51
|
Kim SH, Park HH. Crystallization and preliminary X-ray crystallographic analysis of the CARD domain of apoptosis repressor with CARD (ARC). Acta Crystallogr F Struct Biol Commun 2015; 71:82-5. [PMID: 25615975 PMCID: PMC4304754 DOI: 10.1107/s2053230x14026211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022] Open
Abstract
Apoptosis repressor with caspase-recruiting domain (ARC) is an apoptosis repressor that inhibits both intrinsic and extrinsic apoptosis signalling. Human ARC contains an N-terminal caspase-recruiting domain (CARD domain) and a C-terminal proline- and glutamic acid-rich (P/E-rich) domain. The CARD domain in ARC is the domain that is directly involved in inhibition of the extrinsic pathway. In this study, the N-terminal CARD domain of ARC was overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 2.1 Å and the crystals were found to belong to space group P6(1) or P65, with unit-cell parameters a=98.28, b=98.28, c=51.86 Å, α=90, β=90, γ=120°.
Collapse
Affiliation(s)
- Seong Hyun Kim
- Department of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hyun Ho Park
- Department of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
52
|
Mak PY, Mak DH, Ruvolo V, Jacamo R, Kornblau SM, Kantarjian H, Andreeff M, Carter BZ. Apoptosis repressor with caspase recruitment domain modulates second mitochondrial-derived activator of caspases mimetic-induced cell death through BIRC2/MAP3K14 signalling in acute myeloid leukaemia. Br J Haematol 2014; 167:376-84. [PMID: 25079338 PMCID: PMC4357400 DOI: 10.1111/bjh.13054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/23/2014] [Indexed: 12/21/2022]
Abstract
Overexpression of the apoptosis repressor with caspase recruitment domain (ARC, also termed NOL3) protein predicts adverse outcome in patients with acute myeloid leukaemia (AML) and confers drug resistance to AML cells. The second mitochondrial-derived activator of caspases (SMAC, also termed DIABLO) mimetic, birinapant, promotes extrinsic apoptosis in AML cells. SMAC mimetics induce cleavage of cellular inhibitor of apoptosis (cIAP) proteins, leading to stabilization of the nuclear factor-κB (NF-κB)-inducing kinase (MAP3K14, also termed NIK) and activation of non-canonical NF-κB signalling. To enhance the therapeutic potential of SMAC mimetics in AML, we investigated the regulation and role of ARC in birinapant-induced apoptosis. We showed that birinapant increases ARC in AML and bone marrow-derived mesenchymal stromal cells (MSCs). Downregulation of MAP3K14 by siRNA decreased ARC levels and suppressed birinapant-induced ARC increase. Reverse-phase protein array analysis of 511 samples from newly diagnosed AML patients showed that BIRC2 (also termed cIAP1) and ARC were inversely correlated. Knockdown of ARC sensitized, while overexpression attenuated, birinapant-induced apoptosis. Furthermore, ARC knockdown in MSCs sensitized co-cultured AML cells to birinapant-induced apoptosis. Our data demonstrate that ARC is regulated via BIRC2/MAP3K14 signalling and its overexpression in AML or MSCs can function as a resistant factor to birinapant-induced leukaemia cell death, suggesting that strategies to inhibit ARC will improve the therapeutic potential of SMAC mimetics.
Collapse
MESH Headings
- Aged
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/physiology
- Coculture Techniques
- Dipeptides/pharmacology
- Dipeptides/therapeutic use
- Drug Design
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic
- Humans
- Indoles/pharmacology
- Indoles/therapeutic use
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/physiology
- Intracellular Signaling Peptides and Proteins/physiology
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mesenchymal Stem Cells/drug effects
- Middle Aged
- Mitochondrial Proteins/physiology
- Molecular Targeted Therapy
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/physiology
- NF-kappa B/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- RNA Interference
- RNA, Small Interfering/pharmacology
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/pharmacology
- Ubiquitin-Protein Ligases
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Po Y Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
As noted in the separate introduction to this special topic section, episodic and electrical disorders can appear quite different clinically and yet share many overlapping features, including attack precipitants, therapeutic responses, natural history, and the types of genes that cause many of the genetic forms (i.e., ion channel genes). Thus, as we mapped and attempted to clone genes causing other episodic disorders, ion channels were always outstanding candidates when they mapped to the critical region of linkage in such a family. However, some of these disorders do not result from mutations in channels. This realization has opened up large and exciting new areas for the pathogenesis of these disorders. In some cases, the mutations occur in genes of unknown function or without understanding of molecular pathogenesis. Recently, emerging insights into a fascinating group of episodic movement disorders, the paroxysmal dyskinesias, and study of the causative genes and proteins are leading to the emerging concept of episodic electric disorders resulting from synaptic dysfunction. Much work remains to be done, but the field is evolving rapidly. As it does, we have come to realize that the molecular pathogenesis of electrical and episodic disorders is more complex than a scenario in which such disorders are simply due to mutations in the primary determinants of membrane excitability (channels).
Collapse
|
54
|
Eibl C, Hessenberger M, Wenger J, Brandstetter H. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2007-18. [PMID: 25004977 PMCID: PMC4089490 DOI: 10.1107/s1399004714010311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022]
Abstract
The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.
Collapse
Affiliation(s)
- Clarissa Eibl
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Manuel Hessenberger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Julia Wenger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
55
|
Kung G, Dai P, Deng L, Kitsis RN. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis. Cell Death Differ 2014; 21:634-44. [PMID: 24440909 PMCID: PMC3950326 DOI: 10.1038/cdd.2013.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022] Open
Abstract
TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Line, Tumor
- Fas-Associated Death Domain Protein/metabolism
- HMGB1 Protein/metabolism
- Humans
- MCF-7 Cells
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- NF-kappa B/metabolism
- Necrosis/chemically induced
- Necrosis/metabolism
- Necrosis/pathology
- Protein Binding
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- G Kung
- Departments of Cell Biology and Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - P Dai
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - L Deng
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - R N Kitsis
- Departments of Cell Biology and Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
56
|
Bo L, Su-Ling D, Fang L, Lu-Yu Z, Tao A, Stefan D, Kun W, Pei-Feng L. Autophagic program is regulated by miR-325. Cell Death Differ 2014; 21:967-77. [PMID: 24531537 DOI: 10.1038/cdd.2014.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/31/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Autophagy is required for the maintenance of cardiomyocytes homeostasis. However, the abnormal autophagy could lead to the development of heart failure. Autophagy is enhanced during myocardial ischemia/reperfusion; it remains to elucidate the molecular regulation of autophagy. We report here that miR-325, ARC and E2F1 constitute an axis that regulates autophagy. Our results showed that miR-325 expression is upregulated upon anoxia/reoxygenation and ischemia/reperfusion. Cardiomyocyte-specific overexpression of the miR-325 potentiates autophagic responses and myocardial infarct sizes, whereas knockdown of miR-325 inhibited autophagy and cell death. We searched for the downstream mediator of miR-325 and identified that ARC is a target of miR-325. ARC transgenic mice could attenuate autophagy and myocardial infarction sizes upon pressure-overload-induced heart failure, whereas ARC null mice exhibited an increased autophagic accumulation in the heart. The suppression of ARC by miR-325 led to its inability to repress autophagic program. In exploring the molecular mechanism by which miR-325 expression is regulated, our results revealed that the transcription factor E2F1 contributed to promote miR-325 expression. E2F1 null mice demonstrated reduced autophagy and myocardial infarction sizes upon ischemia/reperfusion. Our present study reveals a novel autophagic regulating model that is composed of E2F1, miR-325 and ARC. Modulation of their levels may provide a new approach for tackling cardiac failure.
Collapse
Affiliation(s)
- L Bo
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - D Su-Ling
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - L Fang
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Z Lu-Yu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - A Tao
- FU WAI Hospital CAMS&PUMC, National Center for Cardiovascular Diseases, Beijing 10037, China
| | - D Stefan
- Franz-Volhard-Clinic, Humboldt University of Berlin, Berlin 13125, Germany
| | - W Kun
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - L Pei-Feng
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
57
|
Fiedler LR, Maifoshie E, Schneider MD. Mouse models of heart failure: cell signaling and cell survival. Curr Top Dev Biol 2014; 109:171-247. [PMID: 24947238 DOI: 10.1016/b978-0-12-397920-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heart failure is one of the paramount global causes of morbidity and mortality. Despite this pandemic need, the available clinical counter-measures have not altered substantially in recent decades, most notably in the context of pharmacological interventions. Cell death plays a causal role in heart failure, and its inhibition poses a promising approach that has not been thoroughly explored. In previous approaches to target discovery, clinical failures have reflected a deficiency in mechanistic understanding, and in some instances, failure to systematically translate laboratory findings toward the clinic. Here, we review diverse mouse models of heart failure, with an emphasis on those that identify potential targets for pharmacological inhibition of cell death, and on how their translation into effective therapies might be improved in the future.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
58
|
The apoptosis repressor with a CARD domain (ARC) gene is a direct hypoxia-inducible factor 1 target gene and promotes survival and proliferation of VHL-deficient renal cancer cells. Mol Cell Biol 2013; 34:739-51. [PMID: 24344197 DOI: 10.1128/mcb.00644-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The induction of hypoxia-inducible factors (HIFs) is essential for the adaptation of tumor cells to a low-oxygen environment. We found that the expression of the apoptosis inhibitor ARC (apoptosis repressor with a CARD domain) was induced by hypoxia in a variety of cancer cell types, and its induction is primarily HIF1 dependent. Chromatin immunoprecipitation (ChIP) and reporter assays also indicate that the ARC gene is regulated by direct binding of HIF1 to a hypoxia response element (HRE) located at bp -190 upstream of the transcription start site. HIFs play an essential role in the pathogenesis of renal cell carcinoma (RCC) under normoxic conditions, through the loss of the Von Hippel-Lindau gene (VHL). Accordingly, our results show that ARC is not expressed in normal renal tissue but is highly expressed in 65% of RCC tumors, which also express high levels of carbonic anhydrase IX (CAIX), a HIF1-dependent protein. Compared to controls, ARC-deficient RCCs exhibited decreased colony formation and increased apoptosis in vitro. In addition, loss of ARC resulted in a dramatic reduction of RCC tumor growth in SCID mice in vivo. Thus, HIF-mediated increased expression of ARC in RCC can explain how loss of VHL can promote survival early in tumor formation.
Collapse
|
59
|
Apoptosis repressor with a CARD domain (ARC) restrains Bax-mediated pathogenesis in dystrophic skeletal muscle. PLoS One 2013; 8:e82053. [PMID: 24312627 PMCID: PMC3846897 DOI: 10.1371/journal.pone.0082053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
Myofiber wasting in muscular dystrophy has largely been ascribed to necrotic cell death, despite reports identifying apoptotic markers in dystrophic muscle. Here we set out to identify the contribution of canonical apoptotic pathways to skeletal muscle degeneration in muscular dystrophy by genetically deleting a known inhibitor of apoptosis, apoptosis repressor with a card domain (Arc), in dystrophic mouse models. Nol3 (Arc protein) genetic deletion in the dystrophic Sgcd or Lama2 null backgrounds showed exacerbated skeletal muscle pathology with decreased muscle performance compared with single null dystrophic littermate controls. The enhanced severity of the dystrophic phenotype associated with Nol3 deletion was caspase independent but dependent on the mitochondria permeability transition pore (MPTP), as the inhibitor Debio-025 partially rescued skeletal muscle pathology in Nol3 (-/-) Sgcd (-/-) double targeted mice. Mechanistically, Nol3 (-/-) Sgcd (-/-) mice showed elevated total and mitochondrial Bax protein levels, as well as greater mitochondrial swelling, suggesting that Arc normally restrains the cell death effects of Bax in skeletal muscle. Indeed, knockdown of Arc in mouse embryonic fibroblasts caused an increased sensitivity to cell death that was fully blocked in Bax Bak1 (genes encoding Bax and Bak) double null fibroblasts. Thus Arc deficiency in dystrophic muscle exacerbates disease pathogenesis due to a Bax-mediated sensitization of mitochondria-dependent death mechanisms.
Collapse
|
60
|
Wu L, Xi Z, Guo R, Liu S, Yang S, Liu D, Dong S, Guo D. Exogenous ARC down-regulates caspase-3 expression and inhibits apoptosis of broiler chicken cardiomyocytes exposed to hydrogen peroxide. Avian Pathol 2013; 42:32-7. [PMID: 23391179 DOI: 10.1080/03079457.2012.757289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is highly involved in apoptosis induced by oxidative stress or ischaemia/reperfusion injury. Furthermore, even though the exact mechanism is still unknown, some studies suggest that exogenous ARC also possesses anti-apoptotic ability. The study investigated whether mouse-derived ARC acquires anti-apoptotic ability and the pathway of regulation in chick embryo cardiomyocytes. To evaluate whether mouse-derived ARC can inhibit chick embryo cardiomyocyte apoptosis induced by hydrogen peroxide, recombinant pcDNA3.1/ARC plasmid was acquired and transfected into chick embryo cardiomyocytes. ARC-related gene (caspase-2, caspase-8, caspase-3, and caspase-9, cytochrome C, bcl-2, and XIAP) mRNA and protein expression levels were detected by real-time polymerase chain reaction and western blotting, respectively. Here we demonstrate that hydrogen peroxide induced apoptosis in chick embryo cardiomyocytes in a time-dependent manner and that this effect could be suppressed by mouse-derived ARC expression. Moreover, unlike endogenous ARC, exogenous ARC was exclusively expressed in the cytoplasm and down-regulated caspase-2, caspase-8, and caspase-3, bcl-2, and XIAP gene expression levels. However, only caspase-3 protein levels were decreased. In addition, threonine 149 phosphorylation by CK2 was required for exogenous ARC to exert an anti-apoptotic effect in chicken embryo cardiomyocytes and suggested exogenous ARC may in part share the same pathway of regulation with endogenous ARC. These results indicate that mouse-derived ARC plays an important role in protection of chick embryo cardiomyocytes against oxidative stress apoptosis by inhibiting caspase-3 mRNA and protein expression levels.
Collapse
Affiliation(s)
- Liming Wu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Wu P, Tang Y, He J, Qi L, Jiang W, Zhao S. ARC is highly expressed in nasopharyngeal carcinoma and confers X-radiation and cisplatin resistance. Oncol Rep 2013; 30:1807-13. [PMID: 23877130 DOI: 10.3892/or.2013.2622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/05/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC), an inhibitor of apoptosis, is primarily expressed in terminally differentiated tissues. Recent studies have revealed that ARC is highly expressed in a variety of human cancer cell lines and epithelial-derived cancers, which suggests that ARC plays an important role in the process of carcinogenesis. However, whether ARC is involved in the development of nasopharyngeal carcinoma (NPC) and the various roles it plays in NPC remain unclear. In the present study, we examined the expression of ARC in NPC cell lines and NPC tissues and the relationship between its subcellular expression and clinicopathological grade; moreover, we explored the effect of this protein on radiation resistance and chemoresistance in NPC cells. We found that cytoplasmic ARC was expressed at high levels in NPC tissues, at moderate levels in severe atypical hyperplasia and at low levels in benign nasopharyngeal tissues. High expression of cytoplasmic and nuclear ARC was correlated with advanced local invasion. However, only a small amount of nuclear ARC was expressed in NPC in contrast to cytoplasmic ARC. We also found that attenuation of ARC expression by miRNA resulted in decreased X-radiation and cisplatin resistance in NPC CNE-2 cells. In contrast, overexpression of ARC resulted in increased X-radiation and cisplatin resistance in NPC 6-10B cells. Furthermore, we demonstrated that ARC appears to be critical for blocking the activation of casapse-8 and casapse-2 in NPC cells subjected to X-radiation or cisplatin. These results suggest that high expression of ARC plays an important role in the pathogenesis of NPC and leads to X-radiation and cisplatin resistance in NPC.
Collapse
Affiliation(s)
- Ping Wu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Many neurologic diseases cause discrete episodic impairment in contrast with progressive deterioration. The symptoms of these episodic disorders exhibit striking variety. Herein we review what is known of the phenotypes, genetics, and pathophysiology of episodic neurologic disorders. Of these, most are genetically complex, with unknown or polygenic inheritance. In contrast, a fascinating panoply of episodic disorders exhibit Mendelian inheritance. We classify episodic Mendelian disorders according to the primary neuroanatomical location affected: skeletal muscle, cardiac muscle, neuromuscular junction, peripheral nerve, or central nervous system (CNS). Most known Mendelian mutations alter genes that encode membrane-bound ion channels. These mutations cause ion channel dysfunction, which ultimately leads to altered membrane excitability as manifested by episodic disease. Other Mendelian disease genes encode proteins essential for ion channel trafficking or stability. These observations have cemented the channelopathy paradigm, in which episodic disorders are conceptualized as disorders of ion channels. However, we expand on this paradigm to propose that dysfunction at the synaptic and neuronal circuit levels may underlie some episodic neurologic entities.
Collapse
Affiliation(s)
- Jonathan F Russell
- Department of Neurology, Howard Hughes Medical Institute, School of Medicine, University of California-San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
63
|
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 2013; 8:863-84. [PMID: 23176689 DOI: 10.2217/fca.12.58] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia-reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia-reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular & Cellular Pharmacology, University of Miami Medical Center, FL 33101, USA.
| |
Collapse
|
64
|
AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 2013; 20:1149-60. [PMID: 23645208 DOI: 10.1038/cdd.2013.37] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/30/2013] [Accepted: 03/21/2013] [Indexed: 12/14/2022] Open
Abstract
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome 'specks' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.
Collapse
|
65
|
Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP. Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. Int J Cardiol 2013; 165:410-22. [PMID: 22459400 DOI: 10.1016/j.ijcard.2012.03.055] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/30/2012] [Accepted: 03/03/2012] [Indexed: 02/08/2023]
|
66
|
Lu D, Liu J, Jiao J, Long B, Li Q, Tan W, Li P. Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem 2013; 288:8491-8504. [PMID: 23382383 DOI: 10.1074/jbc.m112.442061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis can occur in the myocardium under a variety of pathological conditions, including myocardial infarction and heart failure. The forkhead family of transcription factor Foxo3a plays a pivotal role in apoptosis; however, its role in regulating cardiac apoptosis remains to be fully elucidated. We showed that enforced expression of Foxo3a inhibits cardiomyocyte apoptosis, whereas knockdown of endogenous Foxo3a sensitizes cardiomyocytes to undergo apoptosis. The apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein. Here, we demonstrate that it attenuates the release of calcium from the sarcoplasmic reticulum and inhibits calcium elevations in the cytoplasm and mitochondria provoked by oxidative stress in cardiomyocytes. Furthermore, Foxo3a is shown to maintain cytoplasmic and mitochondrial calcium homeostasis through ARC. We observed that Foxo3a knock-out mice exhibited enlarged myocardial infarction sizes upon ischemia/reperfusion, and ARC transgenic mice demonstrated reduced myocardial infarction and balanced calcium levels in mitochondria and sarcoplasmic reticulum. Moreover, we showed that Foxo3a activates ARC expression by directly binding to its promoter. This study reveals that Foxo3a maintains calcium homeostasis and inhibits cardiac apoptosis through trans-activation of the ARC promoter. These findings provided novel evidence that Foxo3a and ARC constitute an anti-apoptotic pathway that regulates calcium homeostasis in the heart.
Collapse
Affiliation(s)
- Daoyuan Lu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinping Liu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianqin Jiao
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Long
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Tan
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifeng Li
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612.
| |
Collapse
|
67
|
An J, Mehrhof F, Harms C, Lättig-Tünnemann G, Lee SLL, Endres M, Li M, Sellge G, Mandić AD, Trautwein C, Donath S. ARC is a novel therapeutic approach against acetaminophen-induced hepatocellular necrosis. J Hepatol 2013; 58:297-305. [PMID: 23046676 DOI: 10.1016/j.jhep.2012.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Acetaminophen (AAP) overdose is the most frequent cause of drug-induced liver failure. c-Jun N-terminal kinase (JNK) is thought to play a central role in AAP-induced hepatocellular necrosis. The apoptosis repressor with caspase recruitment domain (ARC) is a death repressor that inhibits death receptor and mitochondrial apoptotic signaling. Here, we investigated ARC's therapeutic effect and molecular mechanisms on AAP-induced hepatocellular necrosis. METHODS We tested the in vivo and in vitro effects of ARC fused with the transduction domain of HIV-1 (TAT-ARC) on murine AAP hepatotoxicity. RESULTS Treatment with TAT-ARC protein completely abrogated otherwise lethal liver failure induced by AAP overdose in C57BL/6 mice. AAP triggered caspase-independent necrosis, as evidenced by liver histology, elevated serum transaminases, and secreted HMGB1 that was inhibited by ARC. ARC-mediated hepatoprotection was not caused by an alteration of AAP metabolism, but resulted in reduced oxidative stress. AAP overdose led to induction of RIP-dependent signaling with subsequent JNK activation. Ectopic ARC inhibited JNK activation by specific interactions between ARC and JNK1 and JNK2. Importantly, survival of mice was even preserved when ARC therapy was initiated in a delayed manner after AAP administration. CONCLUSIONS This work identifies for the first time ARC-JNK-binding with subsequent inhibition of JNK signaling as a specific mechanism of ARC to interfere with AAP-dependent necrosis. Our data suggests that AAP-mediated induction of RIP signaling serves as a critical switch for hepatocellular necrosis. The efficacy of TAT-ARC protein transduction in murine AAP hepatotoxicity suggests its therapeutic potential for reversing AAP intoxication also in humans.
Collapse
Affiliation(s)
- Junfeng An
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
McKimpson WM, Weinberger J, Czerski L, Zheng M, Crow MT, Pessin JE, Chua SC, Kitsis RN. The apoptosis inhibitor ARC alleviates the ER stress response to promote β-cell survival. Diabetes 2013; 62:183-93. [PMID: 22933109 PMCID: PMC3526036 DOI: 10.2337/db12-0504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes involves insulin resistance and β-cell failure leading to inadequate insulin secretion. An important component of β-cell failure is cell loss by apoptosis. Apoptosis repressor with caspase recruitment domain (ARC) is an inhibitor of apoptosis that is expressed in cardiac and skeletal myocytes and neurons. ARC possesses the unusual property of antagonizing both the extrinsic (death receptor) and intrinsic (mitochondria/endoplasmic reticulum [ER]) cell death pathways. Here we report that ARC protein is abundant in cells of the endocrine pancreas, including >99.5% of mouse and 73% of human β-cells. Using genetic gain- and loss-of-function approaches, our data demonstrate that ARC inhibits β-cell apoptosis elicited by multiple inducers of cell death, including ER stressors tunicamycin, thapsigargin, and physiological concentrations of palmitate. Unexpectedly, ARC diminishes the ER stress response, acting distal to protein kinase RNA-like ER kinase (PERK) and inositol-requiring protein 1α, to suppress C/EBP homologous protein (CHOP) induction. Depletion of ARC in isolated islets augments palmitate-induced apoptosis, which is dramatically rescued by deletion of CHOP. These data demonstrate that ARC is a previously unrecognized inhibitor of apoptosis in β-cells and that its protective effects are mediated through suppression of the ER stress response pathway.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Jeremy Weinberger
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Lech Czerski
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Min Zheng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Michael T. Crow
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
- Diabetes Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Streamson C. Chua
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Diabetes Research Institute, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Richard N. Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
- Diabetes Research Institute, Albert Einstein College of Medicine, Bronx, New York
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Corresponding author: Richard N. Kitsis,
| |
Collapse
|
69
|
Xu T, Li D, Jiang D. Targeting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients 2012; 4:2008-19. [PMID: 23235403 PMCID: PMC3546619 DOI: 10.3390/nu4122008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia often results in damaged heart structure and function, which can be restored through ischemia/reperfusion (I/R) in most cases. However, I/R can exacerbate myocardial ischemia reperfusion injury (IRI). Luteolin, a widely distributed flavonoid, a member of a group of naturally occurring polyphenolic compounds found in many fruits, vegetables and medicinal herbs, has been reported to exhibit anti-inflammatory, antioxidant and anti-carcinogenic activities. In recent years, luteolin has been shown to play an important role in the cardioprotection of IRI. However, its role and mechanism in cardioprotection against IRI has not been clearly elucidated with respect to the apoptosis pathway. The purpose of this paper is to review luteolin's anti-apoptotic role and mechanism following I/R in rats, and indicate luteolin as a potential candidate for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Tongda Xu
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu 210046, China; E-Mail:
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China; E-Mail:
| | - Dongye Li
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu 210046, China; E-Mail:
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0516-8558-2763; Fax: +86-0516-8558-2753
| | - Dehua Jiang
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China; E-Mail:
| |
Collapse
|
70
|
McMillan EM, Graham DA, Rush JWE, Quadrilatero J. Decreased DNA fragmentation and apoptotic signaling in soleus muscle of hypertensive rats following 6 weeks of treadmill training. J Appl Physiol (1985) 2012; 113:1048-57. [DOI: 10.1152/japplphysiol.00290.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases such as hypertension are associated with a generalized skeletal myopathy including a proapoptotic phenotype. Current evidence suggests that exercise may alter apoptosis-related signaling in skeletal muscle; however, the effect of exercise on skeletal muscle DNA fragmentation and apoptotic signaling is unclear in hypertensive animals. Male normotensive Wistar Kyoto (WKY; n = 24) and spontaneously hypertensive rats (SHR; n = 24) were assigned to a sedentary (SED) condition or exercise (EX) consisting of progressive treadmill running 5 days/wk for 6 wks. Consistent with our previous work we found that soleus muscle of hypertensive animals had significantly higher DNA fragmentation (a hallmark of apoptosis), elevated proapoptotic factors (Bax, caspase-3 activity), and lower antiapoptotic proteins (apoptosis repressor with caspase recruitment domain, Bcl-2, X-linked inhibitor of apoptosis protein) compared with normotensive rats. In addition, soleus muscle of hypertensive animals displayed myosin accumulation and fragmentation, had elevated cytosolic cytochrome c, second mitochondrial-derived activator of caspase (Smac), apoptosis inducing factor (AIF), and endonuclease G protein levels, higher nuclear AIF content, and greater muscle reactive oxygen species generation compared with normotensive animals. Interestingly, exercise training significantly lowered DNA fragmentation and myosin accumulation/fragmentation in soleus muscle of hypertensive rats. Furthermore, exercise training significantly reduced cytosolic levels of cytochrome c as well as cytosolic and nuclear AIF in soleus muscle of hypertensive animals. This beneficial response is likely due to exercise-mediated elevations in Bcl-2, heat shock protein 70, and manganese superoxide dismutase protein content, as well as reductions in Bax protein levels and the Bax-to-Bcl-2 ratio. These results suggest that regular exercise training provides protection against skeletal muscle apoptosis by altering a number of apoptosis regulatory proteins and by influencing mitochondrial-mediated apoptotic signaling mechanisms.
Collapse
Affiliation(s)
- Elliott M. McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Drew A. Graham
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - James W. E. Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
71
|
An J, Harms C, Lättig-Tünnemann G, Sellge G, Mandić AD, Malato Y, Heuser A, Endres M, Trautwein C, Donath S. TAT-apoptosis repressor with caspase recruitment domain protein transduction rescues mice from fulminant liver failure. Hepatology 2012; 56:715-26. [PMID: 22392694 DOI: 10.1002/hep.25697] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/24/2012] [Indexed: 12/18/2022]
Abstract
UNLABELLED Acute liver failure (ALF) is associated with massive hepatocyte cell death and high mortality rates. Therapeutic approaches targeting hepatocyte injury in ALF are hampered by the activation of distinct stimulus-dependent pathways, mechanism of cell death, and a limited therapeutic window. The apoptosis repressor with caspase recruitment domain (ARC) is a recently discovered death repressor that inhibits both death receptor and mitochondrial apoptotic signaling. Here, we investigated the in vivo effects of ARC fused with the transduction domain of human immunodeficiency virus 1 (HIV-1) (TAT-ARC) on Fas- and tumor necrosis factor (TNF)-mediated murine models of fulminant liver failure. Treatment with TAT-ARC protein completely abrogated otherwise lethal liver failure induced by Fas-agonistic antibody (Jo2), concanavalin A (ConA), or D-galactosamine/lipopolysaccharide (GalN/LPS) administration. Importantly, survival of mice was even preserved when TAT-ARC therapy was initiated in a delayed manner after stimulation with Jo2, ConA, or GalN/LPS. ARC blocked hepatocyte apoptosis by directly interacting with members of the death-inducing signaling complex. TNF-mediated liver damage was inhibited by two independent mechanisms: inhibition of jun kinase (JNK)-mediated TNF-α expression and prevention of hepatocyte apoptosis by inhibition of both death receptor and mitochondrial death signaling. We identified JNK as a novel target of ARC. ARC's caspase recruitment domain (CARD) directly interacts with JNK1 and JNK2, which correlates with decreased JNK activation and JNK-dependent TNF-α production. CONCLUSION This work suggests that ARC confers hepatoprotection upstream and at the hepatocyte level. The efficacy of TAT-ARC protein transduction in multiple murine models of ALF demonstrates its therapeutic potential for reversing liver failure.
Collapse
Affiliation(s)
- Junfeng An
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Loan Le TY, Mardini M, Howell VM, Funder JW, Ashton AW, Mihailidou AS. Low-Dose Spironolactone Prevents Apoptosis Repressor With Caspase Recruitment Domain Degradation During Myocardial Infarction. Hypertension 2012; 59:1164-9. [DOI: 10.1161/hypertensionaha.111.190488] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Low-dose mineralocorticoid receptor antagonists reduce morbidity and mortality in patients with heart failure and myocardial infarction, despite normal plasma aldosterone levels. Since apoptosis plays an important role in heart failure and postinfarction left ventricular remodeling, we examined whether low-dose mineralocorticoid receptor antagonists modulate cardiomyocyte death by regulating the apoptosis repressor protein apoptosis repressor with caspase recruitment domain to lessen the extent of apoptosis. Hearts from adult male Sprague-Dawley rats were subjected to regional ischemia followed by reperfusion ex vivo, with mineralocorticoid receptor antagonists added to perfusates before ischemia. Low-dose spironolactone (10 nmol/L) or eplerenone (100 nmol/L) significantly reduced infarct size. Spironolactone also prevented cleavage of the apoptotic chromatin condensation inducer in the nucleus and of the inhibitor of caspase-activated DNAse induced by ischemia-reperfusion, thereby abolishing chromatin condensation and internucleosomal cleavage. Ischemia-reperfusion–induced activation of caspases 2, 3, and 9, but not caspase 8, was prevented by spironolactone, suggesting targeted regulation of the intrinsic pathway. Low-dose spironolactone and eplerenone prevented loss of the apoptosis repressor with the caspase recruitment domain and reduced myocyte death. In H9c2 cells, mineralocorticoid receptor activation by aldosterone resulted in apoptosis repressor with caspase recruitment domain degradation and enhanced apoptosis; these actions were prevented by coadministration of spironolactone. Using a triple lysine mutant we identified that aldosterone enhances posttranscriptional degradation of the apoptosis repressor with a caspase recruitment domain via the ubiquitin-proteasomal pathway. Our data demonstrate that low-dose mineralocorticoid receptor antagonists reduce infarct size and apoptosis in the reperfused myocardium by preventing the apoptosis repressor with caspase recruitment domain degradation.
Collapse
Affiliation(s)
- Thi Yen Loan Le
- From the Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Cardiovascular and Hormonal Research Laboratory, Cardiology Division (T.Y.L.L., M.M., A.S.M.), Hormone and Cancer Division (V.M.H.), and Division of Perinatal Research (A.W.A.), Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South
| | - Mahidi Mardini
- From the Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Cardiovascular and Hormonal Research Laboratory, Cardiology Division (T.Y.L.L., M.M., A.S.M.), Hormone and Cancer Division (V.M.H.), and Division of Perinatal Research (A.W.A.), Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South
| | - Viive M. Howell
- From the Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Cardiovascular and Hormonal Research Laboratory, Cardiology Division (T.Y.L.L., M.M., A.S.M.), Hormone and Cancer Division (V.M.H.), and Division of Perinatal Research (A.W.A.), Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South
| | - John W. Funder
- From the Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Cardiovascular and Hormonal Research Laboratory, Cardiology Division (T.Y.L.L., M.M., A.S.M.), Hormone and Cancer Division (V.M.H.), and Division of Perinatal Research (A.W.A.), Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South
| | - Anthony W. Ashton
- From the Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Cardiovascular and Hormonal Research Laboratory, Cardiology Division (T.Y.L.L., M.M., A.S.M.), Hormone and Cancer Division (V.M.H.), and Division of Perinatal Research (A.W.A.), Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South
| | - Anastasia S. Mihailidou
- From the Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Cardiovascular and Hormonal Research Laboratory, Cardiology Division (T.Y.L.L., M.M., A.S.M.), Hormone and Cancer Division (V.M.H.), and Division of Perinatal Research (A.W.A.), Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South
| |
Collapse
|
73
|
Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 2012; 32:1552-62. [PMID: 22596221 DOI: 10.1161/atvbaha.111.224915] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The major cardiac syndromes, myocardial infarction and heart failure, are responsible for a large portion of deaths worldwide. Genetic and pharmacological manipulations indicate that cell death is an important component in the pathogenesis of both diseases. Cells die primarily by apoptosis or necrosis, and autophagy has been associated with cell death. Apoptosis has long been recognized as a highly regulated process. Recent data indicate that a significant subset of necrotic deaths is also programmed. In the review, we discuss the molecular mechanisms that underlie these forms of cell death and their interconnections. The possibility is raised that small molecules aimed at inhibiting cell death may provide novel therapies for these common and lethal heart syndromes.
Collapse
|
74
|
Yao X, Tan G, He C, Gao Y, Pan S, Jiang H, Zhang Y, Sun X. Hydrogen sulfide protects cardiomyocytes from myocardial ischemia-reperfusion injury by enhancing phosphorylation of apoptosis repressor with caspase recruitment domain. TOHOKU J EXP MED 2012; 226:275-285. [PMID: 22499119 DOI: 10.1620/tjem.226.275] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Hydrogen sulfide (H(2)S) displays an anti-apoptotic activity against myocardial ischemia reperfusion (MIR). Apoptosis repressor with caspase recruitment domain (ARC) is constitutively expressed in the heart and inhibits cell apoptosis when it is phosphorylated. Here, we investigated whether H(2)S could inhibit apoptosis by affecting ARC phosphorylation using cultured rat cardiomyocytes and a rat model of MIR. Primary cardiomyocytes were prepared from hearts of newborn rats and were pre-incubated with NaHS, a donor of H(2)S, for 60 min. Cardiomyocytes were subjected to hypoxia for 4 h, followed by reoxygenation for 2 h. The hypoxia and subsequent reoxygenation (H/R) significantly induced cell apoptosis, increased expression levels of Fas and FasL proteins, enhanced release of cytochrome c from mitochondria, and elevated caspase-3 activity, while H/R reduced ARC phosphorylation and increased the activity of calcineurin that dephosphorylates ARC. Pre-incubation with NaHS significantly attenuated the above effects through promoting ARC phosphorylation by reducing calcineurin activity and by increasing the activity of protein kinase casein kinase II (CK2) that phosphorylates ARC. In fact, TBB, a specific inhibitor of CK2, abolished the effects of NaHS. In rats undergoing MIR, NaHS significantly reduced the myocardial infarct size, cell apoptosis, calcineurin activity, and the expression levels of Fas, FasL and cleaved caspase-3 proteins, while NaHS increased ARC phosphorylation. In contrast, DL-propargylglycine, an inhibitor of cystathionine γ-lyase, the main enzyme for H(2)S production in hearts, showed opposite effects to NaHS. The results indicate that H(2)S inhibits apoptosis of cardiomyocytes induced by MIR through enhancing ARC phosphorylation.
Collapse
Affiliation(s)
- Xiaoyi Yao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Ao JE, Kuang LH, Zhou Y, Zhao R, Yang CM. Hypoxia-inducible factor 1 regulated ARC expression mediated hypoxia induced inactivation of the intrinsic death pathway in p53 deficient human colon cancer cells. Biochem Biophys Res Commun 2012; 420:913-7. [PMID: 22475487 DOI: 10.1016/j.bbrc.2012.03.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/24/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC), an anti-apoptotic protein, plays an important role in the regulation of apoptosis by blocking both the extrinsic and intrinsic death pathways. However, its regulatory mechanism remains largely undefined. Here, we reported that hypoxia up-regulated the expression of ARC in p53 deficient human colon cancer cells. Moreover, ARC is a direct target of the hypoxia-inducible factor 1 (HIF-1), a key transcriptional factor for the cellular response to hypoxia. Silencing the expression of HIF-1α in SW480 colon cancer cells by RNA interference abolished hypoxia induced ARC expression. Using luciferase reporter and ChIP assay, we showed that HIF-1α directly bound to hypoxia-responsive element located at -419 to -414 of ARC gene, which is essential for HIF-1-induced expression. As a result of the increased ARC expression, TRAIL-induced apoptosis was reduced by hypoxia. These discoveries would shed novel insights on the mechanisms for ARC expression regulation and hypoxia induced inactivation of the intrinsic death pathway.
Collapse
Affiliation(s)
- Jin-e Ao
- Department of Pathology, Jingmen Hubei Province First Peoples' Hospital, Jingmen, Hubei, China
| | | | | | | | | |
Collapse
|
76
|
Park KJ, Lee CH, Kim A, Jeong KJ, Kim CH, Kim YS. Death receptors 4 and 5 activate Nox1 NADPH oxidase through riboflavin kinase to induce reactive oxygen species-mediated apoptotic cell death. J Biol Chem 2011; 287:3313-25. [PMID: 22158615 DOI: 10.1074/jbc.m111.309021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stimulation of the proapoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, death receptors 4 (DR4) and 5 (DR5), conventionally induces caspase-dependent apoptosis in tumor cells. Here we report that stimulation of DR4 and/or DR5 by the agonistic protein KD548-Fc, an Fc-fused DR4/DR5 dual-specific Kringle domain variant, activates plasma membrane-associated Nox1 NADPH oxidase to generate superoxide anion and subsequently accumulates intracellular reactive oxygen species (ROS), leading to sustained c-Jun N-terminal kinase activation and eventual apoptotic cell death in human HeLa and Jurkat tumor cells. KD548-Fc treatment induces the formation of a DR4/DR5 signaling complex containing riboflavin kinase (RFK), Nox1, the Nox1 subunits (Rac1, Noxo1, and Noxa1), TNF receptor-associated death domain (TRADD), and TNF receptor-associated factor 2 (TRAF2). Depletion of RFK, but not the Nox1 subunits, TRADD and TRAF2, failed to recruit Nox1 and Rac1 to DR4 and DR5, demonstrating that RFK plays an essential role in linking DR4/DR5 with Nox1. Knockdown studies also reveal that RFK, TRADD, and TRAF2 play critical, intermediate, and negligible roles, respectively, in the KD548-Fc-mediated ROS accumulation and downstream signaling. Binding assays using recombinantly expressed proteins suggest that DR4/DR5 directly interact with cytosolic RFK through RFK-binding regions within the intracellular death domains, and TRADD stabilizes the DR4/DR5-RFK complex. Our results suggest that DR4 and DR5 have a capability to activate Nox1 by recruiting RFK, resulting in ROS-mediated apoptotic cell death in tumor cells.
Collapse
Affiliation(s)
- Kyung-Jin Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | | | | | | | | | | |
Collapse
|
77
|
Ludwig-Galezowska AH, Flanagan L, Rehm M. Apoptosis repressor with caspase recruitment domain, a multifunctional modulator of cell death. J Cell Mol Med 2011; 15:1044-53. [PMID: 21129150 PMCID: PMC3822617 DOI: 10.1111/j.1582-4934.2010.01221.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional inhibitor of apoptosis that is physiologically expressed predominantly in post-mitotic cells such as cardiomyocytes, skeletal muscle cells and neurons. ARC was also found to be up-regulated in many forms of malignant tumours. ARC impairs the cellular apoptotic responsiveness to a wide range of stresses and insults, including extrinsic apoptosis initiation via death receptor ligands, dysregulation of cellular Ca2+ homeostasis and endoplasmatic reticulum (ER) stress, genotoxic drugs, ionizing radiation, oxidative stress and hypoxia. ARC is subject to both transcriptional and post-translational regulation and exhibits its function through a multitude of molecular interactions with upstream transducers of apoptosis signals. This review summarizes, structures and comments on the published knowledge regarding ARC and its roles in modulating apoptotic cell death responsiveness in physiological and pathophysiological contexts.
Collapse
|
78
|
Zaiman AL, Damico R, Thoms-Chesley A, Files DC, Kesari P, Johnston L, Swaim M, Mozammel S, Myers AC, Halushka M, El-Haddad H, Shimoda LA, Peng CF, Hassoun PM, Champion HC, Kitsis RN, Crow MT. A critical role for the protein apoptosis repressor with caspase recruitment domain in hypoxia-induced pulmonary hypertension. Circulation 2011; 124:2533-42. [PMID: 22082675 DOI: 10.1161/circulationaha.111.034512] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal syndrome associated with the pathogenic remodeling of the pulmonary vasculature and the emergence of apoptosis-resistant cells. Apoptosis repressor with caspase recruitment domain (ARC) is an inhibitor of multiple forms of cell death known to be abundantly expressed in striated muscle. We show for the first time that ARC is expressed in arterial smooth muscle cells of the pulmonary vasculature and is markedly upregulated in several experimental models of PH. In this study, we test the hypothesis that ARC expression is essential for the development of chronic hypoxia-induced PH. METHODS AND RESULTS Experiments in which cells or mice were rendered ARC-deficient revealed that ARC not only protected pulmonary arterial smooth muscle cells from hypoxia-induced death, but also facilitated growth factor-induced proliferation and hypertrophy and hypoxia-induced downregulation of selective voltage-gated potassium channels, the latter a hallmark of the syndrome in humans. Moreover, ARC-deficient mice exhibited diminished vascular remodeling, increased apoptosis, and decreased proliferation in response to chronic hypoxia, resulting in marked protection from PH in vivo. Patients with PH have significantly increased ARC expression not only in remodeled vessels but also in the lumen-occluding lesions associated with severe disease. CONCLUSIONS These data show that ARC, previously unlinked to pulmonary hypertension, is a critical determinant of vascular remodeling in this syndrome.
Collapse
Affiliation(s)
- Ari L Zaiman
- Johns Hopkins University School of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Medina-Ramirez CM, Goswami S, Smirnova T, Bamira D, Benson B, Ferrick N, Segall J, Pollard JW, Kitsis RN. Apoptosis inhibitor ARC promotes breast tumorigenesis, metastasis, and chemoresistance. Cancer Res 2011; 71:7705-15. [PMID: 22037876 DOI: 10.1158/0008-5472.can-11-2192] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) inhibits both death receptor- and mitochondrial/ER-mediated pathways of apoptosis. Although expressed mainly in terminally differentiated cells, ARC is markedly upregulated in a variety of human cancers, where its potential contributions have not yet been defined. In this study, we provide evidence of multiple critical pathophysiologic functions for ARC in breast carcinogenesis. In the polyoma middle T-antigen (PyMT) transgenic mouse model of breast cancer, in which endogenous ARC is strongly upregulated, deletion of the ARC-encoding gene nol3 decreased primary tumor burden without affecting tumor onset or multiplicity. More notably, ARC deficiency also limited tumor cell invasion and the number of circulating cancer cells, markedly reducing the number of lung metastases. Conversely, ectopic overexpression of ARC in a PyMT-derived metastatic breast cancer cell line increased invasion in vitro and lung metastasis in vivo. We confirmed these results in a humanized orthotopic model based on MDA-MB-231-derived LM2 metastatic breast cancer cells, in which RNAi-mediated knockdown of ARC levels was shown to reduce tumor volume, local invasion, and lung metastases. Lastly, we found that endogenous levels of ARC conferred chemoresistance in primary tumors and invading cell populations. Our results establish that ARC promotes breast carcinogenesis by driving primary tumor growth, invasion, and metastasis as well as by promoting chemoresistance in invasive cells.
Collapse
|
80
|
Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Appl Physiol Nutr Metab 2011; 36:608-17. [PMID: 21936642 DOI: 10.1139/h11-064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis is a highly conserved type of cell death that plays a critical role in tissue homeostasis and disease-associated processes. Skeletal muscle is unique with respect to apoptotic processes, given its multinucleated morphology and its apoptosis-associated differences related to muscle and (or) fiber type as well as mitochondrial content and (or) subtype. Elevated apoptotic signaling has been reported in skeletal muscle during aging, stress-induced states, and disease; a phenomenon that plays a role in muscle dysfunction, degradation, and atrophy. Exercise is a strong physiological stimulus that can influence a number of extracellular and intracellular signaling pathways, which may directly or indirectly influence apoptotic processes in skeletal muscle. In general, acute strenuous and eccentric exercise are associated with a proapoptotic phenotype and increased DNA fragmentation (a hallmark of apoptosis), whereas regular exercise training or activity is associated with an antiapoptotic environment and reduced DNA fragmentation in skeletal muscle. Interestingly, the protective effect of regular activity on skeletal muscle apoptotic processes has been observed in healthy, aged, stress-induced, and diseased rodent models. Several mechanisms for this protective response have been proposed, including altered anti- and proapoptotic protein expression, increased mitochondrial biogenesis and improved mitochondrial function, and reduced reactive oxygen species generation and (or) enhanced antioxidant status. Given the current literature, we propose that regular physical activity may represent an effective strategy to decrease apoptotic signaling, and possibly muscle wasting and dysfunction, during aging and disease.
Collapse
Affiliation(s)
- Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
81
|
Stempin CC, Chi L, Giraldo-Vela JP, High AA, Häcker H, Redecke V. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation. J Biol Chem 2011; 286:37147-57. [PMID: 21896478 DOI: 10.1074/jbc.m111.263384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cinthia C Stempin
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
82
|
Shirley S, Morizot A, Micheau O. Regulating TRAIL receptor-induced cell death at the membrane : a deadly discussion. Recent Pat Anticancer Drug Discov 2011; 6:311-23. [PMID: 21756247 PMCID: PMC3204462 DOI: 10.2174/157489211796957757] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/20/2011] [Accepted: 02/20/2011] [Indexed: 12/20/2022]
Abstract
The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional chemotherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane and at the DISC (Death-Inducing Signaling Complex) level. The following patent and literature review aims to present and highlight recent findings of the deadly discussion that determines tumor cell fate upon TRAIL engagement.
Collapse
Affiliation(s)
- Sarah Shirley
- INSERM, U866, Dijon, F-21079 France; Faculty of Medicine and Pharmacy, University of Bourgogne, Dijon, F-21079 France.
| | | | | |
Collapse
|
83
|
Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P. The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 2011; 36:541-52. [PMID: 21798745 DOI: 10.1016/j.tibs.2011.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
The death-fold superfamily encompasses four structurally homologous subfamilies that engage in homotypic, subfamily-restricted interactions. The Death Domains (DDs), the Death Effector Domains (DEDs), the CAspase Recruitment Domains (CARDs) and the PYrin Domains (PYDs) constitute key building blocks involved in the assembly of multimeric complexes implicated in signaling cascades leading to inflammation and cell death. We review the molecular basis of these homotypic domain-domain interactions in light of their structure, function and evolution. In addition, we elaborate on three distinct types of asymmetric interactions that were recently identified from the crystal structures of three multimeric, death-fold complexes: the MyDDosome, the PIDDosome and the Fas/FADD-DISC. Insights into the mechanisms of interaction of death-fold domains will be useful to design strategies for specific modulation of complex formation and might lead to novel therapeutic applications.
Collapse
Affiliation(s)
- Kristof Kersse
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | |
Collapse
|
84
|
Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML. Blood 2011; 117:780-7. [PMID: 21041716 PMCID: PMC3035072 DOI: 10.1182/blood-2010-04-280503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Regulators of apoptosis in acute myeloid leukemia (AML) have been extensively studied and are considered excellent therapeutic targets. Apoptosis repressor with caspase recruitment domain (ARC), an antiapoptotic protein originally found to be involved in apoptosis of cardiac cells, was recently demonstrated to be overexpressed in several solid tumors. To assess its importance in AML, we profiled ARC expression in 511 newly diagnosed AML patients using a validated robust reverse-phase protein array and correlated ARC levels with clinical outcomes. ARC was variably expressed in samples from patients with AML. ARC level was not associated with cytogenetic groups or with FLT-3 mutation status. However, patients with low or medium ARC protein levels had significantly better outcomes than those with high ARC levels: longer overall survival (median, 53.9 or 61.6 vs 38.9 weeks, P = .0015) and longer remission duration (median, 97.6 or 44.7 vs 31.1 weeks, P = .0007). Multivariate analysis indicated that ARC was a statistically significant independent predictor of survival in AML (P = .00013). Inhibition of ARC promoted apoptosis and sensitized cytosine arabinoside-induced apoptosis in OCI-AML3 cells. These results suggest that ARC expression levels are highly prognostic in AML and that ARC is a potential therapeutic target in AML.
Collapse
|
85
|
Lu X, Moore PG, Liu H, Schaefer S. Phosphorylation of ARC is a critical element in the antiapoptotic effect of anesthetic preconditioning. Anesth Analg 2011; 112:525-31. [PMID: 21233493 DOI: 10.1213/ane.0b013e318205689b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Transient exposure to volatile anesthetics before cardiac ischemia/reperfusion (I/R), termed anesthetic preconditioning, limits myocardial injury and inhibits apoptosis. Apoptosis repressor with caspase recruitment domain (ARC) is a novel protein that has been demonstrated to protect cardiomyocytes from apoptosis induced by I/R and is regulated by phosphorylation. We therefore hypothesized that the antiapoptotic effect of anesthetic preconditioning is, in part, mediated by phosphorylation of ARC. METHODS In the experiments we used a perfused rat heart model of sevoflurane anesthetic preconditioning and I/R. In addition to measures of left ventricular function, phosphorylation of ARC was measured with and without anesthetic preconditioning. Because the phosphorylation status of ARC is determined by calcineurin and protein kinase CK2, the role of ARC was defined by measuring calcineurin activity and using the calcineurin inhibitor FK506 and the ARC phosphorylation inhibitor 4,5,6,7-tetrabromobenzotrizole (TBB). RESULTS I/R without anesthetic preconditioning increased calcineurin and reduced ARC phosphorylation levels, whereas anesthetic preconditioning significantly improved functional recovery, decreased ischemic injury, limited the increase in calcineurin activity, increased the phosphorylation level of ARC, reduced cytochrome c release, and blocked the increase in caspase-8 after I/R. The effects of anesthetic preconditioning were mirrored by FK506 and abolished by TBB. CONCLUSION This study has identified a novel cardiac pathway in which anesthetic preconditioning prevents the increase in calcineurin after I/R, resulting in increased phosphorylated ARC and decreased markers of apoptosis.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, One Shields Avenue, TB 172, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
86
|
Abstract
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.
Collapse
|
87
|
McMillan EM, Quadrilatero J. Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2010; 300:R531-43. [PMID: 21148478 DOI: 10.1152/ajpregu.00488.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased skeletal muscle apoptosis has been associated with a number of conditions including aging, disuse, and cardiovascular disease. Skeletal muscle is a complex tissue comprised of several fiber types with unique properties. To date, no report has specifically examined apoptotic differences across muscles or fiber types. Therefore, we measured several apoptotic indices in healthy rat red (RG) and white gastrocnemius (WG) muscle, as well as examined the expression of several key proteins across fiber types in a mixed muscle (mixed gastrocnemius). The protein content of apoptosis-inducing factor (AIF), apoptosis repressor with caspase recruitment domain (ARC), Bax, Bcl-2, cytochrome c, heat shock protein 70 (Hsp70), and second mitochondria-derived activator of caspases (Smac) were significantly (P < 0.05) higher in RG vs. WG muscle. Cytosolic AIF, cytochrome c, and Smac as well as nuclear AIF were also significantly (P < 0.05) higher in RG compared with WG muscle. In addition, ARC protein expression was related to muscle fiber type and found to be highest (P < 0.001) in type I fibers. Similarly, AIF protein expression was differentially expressed across fibers; however, AIF was correlated to oxidative potential (P < 0.001). Caspase-3, -8, and -9 activity, calpain activity, and DNA fragmentation (a hallmark of apoptosis) were also significantly higher (P < 0.05) in RG compared with WG muscle. Furthermore, total muscle reactive oxygen species generation, as well as Ca(2+)-induced permeability transition pore opening and loss of membrane potential in isolated mitochondria were greater in RG muscle. Collectively, these data suggest that a number of apoptosis-related indices differ between muscles and fiber types. Given these findings, muscle and fiber-type differences in apoptotic protein expression, signaling, and susceptibility should be considered when studying cell death processes in skeletal muscle.
Collapse
|
88
|
Prasad SS, Russell M, Nowakowska M. Neuroprotection induced in vitro by ischemic preconditioning and postconditioning: modulation of apoptosis and PI3K-Akt pathways. J Mol Neurosci 2010; 43:428-42. [PMID: 20953735 DOI: 10.1007/s12031-010-9461-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 12/11/2022]
Abstract
Preconditioning and postconditioning are mild ischemic exposures before or after severe injurious ischemia, respectively, that elicit endogenous neuroprotective responses. Molecular mechanisms of neuroprotection through preconditioning and postconditioning are not completely understood. Here we optimized the in vitro oxygen and glucose deprivation (OGD) models of preconditioning and postconditioning in primary cortical neuron cultures that allow the studies of the corresponding molecular mechanisms of neuroprotection. We found that the cortical cells preconditioned with a single 45-min OGD treatment administered 24 h prior to injurious 2 h OGD were robustly protected after both 3 h and 16 h of reperfusion. For the postconditioning treatment, we found that three cycles of 15 min OGD followed by 15 min reperfusion, applied immediately after injurious 2 h OGD and prior to complete reperfusion, resulted in effective neuroprotection at both 3 h and 16 h of reperfusion. Using real-time RT-PCR arrays focused on genes of the apoptosis and PI3K-Akt pathways, we found that injurious OGD mainly induced apoptosis-related and repressed PI3K-Akt pathway-related genes after either 3 h or 16 h of reperfusion. Preconditioning treatment resulted in the activation of both pro-survival and anti-apoptotic pathways after 3 h of reperfusion and mainly anti-apoptotic pathway after 16 h of reperfusion. In contrast, the activation of PI3K-Akt pathway mainly contributed to the neuroprotective effect by the postconditioning treatment after 3 h of reperfusion, but differential gene expression likely contributed minimally, if at all, to the neuroprotection observed after 16 h of reperfusion. Among the novel markers of neuroprotection, Nol3 gene upregulation was observed after 3 h of reperfusion following either preconditioning or postconditioning treatments and after 16 h of reperfusion following preconditioning treatment.
Collapse
Affiliation(s)
- Shiv S Prasad
- Genomics Division, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, A/L 2201E, Ottawa, ON, K1A 0K9, Canada.
| | | | | |
Collapse
|
89
|
|
90
|
Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72:19-44. [PMID: 20148665 DOI: 10.1146/annurev.physiol.010908.163111] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell death was once viewed as unregulated. It is now clear that at least a portion of cell death is a regulated cell suicide process. This type of death can exhibit multiple morphologies. One of these, apoptosis, has long been recognized to be actively mediated, and many of its underlying mechanisms have been elucidated. Moreover, necrosis, the traditional example of unregulated cell death, is also regulated in some instances. Autophagy is usually a survival mechanism but can occur in association with cell death. Little is known, however, about how autophagic cells die. Apoptosis, necrosis, and autophagy occur in cardiac myocytes during myocardial infarction, ischemia/reperfusion, and heart failure. Pharmacological and genetic inhibition of apoptosis and necrosis lessens infarct size and improves cardiac function in these disorders. The roles of autophagy in ischemia/reperfusion and heart failure are unresolved. A better understanding of these processes and their interrelationships may allow for the development of novel therapies for the major heart syndromes.
Collapse
Affiliation(s)
- Russell S Whelan
- Wilf Family Cardiovascular Research Institute and the Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
91
|
Abstract
The emergence of mitochondria as critical regulators of cardiac myocyte survival and death has revolutionized the field of cardiac biology. Indeed, it is now well recognized that mitochondrial dysfunction plays a crucial role in the pathogenesis of multiple cardiac diseases. A panoply of mitochondrial proteins/complexes ranging from canonical apoptosis proteins such as Bcl2 and Bax, through the mitochondrial permeability transition pore, to ion channels such as mitochondrial K(ATP) channels and connexin-43 have now been implicated as critical regulators of cardiac cell death. The purpose of this review, therefore, is to focus on these mitochondrial mediators/inhibitors of cell death and to address the specific mechanisms that underlie their ability to influence cardiac pathology.
Collapse
Affiliation(s)
- Christopher P Baines
- The Dalton Cardiovascular Research Center, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
92
|
Wu L, Nam YJ, Kung G, Crow MT, Kitsis RN. Induction of the apoptosis inhibitor ARC by Ras in human cancers. J Biol Chem 2010; 285:19235-45. [PMID: 20392691 DOI: 10.1074/jbc.m110.114892] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhibition of apoptosis is critical for carcinogenesis. ARC (apoptosis repressor with caspase recruitment domain) is an endogenous inhibitor of apoptosis that antagonizes both intrinsic and extrinsic apoptosis pathways. Although normally expressed in striated myocytes and neurons, ARC is markedly induced in a variety of primary human epithelial cancers and renders cancer cells resistant to killing. The mechanisms that mediate the induction of ARC in cancer are unknown. Herein we demonstrate that increases in ARC abundance are stimulated by Ras through effects on transcription and protein stability. Overexpression of activated N-Ras or H-Ras in normal cells is sufficient to increase ARC mRNA and protein levels. Similarly, transgenic expression of activated H-Ras induces ARC in both the normal mammary epithelium and resulting tumors of intact mice. Conversely, knockdown of endogenous N-Ras in breast and colon cancer cells significantly reduces ARC mRNA and protein levels. The promoter of the Nol3 locus, encoding ARC, is activated by N-Ras and H-Ras in a MEK/ERK-dependent manner. Ras also stabilizes ARC protein by suppressing its polyubiquitination and subsequent proteasomal degradation. In addition to the effects of Ras on ARC abundance, ARC mediates Ras-induced cell survival and cell cycle progression. Thus, Ras induces ARC in epithelial cancers, and ARC plays a role in the oncogenic actions of Ras.
Collapse
Affiliation(s)
- Lily Wu
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
93
|
Quadrilatero J, Bombardier E, Norris SM, Talanian JL, Palmer MS, Logan HM, Tupling AR, Heigenhauser GJF, Spriet LL. Prolonged moderate-intensity aerobic exercise does not alter apoptotic signaling and DNA fragmentation in human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E534-47. [PMID: 19996388 DOI: 10.1152/ajpendo.00678.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apoptosis in skeletal muscle plays an important role in age- and disease-related tissue dysfunction. Physical activity can influence apoptotic signaling; however, this process has not been well studied in human skeletal muscle. The purpose of this study was to perform a comprehensive analysis of apoptosis-related proteins/enzymes, DNA fragmentation, and oxidative stress in skeletal muscle of humans during an acute bout of prolonged moderate-intensity exercise. Eight healthy, recreationally active individuals (age 20.8 +/- 0.5 yr, Vo(2peak) 51.2 +/- 0.9 ml . kg(-1) . min(-1), BMI 21.5 +/- 0.8 kg/m(2)) exercised on a cycle ergometer at approximately 60% Vo(2peak) for 2 h. Muscle biopsies were obtained at rest as well as at 60 and 120 min of exercise. Although exercise was associated with a significant whole body and muscle metabolic response, there were no significant changes in the content of antiapoptotic (ARC, Bcl-2, Hsp70, XIAP) and proapoptotic (AIF, Bax, Smac) proteins, activity of proteolytic enzymes (caspase-3, caspase-8, caspase-9), DNA fragmentation, or TUNEL-positive nuclei in skeletal muscle. Furthermore, the protein levels of several antioxidant enzymes (catalase, CuZnSOD, MnSOD), concentrations of GSH and GSSG, and degree of ROS generation in skeletal muscle were not altered by exercise. Fiber type-specific analysis also revealed that ARC (P < 0.001) and Hsp70 (P < 0.05) protein were significantly higher in type I compared with type IIA and type IIAX/X fibers; however, protein levels were not affected by exercise. These findings suggest that a single bout of prolonged moderate-intensity aerobic exercise is not sufficient to alter apoptotic signaling in skeletal muscle of healthy humans.
Collapse
|
94
|
Quadrilatero J, Bloemberg D. Apoptosis repressor with caspase recruitment domain is dramatically reduced in cardiac, skeletal, and vascular smooth muscle during hypertension. Biochem Biophys Res Commun 2009; 391:1437-42. [PMID: 20026055 DOI: 10.1016/j.bbrc.2009.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a unique anti-apoptotic protein with a distinct tissue distribution. In addition, unlike most anti-apoptotic proteins which act on one pathway, ARC can inhibit apoptosis mediated by both the death-receptor and mitochondrial signaling pathways. In this study, we confirm previous reports showing high levels of ARC protein in rat heart and skeletal muscle, but demonstrate for the first time that ARC is also expressed in rat aorta. Immunoblot analysis on endothelium-denuded aorta as well as immunohistochemical analysis on intact aorta demonstrated that ARC was highly expressed in smooth muscle. Immunoblot analysis also found that ARC protein was severely downregulated in skeletal muscle (-82%; P<0.001), heart (-80%; P<0.001), and aorta (-71%; P<0.001) of spontaneously hypertensive rats (SHR) compared to normotensive Wistar-Kyoto (WKY) rats. Decreased ARC levels were also confirmed in tissues of hypertensive animals by immunohistochemical analysis. Collectively, this data suggests that ARC protein is expressed in vascular smooth muscle and is significantly reduced in several target tissues during hypertension.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/metabolism
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/metabolism
- CARD Signaling Adaptor Proteins/antagonists & inhibitors
- Caspases
- Down-Regulation
- Hypertension/enzymology
- Hypertension/metabolism
- Male
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocardium/enzymology
- Myocardium/metabolism
- Protein Structure, Tertiary
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L3G1.
| | | |
Collapse
|
95
|
Wang Q, Liu M, Li X, Chen L, Tang H. Kazrin F is involved in apoptosis and interacts with BAX and ARC. Acta Biochim Biophys Sin (Shanghai) 2009; 41:763-72. [PMID: 19727525 DOI: 10.1093/abbs/gmp065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Kazrin has recently been identified as a functional protein that is involved in cell-cell junctions and in signal transduction. Here, we identified a new isoform, Kazrin F, which is 518 aa in length and has 97 aa unique at the N-terminus. Knockdown of Kazrin F using siRNA caused cell apoptosis and a marked decrease in cell viability measured by MTT and TUNEL assays. Co-immunoprecipitation analysis revealed that Kazrin F interacts with ARC (apoptosis repressor with caspase recruitment domain) and Bax (Bcl-2-associated X protein). Co-localization of Kazrin F with ARC and Bax in the cytoplasm was determined by immunofluorescence analysis. These results suggested that Kazrin F might play an important role in regulating cellular apoptosis by interacting with ARC and Bax.
Collapse
Affiliation(s)
- Qiong Wang
- Tianjin Life Science Research Center, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | |
Collapse
|
96
|
Cardiac reanimation: targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene 2009; 27 Suppl 1:S158-67. [DOI: 10.1038/onc.2009.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
97
|
Ekhterae D, Hinmon R, Matsuzaki K, Noma M, Zhu W, Xiao RP, Gorman RC, Gorman JH. Infarction induced myocardial apoptosis and ARC activation. J Surg Res 2009; 166:59-67. [PMID: 19815236 DOI: 10.1016/j.jss.2009.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/22/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Apoptosis is thought to play a role in infarction induced ventricular remodeling. Apoptosis repressor with caspase recruitment domain (ARC) has been shown to limit cardiomyocytes apoptosis; however, its role in the pathogenesis of heart failure is not established. This study examines the regional and temporal relationships of apoptosis, ARC, and remodeling. METHODS Myocardium was harvested from the infarct borderzone and remote regions of the left ventricle (LV) at 2 (n=8), 8 (n=6), and 32 (n=5) wk after MI. Activated ARC was compared with myocardial apoptosis in each region at each time. Both were then compared with the progression of remodeling. RESULTS LV systolic volume increased by a factor 1.56±0.06 and 2.09±0.07 at 2 and 8 wk, respectively then stabilized by 32 wk (2.08±0.18). Activated ARC was elevated at 2 wk, diminished at 8 wk, and increased again at 32 wk in both regions. Apoptosis was elevated at 2 wk, and further increased at 8 wk. By 32 wk, apoptosis had diminished significantly. CONCLUSIONS In a large animal infarction model, remodeling varied directly with the degree of apoptosis and inversely with ARC activation, suggesting that ARC acts as a natural regulatory phenomenon that limits apoptosis induced ventricular remodeling.
Collapse
Affiliation(s)
- Daryoush Ekhterae
- Gorman Cardiovascular Research Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19036, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Li Y, Ge X, Liu X. The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 2009; 14:164-72. [PMID: 19130235 DOI: 10.1007/s10495-008-0296-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Postconditioning protects the heart against ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. However, the molecular mechanism by which postconditioning suppresses apoptosis remains to be fully understood. Apoptosis repressor with caspase recruitment domain (ARC) has been demonstrated to possess the ability to protect cardiomyocytes from apoptosis induced by ischemia/reperfusion. It is not yet clear as to whether ARC contributes to the inhibitory effect of postconditioning against cardiomyocyte apoptosis. METHODS The cultured cardiomyocytes from 1-day old male Sprague-Dawley rats were exposed to 3 h hypoxia followed by 3 h of reoxygenation. Cells were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia before 3 h of reoxygenation. RESULTS Hypoxia/reoxygenation led to a decrease of endogenous ARC protein levels. In contrast, postconditioning could block the reduction of endogenous ARC protein levels. Interestingly, inhibition of endogenous ARC expression by ARC antisense oligodeoxynucleotides reduced the inhibitory effect of postconditioning against apoptosis. Furthermore, our data showed that postconditioning suppressed the loss of mitochondrial membrane potential, Bax activation and the release of mitochondrial cytochrome c to cytosol. However, these inhibitory effects of postconditioning disappeared upon knockdown of endogenous ARC. CONCLUSION Our data for the first time demonstrate that ARC plays an essential role in mediating the cardioprotective effect of postconditioning against apoptosis initiated by the mitochondrial pathway.
Collapse
Affiliation(s)
- YuZhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, Chinese PLA General Hospital, 100853 Beijing, China.
| | | | | |
Collapse
|
99
|
Effect of burn injury on apoptosis and expression of apoptosis-related genes/proteins in skeletal muscles of rats. Apoptosis 2009; 14:52-65. [PMID: 19009350 DOI: 10.1007/s10495-008-0277-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate the occurrence and possible mechanisms of apoptosis in skeletal muscles after burn injury. After a 40% body surface area burn to rats, TA muscles were examined for apoptosis at varying times by TEM, TUNEL and cell death ELISA assay. Thermal injury was found to induce apoptosis in skeletal muscle on the first day and maximal apoptosis appeared 4 days post-injury. Apoptotic ligands in serum assessed by ELISA revealed rapidly increase of TNF-alpha and subsequent increase of sFasL to sFas ratio after burn injury. It implied TNF-alpha induced apoptosis in early stage and FasL induced apoptosis in later stage after burn injury. Apoptosis-related genes/proteins in skeletal muscles examined by real-time PCR array and Western blotting showed pro-apoptotic genes/proteins, including Tnfrsf1a, Tnfrsf1b and Tnfsf6 in TNF ligand and receptor family, Bax and Bid in Bcl-2 family, caspase-3 and caspase-6 in caspase family, Dapk1, FADD and Cidea in death and CIDE domain family, Apaf-1 in CARD family, and Gadd45a were up-regulated, while anti-apoptotic gene Bnip1 was down-regulated compared with that of time-matched controls. In addition, increment of caspase-3, caspase-8 and caspase-9 activity provided further evidence for their role in apoptosis in skeletal muscle. Significant increase in expression in pro-apoptotic genes/proteins and activity of caspases suggested that death receptor-mediated signaling pathways and other apoptotic related pathways participated in apoptosis in skeletal muscle after burn injury. However, it was found that some anti-apoptotic genes such as Bcl2l1, Mcl-1, Nol-3, Il-10 and Prok2 were also up-regulated, which might imply the co-existence of protective response of the body after burns. In conclusion, the data suggest that apoptosis and pro-apoptotic signaling are enhanced in muscles of burned rats. To further elucidate the underlying apoptotic mechanisms mediating the atrophic response is important in establishing potential therapeutic interventions that could prevent and/or reduce skeletal muscle wasting and preserve its physiological function.
Collapse
|
100
|
Wang JX, Li Q, Li PF. Apoptosis Repressor with Caspase Recruitment Domain Contributes to Chemotherapy Resistance by Abolishing Mitochondrial Fission Mediated by Dynamin-Related Protein-1. Cancer Res 2009; 69:492-500. [DOI: 10.1158/0008-5472.can-08-2962] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|