51
|
Hu P, Lei L, Wang Y, Tian X, Wei X, Jiang N, Liu L. CLDN4 as a Novel Diagnostic and Prognostic Biomarker and Its Association with Immune Infiltrates in Ovarian Cancer. Mediators Inflamm 2023; 2023:1075265. [PMID: 37057131 PMCID: PMC10089777 DOI: 10.1155/2023/1075265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer (OC) is the seventh most prevalent type of cancer in women and the second most common cause of cancer-related deaths in women worldwide. Because of the high rates of relapse, there is an immediate and pressing need for the discovery of innovative sensitive biomarkers for OC patients. Using TCGA and GSE26712 datasets, we were able to identify 17 survival-related DEGs in OC that had differential expression. CLDN4 was the gene that caught our attention the most out of the 17 important genes since its expression was much higher in OC samples than in nontumor samples. The findings of the ROC assays then confirmed the diagnostic utility of the test in screening OC specimens to differentiate them from nontumor specimens. Patients with high CLDN4 expression predicted a shorter overall survival (OS) and disease-specific survival (DSS) than those with low CLDN4 expression, according to clinical research. Patients with low CLDN4 expression predicted longer OS and DSS. Analysis using both univariate and multivariate techniques revealed that CLDN4 expression was an independent factor associated with a poor prognosis for OS and DSS. Based on multivariate analysis, the
-indexes and calibration plots of the nomogram suggested an effective predictive performance for OC patients. After that, we investigated whether or not there was a link between the infiltration of immune cells and the expression of the CLDN4 gene. We found that the expression of CLDN4 was positively associated with Th17 cells, NK CD56bright cells, while negatively associated with Th2 cells, pDC, and T helper cells. In the end, we carried out RT-PCR on our cohort and confirmed that the level of CLDN4 expression was noticeably elevated in OC specimens in comparison to nontumor tissues. The diagnostic usefulness of CLDN4 expression for OC was also validated by the findings of ROC tests. Thus, our findings revealed that CLDN4 may serve as a predictive biomarker in OC to assess both the clinical outcome of OC patients and the level of immune infiltration.
Collapse
Affiliation(s)
- Pan Hu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Li Lei
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Tian
- Department of Gynecology, Women and Children’s Hospital of Xiushan County, Chongqing, China
| | - Xia Wei
- People’s Hospital of Kunming, Xishan District, Kunming, Yunnan, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
52
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
53
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|
54
|
Foroozandeh A, Abdouss M, SalarAmoli H, Pourmadadi M, Yazdian F. An electrochemical aptasensor based on g-C3N4/Fe3O4/PANI Nanocomposite applying cancer antigen_125 biomarkers detection. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
55
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
56
|
Wu Y, Yang Y, Lv X, Gao M, Gong X, Yao Q, Liu Y. Nanoparticle-Based Combination Therapy for Ovarian Cancer. Int J Nanomedicine 2023; 18:1965-1987. [PMID: 37077941 PMCID: PMC10106804 DOI: 10.2147/ijn.s394383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/19/2023] [Indexed: 04/21/2023] Open
Abstract
Ovarian cancer is one of the most common malignant tumors in gynecology with a high incidence. Combination therapy, eg, administration of paclitaxel followed by a platinum anticancer drug is recommended to treat ovarian cancer due to its advantages in, eg, reducing side effects and reversing (multi)drug-resistance compared to single treatment. However, the benefits of combination therapy are often compromised. In chemo and chemo/gene combinations, co-deposition of the combined therapeutics in the tumor cells is required, which is difficult to achieve due to dramatic pharmacokinetic differences between combinational agents in free forms. Moreover, some undesired properties such as the low-water solubility of chemodrugs and the difficulty of cellular internalization of gene therapeutics also hinder the therapeutic potential. Delivery of dual or multiple agents by nanoparticles provides opportunities to tackle these limits. Nanoparticles encapsulate hydrophobic drug(s) to yield aqueous dispersions facilitating its administration and/or to accommodate hydrophilic genes facilitating its access to cells. Moreover, nanoparticle-based therapeutics can not only improve drug properties (eg, in vivo stability) and ensure the same drug disposition behavior with controlled drug ratios but also can minimize drug exposure of the normal tissues and increase drug co-accumulation at targeted tissues via passive and/or active targeting strategies. Herein, this work summarizes nanoparticle-based combination therapies, mainly including anticancer drug-based combinations and chemo/gene combinations, and emphasizes the advantageous outcomes of nanocarriers in the combination treatment of ovarian cancer. In addition, we also review mechanisms of synergetic effects resulting from different combinations.
Collapse
Affiliation(s)
- Yingli Wu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Yu Yang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Xiaolin Lv
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Menghan Gao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xujin Gong
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
- Correspondence: Qingqiang Yao, Jining Medical University, No. 133 HeHua Road, Jinan, Shandong, 272067, People’s Republic of China, Email
| | - Yanna Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Yanna Liu, Shandong First Medical University, No. 6699 Qingdao Road, HuaiYin District, Jinan, Shandong, 250117, People’s Republic of China, Email
| |
Collapse
|
57
|
Li Y, Cen Y, Tu M, Xiang Z, Tang S, Lu W, Zhang H, Xu J. Nanoengineered Gallium Ion Incorporated Formulation for Safe and Efficient Reversal of PARP Inhibition and Platinum Resistance in Ovarian Cancer. RESEARCH (WASHINGTON, D.C.) 2023; 6:0070. [PMID: 36930754 PMCID: PMC10013963 DOI: 10.34133/research.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Platinum-based chemotherapy remains the main systemic treatment of ovarian cancer (OC). However, the inevitable development of platinum and poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi) resistance is associated with poor outcomes, which becomes a major obstacle in the management of this disease. The present study developed "all-in-one" nanoparticles that contained the PARPi olaparib and gallium (Ga) (III) (olaparib-Ga) to effectively reverse PARPi resistance in platinum-resistant A2780-cis and SKOV3-cis OC cells and in SKOV3-cis tumor models. Notably, the olaparib-Ga suppressed SKOV3-cis tumor growth with negligible toxicity. Moreover, the suppression effect was more evident when combining olaparib-Ga with cisplatin or carboplatin, as evaluated in A2780-cis and SKOV3-cis cells. Mechanistically, the combined treatment induced DNA damage, which elicited the activation of ataxia telangiectasia mutated (ATM)/AMT- and Rad3-related (ATR) checkpoint kinase 1 (Chk1)/Chk2 signal transduction pathways. This led to the arrest of cell cycle progression at S and G2/M phases, which eventually resulted in apoptosis and cell death due to unrepairable DNA damage. In addition, effective therapeutic responses to olaparib-Ga and cisplatin combination or olaparib-Ga and carboplatin combination were observed in SKOV3-cis tumor-bearing animal models. Altogether, the present findings demonstrate that olaparib-Ga has therapeutic implications in platinum-resistant OC cells, and the combination of olaparib-Ga with cisplatin or carboplatin may be promising for treating patients with OC who exhibit resistance to both PARPi and platinum.
Collapse
Affiliation(s)
- Yangyang Li
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yixuan Cen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Mengyan Tu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Zhenzhen Xiang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Sangsang Tang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.,Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
58
|
Effect of Citrate- and Gold-Stabilized Superparamagnetic Iron Oxide Nanoparticles on Head and Neck Tumor Cell Lines during Combination Therapy with Ionizing Radiation. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120806. [PMID: 36551012 PMCID: PMC9774466 DOI: 10.3390/bioengineering9120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. They are associated with alcohol and tobacco consumption, as well as infection with human papillomaviruses (HPV). Therapeutic options include radiochemotherapy, surgery or chemotherapy. Nanoparticles are becoming more and more important in medicine. They can be used diagnostically, but also therapeutically. In order to provide therapeutic alternatives in the treatment of HNSCC, the effect of citrate-coated superparamagnetic iron oxide nanoparticles (Citrate-SPIONs) and gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) in combination with ionizing irradiation (IR) on two HPV positive and two HPV negative HNSCC and healthy fibroblasts and keratinocytes cell lines were tested. Effects on apoptosis and necrosis were analyzed by using flow cytometry. Cell survival studies were performed with a colony formation assay. To better understand where the SPIONs interact, light microscopy images and immunofluorescence studies were performed. The HNSCC and healthy cell lines showed different responses to the investigated SPIONs. The cytotoxic effects of SPIONs, in combination with IR, are dependent on the type of SPIONs, the dose administered and the cell type treated. They are independent of HPV status. Reasons for the different cytotoxic effect are probably the different compositions of the SPIONs and the related different interaction of the SPIONs intracellularly and paramembranously, which lead to different strong formations of double strand breaks.
Collapse
|
59
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
60
|
Ding H, Zhang J, Zhang F, Xu Y, Liang W, Yu Y. Nanotechnological approaches for diagnosis and treatment of ovarian cancer: a review of recent trends. Drug Deliv 2022; 29:3218-3232. [PMID: 36259505 PMCID: PMC9586634 DOI: 10.1080/10717544.2022.2132032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formulations from nanotechnology platform promote therapeutic drug delivery and offer various advantages such as biocompatibility, non-inflammatory effects, high therapeutic output, biodegradability, non-toxicity, and biocompatibility in comparison with free drug delivery. Due to inherent shortcomings of conventional drug delivery to cancerous tissues, alternative nanotechnological-based approaches have been developed for such ailments. Ovarian cancer is the leading gynecological cancer with higher mortality rates due to its reoccurrence and late diagnosis. In recent years, the field of medical nanotechnology has witnessed significant progress in addressing existing problems and improving the diagnosis and therapy of various diseases including cancer. Nevertheless, the literature and current reviews on nanotechnology are mainly focused on its applications in other cancers or diseases. In this review, we focused on the nanoscale drug delivery systems for ovarian cancer targeted therapy and diagnosis, and different nanocarriers systems including dendrimers, nanoparticles, liposomes, nanocapsules, and nanomicelles for ovarian cancer have been discussed. In comparison to non-functionalized counterparts of nanoformulations, the therapeutic potential and preferential targeting of ovarian cancer through ligand functionalized nanoformulations’ development has been reviewed. Furthermore, numerous biomarkers such as prostatic, mucin 1, CA-125, apoptosis repeat baculoviral inhibitor-5, human epididymis protein-4, and e-cadherin have been identified and elucidated in this review for the assessment of ovarian cancer. Nanomaterial biosensor-based tumor markers and their various types for ovarian cancer diagnosis are explained in this article. In association, different nanocarrier approaches for the ovarian cancer therapy have also been underpinned. To ensure ovarian cancer control and efficient detection, there is an urgent need for faster and less costly medical tools in the arena of oncology.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Yijun Yu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
61
|
Zhang M, Yue H, Huang X, Wang J, Li Z, Deng X. Novel Platinum Nanoclusters Activate PI3K/AKT/mTOR Signaling Pathway-Mediated Autophagy for Cisplatin-Resistant Ovarian Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48502-48514. [PMID: 36261925 DOI: 10.1021/acsami.2c15143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platinum (Pt)-based chemotherapy drugs such as cisplatin are the first line and core options for the treatment of ovarian cancer (OC), while cisplatin resistance has a worse prognosis and low 5 year survival rate for patients. Chemotherapeutic drugs synthesized from nanomaterials have shown great potential in biomedicine; however, research into their application for OC resistance is rarely discussed. This study is proposed to elucidate the anti-tumor effects of polyethylenimine (PEI)-caged platinum nanoclusters (Pt NCs) on cisplatin-resistant OC. The results of confocal microscopy showed that Pt NCs entered cisplatin-resistant OC cells dose-dependently and aggregated both in the cytoplasm and inside the nucleus. Subsequently, according to the results of CCK8 assay, wound healing assay, clone formation assay, Transwell assay, Ki-67 immunofluorescence assay, and flow cytometry assay, the proliferation and migration of cisplatin-resistant OC cells were inhibited by Pt NCs, as well as their apoptosis was promoted. In addition, we validated the anti-tumor effect of Pt NCs on regulating autophagy via monodansylcadaverine (MDC) staining, transmission electron microscopy observation of the autophagic ultrastructure, LC3-II-GFP and P62-GFP adenovirus single-label immunofluorescence, and western blotting; meanwhile, the role of Pt NCs in adjusting autophagy through modulation of the PI3K-AKT-mTOR signaling was verified. Based on these results, it appears that cisplatin-resistant OC cells can undergo apoptosis when Pt NCs activate autophagy by inhibiting the PI3K/AKT/mTOR pathway, exhibiting a promising potential of Pt NCs in the development of a novel chemotherapeutic agent for patients suffering from cisplatin-resistant OC.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing 100053, China
| | - Zengbei Li
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| | - Xinjie Deng
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| |
Collapse
|
62
|
Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, Saleh MM, Kadhim MM, Khatami M. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2303-2335. [PMID: 36378182 PMCID: wst_2022_318 DOI: 10.2166/wst.2022.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Chemistry Department, Salahaddin University-Erbil, Erbil, Iraq; Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Ahmad Rajabizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Marcos Augusto Lima Nobre
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente, SP 19060-900, Brazil
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mustafa M Kadhim
- Department of Medical Laboratory Techniques, Dijlah University College, Baghdad 10021, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
63
|
Bao J, Tu H, Li J, Dong Y, Dang L, Yurievna KE, Zhang F, Xu L. Interfacial engineered iron oxide nanoring for T2-weighted magnetic resonance imaging-guided magnetothermal-chemotherapy. Front Bioeng Biotechnol 2022; 10:1005719. [PMID: 36277375 PMCID: PMC9582775 DOI: 10.3389/fbioe.2022.1005719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Due to no penetration depth limitation, low cost, and easy control, magnetic nanoparticles mediated magnetic hyperthermia therapy (MHT) has shown great potential in experimental and clinal treatments of various diseases. However, the low heating conversion efficiencies and short circulation times are major drawback for most existing magnetic-thermal materials. Additionally, single MHT treatment always leads to resistance and recurrence. Herein, a highly efficient magnetic-thermal conversion, ferrimagnetic vortex nanoring Fe3O4 coated with hyaluronic acid (HA) nanoparticles (Fe3O4@HA, FVNH NPs) was firstly constructed. Additionally, the doxorubicin (DOX) was successfully enclosed inside the FVNH and released remotely for synergetic magnetic–thermal/chemo cancer therapy. Due to the ferrimagnetic vortex-domain state, the ring shape Fe3O4 displays a high specific absorption rate (SAR) under an external alternating magnetic field (AMF). Additionally, antitumor drug (DOX) can be encapsulated inside the single large hole of FVNH by the hyaluronic acid (HA) shell and quickly released in response the tumor acidic microenvironments and AMF. What’s more, the non-loaded FVNH NPs show good biocompatibility but high cytotoxicity after loading DOX under AMF. Furthermore, the synthesized FVNH can efficiently reduce the transverse relaxation time and enhance negative magnetic resonance imaging (MRI). The impressive in vivo systemic therapeutic efficacy of FVNH was also proved in this work. Taken together, the results of this study demonstrate that the synthesized FVNH NPs offer the promise of serving as multifunctional theranostic nanoplatforms for medical imaging-guided tumor therapies.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Tu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jing Li
- Office of Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Dong
- School of Education, Pingdingshan University, Pingdingshan, China
| | - Le Dang
- School of Education, Pingdingshan University, Pingdingshan, China
| | - Korjova Elena Yurievna
- Institute of Psychology, The Herzen State Pedagogical University of Russia, Saint Petersburg, Russia
| | - Fengshou Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Fengshou Zhang, ; Lei Xu,
| | - Lei Xu
- Department of Clinical Laboratory, Huai’an Second People’s Hospital, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
- *Correspondence: Fengshou Zhang, ; Lei Xu,
| |
Collapse
|
64
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
65
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
66
|
Liu Y, Xiao W, Zhang H, Xin L, Li X, Pan F. Chemotherapy drug potency assessment method of ovarian cancer cells by digital holography microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4370-4385. [PMID: 36032571 PMCID: PMC9408259 DOI: 10.1364/boe.465149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Drug potency assessment plays a crucial role in cancer chemotherapy. The selection of appropriate chemotherapy drugs can reduce the impact on the patient's physical condition and achieve a better therapeutic effect. Various methods have been used to achieve in vitro drug susceptibility assays, but there are few studies on calculating morphology and texture parameters quantitatively based on phase imaging for drug potency assessment. In this study, digital holography microscopy was used to get phase imaging of ovarian cancer cells after adding three different drugs, namely, Cisplatin, Adriamycin, and 5-fluorouracil. Based on the reconstructed phase imaging, four parameters of ovarian cancer cells changed with time, such as the average height, projected area, cluster shade, and entropy, were calculated. And the half-inhibitory concentration of cells under the effect of different drugs was calculated according to these four parameters. The half-inhibitory concentration, which can directly reflect the drug potency, is associated with the morphological and texture features extracted from phase images by numerical fitting. So, a new method for calculating the half-inhibitory concentration was proposed. The result shows that the morphological and texture feature parameters can be used to evaluate the sensitivity of ovarian cancer cells to different drugs by fitting the half-inhibitory concentration numerically. And the result provides a new idea for drug potency assessment methods before chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Yakun Liu
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Huanzhi Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Lu Xin
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Xiaoping Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Feng Pan
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
67
|
Tang H, Xie Y, Zhu M, Jia J, Liu R, Shen Y, Zheng Y, Guo X, Miao D, Pei J. Estrone-Conjugated PEGylated Liposome Co-Loaded Paclitaxel and Carboplatin Improve Anti-Tumor Efficacy in Ovarian Cancer and Reduce Acute Toxicity of Chemo-Drugs. Int J Nanomedicine 2022; 17:3013-3041. [PMID: 35836838 PMCID: PMC9274295 DOI: 10.2147/ijn.s362263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal gynecologic malignancy. The combination of paclitaxel (PTX) and carboplatin (CBP) is the first-line remedy for clinical ovarian cancer. However, due to the limitations of adverse reaction and lacking of targeting ability, the chemotherapy of ovarian cancer is still poorly effective. Here, a novel estrone (ES)-conjugated PEGylated liposome co-loaded PTX and CBP (ES-PEG-Lip-PTX/CBP) was designed for overcoming the above disadvantages. Methods ES-PEG-Lip-PTX/CBP was prepared by film hydration method and could recognize estrogen receptor (ER) over-expressing on the surface of SKOV-3 cells. The characterizations, stability and in vitro release of ES-PEG-Lip-PTX/CBP were studied. In vitro cellular uptake and its mechanism were observed by fluorescence microscope. In vivo targeting effect in tumor-bearing mice was determined. Pharmacokinetics and biodistribution were studied in ICR mice. In vitro cytotoxicity and in vivo anti-tumor efficacy were evaluated on SKOV-3 cells and tumor-bearing mice, respectively. Finally, the acute toxicity in ICR mice was explored for assessing the preliminary safety of ES-PEG-Lip-PTX/CBP. Results Our results showed that ES-PEG-Lip-PTX/CBP was spherical shape without aggregation. ES-PEG-Lip-PTX/CBP exhibited the optimum targeting effect on uptake in vitro and in vivo. The pharmacokinetics demonstrated ES-PEG-Lip-PTX/CBP had improved the pharmacokinetic behavior. In vitro cytotoxicity showed that ES-PEG-Lip-PTX/CBP maximally inhibited SKOV-3 cell proliferation and its IC50 values was 1.6 times lower than that of non-ES conjugated liposomes at 72 h. The in vivo anti-tumor efficacy study demonstrated that ES-PEG-Lip-PTX/CBP could lead strong SKOV-3 tumor growth suppression with a tumor volume inhibitory rate of 81.8%. Meanwhile, acute toxicity studies confirmed that ES-PEG-Lip-PTX/CBP significantly reduced the toxicity of the chemo drugs. Conclusion ES-PEG-Lip-PTX/CBP was successfully prepared with an optimal physicochemical and ER targeting property. The data of pharmacokinetics, anti-tumor efficacy and safety study indicated that ES-PEG-Lip-PTX/CBP could become a promising therapeutic formulation for human ovarian cancer in the future clinic.
Collapse
Affiliation(s)
- Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Juan Jia
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
68
|
Chitin and Chitosan: Prospective Biomedical Applications in Drug Delivery, Cancer Treatment, and Wound Healing. Mar Drugs 2022; 20:md20070460. [PMID: 35877753 PMCID: PMC9319611 DOI: 10.3390/md20070460] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Chitin and its derivative chitosan are highly abundant polymers in nature, appearing in both the shells and exoskeletons of various marine and non-marine species. Since they possess favorable properties, such as biocompatibility, biodegradability, non-toxicity, and non-immunogenicity, they have gained recent attention due to their enormous potential biomedical applications. The polycationic surface of chitosan enables it to form hydrogenic and ionic bonds with drug molecules, which is one of its most useful properties. Because chitosan is biocompatible, it can therefore be used in drug delivery systems. The development of chitosan-based nanoparticles has also contributed to the significance of chitin as a drug delivery system that can deliver drugs topically. Furthermore, chitin can be used in cancer treatment as a vehicle for delivering cancer drugs to a specific site and has an antiproliferative effect by reducing the viability of cells. Finally, chitosan can be used as a wound dressing in order to promote the faster regeneration of skin epithelial cells and collagen production by fibroblasts. As discussed in this review, chitin and chitosan have diverse applications in the medical field. Recognizing the biomedical applications of these two polymers is essential for future research in tissue engineering and nanobiotechnology.
Collapse
|
69
|
Ghaznavi H, Hajinezhad MR, Shirvaliloo M, Shahraki S, Shahraki K, Saravani R, Shirvalilou S, Shahraki O, Nazarlou Z, Sheervalilou R, Sargazi S. Effects of folate-conjugated Fe 2O 3@Au core-shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: evidence from in vitro and in vivo studies. Med Oncol 2022; 39:122. [PMID: 35716197 DOI: 10.1007/s12032-022-01713-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
The aim of this work was to assess the cytotoxicity, genotoxicity, and histopathological effects of Fe2O3@Au-FA NPs using in vitro and in vivo models. Cytotoxicity and cellular uptake of nanoparticles (NPs) by HUVECs were examined via 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and inductively coupled plasma-mass-spectrometry (ICP-MS). This safe dose was then used for cytotoxicity assays, including total protein, total antioxidant capacity, lipid peroxidation, cell membrane integrity, reactive oxygen species, enzyme activity, and DNA damage. In the animal model, 32 Wistar rats were randomly categorized into 4 groups and received intraperitoneal injections of NPs. Blood samples for biochemical properties and histopathological changes were investigated. MTT results indicated 20 μg/ml as the safe dose for NPs. According to ICP-MS, treated cells showed significantly higher levels of the intracellular content of Fe (p < 0.001) and Au (p < 0.01) compared with the control group. In vitro tests did not show any significant cytotoxicity or genotoxicity at the safe dose of NPs. We found no significant elevation in intracellular γ-H2AX levels after treatment of HUVEC cells with Fe2O3@Au core-shell NPs (P > 0.05). As for the in vivo analysis, we observed no marked difference in serum biochemical parameters of rats treated with 50 mg/kg and 100 mg/kg doses of our NPs. Histopathological assessments indicated that liver, kidney, and testis tissues were not significantly affected at 50 mg/kg (liver), 50 mg/kg, and 100 mg/kg (kidney and testis) on NPs administration. These findings imply that the nanotoxicity of Fe2O3@Au-FA NPs in HUVECs and animals depends largely on the administrated dose. Our study suggests that Fe2O3@Au-FA NPs at a safe dose could be considered as new candidates in nanobiomedicine.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary medicine Faculty, University of Zabol, Postal Code: 9861335856, Zabol, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Postal Code: 5166614766, Tabriz, Iran
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Kourosh Shahraki
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Postal Code: 1449614535, Tehran, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul, 34450, 1449614535, Turkey
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran. .,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Postal Code: 9816743463, Zahedan, Iran.
| |
Collapse
|
70
|
Zhang X, Yan R, Wei Z, Yang D, Hu Z, Zhang Y, Huang X, Huang H, Wang W. Folate Decorated Multifunctional Biodegradable Nanoparticles for Gastric Carcinoma Active Targeting Theranostics. Int J Nanomedicine 2022; 17:2493-2502. [PMID: 35669001 PMCID: PMC9166902 DOI: 10.2147/ijn.s348380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Gastric cancer remains a major clinical issue and little progress has been made in the treatment of gastric cancer patients during recent decades. Nanoparticles provide a versatile platform for the diagnosis and treatment of gastric cancer. Methods We prepared 7-ethyl-10-hydroxycamptothecin (SN-38) 125I-radiolabelled biodegradable nanoparticles with folate surface modification (125I-SN-38-FA-NPs) as a novel nanoplatform for targeted gastric carcinoma theranostics. We characterized this system in terms of particle size, morphology, radiostability, and release properties and examined the in vitro cytotoxicity and cellular uptake properties of 125I-SN-38-FA-NPs in MNK 7 and NCI-N7 cells. The pharmacokinetics and biodistribution of 125I-SN-38-FA-NPs were imaged by single photon emission computer tomography (SPECT). An MNK7 tumor-bearing model were established and the in vivo antitumor activity of 125I-SN-38-FA-NPs was evaluated. Results SN-38 was readily radiolabeled with 125I and exhibited high radiostability. Poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were formed by solvent exchange, and displayed spherical morphology of 100 nm in diameter as characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). A 2.5-fold greater uptake of 125I-radiolabelled SN-38-loaded folate-decorated PLGA nanoparticles (125I-SN-38-FA-NPs) than 125I-radiolabelled SN-38-loaded PLGA nanoparticles (125I-SN-38-NPs) were record in MKN7 tumor cells. NPs and folate-decorated PLGA nanoparticles (FA-NPs) also had good biocompatibility in methyl thiazolyl tetrazolium (MTT) assays. Pharmacokinetic, biodistribution and SPECT imaging studies showed that 125I-SN-38-FA-NPs had prolonged circulation, were distributed in the reticuloendothelial system, and had high uptake in tumors with a higher tumor accumulation of 125I-SN-38-FA-NPs than 125I-SN-38-NPs recorded at 24 h postinjection. In vivo SN-38-FA-NPs significantly inhibited tumor growth without causing obvious side effects. Conclusion Folate receptor alpha (FOLR1) targeted drug-loaded nanoparticles enable SPECT imaging and chemotherapy, and provide a novel nanoplatform for gastric carcinoma active targeting theranostics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Xin Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Hejing Huang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
71
|
Salas-Huenuleo E, Hernández A, Lobos-González L, Polakovičová I, Morales-Zavala F, Araya E, Celis F, Romero C, Kogan MJ. Peptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells. Pharmaceutics 2022; 14:958. [PMID: 35631544 PMCID: PMC9144804 DOI: 10.3390/pharmaceutics14050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
One of the recent attractive therapeutic approaches for cancer treatment is restoring downregulated microRNAs. They play an essential muti-regulatory role in cellular processes such as proliferation, differentiation, survival, apoptosis, cell cycle, angiogenesis, and metastasis, among others. In this study, a gold nanoplatform (GNPF) carrying miR-145, a downregulated microRNA in many cancer types, including epithelial ovarian cancer, was designed and synthesized. For targeting purposes, the GNPF was functionalized with the FSH33 peptide, which provided selectivity for ovarian cancer, and loaded with the miR-145 to obtain the nanosystem GNPF-miR-145. The GNPF-mir-145 was selectively incorporated in A2780 and SKOV3 cells and significantly inhibited cell viability and migration and exhibited proliferative and anchor-independent growth capacities. Moreover, it diminished VEGF release and reduced the spheroid size of ovarian cancer through the damage of cell membranes, thus decreasing cell viability and possibly activating apoptosis. These results provide important advances in developing miR-based therapies using nanoparticles as selective vectors and provide approaches for in vivo evaluation.
Collapse
Affiliation(s)
- Edison Salas-Huenuleo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago 9380000, Chile
| | - Andrea Hernández
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, Universidad de Chile, Santiago 7820436, Chile;
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad Del Desarrollo, Santiago 7610658, Chile
| | - Iva Polakovičová
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Francisco Morales-Zavala
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Temuco 4801043, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile;
| | - Carmen Romero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, Universidad de Chile, Santiago 7820436, Chile;
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
| |
Collapse
|
72
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
73
|
Nazaripour E, Mosazadeh F, Rahimi SS, Alijani HQ, Isaei E, Borhani F, Iravani S, Ghasemi M, Akbarizadeh MR, Azizi E, Sharifi F, Haghighat M, Hadizadeh S, Moghadam MD, Abdollahpour-Alitappeh M, Khatami M. Ferromagnetic nickel (II) oxide (NiO) nanoparticles: biosynthesis, characterization and their antibacterial activities. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-021-01042-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
74
|
Wu H, Zhao X, Wang J, Jiang X, Cheng Y, He Y, Sun L, Zhang G. Circular RNA CDR1as Alleviates Cisplatin-Based Chemoresistance by Suppressing MiR-1299 in Ovarian Cancer. Front Genet 2022; 12:815448. [PMID: 35154259 PMCID: PMC8826532 DOI: 10.3389/fgene.2021.815448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Cisplatin (CDDP) chemoresistance seriously affects the prognosis and survival of patients with ovarian cancer (OC). Previous research has shown that circular RNA CDR1as is biologically associated with a large number of cancers. However, the molecular mechanism underlying the role of CDR1as in CDDP chemoresistance in OC remains unclear. Here, we investigated the mechanism of CDR1as in CDDP-resistant OC. First, we employed bioinformatics analysis and quantitative real-time PCR (qRT-PCR) to determine the expression of CDR1as and related RNAs in CDDP-sensitive and -resistant OC tissues and cells. Then, functional experiments were used to determine cell proliferation, invasion, migration, and apoptosis in CDDP chemoresistance and parent OC cells in vitro. The effect of CDR1as in CDDP chemoresistance OC progression was tested in nude mice in vivo. Moreover, dual-luciferase assays and RNA immunoprecipitation (RIP) were performed to confirm the interactions of CDR1as and related RNAs. Finally, we used Western blotting to determine protein expression levels. Our findings interpret the underlying mechanisms of the CDR1as/miR-1299/PPP1R12B axis and shed light on the clinical applications for CDDP-chemoresistant OC.
Collapse
Affiliation(s)
- Han Wu
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinyan Jiang
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Cheng
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
75
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
76
|
Particle Engineering of Innovative Nanoemulsion Designs to Modify the Accumulation in Female Sex Organs by Particle Size and Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14020301. [PMID: 35214035 PMCID: PMC8877295 DOI: 10.3390/pharmaceutics14020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Particle engineering of nanosized drug delivery systems (DDS) can be used as a strategic tool to influence their pharmacokinetics after intravenous (i.v.) application by the targeted adaptation of their particle properties according to the needs at their site of action. This study aimed to investigate particle properties depending on patterns in the biodistribution profile to modify the accumulation in the female sex organs using tailor-made nanoemulsion designs and thereby to either increase therapeutic efficiency for ovarian dysfunctions and diseases or to decrease the side effects caused by unintended accumulation. Through the incorporation of the anionic phospholipid phosphatidylglycerol (PG) into the stabilizing macrogol 15 hydroxystearate (MHS) layer of the nanoemulsions droplets, it was possible to produce tailor-made nanoparticles with tunable particle size between 25 to 150 nm in diameter as well as tunable surface charges between −2 to nearly −30 mV zeta potential using a phase inversion-based process. Three chosen negatively surface-charged nanoemulsions of 50, 100, and 150 nm in diameter showed very low cellular toxicities on 3T3 and NHDF fibroblasts and merely interacted with the blood cells, but instead stayed inert in the plasma. In vivo and ex vivo fluorescence imaging of adult female mice i.v. injected with the negatively surface-charged nanoemulsions revealed a high accumulation depending on their particle size in the reticuloendothelial system (RES), being found in the liver and spleen with a mean portion of the average radiant efficiency (PARE) between 42–52%, or 8–10%, respectively. With increasing particle size, an accumulation in the heart was detected with a mean PARE up to 8%. These three negatively surface-charged nanoemulsions overcame the particle size-dependent accumulation in the female sex organs and accumulated equally with a small mean PARE of 5%, suitable to reduce the side effects caused by unintended accumulation while maintaining different biodistribution profiles. In contrast, previously investigated neutral surface-charged nanoemulsions accumulated with a mean PARE up to 10%, strongly dependent on their particle sizes, which is useful to improve the therapeutic efficacy for ovarian dysfunctions and diseases.
Collapse
|
77
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
78
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
79
|
Garrido MP, Fredes AN, Lobos-González L, Valenzuela-Valderrama M, Vera DB, Romero C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021; 10:77. [PMID: 35052757 PMCID: PMC8772950 DOI: 10.3390/biomedicines10010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies. The late diagnosis is frequent due to the absence of specific symptomatology and the molecular complexity of the disease, which includes a high angiogenesis potential. The first-line treatment is based on optimal debulking surgery following chemotherapy with platinum/gemcitabine and taxane compounds. During the last years, anti-angiogenic therapy and poly adenosine diphosphate-ribose polymerases (PARP)-inhibitors were introduced in therapeutic schemes. Several studies have shown that these drugs increase the progression-free survival and overall survival of patients with ovarian cancer, but the identification of patients who have the greatest benefits is still under investigation. In the present review, we discuss about the molecular characteristics of the disease, the recent evidence of approved treatments and the new possible complementary approaches, focusing on drug repurposing, non-coding RNAs, and nanomedicine as a new method for drug delivery.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Allison N. Fredes
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Daniela B. Vera
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
80
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
81
|
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R, Motedayyen H. The Therapeutic Potential of Common Herbal and Nano-Based Herbal Formulations against Ovarian Cancer: New Insight into the Current Evidence. Pharmaceuticals (Basel) 2021; 14:1315. [PMID: 34959716 PMCID: PMC8705681 DOI: 10.3390/ph14121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the "silent killer" due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.
Collapse
Affiliation(s)
- Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa 7345149573, Iran;
| | | | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran;
| | - Firoozeh Abolhasani Zadeh
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Aynaz Boostan
- Department of Obstetrics & Gynecology, Saveh Chamran Hospital, Saveh 3919676651, Iran;
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan 8715973474, Iran
| |
Collapse
|
82
|
Sargazi S, Hosseinikhah SM, Zargari F, Chauhana NPS, Hassanisaadi M, Amani S. pH-responsive cisplatin-loaded niosomes: synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Cisplatin (Cis) is an effective cytotoxic agent, but its administration has been challenged by kidney problems, reduced immunity system, chronic neurotoxicity, and hemorrhage. To address these issues, pH-responsive non-ionic surfactant vesicles (niosomes) by Span 60 and Tween 60 derivatized by cholesteryl hemisuccinate (CHEMS), a pH-responsive agent, and Ergosterol (helper lipid), were developed for the first time to deliver Cis. The drug was encapsulated in the niosomes with a high encapsulation efficiency of 89%. This system provided a responsive release of Cis in pH 5.4 and 7.4, thereby improving its targeted anticancer drug delivery. The noisome bilayer model was studied by molecular dynamic simulation containing Tween 60, Span 60, Ergosterol, and Cis molecules to understand the interactions between the loaded drug and noisome constituents. We found that the platinum and chlorine atoms in Cis are critical factors in distributing the drug between water and bilayer surface. Finally, the lethal effect of niosomal Cis was investigated on the MCF7 breast cancer cell line using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results from morphology monitoring and cytotoxic assessments suggested a better cell-killing effect for niosomal Cis than standard Cis. Together, the synthesis of stimuli-responsive niosomes could represent a promising delivery strategy for anticancer drugs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farshid Zargari
- Pharmacology Research Center , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran ; Department of Chemistry, Faculty of Science , University of Sistan and Baluchestan , Zahedan 98135674, Iran
| | - Narendra Pal Singh Chauhana
- Department of Chemistry, Faculty of Science , Bhupal Nobles’ university , Udaipur , 313002, Rajasthan , India
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection , Shahid Bahonar University of Kerman , Postal Code: 7618411764, Kerman, Iran
| | - Soheil Amani
- Department of chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan , Iran
| |
Collapse
|
83
|
Lu Z, Gao Y. Screening differentially expressed genes between endometriosis and ovarian cancer to find new biomarkers for endometriosis. Ann Med 2021; 53:1377-1389. [PMID: 34409913 PMCID: PMC8381947 DOI: 10.1080/07853890.2021.1966087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
AIM Endometriosis is one of the most common reproductive system diseases, but the mechanisms of disease progression are still unclear. Due to its high recurrence rate, searching for potential therapeutic biomarkers involved in the pathogenesis of endometriosis is an urgent issue. METHODS Due to the similarities between endometriosis and ovarian cancer, four endometriosis datasets and one ovarian cancer dataset were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) analyses. Then, we validated gene expression and performed survival analysis with ovarian serous cystadenocarcinoma (OV) datasets in TCGA/GTEx database, and searched for potential drugs in the Drug-Gene Interaction Database. Finally, we explored the miRNAs of key genes to find biomarkers associated with the recurrence of endometriosis. RESULTS In total, 104 DEGs were identified in the endometriosis datasets, and the main enriched GO functions included cell adhesion, extracellular exosome and actin binding. Fifty DEGs were identified between endometriosis and ovarian cancer datasets including 11 consistently regulated genes, and nine DEGs with significant expression in TCGA/GTEx. Only IGHM had both significant expression and an association with survival, three module DEGs and two significantly expressed DEGs had drug associations, and 10 DEGs had druggability. CONCLUSIONS ITGA7, ITGBL1 and SORBS1 may help us understand the invasive nature of endometriosis, and IGHM might be related to recurrence; moreover, these genes all may be potential therapeutic targets.KEY MESSAGEThis manuscript used a bioinformatics approach to find target genes for the treatment of endometriosis.This manuscript used a new approach to find target genes by drawing on common characteristics between ovarian cancer and endometriosis.We screened relevant therapeutic agents for target genes in the drug database, and performed histological validation of target genes with both expression and survival analysis difference in cancer databases.
Collapse
Affiliation(s)
- Zhenzhen Lu
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
84
|
Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem Biol Interact 2021; 351:109745. [PMID: 34774839 DOI: 10.1016/j.cbi.2021.109745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Cancer is the leading cause of human disease and death worldwide, accounting for 7.6 million deaths per year and projected to reach 13.1 million by 2030. Many phytochemicals included in traditional medicine have been utilized in the management of cancer. Conventional chemotherapy is generally known to be the most effective treatment of metastatic cancer but these cancerous cells might grow resistant to numerous anticancer drugs over time that resulting in treatment failure. This review tried to portray the advancement in the anticancer and chemopreventive effects of several phytochemicals and some of its members encapsulated in the nano-based delivery system of the drug. It comprises the issue associated with limited use of each phytoconstituents in human cancer treatment are discussed, and the benefits of entrapment into nanocarriers are evaluated in terms of drug loading efficiency, nanocarrier size, release profile of the drug, and in vitro and/or in vivo research and treatment testing, such as cytotoxicity assays and cell inhibition/viability.
Collapse
|
85
|
McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13215480. [PMID: 34771642 PMCID: PMC8582784 DOI: 10.3390/cancers13215480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OvCa) is a destructive malignancy due to difficulties in early detection and late advanced-stage diagnoses, leading to high morbidity and mortality rates for women. Currently, the quality treatment for OvCa includes tumor debulking surgery and intravenous platinum-based chemotherapy. However, numerous patients either succumb to the disease or undergo relapse due to drug resistance, such as to platinum drugs. There are several mechanisms that cause cancer cells' resistance to chemotherapy, such as inactivation of the drug, alteration of the drug targets, enhancement of DNA repair of drug-induced damage, and multidrug resistance (MDR). Some targeted therapies, such as nanoparticles, and some non-targeted therapies, such as natural products, reverse MDR. Nanoparticle targeting can lead to the reversal of MDR by allowing direct access for agents to specific tumor sites. Natural products have many anti-cancer properties that adversely regulate the factors contributing to MDR. The present review displays the current problems in OvCa treatments that lead to resistance and proposes using nanotechnology and natural products to overcome drug resistance.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|
86
|
Martín-Sabroso C, Lozza I, Torres-Suárez AI, Fraguas-Sánchez AI. Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics 2021; 13:1705. [PMID: 34683998 PMCID: PMC8541375 DOI: 10.3390/pharmaceutics13101705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decade, antibody-drug conjugates (ADCs), normally formed by a humanized antibody and a small drug via a chemical cleavable or non-cleavable linker, have emerged as a potential treatment strategy in cancer disease. They allow to get a selective delivery of the chemotherapeutic agents at the tumor level, and, consequently, to improve the antitumor efficacy and, especially to decrease chemotherapy-related toxicity. Currently, nine antibody-drug conjugate-based formulations have been already approved and more than 80 are under clinical trials for the treatment of several tumors, especially breast cancer, lymphomas, and multiple myeloma. To date, no ADCs have been approved for the treatment of gynecological formulations, but many formulations have been developed and have reached the clinical stage, especially for the treatment of ovarian cancer, an aggressive disease with a low five-year survival rate. This manuscript analyzes the ADCs formulations that are under clinical research in the treatment of gynecological carcinomas, specifically ovarian, endometrial, and cervical tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irene Lozza
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
87
|
Lim ZW, Chen WL. Association Between Micronutrient Concentrations and Human Epididymis Protein 4. J Inflamm Res 2021; 14:4945-4954. [PMID: 34611420 PMCID: PMC8486278 DOI: 10.2147/jir.s327597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Human epididymis protein 4 (HE4) has been frequently used to study in many malignant tumors, while serum nutritional markers are used to determine a person's health status. However, the link between serum micronutrient concentrations and HE4 has not yet been clarified. Methods A total of 2464 eligible female participants and serum concentrations of nutritional biomarkers were chosen from the National Health and Nutrition Examination Surveys (NHANES) 2001-2002. For statistical analysis, we used the χ 2 test, multivariable linear regression, and analysis of variance. Adjusted models were used, and the concentrations of serum nutritional biomarkers were divided into quartiles. Results The mean age of the participants was 48.07 years. Among twelve micronutrients, five were negatively associated with HE4 in models 1, 2 and 3. Only α-carotene, trans-β-carotene, cis-β-carotene, trans-lycopene and retinol were associated with HE4, with beta coefficients of -0.102, -0.027, -0.506, -0.131 and -0.054, respectively. After performing quartile-based analysis, statistical significance was only found for serum α-carotene, trans-lycopene, and retinol in the three models. In model 3, the beta coefficients [95% confidence intervals (CIs)] of the fourth quartiles compared to the first quartiles for α-carotene, trans-lycopene, and retinol were -3.390 (-5.053, -1.727), -4.036 (-5.722, -2.351) and -4.146 (-5.899, -2.393), respectively. Serum concentrations of these three nutritional biomarkers were inversely related to serum HE4 concentration (p trend <0.001). Conclusion HE4 is a useful and novel biomarker that can be used with many diseases, especially ovarian cancer. Three of our selected micronutrients were inversely associated with HE4 concentration. Supplement of micronutrients may reduce the levels of HE4 and the subsequent of ovarian cancer's risk. Therefore, a formula that correlates HE4 with nutritional biomarkers needs to be established before use in clinical applications.
Collapse
Affiliation(s)
- Zhu Wei Lim
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wei Liang Chen
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
88
|
Patel SK, Valicherla GR, Micklo AC, Rohan LC. Drug delivery strategies for management of women's health issues in the upper genital tract. Adv Drug Deliv Rev 2021; 177:113955. [PMID: 34481034 DOI: 10.1016/j.addr.2021.113955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The female upper genital tract (UGT) hosts important reproductive organs including the cervix, uterus, fallopian tubes, and ovaries. Several pathologies affect these organ systems such as infections, reproductive issues, structural abnormalities, cancer, and inflammatory diseases that could have significant impact on women's overall health. Effective disease management is constrained by the multifaceted nature of the UGT, complex anatomy and a dynamic physiological environment. Development of drug delivery strategies that can overcome mucosal and safety barriers are needed for effective disease management. This review introduces the anatomy, physiology, and mucosal properties of the UGT and describes drug delivery barriers, advances in drug delivery technologies, and opportunities available for new technologies that target the UGT.
Collapse
|
89
|
Cytotoxicity properties of plant-mediated synthesized K-doped ZnO nanostructures. Bioprocess Biosyst Eng 2021; 45:97-105. [PMID: 34581868 DOI: 10.1007/s00449-021-02643-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
In this study, potassium-doped zinc oxide nanoparticles (K-doped ZnO NPs) were green-synthesized using pine pollen extracts based on bioethics principles. The synthesized NPs were analyzed using X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDXA), and transmission electron microscopy (TEM). The cytotoxicity of these nanoparticles (NPs) on normal macrophage cells and cancer cell lines was evaluated. In the same concentrations of K-doped ZnO and pure ZnO NPs, K-doped ZnO NPs demonstrated higher toxicity. The results confirmed that the doped potassium could increase cytotoxicity. The IC50 of K-doped ZnO NPs, pure ZnO NPs, and the examined control drug were 497 ± 15, 769 ± 12, and 606 ± 19 µg/mL, respectively. Considering the obtained IC50 of K-doped ZnO NPs, they were more toxic to the cancer cell lines and had less cytotoxicity on normal macrophage cells.
Collapse
|
90
|
Nazaripour E, Mousazadeh F, Doosti Moghadam M, Najafi K, Borhani F, Sarani M, Ghasemi M, Rahdar A, Iravani S, Khatami M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
91
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
92
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
93
|
Abstract
The development of molecular nanostructures with well-defined particle size and shape is of eminent interest in biomedicine. Among many studied nanostructures, dendrimers represent the group of those most thoroughly characterized ones. Due to their unique structure and properties, dendrimers are very attractive for medical and pharmaceutical applications. Owing to the controllable cavities inside the dendrimer, guest molecules may be encapsulated, and highly reactive terminal groups are susceptible to further modifications, e.g., to facilitate target delivery. To understand the potential of these nanoparticles and to predict and avoid any adverse cellular reactions, it is necessary to know the mechanisms responsible for an efficient dendrimer uptake and the destination of their intracellular journey. In this article, we summarize the results of studies describing the dendrimer uptake, traffic, and efflux mechanisms depending on features of specific nanoparticles and cell types. We also present mechanisms of dendrimers responsible for toxicity and alteration in signal transduction pathways at the cellular level.
Collapse
Affiliation(s)
- Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
94
|
Wang P, Fang L. Salpingo-oophorectomy versus cystectomy in patients with borderline ovarian tumors: a systemic review and meta-analysis on postoperative recurrence and fertility. World J Surg Oncol 2021; 19:132. [PMID: 33882931 PMCID: PMC8061226 DOI: 10.1186/s12957-021-02241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To compare the postoperative recurrence and fertility in patients with borderline ovarian tumors (BOTs) who underwent different surgical procedures: salpingo-oophorectomy versus cystectomy. METHODS Potentially relevant literature from inception to Nov. 06, 2020, were retrieved in databases including Cochrane Library, EMBASE (Ovid), and MEDLINE (Pubmed). We applied the keywords "fertility-sparing surgery," or "conservative surgery," or "cystectomy," or "salpingo-oophorectomy," or "oophorectomy," or "adnexectomy," or "borderline ovarian tumor" for literate searching. Systemic reviews and meta-analyses were performed on the postoperative recurrence rates and pregnancy rates between patients receiving the two different surgical methods. Begger's methods, Egger's methods, and funnel plot were used to evaluate the publication bias. RESULT Among the sixteen eligible studies, the risk of recurrence was evaluated in all studies, and eight studies assessed the postoperative pregnancy rates in the BOT patients. A total of 1839 cases with borderline ovarian tumors were included, in which 697 patients (37.9%) received unilateral salpingo-oophorectomy and 1142 patients (62.1%) underwent unilateral/bilateral cystectomy. Meta-analyses showed that BOT patients with unilateral/bilateral cystectomy had significantly higher recurrence risk (OR=2.02, 95% CI: 1.59-2.57) compared with those receiving unilateral salpingo-oophorectomy. Pooled analysis of four studies further confirmed the higher risk of recurrence in patients with cystectomy (HR=2.00, 95% CI: 1.11-3.58). In addition, no significant difference in postoperative pregnancy rate was found between patients with the two different surgical procedures (OR=0.92, 95% CI: 0.60-1.42). CONCLUSION Compared with the unilateral/bilateral cystectomy, the unilateral salpingo-oophorectomy significantly reduces the risk of postoperative recurrence in patients with BOT, and it does not reduce the pregnancy of patients after surgery. TRIAL REGISTRATION PROSPERO CRD42021238177.
Collapse
Affiliation(s)
- Peng Wang
- Beijing Obstertrics and Gynecology Hospital, Capital Medical University, No. 251 Yao Jiayuan Road, Chaoyang District, Beijing, 100026, China.
| | - Lei Fang
- Beijing Obstertrics and Gynecology Hospital, Capital Medical University, No. 251 Yao Jiayuan Road, Chaoyang District, Beijing, 100026, China
| |
Collapse
|
95
|
Levit SL, Tang C. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1048. [PMID: 33923947 PMCID: PMC8072532 DOI: 10.3390/nano11041048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. We review polymer nanoparticle (e.g., micelles, dendrimers, and lipid nanoparticles) carriers of drug combinations formulated to treat ovarian cancer. In particular, the focus on this review is combinations of platinum and taxane agents (commonly used first line treatments for ovarian cancer) combined with other small molecule therapeutic agents. In vitro and in vivo drug potency are discussed with a focus on quantifiable synergistic effects. The effect of drug sequence and dosing schedule is examined. Computational approaches as a tool to predict synergistic drug combinations and dosing schedules as a tool for future nanoparticle design are also briefly discussed.
Collapse
Affiliation(s)
- Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
96
|
Abstract
Cardiovascular diseases (CVDs) are the world’s leading cause of mortality and represent a large contributor to the costs of medical care. Although tremendous progress has been made for the diagnosis of CVDs, there is an important need for more effective early diagnosis and the design of novel diagnostic methods. The diagnosis of CVDs generally relies on signs and symptoms depending on molecular imaging (MI) or on CVD-associated biomarkers. For early-stage CVDs, however, the reliability, specificity, and accuracy of the analysis is still problematic. Because of their unique chemical and physical properties, nanomaterial systems have been recognized as potential candidates to enhance the functional use of diagnostic instruments. Nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, lipids, and polymeric nanoparticles represent novel sources to target CVDs. The special properties of nanomaterials including surface energy and topographies actively enhance the cellular response within CVDs. The availability of newly advanced techniques in nanomaterial science opens new avenues for the targeting of CVDs. The successful application of nanomaterials for CVDs needs a detailed understanding of both the disease and targeting moieties.
Collapse
|
97
|
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. BIOSENSORS 2021; 11:97. [PMID: 33810621 PMCID: PMC8066896 DOI: 10.3390/bios11040097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a rare type of cancer, and its treatment, as well as diagnosis, is challenging, owing to mutations in the tumor-suppressor genes and lack of targeted, efficient, cost-effective therapy, exhibiting a significant need for novel approaches to address these concerns. For this purpose, nanotechnology has revolutionized the field of medicine with versatile potential capabilities for both the diagnosis, as well as the treatment, of retinoblastoma via the targeted and controlled delivery of anticancer drugs via binding to the overexpressed retinoblastoma gene. Nanotechnology has also generated massive advancements in the treatment of retinoblastoma based on the use of surface-tailored multi-functionalized nanocarriers; overexpressed receptor-based nanocarriers ligands (folate, galactose, and hyaluronic acid); lipid-based nanocarriers; and metallic nanocarriers. These nanocarriers seem to benchmark in mitigating a plethora of malignant retinoblastoma via targeted delivery at a specified site, resulting in programmed apoptosis in cancer cells. The effectiveness of these nanoplatforms in diagnosing and treating intraocular cancers such as retinoblastoma has not been properly discussed, despite the increasing significance of nanomedicine in cancer management. This article reviewed the recent milestones and future development areas in the field of intraocular drug delivery and diagnostic platforms focused on nanotechnology.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Mahmood Barani
- Department of Chemistry, ShahidBahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
98
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
99
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
100
|
Qindeel M, Barani M, Rahdar A, Arshad R, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:546. [PMID: 33671511 PMCID: PMC7926703 DOI: 10.3390/nano11020546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs. On the other side, nanotechnology brought tremendous breakthroughs for the treatment of UTIs based on the use of metallic nanoparticles (NPs) for instance, owing to the antimicrobial properties of metals, or of surface-tailored nanocarriers, allowing to overcome multidrug-resistance and prevent biofilm formation via targeted drug delivery to desired sites of action and preventing the development of cytotoxic processes in healthy cells. The goal of the current study is therefore to present the newest developments for the diagnosis and treatment of UTIs based on nanotechnology procedures in relation to the currently available techniques.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg, Germany
| |
Collapse
|