated with human immunodeficiency virus (HIV). Finally, changes in ATP, ADP and AMP hydrolysis induced by inborn errors of metabolism, seizures and epilepsy are discussed in order to highlight the importance of these enzymes in the control of neuronal activity in pathological conditions. Despite advances made toward understanding the molecular structure of ectonucleotidases, much more investigation will be necessary to entirely grasp their role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Rosa C Schetinger
- Laboratório de Enzimologia Toxicológica, Departamento de Química, CCNE, Universidade Federal de Santa Maria, Avenida Roraima, no 1000, Cidade Universitária, Bairro Camobi, Santa Maria-RS, 97105-900, Brazil.
| | | | | | | |
Collapse
|
61
|
Buffon A, Ribeiro VB, Wink MR, Casali EA, Sarkis JJF. Nucleotide metabolizing ecto-enzymes in Walker 256 tumor cells: molecular identification, kinetic characterization and biochemical properties. Life Sci 2006; 80:950-8. [PMID: 17169379 DOI: 10.1016/j.lfs.2006.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/02/2006] [Accepted: 11/16/2006] [Indexed: 02/06/2023]
Abstract
In this study we describe the molecular identification, kinetic characterization and biochemical properties of an E-NTPDase and an 5'-nucleotidase in Walker 256 cells. For the ATP, ADP and AMP hydrolysis there were optimum pH in the range 6.5-8.0, and absolute requirement for divalent cations (Mg(2+)>Ca(2+)). A significant inhibition of ATP and ADP hydrolysis was observed in the presence of high concentrations of sodium azide and 0.5 mM of Gadolinium chloride. These activities were insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors. The K(m) values were 464.2+/-86.6 microM (mean+/-SEM, n=4), 137.0+/-31 microM (mean+/-SEM, n=5) and 44.8+/-10.2 microM (mean+/-SEM, n=4), and V(max) values were 655.0+/-94.6 (mean+/-SEM, n=4), 236.3+/-27.2 (mean+/-SEM, n=5) and 177.6+/-13.8 (mean+/-SEM, n=5) nmol of inorganic phosphate min(-1) mg of protein(-1) for ATP, ADP and AMP, respectively. Using RT-PCR analysis we identified the mRNA of two members of the ecto-nucleoside triphosphate diphosphohydrolase family (NTPDase 2 and 5) and a 5'-nucleotidase. The presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important to regulate the ratio adenine nucleotides/adenine nucleoside extracellularly, therefore motivating tumor growth.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 ANEXO, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
62
|
Delwing D, Delwing D, Sarkis JJF, Wyse ATS. Proline induces alterations in nucleotide hydrolysis in rat blood serum. Mol Cell Biochem 2006; 292:139-44. [PMID: 17003951 DOI: 10.1007/s11010-006-9227-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The main objective of the present study was to evaluate the in vivo (acute and chronic) and in vitro effects of proline on serum nucleotide hydrolysis. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 (micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were sacrificed 1 h, 3 h or 12 h later. Results showed that acute proline administration provoked a decrease in ATP (42%) and ADP (49%) hydrolysis when rats were sacrificed 1 h after the injection. Furthermore, in rats killed 3 h and 12 h after acute injection, no change in nucleotide hydrolysis were observed. For chronic treatment, buffered proline was injected subcutaneously twice a day at 10 h intervals from the 6(th) to the 28(th) day of age. Rats were sacrificed 3 h or 12 h after the last injection. Chronic administration of proline did not alter the nucleotide hydrolysis when the rats were killed 12 h after the last injection, but decreased ATP (15%) and ADP (32%) hydrolysis when rats were sacrificed 3 h after the last injection. The in vitro effect of proline (3.0 microM - 1.0 mM) on serum nucleotide hydrolysis was also investigated; results showed that 1.0 mM of proline significantly increased ATP (45%), ADP (55%) and AMP (49%) hydrolysis. The data indicate that proline in vivo and in vitro alters nucleotide hydrolysis, which may be involved in the pathogeny of hyperprolinemic patients.
Collapse
Affiliation(s)
- Daniela Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
63
|
Barreto-Chaves MLM, Carneiro-Ramos MS, Cotomacci G, Júnior MBC, Sarkis JJF. E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone. Mol Cell Endocrinol 2006; 251:49-55. [PMID: 16584835 DOI: 10.1016/j.mce.2006.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/12/2006] [Accepted: 02/20/2006] [Indexed: 11/19/2022]
Abstract
Degradation of adenine nucleotides by myocardial cells occurs, in part, by a cascade of surface-located enzymes converting ATP into adenosine that has important implications for the regulation of the nucleotide/nucleoside ratio modulating the cardiac functions. Thyroid hormones have profound effects on cardiovascular system, as observed in hypo- and hyperthyroidism. Combined biochemical parameters and gene expression analysis approaches were used to investigate the influence of tri-iodothyronine (T3) on ATP and ADP hydrolysis by isolated myocytes. Cultures of cardiomyocytes were submitted to increasing doses of T3 for 24h. Enzymatic activity and expression were evaluated. T3 (0.1 nM) caused an increase in ATP and ADP hydrolysis. Experiments with specific inhibitors suggest the involvement of an NTPDase, which was confirmed by an increase in NTPDase 3 messenger RNA (mRNA) levels. Since T3 promotes an increase in the contractile protein, leading to cardiac hypertrophy, it is tempting to postulate that the increase in ATP hydrolysis and the decrease in the extracellular levels signify an important factor for prevention of excessive contractility.
Collapse
Affiliation(s)
- Maria Luiza M Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes 2415, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | | | | | | | | |
Collapse
|
64
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
65
|
Fürstenau CR, Trentin DDS, Barreto-Chaves MLM, Sarkis JJF. Ecto-nucleotide pyrophosphatase/phosphodiesterase as part of a multiple system for nucleotide hydrolysis by platelets from rats: kinetic characterization and biochemical properties. Platelets 2006; 17:84-91. [PMID: 16421009 DOI: 10.1080/09537100500246641] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we describe an ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activity in rat platelets. Using p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as a substrate for E-NPP, we demonstrate an enzyme activity that shares the major biochemical properties described for E-NPPs: alkaline pH dependence, divalent cation dependence and blockade of activity by metal ion chelator. K(m) and V(max) values for p-Nph-5'-TMP hydrolysis were found to be 106 +/- 18 microM and 3.44 +/- 0.18 nmol p-nitrophenol/min/mg (mean +/- SD, n = 5). We hypothesize that an E-NPP is co-localized with an ecto-nucleoside triphosphate diphosphohydrolase and an ecto-5'-nucleotidase on the platelet surface, as part of a multiple system for nucleotide hydrolysis, since they can act under distinct physiological conditions and can be differently regulated. Thus, 0.25 mM suramin inhibited p-Nph-5'-TMP, ATP and ADP hydrolysis, while 0.5 mM AMP decreased only p-Nph-5'-TMP hydrolysis. Besides, 5.0, 10 and 20 mM sodium azide just inhibited ATP and ADP hydrolysis. Angiotensin II (5.0 and 10 nM) affected only ADP hydrolysis. Gadolinium chloride (0.2 and 0.5 mM) strongly inhibited the ATP and ADP hydrolysis. The E-NPP described here represents a novel insight into the control of platelet purinergic signaling.
Collapse
Affiliation(s)
- Cristina Ribas Fürstenau
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
66
|
Böhmer AE, Pochmann D, Sarkis JJF. In vitro effect of homocysteine on nucleotide hydrolysis by blood serum from adult rats. Chem Biol Interact 2006; 160:159-64. [PMID: 16466706 DOI: 10.1016/j.cbi.2006.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/03/2006] [Accepted: 01/11/2006] [Indexed: 11/21/2022]
Abstract
During the past few years, elevated blood levels of homocysteine (Hcy) have been linked to increased risk of premature coronary artery disease, stroke and thromboembolism. These processes can be also related to the ratio adenine nucleotide/adenosine, since extracellularly these nucleotides are associated with modulation of processes such as platelet aggregation, vasodilatation and coronary flow. Furthermore, there are some studies that suggest a relationship between Hcy and plasma adenosine concentrations. The sequential hydrolysis of ATP to adenosine by soluble nucleotidases constitutes one of the systems for rapid inactivation of circulating adenine nucleotides. Thus, the main objective of this study was to evaluate if Hcy can participate in the modulation of the extracellular adenine nucleotide hydrolysis by rat blood serum. Our results showed that Hcy, at final concentrations of 5.0 mM, inhibits in vitro ATP, ADP and AMP hydrolysis by 26, 21 and 16%, respectively. Also Hcy, at final concentrations of 8.0mM, inhibited the in vitro hydrolysis of ATP, ADP and AMP by 46, 44 and 44%, respectively. Kinetic analysis showed that the inhibitions of the three adenine nucleotide hydrolyses in the presence of Hcy, by serum of adult rats, is of the uncompetitive type. The IC50 calculated from the results obtained were 6.52+/-1.75 mM (n = 4), 5.18 +/- 0.64 mM (n = 3) and 5.16 +/- 1.22 mM (n = 3) for ATP, ADP and AMP hydrolysis, respectively.
Collapse
Affiliation(s)
- Ana Elisa Böhmer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
67
|
Pochmann D, Böhmer AE, Nejar Bruno A, Sarkis JJF. Ecto-hydrolysis of adenine nucleotides in rat blood platelets are altered by ovariectomy. Platelets 2006; 16:334-9. [PMID: 16194863 DOI: 10.1080/09537100500124400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is evidence that estrogen is associated with a reduction on cardiovascular disease risk through inhibition of platelet aggregation and action on vascular function. The process of haemostasis can also be affected by adenine nucleotides and adenosine. Consequently, regulation of enzymes that hydrolyze these nucleotides in the bloodstream is essential in the modulation of the processes of platelet aggregation, vasodilatation and coronary flow. Ecto-ATP diphosphohydrolase and ecto-5'-nucleotidase from platelets are enzymes related to nucleotide hydrolysis. In the present study, we examined the effect of ovariectomy (OVX) and estradiol replacement therapy (ER) on the activity of the enzymes that degrade adenine nucleotides in platelets of female rats. The OVX group significantly decrease the hydrolysis of ATP, ADP and AMP by 42, 52 and 29.3%, respectively, when compared to a control group. ER did not reverse the inhibition of nucleotide hydrolysis observed in OVX rats. Our findings indicate that hormonal deprivation affects ATP, ADP and AMP hydrolysis by platelets and consequently the level of these nucleotides and adenosine in the circulation. Since, ADP is the most important platelet agonist and recruiting agent present in the microenvironment of the thrombus, our findings was contribute to a better comprehension of the cardiovascular complications described in alterations of sexual hormonal status.
Collapse
Affiliation(s)
- Daniela Pochmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
68
|
Czarnecka J, Cieślak M, Michał K. Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822:85-90. [PMID: 15993662 DOI: 10.1016/j.jchromb.2005.05.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 05/06/2005] [Accepted: 05/15/2005] [Indexed: 11/20/2022]
Abstract
New method of qualitative and quantitative analysis of nucleotides in human cerebrospinal fluid (CSF), based on the combination of extraction of purines and pyrimidines to the solid phase (SPE) and high-performance liquid chromatography (HPLC), was proposed. Use of SPE and lyophilization of samples allowed for the first time to detect the presence of di- and triphosphonucleotides in human CSF. Concentration of those compounds varied from 0.003 to 5.0 microM. Differences in the nucleotide mixture composition in human CSF detected with the new method are coupled with the neurological disorders and might be a basis for an efficient diagnostic tool.
Collapse
Affiliation(s)
- Joanna Czarnecka
- Biochemistry Department, Nicolaus Copernicus University, 9 Gagarina St, 87-100 Toruń, Poland
| | | | | |
Collapse
|
69
|
Delwing D, Gonçalves MCF, Sarkis JJF, Wyse ATS. L-NAME administration prevents the inhibition of nucleotide hydrolysis by rat blood serum subjected to hyperargininemia. Amino Acids 2005; 29:267-72. [PMID: 15977041 DOI: 10.1007/s00726-005-0216-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
The main objective of the present study was to evaluate the in vivo and in vitro effect of Arg on serum nucleotide hydrolysis. The action of Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, on the effects produced by Arg was also examined. Sixty-day-old rats were treated with a single or a triple (with an interval of 1 h between each injection) intraperitoneal injection of saline (group I), Arg (0.8 g/kg) (group II), L-NAME (2.0 mg/kg or 20 mg/kg) (group III) or Arg (0.8 g/kg) plus L-NAME (2.0 mg/kg or 20 mg/kg) (group IV) and were killed 1 h later. The present results show that a triple Arg administration decreased ATP, ADP and AMP hydrolysis. Simultaneous injection of L-NAME (20 mg/kg) prevented such effects. Arg in vitro did not alter nucleotide hydrolysis. It is suggested that in vivo Arg administration reduces nucleotide hydrolysis in rat serum, probably through nitric oxide or/and peroxynitrite formation.
Collapse
Affiliation(s)
- D Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
70
|
Bruno AN, Ricachenevsky FK, Pochmann D, Bonan CD, Battastini AMO, Barreto-Chaves MLM, Sarkis JJF. Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int J Dev Neurosci 2005; 23:37-44. [PMID: 15730885 DOI: 10.1016/j.ijdevneu.2004.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/09/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022] Open
Abstract
The influence of the thyroid hormones on the normal function of the mammalian central nervous system depends on the brain region and on the developmental stage. Adenine nucleotides and their products also affect the brain function; ATP is an excitatory neurotransmitter, and adenosine has inhibitory effects on neurotransmission. Thus, this study aimed to evaluate the effects of hypothyroidism on the hydrolysis of ATP to adenosine in hippocampal and cortical synaptosomes and blood serum of rats during different phases of development. Rats aged 60 and 420 days old were divided into three groups: control, sham-operated and hypothyroid. Hypothyroidism was induced in these rats by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Neonatal hypothyroidism was induced by adding 0.02% methimazole in the drinking water from day 9 of gestation, and continually until 14 days old. Hypothyroidism increased the AMP hydrolysis in both hippocampus and cerebral cortex synaptosomes of rats in all aged tested. In blood serum, thyroid hormones deficiency increased the AMP hydrolysis in 14-day-old rats and the hydrolysis of ATP, ADP and AMP in 60-day-old rats; however, no alteration was observed in 420-day-old rats. Thus, our results suggest the involvement of the 5'-nucleotidase in synaptic function control in hypothyroidism throughout brain development.
Collapse
Affiliation(s)
- Alessandra Nejar Bruno
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
71
|
Pochmann D, Rücker B, Battastini AMO, Sarkis JJF. Ovariectomy and estradiol replacement therapy alters the adenine nucleotide hydrolysis in rat blood serum. Thromb Res 2005; 114:275-81. [PMID: 15381391 DOI: 10.1016/j.thromres.2004.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 06/15/2004] [Accepted: 06/21/2004] [Indexed: 11/23/2022]
Abstract
The low prevalence of coronary heart disease in premenopausal women and its increase after menopause are well established. Many studies have suggested that steroid hormones can inhibit platelet aggregation, reducing the cardiovascular risk. In addition, a number of studies have shown an effect of estrogen on vascular function. The process of haemostasis and thrombus formation can be also affected by adenine nucleotides and adenosine. Consequently, the regulation of enzymes that hydrolyze these nucleotides in the bloodstream is essential in the modulation of the processes of platelet aggregation, vasodilatation and coronary flow. Thus, in this study, we examined the effect of ovariectomy (OVX), estradiol replacement therapy and the in vitro administration of 17beta-estradiol, dehydroisoandrosterone 3-sulfate (DHEAS) and pregnenolone (PREG) on the activity of the enzymes that degrade adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in the blood serum of female rats. OVX significantly increased the hydrolysis of ATP, ADP and AMP, whilst phosphodiesterase activity was unchanged. Estradiol replacement therapy significantly decreased the hydrolysis of the adenine nucleotides and of the substrate marker of phosphodiesterase. In vitro, the addition of steroid hormones did not have any effect on the nucleotide hydrolysis by rat serum. These results suggest the presence of a strong relation between these enzymes and the hormonal system. In addition, the alterations observed are important, because these enzymes control the nucleotides/nucleosides ratio in the circulation and thus the events related to haemostasis.
Collapse
Affiliation(s)
- Daniela Pochmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcellos, 2600-ANEXO, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
72
|
Kettlun AM, Espinosa V, García L, Valenzuela MA. Potato tuber isoapyrases: substrate specificity, affinity labeling, and proteolytic susceptibility. PHYTOCHEMISTRY 2005; 66:975-82. [PMID: 15896365 DOI: 10.1016/j.phytochem.2005.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 12/10/2004] [Indexed: 05/02/2023]
Abstract
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.
Collapse
Affiliation(s)
- A M Kettlun
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Correo 1, Santiago, Chile
| | | | | | | |
Collapse
|
73
|
Buffon A, Ribeiro VB, Fürstenau CR, Battastini AMO, Sarkis JJF. Acetylsalicylic acid inhibits ATP diphosphohydrolase activity by platelets from adult rats. Clin Chim Acta 2005; 349:53-60. [PMID: 15469855 DOI: 10.1016/j.cccn.2004.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/31/2004] [Accepted: 06/01/2004] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND METHODS The in vitro effect of the nonsteroidal anti-inflammatory drug, acetylsalicylic acid (ASA), on the extracellular adenine nucleotide hydrolysis by intact rat blood platelets was studied. RESULTS Our results demonstrate that aspirin, at final concentrations of 2.0 and 3.0 mM, inhibits ATP extracellular hydrolysis in vitro by approximately 17% and 21%, respectively. Aspirin, at a final concentration of 3.0 mM, also inhibited in vitro extracellular ADP hydrolysis by approximately 41%. The same concentrations of this drug, however, did not alter AMP hydrolysis by intact rat blood platelets under similar assay conditions. The kinetic analysis demonstrated that the inhibition of ADP and ATP hydrolysis by aspirin in rat platelets is of the uncompetitive type. CONCLUSION In this study, we demonstrated an inhibitory effect of ASA upon E-NTPDase 3 activity of platelets from adult rats and discussed the significance of our findings.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, ANEXO, CEP Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
74
|
Görgen M, Turatti K, Medeiros AR, Buffon A, Bonan CD, Sarkis JJF, Pereira GS. Aqueous extract of Ilex paraguariensis decreases nucleotide hydrolysis in rat blood serum. JOURNAL OF ETHNOPHARMACOLOGY 2005; 97:73-77. [PMID: 15652278 DOI: 10.1016/j.jep.2004.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 09/24/2004] [Accepted: 10/18/2004] [Indexed: 05/24/2023]
Abstract
Mate is a xanthine-containing beverage, which is prepared as an infusion of the dried and ground leaves of Ilex paraguariensis St. Hil. (Aquifoliacea). Previous reports have shown that Ilex paraguariensis has the highest levels of caffeine and theobromine when compared to other Ilex species. Furthermore, mate is able to interfere in the circulatory system, acting as a diuretic and hypotensive agent. Many processes of vascular injury result in the release of adenine nucleotides, which exert a variety of effects. Nucleoside 5' tri- and diphosphates may be hydrolyzed by members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. The synchronic action of a NTPDase and a 5'-nucleotidase promotes the catabolism of ATP to adenosine, which is able to control the extracellular nucleotides/nucleosides ratio. The chronic ingestion of aqueous extract of Ilex paraguariensis by rats during 15 days significantly decreased ATP (55%), ADP (50%) and AMP (40%) hydrolysis in blood serum. These results suggest changes in the balance of purine levels induced by Ilex paraguariensis ingestion. Considering the potential effects of Ilex paraguariensis in the circulatory system, these results may be relevant since NTPDases are a novel drug target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Milena Görgen
- Laboratório de Bioquímica, UNIVATES Centro Universitário, Lajeado, Rua Avelino Tallini, 171 CEP: 95900-000 Caixa Posta 155, Lajeado, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|