51
|
Jiang Y, Wang R, Wang C, Guo Y, Xu T, Zhang Z, Yang GY, Xu H, Tang Y. Brain Microenvironment Responsive and Pro-Angiogenic Extracellular Vesicle-Hydrogel for Promoting Neurobehavioral Recovery in Type 2 Diabetic Mice After Stroke. Adv Healthc Mater 2022; 11:e2201150. [PMID: 36074801 DOI: 10.1002/adhm.202201150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Indexed: 01/28/2023]
Abstract
Stroke patients with diabetes have worse neurological outcomes than non-diabetic stroke patients, and treatments beneficial for non-diabetic stroke patients are not necessarily effective for diabetic stroke patients. While stem cell-derived extracellular vesicles (EVs) show potential for treating stroke, the results remain unsatisfactory due to the lack of approaches for retaining and controlling EVs released into the brain. Herein, a glucose/reactive oxygen species dual-responsive hydrogel showing excellent injectability, biocompatibility, and self-healing capability is introduced as an EVs-loading vehicle and an intelligent EVs sustained releasing system in the brain. These EVs-hydrogels are developed via crosslinking of phenylboronic acid-modified hyaluronic acid and Poly vinyl alcohol, and fusion with neural stem cell-derived EVs. The results show EVs are stably incorporated into the hydrogels and can be controllably released in response to the brain microenvironment after stroke in type 2 diabetic mice. The EVs-hydrogels exert an excellent angiogenic effect, increasing the migration and tube formation of human umbilical vein endothelial cells. In addition, injection of EVs-hydrogels into the ischemic mouse brain enhances EVs retention and facilitates sustained release, promotes angiogenesis, and improves neurobehavioral recovery. These results suggest such a microenvironment responsive and sustained release EVs-hydrogel system offers a safe, and efficient therapy for diabetic stroke.
Collapse
Affiliation(s)
- Yixu Jiang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Ruiqi Wang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No.100 Guilin Road, Shanghai, 200234, China
| | - Cheng Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yiyan Guo
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Tongtong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - He Xu
- College of Chemistry and Materials Sciences, Shanghai Normal University, No.100 Guilin Road, Shanghai, 200234, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| |
Collapse
|
52
|
Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells 2022; 11:cells11203310. [PMID: 36291182 PMCID: PMC9600986 DOI: 10.3390/cells11203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The process of corneal wound healing is complex and induces scar formation. Corneal scarring is a leading cause of blindness worldwide. The fibrotic healing of a major ocular wound disrupts the highly organized fibrillar collagen arrangement of the corneal stroma, rendering it opaque. The process of regaining this organized extracellular matrix (ECM) arrangement of the stromal layer to restore corneal transparency is complicated. The surface retention capacity of ocular drugs is poor, and there is a large gap between suitable corneal donors and clinical requirements. Therefore, a more efficient way of treating corneal scarring is needed. The eight major classes of interventions targeted as therapeutic tools for healing scarred corneas include those based on exosomes, targeted gene therapy, microRNAs, recombinant viral vectors, histone deacetylase inhibitors, bioactive molecules, growth factors, and nanotechnology. This review highlights the recent advancements in molecular therapeutics to restore a cornea without scarring. It also provides a scope to overcome the limitations of present studies and perform robust clinical research using these strategies.
Collapse
|
53
|
Formulation of secretome derived from mesenchymal stem cells for inflammatory skin diseases. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
54
|
Kuruwita Mudiyanselage T, Weerasinghe N, Karunaratna M, Withanage N. Highly porous double network hydrogel having fast responding time and high mechanical strength via emulsion template polymerization. J Appl Polym Sci 2022. [DOI: 10.1002/app.53048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Nimesha Weerasinghe
- Department of Polymer Science, Faculty of Applied Sciences University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Madara Karunaratna
- Department of Polymer Science, Faculty of Applied Sciences University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Niroshan Withanage
- Department of Statistics, Faculty of Applied Sciences University of Sri Jayewardenepura Nugegoda Sri Lanka
| |
Collapse
|
55
|
Lu Y, Yang Y, Liu S, Ge S. Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery—a promising method for tissue regeneration. Front Cell Dev Biol 2022; 10:898394. [PMID: 36092710 PMCID: PMC9454000 DOI: 10.3389/fcell.2022.898394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become the preferred seed cells for tissue regeneration. Nevertheless, due to their immunogenicity and tumorigenicity, MSC transplantation remains questionable. Extracellular vesicles (EVs) derived from MSCs are becoming a promising substitute for MSCs. As a route of the MSC paracrine, EVs have a nano-sized and bilayer lipid-enclosed structure, which can guarantee the integrity of their cargoes, but EVs cannot obtain full function in vivo because of the rapid biodegradation and clearance by phagocytosis. To improve the efficacy and targeting of EVs, methods have been proposed and put into practice, especially engineered vesicles and EV-controlled release systems. In particular, EVs can be cell or tissue targeting because they have cell-specific ligands on their surfaces, but their targeting ability may be eliminated by the biodegradation of the phagocytic system during circulation. Novel application strategies have been proposed beyond direct injecting. EV carriers such as biodegradable hydrogels and other loading systems have been applied in tissue regeneration, and EV engineering is also a brand-new method for higher efficacy. In this review, we distinctively summarize EV engineering and loading system construction methods, emphasizing targeting modification methods and controlled release systems for EVs, which few literature reviews have involved.
Collapse
Affiliation(s)
- Yu Lu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Yang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shaohua Ge
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shaohua Ge,
| |
Collapse
|
56
|
Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: A promising therapeutics for wound healing. Front Pharmacol 2022; 13:957771. [PMID: 36003496 PMCID: PMC9395204 DOI: 10.3389/fphar.2022.957771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A wound occurs when the epidermis and dermis of the skin are damaged internally and externally. The traditional wound healing method is unsatisfactory, which will prolong the treatment time and increase the treatment cost, which brings economic and psychological burdens to patients. Therefore, there is an urgent need for a new method to accelerate wound healing. As a cell-free therapy, exosome derived from stem cell (EdSC) offers new possibilities for wound healing. EdSC is the smallest extracellular vesicle secreted by stem cells with diameters of 30-150 nm and a lipid bilayer structure. Previous studies have found that EdSC can participate in and promote almost all stages of wound healing, including regulating inflammatory cells; improving activation of fibroblasts, keratinocytes, and endothelial cells; and adjusting the ratio of collagen Ⅰ and Ⅲ. We reviewed the relevant knowledge of wounds; summarized the biogenesis, isolation, and identification of exosomes; and clarified the pharmacological role of exosomes in promoting wound healing. This review provides knowledge support for the pharmacological study of exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
57
|
Wang D, Cao H, Hua W, Gao L, Yuan Y, Zhou X, Zeng Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair. MEMBRANES 2022; 12:membranes12070716. [PMID: 35877919 PMCID: PMC9315966 DOI: 10.3390/membranes12070716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The repair of critical bone defects is a hotspot of orthopedic research. With the development of bone tissue engineering (BTE), there is increasing evidence showing that the combined application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes, with hydrogels, scaffolds, and other bioactive materials has made great progress, exhibiting a good potential for bone regeneration. Recent studies have found that miRNAs, proteins, and other cargo loaded in EVs are key factors in promoting osteogenesis and angiogenesis. In BTE, the expression profile of the intrinsic cargo of EVs can be changed by modifying the gene expression of MSCs to obtain EVs with enhanced osteogenic activity and ultimately enhance the osteoinductive ability of bone graft materials. However, the current research on MSC-EVs for repairing bone defects is still in its infancy, and the underlying mechanism remains unclear. Therefore, in this review, the effect of bioactive materials such as hydrogels and scaffolds combined with MSC-EVs in repairing bone defects is summarized, and the mechanism of MSC-EVs promoting bone defect repair by delivering active molecules such as internal miRNAs is further elucidated, which provides a theoretical basis and reference for the clinical application of MSC-EVs in repairing bone defects.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Lu Gao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
58
|
Keshtkar S, Soleimanian S, Kaviani M, Sarvestani FS, Azarpira N, Asvar Z, Pakbaz S. Immune Cell-Derived Extracellular Vesicles in the Face of Pathogenic Infections. Front Immunol 2022; 13:906078. [PMID: 35844564 PMCID: PMC9279736 DOI: 10.3389/fimmu.2022.906078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular Vesicles (EVs) are a collection of vesicles released from cells that play an important role in intercellular communication. Microbial infections are known as one of the major problems in the medical field. Considering the increasing resistance of strains to routine drug treatments, the need for new therapies seems to be more than ever. Recent studies have shown that the EVs released from immune cells during microbial infections had anti-microbial effects or were able to induce neighbouring cells to display anti-microbial effects. This mini-review aimed to explore the latest studies on immune cell-derived EVs in viral, bacterial, fungal, and parasitic infections. Review of the literature demonstrated that specific cargos in EVs were involved in the fight against pathogenic infections. Additionally, the transport of appropriate bioactive molecules including miRNAs, mRNAs, and proteins via EVs could mediate the anti-microbial process. Thus, it could be a proof-of-principle that therapeutic approaches based on EVs derived from immune cells could offer a promising path forward, which is still in early stages and needs further assessments.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
59
|
Costa A, Balbi C, Garbati P, Palamà MEF, Reverberi D, De Palma A, Rossi R, Paladini D, Coviello D, De Biasio P, Ceresa D, Malatesta P, Mauri P, Quarto R, Gentili C, Barile L, Bollini S. Investigating the Paracrine Role of Perinatal Derivatives: Human Amniotic Fluid Stem Cell-Extracellular Vesicles Show Promising Transient Potential for Cardiomyocyte Renewal. Front Bioeng Biotechnol 2022; 10:902038. [PMID: 35757808 PMCID: PMC9214211 DOI: 10.3389/fbioe.2022.902038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid–derived stem cells (hAFSC) can exert to provide cardioprotection and enhance cardiac repair in preclinical models of myocardial ischemia and cardiotoxicity. Here, we analyze whether hAFSC secretome formulations, namely, hAFSC conditioned medium (hAFSC-CM) over extracellular vesicles (hAFSC-EVs) separated from it, can induce cardiomyocyte renewal. c-KIT+ hAFSC were obtained by leftover samples of II trimester prenatal amniocentesis (fetal hAFSC) and from clinical waste III trimester amniotic fluid during scheduled C-section procedures (perinatal hAFSC). hAFSC were primed under 1% O2 to enrich hAFSC-CM and EVs with cardioactive factors. Neonatal mouse ventricular cardiomyocytes (mNVCM) were isolated from cardiac tissue of R26pFUCCI2 mice with cell cycle fluorescent tagging by mutually exclusive nuclear signal. mNVCM were stimulated by fetal versus perinatal hAFSC-CM and hAFSC-EVs to identify the most promising formulation for in vivo assessment in a R26pFUCCI2 neonatal mouse model of myocardial infarction (MI) via intraperitoneal delivery. While the perinatal hAFSC secretome did not provide any significant cardiogenic effect, fetal hAFSC-EVs significantly sustained mNVCM transition from S to M phase by 2-fold, while triggering cytokinesis by 4.5-fold over vehicle-treated cells. Treated mNVCM showed disorganized expression of cardiac alpha-actinin, suggesting cytoskeletal re-arrangements prior to cell renewal, with a 40% significant downregulation of Cofilin-2 and a positive trend of polymerized F-Actin. Fetal hAFSC-EVs increased cardiomyocyte cell cycle progression by 1.8-fold in the 4-day-old neonatal left ventricle myocardium short term after MI; however, such effect was lost at the later stage. Fetal hAFSC-EVs were enriched with a short isoform of Agrin, a mediator of neonatal heart regeneration acting by YAP-related signaling; yet in vitro application of YAP inhibitor verteporfin partially affected EV paracrine stimulation on mNVCM. EVs secreted by developmentally juvenile fetal hAFSC can support cardiomyocyte renewal to some extension, via intercellular conveyance of candidates possibly involving Agrin in combination with other factors. These perinatal derivative promising cardiogenic effects need further investigation to define their specific mechanism of action and enhance their potential translation into therapeutic opportunity.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Patrizia Garbati
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | | | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Pierangela De Biasio
- Prenatal Diagnosis Perinatal Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Malatesta
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Gentili
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Lucio Barile
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università Svizzera Italiana, Lugano, Switzerland
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| |
Collapse
|
60
|
Exploring Silk Sericin for Diabetic Wounds: An In Situ-Forming Hydrogel to Protect against Oxidative Stress and Improve Tissue Healing and Regeneration. Biomolecules 2022; 12:biom12060801. [PMID: 35740928 PMCID: PMC9221298 DOI: 10.3390/biom12060801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic wounds are one of the most frequent complications that are associated with diabetes mellitus. The overproduction of reactive oxygen species (ROS) is a key factor in the delayed healing of a chronic wound. In the present work, we develop a novel in situ-forming silk sericin-based hydrogel (SSH) that is produced by a simple methodology using horseradish peroxidase (HRP) crosslinking as an advanced dressing for wound healing. The antioxidant and angiogenic effects were assessed in vitro and in vivo after in situ application using an excisional wound-healing model in a genetically-induced diabetic db/db mice and though the chick embryo choriollantoic membrane (CAM) assay, respectively. Wounds in diabetic db/db mice that were treated with SSH closed with reduced granulation tissue, decreased wound edge distance, and wound thickness, when compared to Tegaderm, a dressing that is commonly used in the clinic. The hydrogel also promoted a deposition of collagen fibers with smaller diameter which may have had a boost effect in re-epithelialization. SSH treatment slightly induced two important endogenous antioxidant defenses, superoxide dismutase and catalase. A CAM assay made it possible to observe that SSH led to an increase in the number of newly formed vessels without inducing an inflammatory reaction. The present hydrogel may result in a multi-purpose technology with angiogenic, antioxidant, and anti-inflammatory properties, while advancing efficient and organized tissue regeneration.
Collapse
|
61
|
Wang Y, Cao Z, Wei Q, Ma K, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater 2022; 147:342-355. [PMID: 35580827 DOI: 10.1016/j.actbio.2022.05.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Endothelial malfunction is responsible for impaired angiogenesis in diabetic patients, thereby causing the delayed healing progress of diabetic wounds. Exosomes or extracellular vesicles (EVs) have emerged as potential therapeutic vectors carrying drug cargoes to diseased cells. In the present study, EVs were reported as a new treatment for diabetic wounds by delivering VH298 into endothelial cells. Firstly, EVs derived from epidermal stem cells (ESCs) were loaded with VH298 (VH-EVs), and the characteristics of VH-EVs were identified. VH-EVs showed promotive action on the function of human umbilical vein endothelial cells (HUVECs) in vitro by activating HIF-1α signaling pathway. VH-EVs were also found to have a therapeutic effect on wound healing and angiogenesis in vivo. We further fabricated gelatin methacryloyl (GelMA) hydrogel for sustained release of VH-EVs, which possessed high biocompatibility and proper mechanical properties. In diabetic mice, GelMA hydrogel containing VH-EVs (Gel-VH-EVs) effectively promoted wound healing by locally enhancing blood supply and angiogenesis. The underlying mechanism for enhanced angiogenesis was possibly associated with the activation of HIF-1α/VEGFA signaling pathway. Collectively, our findings suggest a promising EV-based strategy for the VH298 delivery to endothelial cells and provide a new bioactive dressing for diabetic wound treatment. STATEMENT OF SIGNIFICANCE: The angiogenic dysfunction is the main cause of diabetic wound unhealing. Extracellular vesicles (EVs) have been reported to be helpful but their efficacy is limited for angiogenesis in cutaneous regeneration. VH298 holds great promise to improve angiogenesis by stabilizing HIF-1α which is reported at low level in diabetic wounds. Here, we loaded EVs with VH298 (VH-EVs) to exert an on-target enhancement of proangiogenic capacity in diabetic wound. Then, we applied a photo-crosslinkable hydrogel, gelatin methacryloyl (GelMA) containing VH-EVs (Gel-VH-EVs) as a convenient biomaterial and an adaptable scaffold for sustained releasing VH-EVs. The results showed significant therapeutic effect of Gel-VH-EVs on skin defect repair. Our findings suggest a promising EVs-based drug delivery strategy and a new functional wound dressing for patients.
Collapse
Affiliation(s)
- Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianlong Su
- School of Medicine, NanKai University, Tianjin, 300074, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| |
Collapse
|
62
|
Effects of BMSC-Derived EVs on Bone Metabolism. Pharmaceutics 2022; 14:pharmaceutics14051012. [PMID: 35631601 PMCID: PMC9146387 DOI: 10.3390/pharmaceutics14051012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles that can be secreted by most cells. EVs can be released into the extracellular environment through exocytosis, transporting endogenous cargo (proteins, lipids, RNAs, etc.) to target cells and thereby triggering the release of these biomolecules and participating in various physiological and pathological processes. Among them, EVs derived from bone marrow mesenchymal stem cells (BMSC-EVs) have similar therapeutic effects to BMSCs, including repairing damaged tissues, inhibiting macrophage polarization and promoting angiogenesis. In addition, BMSC-EVs, as efficient and feasible natural nanocarriers for drug delivery, have the advantages of low immunogenicity, no ethical controversy, good stability and easy storage, thus providing a promising therapeutic strategy for many diseases. In particular, BMSC-EVs show great potential in the treatment of bone metabolic diseases. This article reviews the mechanism of BMSC-EVs in bone formation and bone resorption, which provides new insights for future research on therapeutic strategies for bone metabolic diseases.
Collapse
|
63
|
Wang S, Shi M, Zhou J, Wang W, Zhang Y, Li Y. Circulating Exosomal miR-181b-5p Promoted Cell Senescence and Inhibited Angiogenesis to Impair Diabetic Foot Ulcer via the Nuclear Factor Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway. Front Cardiovasc Med 2022; 9:844047. [PMID: 35528840 PMCID: PMC9067436 DOI: 10.3389/fcvm.2022.844047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial cell dysfunction is the main contributing factor of diabetic foot ulcer (DFU). Circulating exosomes have been found to play an important role in many processes, such as cell senescence and angiogenesis. However, the underlying roles and mechanism of circulating exosomes in the onset and progression of DFU remain unclear. In this study, we isolated exosomes from the plasma of patients with DFU (DFU-Exos) and non-diabetic foot wounds (NDF-Exos). DFU-Exos promoted cell senescence and inhibited tube formation in Human Umbilical Vein Endothelial Cells (HUVECs), unlike NDF-Exos. Several datasets suggest that miR-181b-5p expression might be enriched in exosomes from DFU; this was verified using quantitative real-time PCR (qRT-PCR). We also found that miR-181b-5p, which was taken up by HUVECs, promoted cell senescence and inhibited tube formation. Dual luciferase reporter assay, qRT-PCR, Western blotting, and immunofluorescence staining confirmed that miR-181b-5p could negatively regulate nuclear factor erythroid 2-related factor 2 (NRF2) expression by binding to its 3′ UTR, thus further suppressing heme oxygenase-1 (HO-1) expression. In addition, NRF2 and HO-1 inhibitors could also rescue the effects of senescence and tube formation exerted by miR-181b-5p inhibitor. In vivo experiments showed that exosomes isolated from HUVECs which inhibited miR-181b-5p expression promoted angiogenesis to further restore the capacity of wound healing. In conclusion, this study indicated that circulating exosomal miR-181b-5p promoted cell senescence and inhibited angiogenesis to impair wound healing in DFU by regulating the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Shaohua Wang
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Shi
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjing Wang
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongjun Li
- Hebei Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yongjun Li,
| |
Collapse
|
64
|
Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, He Q, Hu S, Zhang T, Chen T, Song J. Dynamically Bioresponsive DNA Hydrogel Incorporated with Dual-Functional Stem Cells from Apical Papilla-Derived Exosomes Promotes Diabetic Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16082-16099. [PMID: 35344325 DOI: 10.1021/acsami.2c02278] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regeneration of bone defects in patients with diabetes mellitus (DM) is remarkably impaired by hyperglycemia and over-expressed proinflammatory cytokines, proteinases (such as matrix metalloproteinases, MMPs), etc. In view of the fact that exosomes represent a promising nanomaterial, herein, we reported the excellent capacity of stem cells from apical papilla-derived exosomes (SCAP-Exo) to facilitate angiogenesis and osteogenesis whether in normal or diabetic conditions in vitro. Then, a bioresponsive polyethylene glycol (PEG)/DNA hybrid hydrogel was developed to support a controllable release of SCAP-Exo for diabetic bone defects. This system could be triggered by the elevated pathological cue (MMP-9) in response to the dynamic diabetic microenvironment. It was further confirmed that the administration of the injectable SCAP-Exo-loaded PEG/DNA hybrid hydrogel into the mandibular bone defect of diabetic rats demonstrated a great therapeutic effect on promoting vascularized bone regeneration. In addition, the miRNA sequencing suggested that the mechanism of dual-functional SCAP-Exo might be related to highly expressed miRNA-126-5p and miRNA-150-5p. Consequently, our study provides valuable insights into the design of promising bioresponsive exosome-delivery systems to improve bone regeneration in diabetic patients.
Collapse
Affiliation(s)
- Xuan Jing
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Si Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Han Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Dize Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Fuyuan Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Liangjing Xin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Qingqing He
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Shanshan Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tingwei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
65
|
Sun J, Yin Z, Wang X, Su J. Exosome-Laden Hydrogels: A Novel Cell-free Strategy for In-situ Bone Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:866208. [PMID: 35433664 PMCID: PMC9011111 DOI: 10.3389/fbioe.2022.866208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
In-situ bone tissue regeneration, which harnesses cell external microenvironment and their regenerative potential to induce cell functions and bone reconstruction through some special properties of biomaterials, has been deeply developed. In which, hydrogel was widely applied due to its 3D network structure with high water absorption and mimicking native extracellular matrix (ECM). Additionally, exosomes can participate in a variety of physiological processes such as cell differentiation, angiogenesis and tissue repair. Therefore, a novel cell-free tissue engineering (TE) using exosome-laden hydrogels has been explored and developed for bone regeneration in recent years. However, related reviews in this field are limited. Therefore, we elaborated on the shortcomings of traditional bone tissue engineering, the challenges of exosome delivery and emphasized the advantages of exosome-laden hydrogels for in-situ bone tissue regeneration. The encapsulation strategies of hydrogel and exosomes are listed, and the research progress and prospects of bioactive hydrogel composite system for continuous delivery of exosomes for in-situ bone repair are also discussed in this review.
Collapse
Affiliation(s)
- Jinru Sun
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiuhui Wang, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Xiuhui Wang, ; Jiacan Su,
| |
Collapse
|
66
|
Kwak G, Cheng J, Kim H, Song S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained Exosome-Guided Macrophage Polarization Using Hydrolytically Degradable PEG Hydrogels for Cutaneous Wound Healing: Identification of Key Proteins and MiRNAs, and Sustained Release Formulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200060. [PMID: 35229462 DOI: 10.1002/smll.202200060] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Indexed: 05/24/2023]
Abstract
Macrophages (Mφs) are characterized by remarkable plasticity, an essential component of chronic inflammation. Thus, an appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) Mφs during wound healing is vital to promoting resolution of acute inflammation and enhancing tissue repair. Herein, exosomes derived from M2-Mφs (M2-Exos), which contain putative key regulators driving Mφ polarization, are used as local microenvironmental cues to induce reprogramming of M1-Mφs toward M2-Mφs for effective wound management. As an injectable controlled release depot for exosomes, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels (Exogels) are designed and employed for encapsulating M2-Exos to maximize their therapeutic effects in cutaneous wound healing. The degradation time of the hydrogels is adjustable from 6 days or up to 27 days by controlling the crosslinking density and tightness. The localization of M2-Exos leads to a successful local transition from M1-Mφs to M2-Mφs within the lesion for more than 6 days, followed by enhanced therapeutic effects including rapid wound closure and increased healing quality in an animal model for cutaneous wound healing. Collectively, the hydrolytically degradable PEG hydrogel-based exosome delivery system may serve as a potential tool in regulating local polarization state of Mφs, which is crucial for tissue homeostasis and wound repair.
Collapse
Affiliation(s)
- Gijung Kwak
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jing Cheng
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA, 94720, USA
| | - Hyosuk Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sukyung Song
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biosystems & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Su Jin Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Phillip B Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
67
|
Development of rapamycin-encapsulated exosome-mimetic nanoparticles-in-PLGA microspheres for treatment of hemangiomas. Biomed Pharmacother 2022; 148:112737. [PMID: 35276517 DOI: 10.1016/j.biopha.2022.112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
We have previously developed several kinds of rapamycin-encapsulated nanoparticles to achieve sustained release of rapamycin to treat hemangioma. However, lack of intrinsic targeting and easy clearance by the immune system are major hurdles that artificial fabricated nanoparticles must overcome. We constructed rapamycin-encapsulated macrophage-derived exosomes mimic nanoparticles-in-microspheres (RNM), to achieve the goal of continuous targeted therapy of hemangiomas. The rapamycin-encapsulated exosome mimic nanoparticles (RN) were firstly prepared by the extrusion-based method from the U937 cells (the human macrophage cell line). After then, RN was encapsulated with PLGA (poly(lactic-co-glycolic acid)) microspheres to obtain RNM. The release profile, targeting activity, and biological activity of RN and RNM were investigated on hemangioma stem cells (HemSCs). RN has a size of 100 nm in diameter, with a rapamycin encapsulation efficacy (EE) of 83%. The prepared microspheres RNM have a particle size of ~30 µm), and the drug EE of RNM is 34%. The sustained release of RNM can remarkably be achieved for 40 days. As expected, RN and RNM showed effective inhibition of cellular proliferation, significant cellular apoptosis, and remarkable repressed expression of angiogenesis factors in HemSCs. Our results showed that RNM is an effective approach for prolonged and effective delivery of rapamycin to hemangiomas.
Collapse
|
68
|
Yerneni SS, Lathwal S, Cuthbert J, Kapil K, Szczepaniak G, Jeong J, Das SR, Campbell PG, Matyjaszewski K. Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels. Biomacromolecules 2022; 23:1713-1722. [PMID: 35302760 DOI: 10.1021/acs.biomac.1c01636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exosomes are 30-200 nm sized extracellular vesicles that are increasingly recognized as potential drug delivery vehicles. However, exogenous exosomes are rapidly cleared from the blood upon intravenous delivery, which limits their therapeutic potential. Here, we report bioactive exosome-tethered poly(ethylene oxide)-based hydrogels for the localized delivery of therapeutic exosomes. Using cholesterol-modified DNA tethers, the lipid membrane of exosomes was functionalized with initiators to graft polymers in the presence of additional initiators and crosslinker using photoinduced atom transfer radical polymerization (ATRP). This strategy of tethering exosomes within the hydrogel network allowed their controlled release over a period of 1 month, which was much longer than physically entrapped exosomes. Exosome release profile was tuned by varying the crosslinking density of the polymer network and the use of photocleavable tethers allowed stimuli-responsive release of exosomes. The therapeutic potential of the hydrogels was assessed by evaluating the osteogenic potential of bone morphogenetic protein 2-loaded exosomes on C2C12 and MC3T3-E1 cells. Thus, ATRP-based exosome-tethered hydrogels represent a tunable platform with improved efficacy and an extended-release profile.
Collapse
Affiliation(s)
- Saigopalakrishna S Yerneni
- Department of Biomedical Engineering and Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,The Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julia Cuthbert
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,The Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,The Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Phil G Campbell
- Department of Biomedical Engineering and Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
69
|
Chen M, Wang Q, Wang Y, Fan Y, Zhang X. Biomaterials-assisted exosomes therapy in osteoarthritis. Biomed Mater 2022; 17. [PMID: 35042195 DOI: 10.1088/1748-605x/ac4c8c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Due to the avascular characteristic of articular cartilage, its self-repair capacity is limited. When cartilage is damaged or forms osteoarthritis, clinical treatment is necessary. However, conventional treatments, including joint replacement, microfracture, cell and drug therapies, have certain limits. Lately, the exosomes derived from mesenchymal stem cells (MSCs-EXO), which consist of complex transcription factors, proteins and targeting ligand components, have shown great therapeutic potentials. With recent advancements in various biomaterials to extend MSCs-EXO's retention time and control the release properties in vivo, biomaterials-assisted exosomes therapy has been soon becoming a practically powerful tool in treating OA. This review analyzes the effects of MSCs-EXO on osteoarthritis inflammation, metabolism, ageing and apoptosis, and introduces the combinational systems of MSCs-EXO with biomaterials to enhance the repair, anti-inflammatory, and homeostasis regulation functions. Moreover, different types of natural or synthetic biomaterials and their applications with MSCs-EXO were also described and discussed. And finally, we presage the future perspective in the development of biomaterial-assisted exosome therapies, as well as the potential to incorporate with other treatments to enhance their therapeutic effects in osteoarthritis.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan University, Wangjiang Road 29, Chengdu, 610064, CHINA
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan University, Wangjiang Road 29, Chengdu, 610064, CHINA
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan University, Wangjiang Road 29, Chengdu, 610064, CHINA
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan University, Wangjiang Road 29, Chengdu, 610064, CHINA
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Sichuan University, Wangjiang Road 29, Chengdu, 610064, CHINA
| |
Collapse
|
70
|
Zaazaa AM, Abd El-Motelp BA, Ali NA, Youssef AM, Sayed MA, Mohamed SH. Stem cell-derived exosomes and copper sulfide nanoparticles attenuate the progression of neurodegenerative disorders induced by cadmium in rats. Heliyon 2022; 8:e08622. [PMID: 35028441 PMCID: PMC8741450 DOI: 10.1016/j.heliyon.2021.e08622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The goal of the current study was to investigate the therapeutic effects of exosomes derived from mesenchymal stem cells (MSCs-Exo) and copper sulfide nanoparticles (CuSNPs) as biomaterials in order to understand the mechanisms that contribute to overcoming cadmium (Cad) induced neurological disorders in rats. Animals were divided into five groups (n = 10): group 1 was served as a negative control and receive vehicle saline (Con), group 2 Positive control groups were received Cad as cadmium chloride at a dose of 20 mg/kg/day for six weeks (Cad group), group 3 was received Cad plus MSCs-Exo as a single dose of 100 μLi. v. (Cad + MSCs-Exo), group 4 was received Cad plus CuSNPs at a dose of 6.5 mg/kg orally (Cad + CuSNPs), group 5 was received Cad + MSCs-Exo + CuSNPs for six weeks. However, the activities of each acetylcholine (Ach), acetylcholinesterase (AchE), total antioxidant status (TAC) were measured. Also, the levels of ROS, nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), Brain brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were evaluated. Beneficial effects on the behavior of animals were observed after treatment with MSCs-Exo and CuSNPs. Furthermore, the administration of MSCs-Exo and CuSNPs have been improve the TAC, BDNF and NGF via ameliorating the oxidative stress and inflammatory markers. Moreover, Histopathological studies had shown that great development in the brain of Cad rats treated with MSCs-Exo and CuSNPs. In conclusion, this study offers an overview of innovative stem cell therapy techniques and how to integrate them with nanotechnology to boost therapeutic performance.
Collapse
Affiliation(s)
- Asmaa Magdy Zaazaa
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Bosy Azmy Abd El-Motelp
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Naglaa A. Ali
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| | - Ahmed M. Youssef
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Aly Sayed
- Department of Animal Reproduction and A. I., Veterinary Research Division, National Research Centre, 33 Bohouth St. Dokki, Cairo, Egypt
| | - Safaa H. Mohamed
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| |
Collapse
|
71
|
Nazari H, Naei VY, Tabasi AH, Badripour A, Akbari Asbagh R, Keramati MR, Sharifi A, Behboudi B, Kazemeini A, Abbasi M, Keshvari A, Ahmadi Tafti SM. Advanced Regenerative Medicine Strategies for Treatment of Perianal Fistula in Crohn's Disease. Inflamm Bowel Dis 2022; 28:133-142. [PMID: 34291798 DOI: 10.1093/ibd/izab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Regenerative medicine is an emerging therapeutic method that aims to reconstruct tissues and organs. This advanced therapeutic approach has demonstrated great potential in addressing the limitations of medical and surgical procedures for treating perineal fistula in patients with Crohn's disease. Recent developments in stem cell technology have led to a massive good manufacturing practices (GMPs) production of various stem cells, including mesenchymal and embryonic cells, along with induction of pluripotent stem cells to repair damaged tissues in the fistula. The recent advances in separation and purification of exosomes, as biologic nanovesicles carrying anti-inflammatory and regenerative agents, have made them powerful tools to treat this inflammatory disease. Further, tremendous advances in nanotechnology, biomaterials, and scaffold fabrication methods enable tissue engineering methods to synthesize tissue-like structures to assist surgical techniques. This review focuses on advanced regenerative-based methods including stem cell therapy, exosome therapy, and tissue engineering used in the treatment of perianal fistula. Relevant in vitro and in vivo studies and the latest innovations in implementation of regenerative medicine for this disease are also separately reviewed. Additionally, current challenges regarding implementation of g stem cells, exosomes, and tissue engineering methods for bridging the gaps between laboratory findings and clinic application will be discussed.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Yaghoubi Naei
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Heirani Tabasi
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abolfazl Badripour
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Akbari Asbagh
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Keramati
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirsina Sharifi
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Behboudi
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemeini
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Keshvari
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi Tafti
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.,Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
73
|
Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep 2021; 11:23276. [PMID: 34857867 PMCID: PMC8640009 DOI: 10.1038/s41598-021-02830-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gelatin methacryloyl (GelMA) is one of the most widely used photo-crosslinkable biopolymers in tissue engineering. In in presence of an appropriate photoinitiator, the light activation triggers the crosslinking process, which provides shape fidelity and stability at physiological temperature. Although ultraviolet (UV) has been extensively explored for photo-crosslinking, its application has been linked to numerous biosafety concerns, originated from UV phototoxicity. Eosin Y, in combination with TEOA and VC, is a biosafe photoinitiation system that can be activated via visible light instead of UV and bypasses those biosafety concerns; however, the crosslinking system needs fine-tuning and optimization. In order to systematically optimize the crosslinking conditions, we herein independently varied the concentrations of Eosin Y [(EY)], triethanolamine (TEOA), vinyl caprolactam (VC), GelMA precursor, and crosslinking times and assessed the effect of those parameters on the properties the hydrogel. Our data showed that except EY, which exhibited an optimal concentration (~ 0.05 mM), increasing [TEOA], [VA], [GelMA], or crosslinking time improved mechanical (tensile strength/modulus and compressive modulus), adhesion (lap shear strength), swelling, biodegradation properties of the hydrogel. However, increasing the concentrations of crosslinking reagents ([TEOA], [VA], [GelMA]) reduced cell viability in 3-dimensional (3D) cell culture. This study enabled us to optimize the crosslinking conditions to improve the properties of the GelMA hydrogel and to generate a library of hydrogels with defined properties essential for different biomedical applications.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - James Chodosh
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| |
Collapse
|
74
|
Lin W, Cai XD. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front Oncol 2021; 11:758884. [PMID: 34804956 PMCID: PMC8602829 DOI: 10.3389/fonc.2021.758884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cell-derived extracellular vesicles (CEVs), a novel type of therapeutic agent in cancer treatment, can be prepared from the autocrine secretion of various cancer cells, the direct extraction of cancer cells and the combination of cancer cell-derived membranes with advanced materials. With various bioactive molecules, exosomes are produced by cells for intercellular communication. Although cancer cell-derived exosomes are known to inhibit tumor apoptosis and promote the progression of cancer, researchers have developed various innovative strategies to prepare anti-tumor vesicles from cancer cells. With current strategies for anti-tumor vesicles, four different kinds of CEVs are classified including irradiated CEVs, advanced materials combined CEVs, chemotherapeutic drugs loaded CEVs and genetically engineered CEVs. In this way, CEVs can not only be the carriers for anti-tumor drugs to the target tumor area but also act as immune-active agents. Problems raised in the strategies mainly concerned with the preparation, efficacy and application. In this review, we classified and summarized the current strategies for utilizing the anti-tumor potential of CEVs. Additionally, the challenges and the prospects of this novel agent have been discussed.
Collapse
Affiliation(s)
- Weijian Lin
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xing-Dong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
75
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
76
|
Munoz-Perez E, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics 2021; 13:pharmaceutics13111802. [PMID: 34834217 PMCID: PMC8617629 DOI: 10.3390/pharmaceutics13111802] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| |
Collapse
|
77
|
de Boer C, Davies NH. Blood derived extracellular vesicles as regenerative medicine therapeutics. Biochimie 2021; 196:203-215. [PMID: 34688790 DOI: 10.1016/j.biochi.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022]
Abstract
The regenerative promise of nanosized extracellular vesicles (EVs) secreted by cells is widely explored. Recently, the capacity of EVs purified from blood to elicit regenerative effect has begun to be evaluated. Blood might be a readily available source of EVs, avoiding need for extensive cell culturing, but there are specific issues that complicate use of the biofluid in this area. We assess the evidence for blood containing regenerative material, progress made towards delivering blood derived EVs as regenerative therapeutics, difficulties that relate to the complexity of blood and the promise of hydrogel-based delivery of EVs.
Collapse
Affiliation(s)
- Candice de Boer
- Cardiovascular Research Unit, Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Neil Hamer Davies
- Cardiovascular Research Unit, Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa.
| |
Collapse
|
78
|
Li J, Gao X, Tian S, Tang M, Liu W. Exploring exosome data to identify prognostic gene signatures for lung adenocarcinoma. Future Oncol 2021; 17:4745-4756. [PMID: 34658257 DOI: 10.2217/fon-2021-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Exosomes are involved in tumorigenesis, growth and metastasis. However, the prognostic value of exosome-related genes in lung adenocarcinoma (LUAD) remains unclear. Methods: Clinical and transcriptome data from The Cancer Genome Atlas LUAD cohort were used to construct a model based on exosome-related genes, which was validated with LUAD data from the Gene Expression Omnibus (GEO). Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis were used to explore underlying mechanisms; the single-sample gene set enrichment analysis score was used to determine immune functions. Results: A 19-exosome-related gene signature for overall survival in LUAD was predictive in both The Cancer Genome Atlas and GEO LUAD cohorts. Immune-related and extracellular matrix-related pathways were enriched in differentially expressed genes. Immune states differed between high- and low-risk groups. Conclusion: The novel signature can be used to predict outcomes in LUAD.
Collapse
Affiliation(s)
- Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Suyan Tian
- Department of Division of Clinical Research, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
79
|
Zhao J, Lin H, Huang K. Mesenchymal Stem Cell-derived Extracellular Vesicles Transmitting MicroRNA-34a-5p Suppress Tumorigenesis of Colorectal Cancer Through c-MYC/DNMT3a/PTEN Axis. Mol Neurobiol 2021; 59:47-60. [PMID: 34623601 PMCID: PMC8786758 DOI: 10.1007/s12035-021-02431-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cell–derived extracellular vesicles (MSC-EV) can transport microRNAs (miRNAs) into colorectal cancer (CRC) cells, thus to inhibit the malignant phenotype of cancer cells. Whether MSC-EV could deliver miR-34a-5p to suppress CRC development was surveyed through the research. miR-34a-5p, c-MYC, DNA methyltransferase 3a (DNMT3a), and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression were measured in CRC tissues and cell lines. miR-34a-5p and c-MYC expression were altered by transfection in HCT-116 cells. MSC-EV were transfected with miR-34a-5p- and c-MYC-related oligonucleotides and co-cultured with HCT-116 cells. HCT-116 cell growth after treatment was observed. Furthermore, the functional roles of miR-34a-5p and c-MYC were explored in vivo. The combined interactions of miR-34a-5p/c-MYC/DNMT3a/PTEN axis were assessed. miR-34a-5p and PTEN were downregulated while c-MYC and DNMT3a were upregulated in CRC. Depletion of miR-34a-5p drove while that of c-MYC restricted CRC cell growth. MSC-EV retarded CRC progression. Moreover, MSC-EV carrying overexpressed miR-34a-5p or depleted c-MYC further disrupted CRC cell progression. miR-34a-5p targeted c-MYC to regulate DNMT3a and PTEN. c-MYC overexpression abrogated EV-derived miR-34a-5p upregulation-induced effects on CRC. Restoring miR-34a-5p or depleting c-MYC in MSC-EV limited CRC tumor formation. MSC-EV-derived miR-34a-5p depresses CRC development through modulating the binding of c-MYC to DNMT3a and epigenetically regulating PTEN.
Collapse
Affiliation(s)
- Jiangning Zhao
- Gastrointestinal Peritoneal Cancer Surgery, The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China. .,Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| | - Huanrong Lin
- Gastrointestinal Peritoneal Cancer Surgery, The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.,Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Kunsong Huang
- Department of General Surgery, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
80
|
Ma D, Guan B, Song L, Liu Q, Fan Y, Zhao L, Wang T, Zhang Z, Gao Z, Li S, Xu H. A Bibliometric Analysis of Exosomes in Cardiovascular Diseases From 2001 to 2021. Front Cardiovasc Med 2021; 8:734514. [PMID: 34513962 PMCID: PMC8424118 DOI: 10.3389/fcvm.2021.734514] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Exosomes in cardiovascular diseases (CVDs) have become an active research field with substantial value and potential. Nevertheless, there are few bibliometric studies in this field. We aimed to visualize the research hotspots and trends of exosomes in CVDs using a bibliometric analysis to help understand the future development of basic and clinical research. Methods: The articles and reviews regarding exosomes in the CVDs were culled from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace and VOSviewer software. Results: A total of 1,039 articles were included. The number of exosome articles in the CVDs increased yearly. These publications came from 60 countries/regions, led by the US and China. The primary research institutions were Shanghai Jiao Tong University and Nanjing Medical University. Circulation Research was the journal and co-cited journal with the most studies. We identified 473 authors among which Lucio Barile had the most significant number of articles and Thery C was co-cited most often. After analysis, the most common keywords are myocardium infarction, microRNA and mesenchymal stem cells. Ischemic heart disease, pathogenesis, regeneration, stem cells, targeted therapy, biomarkers, cardiac protection, and others are current and developing areas of study. Conclusion: We identified the research hotspots and trends of exosomes in CVDs using bibliometric and visual methods. Research on exosomes is flourishing in the cardiovascular medicine. Regenerative medicine, exosome engineering, delivery vehicles, and biomarkers will likely become the focus of future research.
Collapse
Affiliation(s)
- Dan Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyu Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tongxin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siming Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
81
|
Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 2021; 11:8926-8944. [PMID: 34522219 PMCID: PMC8419041 DOI: 10.7150/thno.62330] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
As extracellular vesicles secreted by cells, exosomes are intercellular signalosomes for cell communication and pharmacological effectors. Because of their special properties, including low toxicity and immunogenicity, biodegradability, ability to encapsulate endogenous biologically active molecules and cross the blood-brain barrier (BBB), exosomes have great therapeutic potential in cerebrovascular and neurodegenerative diseases. However, the poor targeting ability of natural exosomes greatly reduces the therapeutic effect. Using engineering technology, exosomes can obtain active targeting ability to accumulate in specific cell types and tissues by attaching targeting units to the membrane surface or loading them into cavities. In this review, we outline the improved targeting functions of bioengineered exosomes, tracing and imaging techniques, administration methods, internalization in the BBB, and therapeutic effects of exosomes in cerebrovascular and neurodegenerative diseases and further evaluate the clinical opportunities and challenges in this research field.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Tao Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Fen Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
82
|
Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel) 2021; 14:ph14080811. [PMID: 34451909 PMCID: PMC8400229 DOI: 10.3390/ph14080811] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signaling takes part in all four wound healing phases: hemostasis, inflammation, proliferation, and remodeling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration, and treatment of dermal diseases, including the stem cell-derived, plant-derived, and engineered EVs.
Collapse
|
83
|
Bao C, He C. The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys 2021; 710:109002. [PMID: 34352243 DOI: 10.1016/j.abb.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is the most common painful disease with chronic articular cartilage degeneration. The pathological process of OA is complex and characterized by the imbalance between the synthesis and catabolism of chondrocytes and extracellular matrix, leading to the progressive destruction of articular cartilage damage. Because of the self-renewal and differentiation of mesenchymal stem cells (MSCs), various exogenous MSC-based cell therapies have been developed to treat OA. Moreover, the efficacy of MSC- based therapy is mainly attributed to the paracrine of cytokines, growth factors, and exosomes. Exosomes derived from MSCs can deliver various DNAs, RNAs, proteins and lipids, thus promoting MSCs migration and cartilage repair. Therefore, MSC-derived exosomes are considered as a promising alternative therapy for OA. In this review, we summarized properties of MSC-derived exosomes and the new role of MSC-derived exosomes in the treatment of OA. We also proposed possible perspectives of MSC-derived exosomes as cell-free regenerative reagents in the treatment of OA.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
84
|
Singh A, Raghav A, Shiekh PA, Kumar A. Transplantation of engineered exosomes derived from bone marrow mesenchymal stromal cells ameliorate diabetic peripheral neuropathy under electrical stimulation. Bioact Mater 2021; 6:2231-2249. [PMID: 33553812 PMCID: PMC7829156 DOI: 10.1016/j.bioactmat.2021.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a long-term complication associated with nerve dysfunction and uncontrolled hyperglycemia. In spite of new drug discoveries, development of effective therapy is much needed to cure DPN. Here, we have developed a combinatorial approach to provide biochemical and electrical cues, considered to be important for nerve regeneration. Exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) were fused with polypyrrole nanoparticles (PpyNps) containing liposomes to deliver both the cues in a single delivery vehicle. We developed DPN rat model and injected intramuscularly the fused exosomal system to understand its long-term therapeutic effect. We found that the fused system along with electrical stimulation normalized the nerve conduction velocity (57.60 ± 0.45 m/s) and compound muscle action potential (16.96 ± 0.73 mV) similar to healthy control (58.53 ± 1.10 m/s; 18.19 ± 1.45 mV). Gastrocnemius muscle morphology, muscle mass, and integrity were recovered after treatment. Interestingly, we also observed paracrine effect of delivered exosomes in controlling hyperglycemia and loss in body weight and also showed attenuation of damage to the tissues such as the pancreas, kidney, and liver. This work provides a promising effective treatment and also contribute cutting edge therapeutic approach for the treatment of DPN.
Collapse
Affiliation(s)
- Anamika Singh
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Alok Raghav
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Parvaiz Ahmad Shiekh
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| |
Collapse
|
85
|
Luo R, Liu M, Tan T, Yang Q, Wang Y, Men L, Zhao L, Zhang H, Wang S, Xie T, Tian Q. Emerging Significance and Therapeutic Potential of Extracellular vesicles. Int J Biol Sci 2021; 17:2476-2486. [PMID: 34326688 PMCID: PMC8315015 DOI: 10.7150/ijbs.59296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs), are membrane-bound vesicles that have many advantages over traditional nanocarriers for drug and gene delivery. Evidence from recent studies indicate that EVs have therapeutic capability with chemical or biological modification. Tumor-derived exosomes (TEXs) were used as a new type of antigens or tumor vaccines in anti-tumor immunotherapy. With superior characteristics, modified EVs were applied to loaded and delivered synthetic drugs, silencing RNA, and microRNA for treatment. Different surface functionalization strategies have been proposed to improve the therapeutic functions of EVs. Appropriately modified EVs for disease intervention provide new avenues for effective clinical treatment strategies. Therefore, this review aimed at elucidating the therapeutic functions of EVs to generate new ideas for treatment and to unlock their hidden potential in translational medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuling Wang
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| | - Tian Xie
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| | - Qingchang Tian
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| |
Collapse
|
86
|
Halloysite nanotubes/carbohydrate-based hydrogels for biomedical applications: from drug delivery to tissue engineering. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03784-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
87
|
Racchetti G, Meldolesi J. Extracellular Vesicles of Mesenchymal Stem Cells: Therapeutic Properties Discovered with Extraordinary Success. Biomedicines 2021; 9:667. [PMID: 34200818 PMCID: PMC8230522 DOI: 10.3390/biomedicines9060667] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.
Collapse
Affiliation(s)
- Gabriella Racchetti
- Division of Neuroscience, San Raffaele Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Jacopo Meldolesi
- Division of Neuroscience, San Raffaele Institute, Via Olgettina 58, 20132 Milan, Italy;
- Department of Neuroscience, Faculty of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
88
|
Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13112777. [PMID: 34204940 PMCID: PMC8199777 DOI: 10.3390/cancers13112777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer death in the United States and over 90% of the patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDAC is the most lethal gastrointestinal malignancies and only 10% of the people survive more than 5 years, therefore, novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity. Studies have demonstrated microRNAs in bodily fluids that are bound with membranes (exosomes) can act as stable biomarkers both for disease development and metastasis. The diagnostic, prognostic, as well as therapeutic roles of exosomal microRNAs in pancreatic cancer have been discussed in this review. Abstract Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge. Novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity to increase the survival of pancreatic cancer patients. So far, studies have demonstrated microRNAs (miRNAs) as sensitive biomarkers because of their significant correlation with disease development and metastasis. The miRNAs have been shown to be more stable inside membrane-bound vesicles in the extracellular environment called exosomes. Varieties of miRNAs are released into the body fluids via exosomes depending on the normal physiological or pathological conditions of the body. In this review, we discuss the recent findings on the diagnostic, prognostic, and therapeutic roles of exosomal miRNAs in pancreatic cancer.
Collapse
|
89
|
He F, Li L, Fan R, Wang X, Chen X, Xu Y. Extracellular Vesicles: An Emerging Regenerative Treatment for Oral Disease. Front Cell Dev Biol 2021; 9:669011. [PMID: 34079801 PMCID: PMC8165191 DOI: 10.3389/fcell.2021.669011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular Vesicles (EVs) are small lipid-enclosed particles containing biological molecules such as RNA and proteins that have emerged as vital modulators of intercellular communication. Increasingly, studies have shown that EVs play an essential role in the occurrence and prognosis of oral diseases. EVs are increasingly considered a research hotspot of oral diseases. In addition, the characteristics of carrying active molecules have also been studied in oral tissue regeneration. Evidence has shown that EVs regulate the homeostasis of the inflammatory microenvironment, promote angiogenesis, and repair damaged tissues. In this review, we summarized the characteristics of EVs and highlighted the role of EVs in oral tissue regeneration, including dental pulp, periodontal tissue, cartilage, and bone. We also discussed their deficiencies and prospects as a potential therapeutic role in the regeneration treatment of oral disease.
Collapse
Affiliation(s)
- Fanzhen He
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ruyi Fan
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
90
|
Babaei M, Rezaie J. Application of stem cell-derived exosomes in ischemic diseases: opportunity and limitations. J Transl Med 2021; 19:196. [PMID: 33964940 PMCID: PMC8106139 DOI: 10.1186/s12967-021-02863-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic diseases characterized by an insufficient blood flow that leads to a decrease in oxygen and nutrient uptake by cells have emerged as an important contributor to both disability and death worldwide. Up-regulation of angiogenesis may be a key factor for the improvement of ischemic diseases. This article searched articles in PubMed with the following keywords: stem cells, exosomes, angiogenesis, ischemic diseases either alone or in grouping form. The most relevant selected items were stem cell-derived exosomes and ischemic diseases. A growing body of evidence indicates that stem cells produce exosomes, which is the novel emerging approach to cell-to-cell communication and offers a new standpoint on known therapeutic strategies of ischemic diseases. Exosomes transport biological molecules such as many types of proteins, RNAs, DNA fragments, signaling molecules, and lipids between cells. Different stem cells release exosomes representing beneficial effects on ischemic diseases as they promote angiogenesis both in vitro and in vivo experiments. Application of exosomes for therapeutic angiogenesis opened new opportunities in the regenerative medicine, however, some limitations regarding exosomes isolation and application remain concerned. In addition, most of the experiments were conducted in preclinical and therefore translation of these results from bench to bed requires more effort in this field. Exosomes from stem cells are a promising tool for the treatment of ischemic diseases. In addition, translation of pre-clinic results into clinic needs further studies in this field.
Collapse
Affiliation(s)
- Majid Babaei
- Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
91
|
Marsico G, Martin‐Saldaña S, Pandit A. Therapeutic Biomaterial Approaches to Alleviate Chronic Limb Threatening Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003119. [PMID: 33854887 PMCID: PMC8025020 DOI: 10.1002/advs.202003119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Chronic limb threatening ischemia (CLTI) is a severe condition defined by the blockage of arteries in the lower extremities that leads to the degeneration of blood vessels and is characterized by the formation of non-healing ulcers and necrosis. The gold standard therapies such as bypass and endovascular surgery aim at the removal of the blockage. These therapies are not suitable for the so-called "no option patients" which present multiple artery occlusions with a likelihood of significant limb amputation. Therefore, CLTI represents a significant clinical challenge, and the efforts of developing new treatments have been focused on stimulating angiogenesis in the ischemic muscle. The delivery of pro-angiogenic nucleic acid, protein, and stem cell-based interventions have limited efficacy due to their short survival. Engineered biomaterials have emerged as a promising method to improve the effectiveness of these latter strategies. Several synthetic and natural biomaterials are tested in different formulations aiming to incorporate nucleic acid, proteins, stem cells, macrophages, or endothelial cells in supportive matrices. In this review, an overview of the biomaterials used alone and in combination with growth factors, nucleic acid, and cells in preclinical models is provided and their potential to induce revascularization and regeneration for CLTI applications is discussed.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Sergio Martin‐Saldaña
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
92
|
Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). EMERGENT MATERIALS 2021; 4:35-55. [PMID: 33748672 PMCID: PMC7962632 DOI: 10.1007/s42247-021-00165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Recently emerged novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting corona virus disease 2019 (COVID-19) led to urgent search for methods to prevent and treat COVID-19. Among important disciplines that were mobilized is the biomaterials science and engineering. Biomaterials offer a range of possibilities to develop disease models, protective, diagnostic, therapeutic, monitoring measures, and vaccines. Among the most important contributions made so far from this field are tissue engineering, organoids, and organ-on-a-chip systems, which have been the important frontiers in developing tissue models for viral infection studies. Also, due to low bioavailability and limited circulation time of conventional antiviral drugs, controlled and targeted drug delivery could be applied alternatively. Fortunately, at the time of writing this paper, we have two successful vaccines and new at-home detection platforms. In this paper, we aim to review recent advances of biomaterial-based platforms for protection, diagnosis, vaccination, therapeutics, and monitoring of SARS-CoV-2 and discuss challenges and possible future research directions in this field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mahboobeh Mahmoodi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fahimeh Shahabipour
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI USA
| |
Collapse
|
93
|
Chen K, Wang Q, Kornmann M, Tian X, Yang Y. The Role of Exosomes in Pancreatic Cancer From Bench to Clinical Application: An Updated Review. Front Oncol 2021; 11:644358. [PMID: 33718244 PMCID: PMC7952979 DOI: 10.3389/fonc.2021.644358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal gastrointestinal malignancies with an overall 5-year survival rate of 8%-9%. The intra-tumor heterogeneity and special tumor microenvironment in PDAC make it challenging to develop effective treatment strategies. Exosomes are extracellular vesicles that originate from the endosomes and have a diameter of 40-160 nm. A growing body of evidence has shown that exosomes play vital roles in tumor initiation and development. Recently, extensive application of exosomes as biomarkers and drug carriers has rendered them attractive in the field of PDAC. This review summarizes the latest progress in the methodologies for isolation, modification, and tracking of exosomes, exosome-mediated cell-to-cell communication, clinical applications of exosome as minimally invasive liquid biopsy and drugs carriers, as well as their involvement in the angiogenic regulation in PDAC. In spite of these advancements, some obstacles are still required to be overcome to use the exosome-based technologies for early diagnosis or improvement of prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Qi Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Marko Kornmann
- Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
94
|
Extracellular vesicles from GPNMB-modified bone marrow mesenchymal stem cells attenuate bone loss in an ovariectomized rat model. Life Sci 2021; 272:119208. [PMID: 33582177 DOI: 10.1016/j.lfs.2021.119208] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
AIMS The efficacy of anti-osteoporotic treatments is still limited. Our study aimed to investigate the effect of extracellular vesicles (EVs) derived from bone marrow-derived MSCs (BMSCs) overexpressing glycoprotein non-melanoma clone B (GPNMB) on osteoporosis (OP). MAIN METHODS Lentiviral vector for GPNMB overexpression or its negative control was generated and transfected into BMSCs. EVs enriched with GPNMB (GPNMB-EVs) were extracted from GPNMB-modified BMSC-conditioned medium and then identified. Cellular uptake and proliferation were analyzed using the Dil-labeled assay and CCK-8 assay, respectively. Cytochemical staining, western blot, and RT-qPCR analysis were performed to assess the effect of GPNMB-EVs on osteogenic differentiation of BMSCs in vitro. Dickkopf-1 (DKK1) as the inhibitor was applied to explore the Wnt/β-catenin signaling pathway involved in the GPNMB-EV-induced osteogenic differentiation. In vivo experiments were conducted using an ovariectomized (OVX) rat model of postmenopausal osteoporosis, and then assessed the effect of GPNMB-EVs by micro-CT, and histological and immunohistochemical assays. KEY FINDINGS GPNMB-EVs were taken up by BMSCs, and they noticeably promoted the proliferation of BMSCs. Additionally, GPNMB-EVs activated the Wnt/β-catenin signaling to stimulate osteogenesis in BMSCs. In vivo examination showed that GPNMB-EVs remarkably improved trabecular bone regeneration and alleviated the osteoporotic phenotype in the OVX-induced rat model of OP. SIGNIFICANCE EVs derived from GPNMB-modified BMSCs significantly stimulated the proliferation and osteogenic differentiation of BMSCs via the activation of Wnt/β-catenin signaling and attenuated the bone loss in the OVX-induced rat model of OP. Our findings suggest the promising potential of GPNMB-EVs as cell-free therapy for the treatment of OP.
Collapse
|
95
|
|
96
|
Basiri A, Pazhouhnia Z, Beheshtizadeh N, Hoseinpour M, Saghazadeh A, Rezaei N. Regenerative Medicine in COVID-19 Treatment: Real Opportunities and Range of Promises. Stem Cell Rev Rep 2021; 17:163-175. [PMID: 32564256 PMCID: PMC7305935 DOI: 10.1007/s12015-020-09994-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel coronavirus disease (COVID-19) has attracted much attention around the world due to its rapid transmission among humans and relatively high mortality rate. Studies are increasing to find the best therapeutic approach for the disease and its management. Regenerative medicine offers various cell-tissue therapeutics and related products, such as stem cell therapy, natural killer (NK) cell therapy, Chimeric antigen receptor (CAR) T cell therapy, exosomes, and tissue products. Interestingly, mesenchymal stem cells (MSCs) can reduce inflammatory symptoms and protect against cytokine storm, which critically contributes to the COVID-19 progression. Notably, having the potentials to exert cytotoxic effects on infected cells and induce interferon production probably make NK cells a candidate for COVID-19 cell therapy. Besides, exosomes are one of the crucial products of cells that can exert therapeutic effects through the induction of immune responses and neutralizing antibody titers. The paper aims to briefly consider current options for COVID-19 therapy to show that there is no specific cure for COVID-19, and then assess the real opportunities and range of promises regenerative medicine can provide for specific treatment of COVID-19. Graphical Abstract Therapeutic Potential of Regenerative Medicine against COVID19.
Collapse
Affiliation(s)
- Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Pazhouhnia
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Beheshtizadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hoseinpour
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
97
|
|
98
|
Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int J Mol Sci 2021; 22:E684. [PMID: 33445616 PMCID: PMC7827932 DOI: 10.3390/ijms22020684] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering has been an inveterate area in the field of regenerative medicine for several decades. However, there remains limitations to engineer and regenerate tissues. Targeted therapies using cell-encapsulated hydrogels, such as mesenchymal stem cells (MSCs), are capable of reducing inflammation and increasing the regenerative potential in several tissues. In addition, the use of MSC-derived nano-scale secretions (i.e., exosomes) has been promising. Exosomes originate from the multivesicular division of cells and have high therapeutic potential, yet neither self-replicate nor cause auto-immune reactions to the host. To maintain their biological activity and allow a controlled release, these paracrine factors can be encapsulated in biomaterials. Among the different types of biomaterials in which exosome infusion is exploited, hydrogels have proven to be the most user-friendly, economical, and accessible material. In this paper, we highlight the importance of MSCs and MSC-derived exosomes in tissue engineering and the different biomaterial strategies used in fabricating exosome-based biomaterials, to facilitate hard and soft tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (P.K.); (J.I.); (S.P.); (A.U.); (Y.Z.)
| |
Collapse
|
99
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
100
|
Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular Vesicle-Based Therapeutics: Preclinical and Clinical Investigations. Pharmaceutics 2020; 12:E1171. [PMID: 33271883 PMCID: PMC7760239 DOI: 10.3390/pharmaceutics12121171] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Drug nanoformulations hold remarkable promise for the efficient delivery of therapeutics to a disease site. Unfortunately, artificial nanocarriers, mostly liposomes and polymeric nanoparticles, show limited applications due to the unfavorable pharmacokinetics and rapid clearance from the blood circulation by the reticuloendothelial system (RES). Besides, many of them have high cytotoxicity, low biodegradability, and the inability to cross biological barriers, including the blood brain barrier. Extracellular vesicles (EVs) are novel candidates for drug delivery systems with high bioavailability, exceptional biocompatibility, and low immunogenicity. They provide a means for intercellular communication and the transmission of bioactive compounds to targeted tissues, cells, and organs. These features have made them increasingly attractive as a therapeutic platform in recent years. However, there are many obstacles to designing EV-based therapeutics. In this review, we will outline the main hurdles and limitations for therapeutic and clinical applications of drug loaded EV formulations and describe various attempts to solve these problems.
Collapse
Affiliation(s)
- Natalia L. Klyachko
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.L.K.); (O.A.G.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Camryn J. Arzt
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Samuel M. Li
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Olesia A. Gololobova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.L.K.); (O.A.G.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.L.K.); (O.A.G.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| |
Collapse
|