51
|
Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trézéguet V, Arsac L, Diolez P. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014; 13:39-48. [PMID: 23919652 PMCID: PMC4326861 DOI: 10.1111/acel.12147] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.
Collapse
Affiliation(s)
- Gilles Gouspillou
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Département de Kinanthropologie; Université du Québec à Montréal; Montreal Quebec Canada
| | - Isabelle Bourdel-Marchasson
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- CHU de Bordeaux; Pôle de gérontologie clinique; Bordeaux France
| | - Richard Rouland
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Guillaume Calmettes
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Department of Medicine (Cardiology); David Geffen School of Medicine; University of California; Los Angeles CA USA
| | - Marc Biran
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Véronique Deschodt-Arsac
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Sylvain Miraux
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Eric Thiaudiere
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Pasdois
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Dominique Detaille
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Jean-Michel Franconi
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Marion Babot
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Laurent Arsac
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Diolez
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| |
Collapse
|
52
|
Fitzenberger E, Deusing DJ, Marx C, Boll M, Lüersen K, Wenzel U. The polyphenol quercetin protects the mev-1 mutant of Caenorhabditis elegans from glucose-induced reduction of survival under heat-stress depending on SIR-2.1, DAF-12, and proteasomal activity. Mol Nutr Food Res 2014; 58:984-94. [PMID: 24407905 DOI: 10.1002/mnfr.201300718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022]
Abstract
SCOPE Hyperglycemia is a hallmark of diabetes mellitus but slighter increases of blood glucose levels are observed also during ageing. Using the Caenorhabditis elegans mev-1 mutant, we identified molecular mechanisms underlying the protection from glucose toxicity by the polyphenol quercetin. METHODS AND RESULTS We fed C. elegans mev-1 mutants on a liquid medium supplemented with 10 mM glucose, which resulted in a reduced survival at 37°C. The polyphenol quercetin (1 μM) was able to prevent glucose-induced lifespan reduction completely. RNA interference revealed that the sirtuin SIR-2.1, the nuclear hormone receptor DAF-12, and its putative co-activator MDT-15 were critical for the quercetin effects. Moreover, RNA interference for key factors of proteostasis reduced survival, which was not further affected by glucose or quercetin, suggesting that those proteins are a target for both substances. Besides unfolded protein response, proper functionality of the proteasome was shown to be crucial for the survival enhancing effects of quercetin and the polyphenol was finally demonstrated to activate proteasomal degradation. CONCLUSION Our studies demonstrate that lowest concentrations of quercetin prevent a glucose-induced reduction of survival. SIR-2.1, DAF-12, and MDT-15 were identified as targets that activate unfolded protein response and proteasomal degradation to limit the accumulation of functionally restricted proteins.
Collapse
Affiliation(s)
- Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Bereiter-Hahn J. Mitochondrial dynamics in aging and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:93-131. [PMID: 25149215 DOI: 10.1016/b978-0-12-394625-6.00004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are self-replicating organelles but nevertheless strongly depend on supply coded in nuclear genes. They serve many physiological demands in living cells. Supply of the cytoplasm with ATP and engagement in Ca(2+) regulation belong to the main functions of mitochondria. In large eukaryotic cells, in particular in neurons, with their long dendrites and axons, mitochondria have to move to the sites of their action. This trafficking involves several motor molecules and mechanisms to sense the sites of requirements of mitochondria. With aging and as a consequence of some diseases, mitochondrial components may be rendered dysfunctional, and mtDNA mutations arise during the course of replication and by the action of reactive oxygen species. Mutants in motor molecules engaged in trafficking and in the machinery of fusion and fission are causing severe deficiencies on the cellular level; they support neurodegeneration and, thus, cause many diseases. Frequent fusion and fission events mediate the elimination of impaired parts from mitochondria which finally will be degraded by autophagosomes. Extensive fusion provides a basis for functional complementation. Mobility of proteins and small molecules within the mitochondria is necessary to reach the functional goals of fusion and fission, although cristae and a large fraction of proteins of the respiratory complexes proved to be stable for hours after fusion and perform slow exchange of material.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
54
|
Zapico SC, Ubelaker DH. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences. Aging Dis 2013; 4:364-80. [PMID: 24307969 DOI: 10.14336/ad.2013.0400364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are "mitochondrial diseases", pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area.
Collapse
Affiliation(s)
- Sara C Zapico
- Smithsonian Institution, National Museum of Natural History, Department of Anthropology, Washington, DC 20560, USA
| | | |
Collapse
|
55
|
Abstract
SIGNIFICANCE Insulin resistance and its related diseases, obesity and type 2 diabetes mellitus (T2DM), have been linked to changes in aerobic metabolism, pointing to a possible role of mitochondria in the development of insulin resistance. RECENT ADVANCES Refined methodology of ex vivo high-resolution respirometry and in vivo magnetic resonance spectroscopy now allows describing several features of mitochondria in humans. In addition to measuring mitochondrial function at baseline and after exercise-induced submaximal energy depletion, the response of mitochondria to endocrine and metabolic challenges, termed mitochondrial plasticity, can be assessed using hyperinsulinemic clamp tests. While insulin resistant states do not uniformly relate to baseline and post-exercise mitochondrial function, mitochondrial plasticity is typically impaired in insulin resistant relatives of T2DM, in overt T2DM and even in type 1 diabetes mellitus (T1DM). CRITICAL ISSUES The variability of baseline mitochondrial function in the main target tissue of insulin action, skeletal muscle and liver, may be attributed to inherited and acquired changes in either mitochondrial quantity or quality. In addition to certain gene polymorphisms and aging, circulating glucose and lipid concentrations correlate with both mitochondrial function and plasticity. FUTURE DIRECTIONS Despite the associations between features of mitochondrial function and insulin sensitivity, the question of a causal relationship between compromised mitochondrial plasticity and insulin resistance in the development of obesity and T2DM remains to be resolved.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- Department of Metabolic Diseases, University Clinics Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
56
|
Kawamura K, Sunanaga T. Senescence-associated superoxide dismutase influences mitochondrial gene expression in budding tunicates. Dev Growth Differ 2013; 55:606-14. [PMID: 23679913 DOI: 10.1111/dgd.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/27/2022]
Abstract
A recent study has shown that in the budding tunicate Polyandrocarpa misakiensis, the mitochondrial respiratory chain (MRC) dramatically attenuates the gene activity during senescence. In this study, we examined the possible involvement of superoxide dismutase (SOD) in the attenuation of gene expression of cytochrome c oxidase subunit 1 (COX1) in aged zooids. By RT-PCR and in situ hybridization, Cu/Zn-SOD (SOD1) was found to be expressed in most cells and tissues of buds and juvenile zooids but showed a conspicuous decline in senescent adult zooids, except in the gonad tissue in which the cytoplasm of juvenile oocytes was stained heavily. This expression pattern of SOD1 was similar to that of COX1. In contrast to SOD1, Mn-SOD (SOD2) was expressed constitutively in both somatic and germline tissues of buds, juvenile zooids, and senescent adult zooids. Knockdown of SOD1 by RNAi diminished the gene activity of not only SOD1 but also of COX1. The resultant zooids had transient deficiencies in growth and budding, and they recovered from these deficiencies approximately 1 month later. Our results indicate that in P. misakiensis, SOD1 is a senescence-associated nuclear gene and that the experimental decline in SOD1 gene expression accompanies the attenuation of MRC gene activity. Although it is uncertain how SOD1 is downregulated during tunicate senescence, the decreased SOD1 activity could be one of the main causes of MRC gene attenuation during normal senescence.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, 780-8520, Japan.
| | | |
Collapse
|
57
|
Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS. Mitochondria as a target of environmental toxicants. Toxicol Sci 2013; 134:1-17. [PMID: 23629515 PMCID: PMC3693132 DOI: 10.1093/toxsci/kft102] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Fitzenberger E, Boll M, Wenzel U. Impairment of the proteasome is crucial for glucose-induced lifespan reduction in the mev-1 mutant of Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 2013; 1832:565-73. [DOI: 10.1016/j.bbadis.2013.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/20/2012] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
|
59
|
Liu D, Li H, Lu J, Bai Y. Tissue-specific implications of mitochondrial alterations in aging. Front Biosci (Elite Ed) 2013; 5:734-47. [PMID: 23277028 DOI: 10.2741/e654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging is a multifactorial process during which physiological alterations occur in all tissues. A decline in mitochondrial function plays an important role in the process of aging and in aging-associated diseases. The mitochondrial genome encodes 13 essential subunits of protein complexes belonging to the oxidative phosphorylation system, while most of the mitochondria-related genes are encoded by the nuclear genome. Coordination between the nucleus and mitochondria is crucial for the regulation of mitochondrial biogenesis and function. In this review, we will discuss aging-related mitochondrial dysfunction in various tissues and its implication in aging-related diseases and the aging process.
Collapse
Affiliation(s)
- Danhui Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | |
Collapse
|
60
|
Kawamura K, Kitamura S, Sekida S, Tsuda M, Sunanaga T. Molecular anatomy of tunicate senescence: reversible function of mitochondrial and nuclear genes associated with budding cycles. Development 2012; 139:4083-93. [PMID: 23014695 DOI: 10.1242/dev.083170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Zooids of the asexual strain of Polyandrocarpa misakiensis have a lifespan of 4-5 months; before dying, they produce many buds, enabling continuation of the strain. This study was designed to investigate the nature of gene inactivation and reactivation during this continuous process of senescence and budding. During senescence, the zooidal epidermis showed acid β-galactosidase activity, lost proliferating cell nuclear antigen immunoreactivity and became ultrastructurally worn, indicating that the epidermis is a major tissue affected by the ageing process. Semi-quantitative PCR analysis showed that the genes encoding mitochondrial respiratory chains (MRCs) engaged in decreased transcriptional activity in senescent adults compared with younger adults. The results of in situ hybridization showed that the epidermis dramatically attenuates MRC expression during ageing but restores gene activity when budding commences. During budding and ageing, the nuclear gene Eed (a polycomb group component) was activated and inactivated in a pattern similar to that observed in MRCs. In buds, RNA interference (RNAi) of Eed attenuated Eed transcripts but did not affect the gene expression of pre-activated MRCs. A tunicate humoral factor, TC14-3, could induce Eed, accompanying the reactivation of MRC in adult zooids. When RNAi of Eed and Eed induction were performed simultaneously, zooidal cells and tissues failed to engage in MRC reactivation, indicating the involvement of Eed in MRC activation. Results of this study provide evidence that the mitochondrial gene activities of Polyandrocarpa can be reversed during senescence and budding, suggesting that they are regulated by nuclear polycomb group genes.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | | | | | | | | |
Collapse
|
61
|
Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R, Morais VA, Verstreken P. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 2012; 336:1306-10. [PMID: 22582012 DOI: 10.1126/science.1218632] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human UBIAD1 localizes to mitochondria and converts vitamin K(1) to vitamin K(2). Vitamin K(2) is best known as a cofactor in blood coagulation, but in bacteria it is a membrane-bound electron carrier. Whether vitamin K(2) exerts a similar carrier function in eukaryotic cells is unknown. We identified Drosophila UBIAD1/Heix as a modifier of pink1, a gene mutated in Parkinson's disease that affects mitochondrial function. We found that vitamin K(2) was necessary and sufficient to transfer electrons in Drosophila mitochondria. Heix mutants showed severe mitochondrial defects that were rescued by vitamin K(2), and, similar to ubiquinone, vitamin K(2) transferred electrons in Drosophila mitochondria, resulting in more efficient adenosine triphosphate (ATP) production. Thus, mitochondrial dysfunction was rescued by vitamin K(2) that serves as a mitochondrial electron carrier, helping to maintain normal ATP production.
Collapse
Affiliation(s)
- Melissa Vos
- VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel-Duby R, Olson EN. Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. J Clin Invest 2011; 121:3258-68. [PMID: 21737882 DOI: 10.1172/jci46267] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/11/2011] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs modulate cellular phenotypes by inhibiting expression of mRNA targets. In this study, we have shown that the muscle-specific microRNAs miR-133a-1 and miR-133a-2 are essential for multiple facets of skeletal muscle function and homeostasis in mice. Mice with genetic deletions of miR-133a-1 and miR-133a-2 developed adult-onset centronuclear myopathy in type II (fast-twitch) myofibers, accompanied by impaired mitochondrial function, fast-to-slow myofiber conversion, and disarray of muscle triads (sites of excitation- contraction coupling). These abnormalities mimicked human centronuclear myopathies and could be ascribed, at least in part, to dysregulation of the miR-133a target mRNA that encodes dynamin 2, a GTPase implicated in human centronuclear myopathy. Our findings reveal an essential role for miR-133a in the maintenance of adult skeletal muscle structure, function, bioenergetics, and myofiber identity; they also identify a potential modulator of centronuclear myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology and 2Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75930-9148, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hartmann N, Reichwald K, Wittig I, Dröse S, Schmeisser S, Lück C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C. Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 2011; 10:824-31. [PMID: 21624037 DOI: 10.1111/j.1474-9726.2011.00723.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Among vertebrates that can be kept in captivity, the annual fish Nothobranchius furzeri possesses the shortest known lifespan. It also shows typical signs of aging and is therefore an ideal model to assess the role of different physiological and environmental parameters on aging and lifespan determination. Here, we used Nothobranchius furzeri to study whether aging is associated with mitochondrial DNA (mtDNA) alterations and changes in mitochondrial function. We sequenced the complete mitochondrial genome of N. furzeri and found an extended control region. Large-scale mtDNA deletions have been frequently described to accumulate in other organisms with age, but there was no evidence for the presence of detectable age-related mtDNA deletions in N. furzeri. However, mtDNA copy number significantly decreased with age in skeletal muscle, brain, liver, skin and dorsal fin. Consistent with this finding, expression of Pgc-1α that encodes a transcriptional coactivator of mitochondrial biogenesis and expression of Tfam and mtSsbp both encoding mtDNA binding factors was downregulated with age. The investigation of possible changes in mitochondrial function revealed that the content of respiratory chain complexes III and IV was reduced in skeletal muscle with age. In addition, ADP-stimulated and succinate-dependent respiration was decreased in mitochondria of old fish. These findings suggest that despite the short lifespan, aging in N. furzeri is associated with a decline in mtDNA copy number, the downregulation of mtDNA-associated genes and an impairment of mitochondrial function.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/physiology
- Animals
- Cell Respiration
- Cyprinodontiformes/genetics
- Cyprinodontiformes/metabolism
- Cyprinodontiformes/physiology
- DNA Copy Number Variations
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation, Developmental
- Genome, Mitochondrial
- Longevity
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/physiology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Theoretical
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Nils Hartmann
- Department of Molecular Genetics, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Skeletal muscle phosphodiester content relates to body mass and glycemic control. PLoS One 2011; 6:e21846. [PMID: 21779337 PMCID: PMC3136462 DOI: 10.1371/journal.pone.0021846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/07/2011] [Indexed: 01/07/2023] Open
Abstract
Background Aging and insulin resistance have been related to reduced mitochondrial function and oxidative stress. Muscular phosphodiesters (PDE) are comprised of metabolites of phospholipid breakdown and may reflect membrane damage. We aimed to test the hypothesis that myocellular PDE are increased in patients with type 2 diabetes (T2D) and correlate inversely with mitochondrial ATP turnover. Methods A Cross-sectional study in the Clinical Research Facility of an University hospital was performed. 10 nonobese middle-aged patients with T2D, 10 healthy humans matched for sex, age and physical activity index (CONm) and 18 young healthy humans (CONy) were included. Myocellular PDE and unidirectional flux through ATP synthase (fATP) were measured with 31P magnetic resonance spectroscopy (MRS). Intramyocellular (IMCL) and hepatocellular lipid deposition (HCL) were quantified with 1H MRS. Insulin sensitivity (Rd) was assessed from hyperinsulinemic-euglycemic clamp tests in 10 T2D, 10 CONm and 11 CONy. Results During fasting, T2D and CONm had 1.5 fold greater PDE than CONy (2.8±0.2, 2.5±0.2, 1.7±0.1 mmol/l, P = 0.004). Stimulation by insulin did not affect PDE in any group. PDE correlated negatively with Rd (r = −0.552, p<0.005) and fATP (r = −0.396, p<0.05) and positively with age (r = 0.656, p<0.001) and body mass (r = 0.597, p<0.001). PDE also related positively to HbA1c (r = 0.674, p<0.001) and fasting plasma glucose (r = 0.629, p<0.001) within T2D and across all participants. Conclusions Muscular PDE concentrations associate with age, lower resting mitochondrial activity and insulin resistance, which is determined mainly by body mass and glycemia.
Collapse
|
65
|
Szeto HH, Schiller PW. Novel Therapies Targeting Inner Mitochondrial Membrane—From Discovery to Clinical Development. Pharm Res 2011; 28:2669-79. [DOI: 10.1007/s11095-011-0476-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
66
|
Jian B, Yang S, Chen D, Chaudry I, Raju R. Influence of aging and hemorrhage injury on Sirt1 expression: possible role of myc-Sirt1 regulation in mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1446-51. [PMID: 21554952 DOI: 10.1016/j.bbadis.2011.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 02/02/2023]
Abstract
Trauma-hemorrhage (T-H) causes hypoxia and organ dysfunction. Mitochondrial dysfunction is a major factor for cellular injury due to T-H. Aging also has been known to cause progressive mitochondrial dysfunction. In order to study the effect of aging on T-H-induced mitochondrial dysfunction, we recently developed a rodent mitochondrial genechip with probesets representing mitochondrial and nuclear genes contributing to mitochondrial structure and function. Using this chip we recently identified signature mitochondrial genes altered following T-H in 6 and 22 month old rats; augmented expression of the transcription factor c-myc was the most pronounced. Based on reports of c-myc-IL6 collaboration and c-myc-Sirt1 negative regulation, we further investigated the expression of these regulatory factors with respect to aging and injury. Rats of ages 6 and 22 months were subjected to T-H or sham operation and left ventricular tissues were tested for cytosolic cytochrome c, mtDNA content, Sirt1 and mitochondrial biogenesis factors Foxo1, Ppara and Nrf-1. We observed increased cardiac cytosolic cytochrome c (sham vs T-H, p<0.03), decreased mitochondrial DNA content (sham vs T-H, p<0.05), and decreased Sirt1 expression (sham vs TH, p<0.05) following T-H and with progressing age. Additionally, expression of mitochondrial biogenesis regulating transcription factors Foxo1 and Nrf-1 was also decreased with T-H and aging. Based upon these observations we conclude that Sirt1 expression is negatively modulated by T-H causing downregulation of mitochondrial biogenesis. Thus, induction of Sirt1 is likely to produce salutary effects following T-H induced injury and hence, Sirt1 may be a potential molecular target for translational research in injury resolution.
Collapse
Affiliation(s)
- Bixi Jian
- Center for Surgical Research, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
67
|
Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes. Biochem Biophys Res Commun 2010; 404:1023-8. [PMID: 21187069 DOI: 10.1016/j.bbrc.2010.12.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 11/22/2022]
Abstract
Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid oxidation (complete and incomplete) were determined in non-contracting myotubes established from 10 lean, 10 obese and 10 subjects with type 2 diabetes precultured under normophysiological conditions. ATP, ADP, AMP, mitochondrial mass and energy charge were not different between groups. In diabetic myotubes, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation.
Collapse
|