51
|
Kim Y, de la Motte CA. The Role of Hyaluronan Treatment in Intestinal Innate Host Defense. Front Immunol 2020; 11:569. [PMID: 32411124 PMCID: PMC7201044 DOI: 10.3389/fimmu.2020.00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan (HA) is best known as an abundantly present extracellular matrix component found throughout the body of all vertebrates, including humans. Recent evidence, however, has demonstrated benefits of providing HA exogenously as a therapeutic modality for several medical conditions. Here we discuss the effects of providing HA treatment to increase innate host defense of the intestine, elucidate the size specific effects of HA, and discuss the role of various HA receptors as potential mediators of the HA effects in the intestine. This review especially focuses on HA interaction with the epithelium because it is the primary cellular barrier of the intestine and these cells play a critical balancing role between allowing water and nutrient absorption while excluding microbes and harmful dietary metabolites that are constantly in that organ's environment.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
52
|
Jia X, Mo Z, Zhao Q, Bao T, Xu W, Gao Z, Peng L, Zhu X. Transcriptome alterations in HepG2 cells induced by shRNA knockdown and overexpression of TMEM2 gene. Biosci Biotechnol Biochem 2020; 84:1576-1584. [PMID: 32326855 DOI: 10.1080/09168451.2020.1756733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transmembrane 2 (TMEM2) gene inhibits chronic hepatitis-B virus (HBV) infection, while the underlying molecular mechanisms remain unknown. Transcriptome alterations in HepG2 cells following TMEM2 overexpression or silencing by shRNA were analyzed by next-generation sequencing. Both overexpression and knockdown of the TMEM2 gene caused wide-spread changes in gene expression in HepG2 cells. Differentially expressed genes caused by altered TMEM2 gene expression were associated with multiple biological processes linked with viral infection and various signaling pathways. KEGG analysis revealed that many of the differentially expressed genes were enriched in the PI3K/AKT signaling pathway. Moreover, we show that genes related to the PI3K/AKT signaling pathway, such as SYK, FLT4, AKT3, FLT1, and IL6, are biological targets regulated by TMEM2 in HepG2 cells. This is the first transcriptome-wide study in which TMEM2-regulated genes in HepG2 cells have been screened. Our findings elucidate the molecular events associated with TMEM2-mediated hepatocyte pathogenesis in chronic HBV infection.
Collapse
Affiliation(s)
- Xiuhua Jia
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Zhishuo Mo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Tiancheng Bao
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Wexiong Xu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Diseases, Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University , Guangzhou, Guangdong Province, China
| |
Collapse
|
53
|
Wang G, Tiemeier GL, van den Berg BM, Rabelink TJ. Endothelial Glycocalyx Hyaluronan: Regulation and Role in Prevention of Diabetic Complications. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:781-790. [PMID: 32035886 DOI: 10.1016/j.ajpath.2019.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 10/25/2022]
Abstract
The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.
Collapse
Affiliation(s)
- Gangqi Wang
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gesa L Tiemeier
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
54
|
Sapudom J, Nguyen KT, Martin S, Wippold T, Möller S, Schnabelrauch M, Anderegg U, Pompe T. Biomimetic tissue models reveal the role of hyaluronan in melanoma proliferation and invasion. Biomater Sci 2020; 8:1405-1417. [DOI: 10.1039/c9bm01636h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic matrix models demonstrate the role of the size-dependent effect of hyaluronan in melanoma progression and reveal an alternative explanation forin vivofindings of hyaluronan dependent melanoma growth.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry
- Faculty of Life Sciences
- Universität Leipzig
- Leipzig 04103
- Germany
| | - Khiet-Tam Nguyen
- Department of Dermatology
- Venerology and Allergology
- Medical Faculty, Universität Leipzig
- Leipzig 04103
- Germany
| | - Steve Martin
- Institute of Biochemistry
- Faculty of Life Sciences
- Universität Leipzig
- Leipzig 04103
- Germany
| | - Tom Wippold
- Department of Dermatology
- Venerology and Allergology
- Medical Faculty, Universität Leipzig
- Leipzig 04103
- Germany
| | | | | | - Ulf Anderegg
- Department of Dermatology
- Venerology and Allergology
- Medical Faculty, Universität Leipzig
- Leipzig 04103
- Germany
| | - Tilo Pompe
- Institute of Biochemistry
- Faculty of Life Sciences
- Universität Leipzig
- Leipzig 04103
- Germany
| |
Collapse
|
55
|
Cederström S, Lundman P, Folkersen L, Paulsson-Berne G, Karadimou G, Eriksson P, Caidahl K, Gabrielsen A, Jernberg T, Persson J, Tornvall P. New candidate genes for ST-elevation myocardial infarction. J Intern Med 2020; 287:66-77. [PMID: 31589004 DOI: 10.1111/joim.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite extensive research in atherosclerosis, the mechanisms of coronary atherothrombosis in ST-elevation myocardial infarction (STEMI) patients are undetermined. OBJECTIVES Our aim was to find candidate genes involved in STEMI by analysing leucocyte gene expression in STEMI patients, without the influence of secondary inflammation from innate immunity, which was assumed to be a consequence rather than the cause of coronary atherothrombosis. METHODS Fifty-one patients were included at coronary angiography because of STEMI. Arterial blood was sampled in the acute phase (P1), at 24-48 h (P2) and at 3 months (P3). Leucocyte RNA was isolated and gene expression analysis was performed by Affymetrix Human Transcriptome Array 2.0. By omission of up- or downregulated genes at P2, secondary changes from innate immunity were excluded. Genes differentially expressed in P1 when compared to the convalescent sample in P3 were determined as genes involved in STEMI. RESULTS Three genes were upregulated at P1 compared to P3; ABCG1 (P = 5.81 × 10-5 ), RAB20 (P = 3.69 × 10-5 ) and TMEM2 (P = 7.75 × 10-6 ) whilst four were downregulated; ACVR1 (P = 9.01 × 10-5 ), NFATC2IP (P = 8.86 × 10-5 ), SUN1 (P = 3.87 × 10-5 ) and TTC9C (P = 7.18 × 10-6 ). These genes were also highly expressed in carotid atherosclerotic plaques. CONCLUSIONS We found seven genes involved in STEMI. The study is unique regarding the blood sampling in the acute phase and omission of secondary expressed genes from innate immunity. However, the results need to be replicated by future studies.
Collapse
Affiliation(s)
- S Cederström
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Lundman
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - L Folkersen
- Sankt Hans Hospital, Capital Region Hospitals, Roskilde, Denmark
| | - G Paulsson-Berne
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - G Karadimou
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - P Eriksson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - K Caidahl
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Gabrielsen
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - T Jernberg
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - J Persson
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Tornvall
- Division of Cardiovascular medicine, Department of Clinical Science and Education, Södersjukhuset (KI SÖS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
56
|
Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation. Neural Plast 2019; 2019:6804575. [PMID: 31772567 PMCID: PMC6854953 DOI: 10.1155/2019/6804575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
The perineuronal net (PNN) is a mesh-like proteoglycan structure on the neuronal surface which is involved in regulating plasticity. The PNN regulates plasticity via multiple pathways, one of which is direct regulation of synapses through the control of AMPA receptor mobility. Since neuronal pentraxin 2 (Nptx2) is a known regulator of AMPA receptor mobility and Nptx2 can be removed from the neuronal surface by PNN removal, we investigated whether Nptx2 has a function in the PNN. We found that Nptx2 binds to the glycosaminoglycans hyaluronan and chondroitin sulphate E in the PNN. Furthermore, in primary cortical neuron cultures, the addition of NPTX2 to the culture medium enhances PNN formation during PNN development. These findings suggest Nptx2 as a novel PNN binding protein with a role in the mechanism of PNN formation.
Collapse
|
57
|
Yang YM, Noureddin M, Liu C, Ohashi K, Kim SY, Ramnath D, Powell EE, Sweet MJ, Roh YS, Hsin IF, Deng N, Liu Z, Liang J, Mena E, Shouhed D, Schwabe RF, Jiang D, Lu SC, Noble PW, Seki E. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci Transl Med 2019; 11:eaat9284. [PMID: 31189722 PMCID: PMC6589184 DOI: 10.1126/scitranslmed.aat9284] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/14/2019] [Indexed: 01/18/2023]
Abstract
Hyaluronan (HA), a major extracellular matrix glycosaminoglycan, is a biomarker for cirrhosis. However, little is known about the regulatory and downstream mechanisms of HA overproduction in liver fibrosis. Hepatic HA and HA synthase 2 (HAS2) expression was elevated in both human and murine liver fibrosis. HA production and liver fibrosis were reduced in mice lacking HAS2 in hepatic stellate cells (HSCs), whereas mice overexpressing HAS2 had exacerbated liver fibrosis. HAS2 was transcriptionally up-regulated by transforming growth factor-β through Wilms tumor 1 to promote fibrogenic, proliferative, and invasive properties of HSCs via CD44, Toll-like receptor 4 (TLR4), and newly identified downstream effector Notch1. Inhibition of HA synthesis by 4-methylumbelliferone reduced HSC activation and liver fibrosis in mice. Our study provides evidence that HAS2 actively synthesizes HA in HSCs and that it promotes HSC activation and liver fibrosis through Notch1. Targeted HA inhibition may have potential to be an effective therapy for liver fibrosis.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Mazen Noureddin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cheng Liu
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Koichiro Ohashi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - So Yeon Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, University of Queensland, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yoon Seok Roh
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pharmacy, Chungbuk National University College of Pharmacy, Cheongju, Chungbuk 28160, South Korea
| | - I-Fang Hsin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edward Mena
- California Liver Research Institute, Pasadena, CA 91105, USA
| | - Daniel Shouhed
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
58
|
Hyaluronan as tunable drug delivery system. Adv Drug Deliv Rev 2019; 146:83-96. [PMID: 31421148 DOI: 10.1016/j.addr.2019.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
The hyaluronan (HA) polymer is an important macromolecule of extracellular matrix with remarkable structure and functions: it is a linear and unbranched polymer without sulphate or phosphate groups and has key role in several biological processes in mammals. It is ubiquitous in mammalian tissues with several and specific functions, influencing cell proliferation and migration as well as angiogenesis and inflammation. To exert these important functions in tissues HA modifies the concentration and size. Considering this HA content in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The function of HA is also critical in several pathologies including cancer, diabetes and chronic inflammation. Among these biological roles, the structural properties of HA allow to use this polymer in regenerative medicine including cosmetics and drug delivery. HA takes advantage from its capacity to form gels even at concentration of 1% producing scaffolds with very intriguing mechanical properties. These hydrogels are useful in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues and its role as drug delivery system.
Collapse
|
59
|
Hyaluronan: Structure, Metabolism, and Biological Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
60
|
Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol 2018; 9:2787. [PMID: 30555472 PMCID: PMC6281886 DOI: 10.3389/fimmu.2018.02787] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan is a hygroscopic glycosaminoglycan that contributes to both extracellular and pericellular matrices. While the production of hyaluronan is essential for mammalian development, less is known about its interaction and function with immune cells. Here we review what is known about hyaluronan in the lung and how it impacts immune cells, both at homeostasis and during lung inflammation and fibrosis. In the healthy lung, alveolar macrophages provide the first line of defense and play important roles in immunosurveillance and lipid surfactant homeostasis. Alveolar macrophages are surrounded by a coat of hyaluronan that is bound by CD44, a major hyaluronan receptor on immune cells, and this interaction contributes to their survival and the maintenance of normal alveolar macrophage numbers. Alveolar macrophages are conditioned by the alveolar environment to be immunosuppressive, and can phagocytose particulates without alerting an immune response. However, during acute lung infection or injury, an inflammatory immune response is triggered. Hyaluronan levels in the lung are rapidly increased and peak with maximum leukocyte infiltration, suggesting a role for hyaluronan in facilitating leukocyte access to the injury site. Hyaluronan can also be bound by hyaladherins (hyaluronan binding proteins), which create a provisional matrix to facilitate tissue repair. During the subsequent remodeling process hyaluronan concentrations decline and levels return to baseline as homeostasis is restored. In chronic lung diseases, the inflammatory and/or repair phases persist, leading to sustained high levels of hyaluronan, accumulation of associated immune cells and an inability to resolve the inflammatory response.
Collapse
Affiliation(s)
- Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
61
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|