51
|
Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures. Curr Opin Struct Biol 2015; 30:147-160. [PMID: 25765781 DOI: 10.1016/j.sbi.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
Abstract
Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNA molecules, particularly those that have proven difficult to study using other structure-determination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.
Collapse
|
52
|
Umunnakwe CN, Loyd H, Cornick K, Chavez JR, Dobbs D, Carpenter S. Computational modeling suggests dimerization of equine infectious anemia virus Rev is required for RNA binding. Retrovirology 2014; 11:115. [PMID: 25533001 PMCID: PMC4299382 DOI: 10.1186/s12977-014-0115-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The lentiviral Rev protein mediates nuclear export of intron-containing viral RNAs that encode structural proteins or serve as the viral genome. Following translation, HIV-1 Rev localizes to the nucleus and binds its cognate sequence, termed the Rev-responsive element (RRE), in incompletely spliced viral RNA. Rev subsequently multimerizes along the viral RNA and associates with the cellular Crm1 export machinery to translocate the RNA-protein complex to the cytoplasm. Equine infectious anemia virus (EIAV) Rev is functionally homologous to HIV-1 Rev, but shares very little sequence similarity and differs in domain organization. EIAV Rev also contains a bipartite RNA binding domain comprising two short arginine-rich motifs (designated ARM-1 and ARM-2) spaced 79 residues apart in the amino acid sequence. To gain insight into the topology of the bipartite RNA binding domain, a computational approach was used to model the tertiary structure of EIAV Rev. RESULTS The tertiary structure of EIAV Rev was modeled using several protein structure prediction and model quality assessment servers. Two types of structures were predicted: an elongated structure with an extended central alpha helix, and a globular structure with a central bundle of helices. Assessment of models on the basis of biophysical properties indicated they were of average quality. In almost all models, ARM-1 and ARM-2 were spatially separated by >15 Å, suggesting that they do not form a single RNA binding interface on the monomer. A highly conserved canonical coiled-coil motif was identified in the central region of EIAV Rev, suggesting that an RNA binding interface could be formed through dimerization of Rev and juxtaposition of ARM-1 and ARM-2. In support of this, purified Rev protein migrated as a dimer in Blue native gels, and mutation of a residue predicted to form a key coiled-coil contact disrupted dimerization and abrogated RNA binding. In contrast, mutation of residues outside the predicted coiled-coil interface had no effect on dimerization or RNA binding. CONCLUSIONS Our results suggest that EIAV Rev binding to the RRE requires dimerization via a coiled-coil motif to juxtapose two RNA binding motifs, ARM-1 and ARM-2.
Collapse
Affiliation(s)
- Chijioke N Umunnakwe
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Hyelee Loyd
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| | - Kinsey Cornick
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Jerald R Chavez
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| | - Drena Dobbs
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Susan Carpenter
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
53
|
Likhoshvai VA, Khlebodarova TM, Bazhan SI, Gainova IA, Chereshnev VA, Bocharov GA. Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components. BMC Genomics 2014; 15 Suppl 12:S1. [PMID: 25564443 PMCID: PMC4303933 DOI: 10.1186/1471-2164-15-s12-s1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The life cycle of human immunodeficiency virus type-1 (HIV-1) makes possible the realization of regulatory strategies that can lead to complex dynamical behavior of the system. We analyze the strategy which is based on two feedback mechanisms, one mediating a positive regulation of the virus replication by Tat protein via the antitermination of the genomic RNAs transcription on TAR (transactivation responsive) element of the proviral DNA and the second mechanism providing a negative regulation of the splicing of the full-length (9 kb) RNAs and incompletely spliced (4 kb) RNAs via their transport from the nucleus to the cytoplasm. Although the existence of these two regulatory feedback loops has been considered in other mathematical models, none of them examined the conditions for the emergence of complex oscillatory patterns in the intracellular dynamics of viral components. Results We developed a mechanistic mathematical model for the Tat-Rev mediated regulation of HIV-1 replication, which considers the activation of proviral DNA transcription, the Tat-specific antitermination of transcription on TAR-element, resulting in the synthesis of the full-length 9 kb RNA, the splicing of the 9 kb RNA down to the 4 kb RNA and the 4 kb RNA to 2 kb RNA, the transport of 2 kb mRNAs from the nucleus to the cytoplasm by the intracellular mechanisms, the multiple binding of the Rev protein to RRE (Rev Response Element) sites on 9 kb and 4 kb RNA resulting in their export to the cytoplasm and the synthesis of Tat and Rev proteins in the cytoplasm followed by their transport into the nucleus. The degradation of all viral proteins and RNAs both in the cytoplasm and the nucleus is described. The model parameters values were derived from the published literature data. The model was used to examine the dynamics of the synthesis of the viral proteins Tat and Rev, the mRNAs under the intracellular conditions specific for activated HIV-1 infected macrophages. In addition, we analyzed alternative hypotheses for the re-cycling of the Rev proteins both in the cytoplasm and the nuclear pore complex. Conclusions The quantitative mathematical model of the Tat-Rev regulation of HIV-1 replication predicts the existence of oscillatory dynamics which depends on the efficacy of the Tat and TAR interaction as well as on the Rev-mediated transport processes. The biological relevance of the oscillatory regimes for the HIV-1 life cycle is discussed.
Collapse
|
54
|
Jayaraman B, Crosby DC, Homer C, Ribeiro I, Mavor D, Frankel AD. RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev-Rev response element complex. eLife 2014; 3:e04120. [PMID: 25486594 PMCID: PMC4360532 DOI: 10.7554/elife.04120] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/06/2014] [Indexed: 12/27/2022] Open
Abstract
The HIV-1 protein Rev controls a critical step in viral replication by mediating the nuclear export of unspliced and singly-spliced viral mRNAs. Multiple Rev subunits assemble on the Rev Response Element (RRE), a structured region present in these RNAs, and direct their export through the Crm1 pathway. Rev-RRE assembly occurs via several Rev oligomerization and RNA-binding steps, but how these steps are coordinated to form an export-competent complex is unclear. Here, we report the first crystal structure of a Rev dimer-RRE complex, revealing a dramatic rearrangement of the Rev-dimer upon RRE binding through re-packing of its hydrophobic protein-protein interface. Rev-RNA recognition relies on sequence-specific contacts at the well-characterized IIB site and local RNA architecture at the second site. The structure supports a model in which the RRE utilizes the inherent plasticity of Rev subunit interfaces to guide the formation of a functional complex.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Binding Sites
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Crystallography, X-Ray
- Cytosol/metabolism
- Cytosol/virology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation
- HEK293 Cells
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Host-Pathogen Interactions
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Models, Molecular
- Protein Binding
- RNA Splicing
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Response Elements
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Virus Replication/genetics
- rev Gene Products, Human Immunodeficiency Virus/chemistry
- rev Gene Products, Human Immunodeficiency Virus/genetics
- rev Gene Products, Human Immunodeficiency Virus/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Christina Homer
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Isabel Ribeiro
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - David Mavor
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
55
|
Booth DS, Cheng Y, Frankel AD. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. eLife 2014; 3:e04121. [PMID: 25486595 PMCID: PMC4360530 DOI: 10.7554/elife.04121] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/06/2014] [Indexed: 12/16/2022] Open
Abstract
The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Binding Sites
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Crystallography, X-Ray
- Cytosol/metabolism
- Cytosol/virology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation
- HEK293 Cells
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Host-Pathogen Interactions
- Humans
- Karyopherins/chemistry
- Karyopherins/genetics
- Karyopherins/metabolism
- Models, Molecular
- Protein Binding
- Protein Multimerization
- RNA Splicing
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Response Elements
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Virus Replication/genetics
- ran GTP-Binding Protein/chemistry
- ran GTP-Binding Protein/genetics
- ran GTP-Binding Protein/metabolism
- rev Gene Products, Human Immunodeficiency Virus/chemistry
- rev Gene Products, Human Immunodeficiency Virus/genetics
- rev Gene Products, Human Immunodeficiency Virus/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- David S Booth
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
56
|
Aligeti M, Behrens RT, Pocock GM, Schindelin J, Dietz C, Eliceiri KW, Swanson CM, Malim MH, Ahlquist P, Sherer NM. Cooperativity among Rev-associated nuclear export signals regulates HIV-1 gene expression and is a determinant of virus species tropism. J Virol 2014; 88:14207-21. [PMID: 25275125 PMCID: PMC4249125 DOI: 10.1128/jvi.01897-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/23/2014] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Murine cells exhibit a profound block to HIV-1 virion production that was recently mapped to a species-specific structural attribute of the murine version of the chromosomal region maintenance 1 (mCRM1) nuclear export receptor and rescued by the expression of human CRM1 (hCRM1). In human cells, the HIV-1 Rev protein recruits hCRM1 to intron-containing viral mRNAs encoding the Rev response element (RRE), thereby facilitating viral late gene expression. Here we exploited murine 3T3 fibroblasts as a gain-of-function system to study hCRM1's species-specific role in regulating Rev's effector functions. We show that Rev is rapidly exported from the nucleus by mCRM1 despite only weak contributions to HIV-1's posttranscriptional stages. Indeed, Rev preferentially accumulates in the cytoplasm of murine 3T3 cells with or without hCRM1 expression, in contrast to human HeLa cells, where Rev exhibits striking en masse transitions between the nuclear and cytoplasmic compartments. Efforts to bias Rev's trafficking either into or out of the nucleus revealed that Rev encoding a second CRM1 binding domain (Rev-2xNES) or Rev-dependent viral gag-pol mRNAs bearing tandem RREs (GP-2xRRE), rescue virus particle production in murine cells even in the absence of hCRM1. Combined, these results suggest a model wherein Rev-associated nuclear export signals cooperate to regulate the number or quality of CRM1's interactions with viral Rev/RRE ribonucleoprotein complexes in the nucleus. This mechanism regulates CRM1-dependent viral gene expression and is a determinant of HIV-1's capacity to produce virions in nonhuman cell types. IMPORTANCE Cells derived from mice and other nonhuman species exhibit profound blocks to HIV-1 replication. Here we elucidate a block to HIV-1 gene expression attributable to the murine version of the CRM1 (mCRM1) nuclear export receptor. In human cells, hCRM1 regulates the nuclear export of viral intron-containing mRNAs through the activity of the viral Rev adapter protein that forms a multimeric complex on these mRNAs prior to recruiting hCRM1. We demonstrate that Rev-dependent gene expression is poor in murine cells despite the finding that, surprisingly, the bulk of Rev interacts efficiently with mCRM1 and is rapidly exported from the nucleus. Instead, we map the mCRM1 defect to the apparent inability of this factor to engage Rev multimers in the context of large viral Rev/RNA ribonucleoprotein complexes. These findings shed new light on HIV-1 gene regulation and could inform the development of novel antiviral strategies that target viral gene expression.
Collapse
Affiliation(s)
- Mounavya Aligeti
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan T Behrens
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johannes Schindelin
- Morgridge Institute for Research, Madison, Wisconsin, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Dietz
- Department of Computer and Information Science, University of Constance, Constance, Germany
| | - Kevin W Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA Morgridge Institute for Research, Madison, Wisconsin, USA Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
57
|
Boons E, Li G, Vanstreels E, Vercruysse T, Pannecouque C, Vandamme AM, Daelemans D. A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity. Antiviral Res 2014; 112:91-102. [DOI: 10.1016/j.antiviral.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/24/2023]
|
58
|
Abstract
Over the past decade there has been a greater understanding of genomic complexity in eukaryotes ushered in by the immense technological advances in high-throughput sequencing of DNA and its corresponding RNA transcripts. This has resulted in the realization that beyond protein-coding genes, there are a large number of transcripts that do not encode for proteins and, therefore, may perform their function through RNA sequences and/or through secondary and tertiary structural determinants. This review is focused on the latest findings on a class of noncoding RNAs that are relatively large (>200 nucleotides), display nuclear localization, and use different strategies to regulate transcription. These are exciting times for discovering the biological scope and the mechanism of action for these RNA molecules, which have roles in dosage compensation, imprinting, enhancer function, and transcriptional regulation, with a great impact on development and disease.
Collapse
Affiliation(s)
- Roberto Bonasio
- Department of Cell and Developmental Biology and Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | |
Collapse
|
59
|
Cunyat F, Beerens N, García E, Clotet B, Kjems J, Cabrera C. Functional analyses reveal extensive RRE plasticity in primary HIV-1 sequences selected under selective pressure. PLoS One 2014; 9:e106299. [PMID: 25170621 PMCID: PMC4149556 DOI: 10.1371/journal.pone.0106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND HIV-1 Rev response element (RRE) is a functional region of viral RNA lying immediately downstream to the junction of gp120 and gp41 in the env coding sequence. The RRE is essential for HIV replication and binds with the Rev protein to facilitate the export of viral mRNA from nucleus to cytoplasm. It has been suggested that changes in the predicted secondary structure of primary RRE sequences impact the function of the RREs; however, functional assays have not yet been performed. The aim of this study was to characterize the genetic, structural and functional variation in the RRE primary sequences selected in vivo by Enfuvirtide pressure. RESULTS Multiple RRE variants were obtained from viruses isolated from patients who failed an Enfuvirtide-containing regimen. Different alterations were observed in the predicted RRE secondary structures, with the abrogation of the primary Rev binding site in one of the variants. In spite of this, most of the RRE variants were able to bind Rev and promote the cytoplasmic export of the viral mRNAs with equivalent efficiency in a cell-based assay. Only RRE45 and RRE40-45 showed an impaired ability to bind Rev in a gel-shift binding assay. Unexpectedly, this impairment was not reflected in functional capacity when RNA export was evaluated using a reporter assay, or during virus replication in lymphoid cells, suggesting that in vivo the RRE would be highly malleable. CONCLUSIONS The Rev-RRE functionality is unaffected in RRE variants selected in patients failing an ENF-containing regimen. Our data show that the current understanding of the Rev-RRE complex structure does not suffice and fails to rationally predict the function of naturally occurring RRE mutants. Therefore, this data should be taken into account in the development of antiviral agents that target the RRE-Rev complex.
Collapse
Affiliation(s)
- Francesc Cunyat
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Catalonia, Spain
| | - Nancy Beerens
- Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Elisabet García
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Catalonia, Spain
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Molecular Biology and Genetics Department, Aarhus University, Aarhus, Denmark
| | - Cecilia Cabrera
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Catalonia, Spain
| |
Collapse
|
60
|
Bai Y, Tambe A, Zhou K, Doudna JA. RNA-guided assembly of Rev-RRE nuclear export complexes. eLife 2014; 3:e03656. [PMID: 25163983 PMCID: PMC4142337 DOI: 10.7554/elife.03656] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
HIV replication requires nuclear export of unspliced and singly spliced viral transcripts. Although a unique RNA structure has been proposed for the Rev-response element (RRE) responsible for viral mRNA export, how it recruits multiple HIV Rev proteins to form an export complex has been unclear. We show here that initial binding of Rev to the RRE triggers RNA tertiary structural changes, enabling further Rev binding and the rapid formation of a viral export complex. Analysis of the Rev-RRE assembly pathway using SHAPE-Seq and small-angle X-ray scattering (SAXS) reveals two major steps of Rev-RRE complex formation, beginning with rapid Rev binding to a pre-organized region presenting multiple Rev binding sites. This step induces long-range remodeling of the RNA to expose a cryptic Rev binding site, enabling rapid assembly of additional Rev proteins into the RNA export complex. This kinetic pathway may help maintain the balance between viral replication and maturation.DOI: http://dx.doi.org/10.7554/eLife.03656.001.
Collapse
Affiliation(s)
- Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Akshay Tambe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kaihong Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Department of Chemistry, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
61
|
Casu F, Duggan BM, Hennig M. The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding. Biophys J 2014; 105:1004-17. [PMID: 23972852 DOI: 10.1016/j.bpj.2013.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/19/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022] Open
Abstract
Arginine-rich motifs (ARMs) capable of binding diverse RNA structures play critical roles in transcription, translation, RNA trafficking, and RNA packaging. The regulatory HIV-1 protein Rev is essential for viral replication and belongs to the ARM family of RNA-binding proteins. During the early stages of the HIV-1 life cycle, incompletely spliced and full-length viral mRNAs are very inefficiently recognized by the splicing machinery of the host cell and are subject to degradation in the cell nucleus. These transcripts harbor the Rev Response Element (RRE), which orchestrates the interaction with the Rev ARM and the successive Rev-dependent mRNA export pathway. Based on established criteria for predicting intrinsic disorder, such as hydropathy, combined with significant net charge, the very basic primary sequences of ARMs are expected to adopt coil-like structures. Thus, we initiated this study to investigate the conformational changes of the Rev ARM associated with RNA binding. We used multidimensional NMR and circular dichroism spectroscopy to monitor the observed structural transitions, and described the conformational landscapes using statistical ensemble and molecular-dynamics simulations. The combined spectroscopic and simulated results imply that the Rev ARM is intrinsically disordered not only as an isolated peptide but also when it is embedded into an oligomerization-deficient Rev mutant. RRE recognition triggers a crucial coil-to-helix transition employing an induced-fit mechanism.
Collapse
Affiliation(s)
- Fabio Casu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
62
|
González-Bulnes L, Ibáñez I, Bedoya LM, Beltrán M, Catalán S, Alcamí J, Fustero S, Gallego J. Structure-based design of an RNA-binding p-terphenylene scaffold that inhibits HIV-1 Rev protein function. Angew Chem Int Ed Engl 2013; 52:13405-9. [PMID: 24214163 DOI: 10.1002/anie.201306665] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/25/2013] [Indexed: 12/29/2022]
|
63
|
González-Bulnes L, Ibáñez I, Bedoya LM, Beltrán M, Catalán S, Alcamí J, Fustero S, Gallego J. Structure-Based Design of an RNA-Bindingp-Terphenylene Scaffold that Inhibits HIV-1 Rev Protein Function. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
64
|
Possik EJ, Bou Sleiman MS, Ghattas IR, Smith CA. Randomized codon mutagenesis reveals that the HIV Rev arginine-rich motif is robust to substitutions and that double substitution of two critical residues alters specificity. J Mol Recognit 2013; 26:286-96. [PMID: 23595810 DOI: 10.1002/jmr.2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/09/2013] [Accepted: 02/10/2013] [Indexed: 02/05/2023]
Abstract
The binding of the arginine-rich motif (ARM) of HIV Rev protein to its high-affinity site in stem IIB in the Rev response element (RRE) initiates assembly of a ribonucleoprotein complex that mediates the export of essential, incompletely spliced viral transcripts. Many biochemical, genetic, and structural studies of Rev-RRE IIB have been published, yet the roles of many peptide residues in Rev ARM are unconfirmed by mutagenesis. Rev aptamer I (RAI) is an optimized RRE IIB that binds Rev with higher affinity and for which mutational data are sparse. Randomized-codon libraries of Rev ARM were assayed for their ability to bind RRE IIB and RAI using a bacterial reporter system based on bacteriophage λ N-nut antitermination. Most Rev ARM residues tolerated substitutions without strong loss of binding to RRE IIB, and all except arginine 39 tolerated substitution without strong loss of binding to RAI. The pattern of critical Rev residues is not the same for RRE IIB and RAI, suggesting important differences between the interactions. The results support and aid the interpretation of existing structural models. Observed clinical variation is consistent with additional constraints on Rev mutation. By chance, we found double mutants of two highly critical residues, arginine 35 (to glycine) and asparagine 40 (to valine or lysine), that bind RRE IIB well, but not RAI. That an apparently distinct binding mode occurs with only two mutations highlights the ability of ARMs to evolve new recognition strategies and supports the application of neutral theories of evolution to protein-RNA recognition.
Collapse
Affiliation(s)
- Elite J Possik
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
65
|
Fang X, Wang J, O’Carroll IP, Mitchell M, Zuo X, Wang Y, Yu P, Liu Y, Rausch JW, Dyba MA, Kjems J, Schwieters CD, Seifert S, Winans RE, Watts NR, Stahl SJ, Wingfield PT, Byrd RA, Le Grice SF, Rein A, Wang YX. An unusual topological structure of the HIV-1 Rev response element. Cell 2013; 155:594-605. [PMID: 24243017 PMCID: PMC3918456 DOI: 10.1016/j.cell.2013.10.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 01/15/2023]
Abstract
Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Base Sequence
- Binding Sites
- Cell Nucleus/metabolism
- HEK293 Cells
- HIV-1/chemistry
- HIV-1/genetics
- Humans
- Molecular Sequence Data
- Nuclear Pore/metabolism
- Nucleic Acid Conformation
- RNA Folding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Scattering, Small Angle
- X-Ray Diffraction
- rev Gene Products, Human Immunodeficiency Virus/chemistry
- rev Gene Products, Human Immunodeficiency Virus/genetics
- rev Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jinbu Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ina P. O’Carroll
- Retroviral Assembly Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Michelle Mitchell
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Wang
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Structural Biophysics Laboratory, SAIC-Frederick, Frederick, MD 21702, USA
| | - Yu Liu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Marzena A. Dyba
- Structural Biophysics Laboratory, SAIC-Frederick, Frederick, MD 21702, USA
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Charles D. Schwieters
- Division of Computational Bioscience, Center for Informational Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Randall E. Winans
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Norman R. Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Andrew Byrd
- Macromolecular NMR Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alan Rein
- Retroviral Assembly Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
66
|
Limited nucleotide changes in the Rev response element (RRE) during HIV-1 infection alter overall Rev-RRE activity and Rev multimerization. J Virol 2013; 87:11173-86. [PMID: 23926352 DOI: 10.1128/jvi.01392-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HIV-1 Rev and the Rev response element (RRE) enable a critical step in the viral replication cycle by facilitating the nuclear export of intron-containing mRNAs, yet their activities have rarely been analyzed in natural infections. This study characterized their genetic and functional variation in a small cohort of HIV-infected individuals. Multiple Rev and RRE sequences were obtained using single-genome sequencing (SGS) of plasma samples collected within 6 months after seroconversion and at a later time. This allowed the identification of cognate sequences that were linked in vivo in the same viral genome and acted together as a functional unit. Phylogenetic analyses of these sequences indicated that 4/5 infections were founded by a single transmission event. Rev and RRE variants from each time point were subjected to functional analysis as both cognate pairs and as individual components. While a range of Rev-RRE activities were seen, the activity of cognate pairs from a single time point clustered to a discrete level, which was termed the set point. In 3/5 patients, this set point changed significantly over the time period studied. In all patients, RRE activity was more sensitive to sequence variation than Rev activity and acted as the primary driver of the cognate set point. Selected patient RREs were also shown to have differences in Rev multimerization using gel shift binding assays. Thus, rather than acting as a simple on-off switch or maintaining a constant level of activity throughout infection, the Rev-RRE system can fluctuate, presumably to control replication.
Collapse
|
67
|
Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2013; 2:a006916. [PMID: 22355797 DOI: 10.1101/cshperspect.a006916] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.
Collapse
Affiliation(s)
- Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
68
|
Lusvarghi S, Sztuba-Solinska J, Purzycka KJ, Pauly GT, Rausch JW, Grice SFJL. The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Nucleic Acids Res 2013; 41:6637-49. [PMID: 23640333 PMCID: PMC3711434 DOI: 10.1093/nar/gkt353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interaction between the viral protein Rev and the RNA motifs known as Rev response elements (RREs) is required for transport of unspliced and partially spliced human immunodeficiency virus (HIV)-1 and HIV-2 RNAs from the nucleus to the cytoplasm during the later stages of virus replication. A more detailed understanding of these nucleoprotein complexes and the host factors with which they interact should accelerate the development of new antiviral drugs targeting cis-acting RNA regulatory signals. In this communication, the secondary structures of the HIV-2 RRE and two RNA folding precursors have been identified using the SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing methodology together with a novel mathematical approach for determining the secondary structures of RNA conformers present in a mixture. A complementary chemical probing technique was also used to support these secondary structure models, to confirm that the RRE2 RNA undergoes a folding transition and to obtain information about the relative positioning of RRE2 substructures in three dimensions. Our analysis collectively suggests that the HIV-2 RRE undergoes two conformational transitions before assuming the energetically most favorable conformer. The 3D models for the HIV-2 RRE and folding intermediates are also presented, wherein the Rev-binding stem–loops (IIB and I) are located coaxially in the former, which is in agreement with previous models for HIV-1 Rev-RRE binding.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- HIV Drug Resistance Program, Reverse Transcriptase Biochemistry Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
69
|
Vercruysse T, Boons E, Venken T, Vanstreels E, Voet A, Steyaert J, De Maeyer M, Daelemans D. Mapping the binding interface between an HIV-1 inhibiting intrabody and the viral protein Rev. PLoS One 2013; 8:e60259. [PMID: 23565213 PMCID: PMC3615019 DOI: 10.1371/journal.pone.0060259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
HIV-1 Rev is the key protein in the nucleocytoplasmic export and expression of the late viral mRNAs. An important aspect for its function is its ability to multimerize on these mRNAs. We have recently identified a llama single-domain antibody (Nb190) as the first inhibitor targeting the Rev multimerization function in cells. This nanobody is a potent intracellular antibody that efficiently inhibits HIV-1 viral production. In order to gain insight into the Nb190-Rev interaction interface, we performed mutational and docking studies to map the interface between the nanobody paratope and the Rev epitope. Alanine mutants of the hyper-variable domains of Nb190 and the Rev multimerization domains were evaluated in different assays measuring Nb190-Rev interaction or viral production. Seven residues within Nb190 and five Rev residues are demonstrated to be crucial for epitope recognition. These experimental data were used to perform docking experiments and map the Nb190-Rev structural interface. This Nb190-Rev interaction model can guide further studies of the Nb190 effect on HIV-1 Rev function and could serve as starting point for the rational development of smaller entities binding to the Nb190 epitope, aimed at interfering with protein-protein interactions of the Rev N-terminal domain.
Collapse
Affiliation(s)
| | - Eline Boons
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Venken
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Els Vanstreels
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jan Steyaert
- Structural Biology Brussel Laboratory, Department of Molecular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc De Maeyer
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
70
|
Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S, Krogan NJ, Gross JD. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol Cell 2013; 49:632-44. [PMID: 23333304 PMCID: PMC3582769 DOI: 10.1016/j.molcel.2012.12.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 02/03/2023]
Abstract
The HIV-1 accessory protein Vif hijacks a cellular Cullin-RING ubiquitin ligase, CRL5, to promote degradation of the APOBEC3 (A3) family of restriction factors. Recently, the cellular transcription cofactor CBFβ was shown to form a complex with CRL5-Vif and to be essential for A3 degradation and viral infectivity. We now demonstrate that CBFβ is required for assembling a well-ordered CRL5-Vif complex by inhibiting Vif oligomerization and by activating CRL5-Vif via direct interaction. The CRL5-Vif-CBFβ holoenzyme forms a well-defined heterohexamer, indicating that Vif simultaneously hijacks CRL5 and CBFβ. Heterodimers of CBFβ and RUNX transcription factors contribute toward the regulation of genes, including those with immune system functions. We show that binding of Vif to CBFβ is mutually exclusive with RUNX heterodimerization and impacts the expression of genes whose regulatory domains are associated with RUNX1. Our results provide a mechanism by which a pathogen with limited coding capacity uses one factor to hijack multiple host pathways.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94107, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, 94158, USA
| | - Eunju Kwon
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94107, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, 94158, USA
| | - Paul D. Hartley
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94107, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, 94158, USA
| | - David C. Crosby
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94107, USA
| | - Sumanjit Mann
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94107, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94107, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94107, USA
- California Institute for Quantitative Biosciences, QB3, San Francisco, CA, 94158, USA
| |
Collapse
|
71
|
Marc D, Barbachou S, Soubieux D. The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner. Nucleic Acids Res 2012; 41:434-49. [PMID: 23093596 PMCID: PMC3592425 DOI: 10.1093/nar/gks979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5' terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1's stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5'-GUAAC / 3'-CUUAG double-stranded motif, which closely resembles the canonical 5'-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1's RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar K(D) values) that leads to oligomerization of the RBD on its RNA ligands.
Collapse
Affiliation(s)
- Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly F-37380, France.
| | | | | |
Collapse
|
72
|
Jeang KT. Multi-Faceted Post-Transcriptional Functions of HIV-1 Rev. BIOLOGY 2012; 1:165-74. [PMID: 24832222 PMCID: PMC4009778 DOI: 10.3390/biology1020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation of HIV-1 gene expression is largely governed by the activities of the viral Rev protein. In this minireview, the multiple post-transcriptional activities of Rev in the export of partially spliced and unspliced HIV-1 RNAs from the nucleus to the cytoplasm, in the translation of HIV-1 transcripts, and in the packaging of viral genomic RNAs are reviewed in brief.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
73
|
Kula A, Marcello A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. BIOLOGY 2012; 1:116-33. [PMID: 24832221 PMCID: PMC4009772 DOI: 10.3390/biology1020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| |
Collapse
|
74
|
Shida H. Role of Nucleocytoplasmic RNA Transport during the Life Cycle of Retroviruses. Front Microbiol 2012; 3:179. [PMID: 22783232 PMCID: PMC3390767 DOI: 10.3389/fmicb.2012.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved mechanisms for transporting their intron-containing RNAs (including genomic and messenger RNAs, which encode virion components) from the nucleus to the cytoplasm of the infected cell. Human retroviruses, such as human immunodeficiency virus (HIV) and human T cell leukemia virus type 1 (HTLV-1), encode the regulatory proteins Rev and Rex, which form a bridge between the viral RNA and the export receptor CRM1. Recent studies show that these transport systems are not only involved in RNA export, but also in the encapsidation of genomic RNA; furthermore, they influence subsequent events in the cytoplasm, including the translation of the cognate mRNA, transport of Gag proteins to the plasma membrane, and the formation of virus particles. Moreover, the mode of interaction between the viral and cellular RNA transport machinery underlies the species-specific propagation of HIV-1 and HTLV-1, forming the basis for constructing animal models of infection. This review article discusses recent progress regarding these issues.
Collapse
Affiliation(s)
- Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
75
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
76
|
Venken T, Daelemans D, De Maeyer M, Voet A. Computational investigation of the HIV-1 Rev multimerization using molecular dynamics simulations and binding free energy calculations. Proteins 2012; 80:1633-46. [PMID: 22447650 DOI: 10.1002/prot.24057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/06/2012] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding.
Collapse
Affiliation(s)
- Tom Venken
- Laboratory for Biomolecular Modelling and BioMacS, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, KULeuven, Heverlee, Belgium
| | | | | | | |
Collapse
|
77
|
Abstract
It has been known for some time that the HIV Rev protein binds and oligomerizes on a well-defined multiple stem-loop RNA structure, named the Rev Response Element (RRE), which is present in a subset of HIV mRNAs. This binding is the first step in a pathway that overcomes a host restriction, which would otherwise prevent the export of these RNAs to the cytoplasm. Four recent publications now provide new insight into the structure of Rev and the multimeric RNA-protein complex that forms on the RRE [1–4]. Two unexpected and remarkable findings revealed in these studies are the flexibility of RNA binding that is demonstrated by the Rev arginine-rich RNA binding motif, and the way that both Rev protein and RRE contribute to the formation of the complex in a highly cooperative fashion. These studies also define the Rev dimerization and oligomerization interfaces to a resolution of 2.5Å, providing a framework necessary for further structural and functional studies. Additionally, and perhaps most importantly, they also pave the way for rational drug design, which may ultimately lead to new therapies to inhibit this essential HIV function.
Collapse
|
78
|
Fernandes J, Jayaraman B, Frankel A. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol 2012; 9:6-11. [PMID: 22258145 PMCID: PMC3342944 DOI: 10.4161/rna.9.1.18178] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Rev response element (RRE) is a ~350 nucleotide, highly structured, cis-acting RNA element essential for viral replication. It is located in the env coding region of the viral genome and is extremely well conserved across different HIV-1 isolates. It is present on all partially spliced and unspliced viral mRNA transcripts, and serves as an RNA framework onto which multiple molecules of the viral protein Rev assemble. The Rev-RRE oligomeric complex mediates the export of these messages from the nucleus to the cytoplasm, where they are translated to produce essential viral proteins and/or packaged as genomes for new virions.
Collapse
Affiliation(s)
- Jason Fernandes
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
79
|
Naji S, Ambrus G, Cimermančič P, Reyes JR, Johnson JR, Filbrandt R, Huber MD, Vesely P, Krogan NJ, Yates JR, Saphire AC, Gerace L. Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production. Mol Cell Proteomics 2011; 11:M111.015313. [PMID: 22174317 DOI: 10.1074/mcp.m111.015313] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins.
Collapse
Affiliation(s)
- Souad Naji
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G, Reyes JR, Saphire ACS, Gerace L, Williamson JR. DDX1 is an RNA-dependent ATPase involved in HIV-1 Rev function and virus replication. J Mol Biol 2011; 415:61-74. [PMID: 22051512 PMCID: PMC3249508 DOI: 10.1016/j.jmb.2011.10.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Rev protein is essential for the virus because it promotes nuclear export of alternatively processed mRNAs, and Rev is also linked to translation of viral mRNAs and genome encapsidation. Previously, the human DEAD-box helicase DDX1 was suggested to be involved in Rev functions, but this relationship is not well understood. Biochemical studies of DDX1 and its interactions with Rev and model RNA oligonucleotides were carried out to investigate the molecular basis for association of these components. A combination of gel-filtration chromatography and circular dichroism spectroscopy demonstrated that recombinant DDX1 expressed in Escherichia coli is a well-behaved folded protein. Binding assays using fluorescently labeled Rev and cell-based immunoprecipitation analysis confirmed a specific RNA-independent DDX1–Rev interaction. Additionally, DDX1 was shown to be an RNA-activated ATPase, wherein Rev-bound RNA was equally effective at stimulating ATPase activity as protein-free RNA. Gel mobility shift assays further demonstrated that DDX1 forms complexes with Rev-bound RNA. RNA silencing of DDX1 provided strong evidence that DDX1 is required for both Rev activity and HIV production from infected cells. Collectively, these studies demonstrate a clear link between DDX1 and HIV-1 Rev in cell-based assays of HIV-1 production and provide the first demonstration that recombinant DDX1 binds Rev and RNA and has RNA-dependent catalytic activity.
Collapse
Affiliation(s)
- Stephen P Edgcomb
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Human polyomavirus JC small regulatory agnoprotein forms highly stable dimers and oligomers: implications for their roles in agnoprotein function. Virology 2011; 420:51-65. [PMID: 21920573 DOI: 10.1016/j.virol.2011.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 11/22/2022]
Abstract
JC virus (JCV) encodes a small basic phosphoprotein from the late coding region called agnoprotein, which has been shown to play important regulatory roles in the viral replication cycle. In this study, we report that agnoprotein forms highly stable dimers and higher order oligomer complexes. This was confirmed by immunoblotting and mass spectrometry studies. These complexes are extremely resistant to strong denaturing agents, including urea and SDS. Central portion of the protein, amino acids spanning from 17 to 42 is important for dimer/oligomer formation. Removal of 17 to 42 aa region from the viral background severely affected the efficiency of the JCV replication. Extracts prepared from JCV-infected cells showed a double banding pattern for agnoprotein in vivo. Collectively, these findings suggest that agnoprotein forms functionally active homodimer/oligomer complexes and these may be important for its function during viral propagation and thus for the progression of PML.
Collapse
|
82
|
Dunn IS. RNA templating of molecular assembly and covalent modification patterning in early molecular evolution and modern biosystems. J Theor Biol 2011; 284:32-41. [PMID: 21703277 DOI: 10.1016/j.jtbi.2011.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
The Direct RNA Template (DRT) hypothesis proposes that an early stage of genetic code evolution involved RNA molecules acting as stereochemical recognition templates for assembly of specific amino acids in sequence-ordered arrays, providing a framework for directed covalent peptide bond formation. It is hypothesized here that modern biological precedents may exist for RNA-based structural templating with functional analogies to hypothetical DRT systems. Beyond covalent molecular assembly, an extension of the DRT concept can include RNA molecules acting as dynamic structural template guides for the specific non-covalent assembly of multi-subunit complexes, equivalent to structural assembly chaperones. However, despite numerous precedents for RNA molecules acting as scaffolds for protein complexes, true RNA-mediated assembly chaperoning appears to be absent in modern biosystems. Another level of function with parallels to a DRT system is possible if RNA structural motifs dynamically guided specific patterns of catalytic modifications within multiple target sites in a pre-formed polymer or macromolecular complex. It is suggested that this type of structural RNA templating could logically play a functional role in certain areas of biology, one of which is the glycome of complex organisms. If any such RNA templating processes are shown to exist, they would share no necessary evolutionary relationships with events during early molecular evolution, but may promote understanding of the practical limits of biological RNA functions now and in the ancient RNA World. Awareness of these formal possibilities may also assist in the current search for functions of extensive non-coding RNAs in complex organisms, or for efforts towards artificial rendering of DRT systems.
Collapse
Affiliation(s)
- Ian S Dunn
- CytoCure LLC, 100 Cummings Center, Beverly, MA 01915, USA.
| |
Collapse
|
83
|
Sei E, Conrad NK. Delineation of a core RNA element required for Kaposi's sarcoma-associated herpesvirus ORF57 binding and activity. Virology 2011; 419:107-16. [PMID: 21889182 DOI: 10.1016/j.virol.2011.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/14/2011] [Accepted: 08/11/2011] [Indexed: 11/28/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is an essential multifunctional regulator of gene expression. ORF57 interaction with RNA is necessary for ORF57-mediated posttranscriptional functions, but little is known about the RNA elements that drive ORF57-RNA specificity. Here, we investigate the cis-acting factors on the KSHV PAN RNA that dictate ORF57 binding and activity. We show that ORF57 binds directly to the 5' end of PAN RNA in KSHV-infected cells. Furthermore, we employ in vitro and cell-based assays to define a 30-nucleotide (nt) core ORF57-responsive element (ORE) that is necessary and sufficient for ORF57 binding and activity. Mutational analysis of the core ORE further suggests that a 9-nt sequence is a specific binding site for ORF57. These studies provide insight into ORF57 specificity determinants and lay a foundation for future analyses of cellular and viral ORF57 targets.
Collapse
Affiliation(s)
- Emi Sei
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
84
|
Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. RNA (NEW YORK, N.Y.) 2011; 17:1664-77. [PMID: 21778280 PMCID: PMC3162332 DOI: 10.1261/rna.2641911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
The NMR solution structure is reported of a duplex, 5'GUGAAGCCCGU/3'UCACAGGAGGC, containing a 4 × 4 nucleotide internal loop from an R2 retrotransposon RNA. The loop contains three sheared purine-purine pairs and reveals a structural element found in other RNAs, which we refer to as the 3RRs motif. Optical melting measurements of the thermodynamics of the duplex indicate that the internal loop is 1.6 kcal/mol more stable at 37°C than predicted. The results identify the 3RRs motif as a common structural element that can facilitate prediction of 3D structure. Known examples include internal loops having the pairings: 5'GAA/3'AGG, 5'GAG/3'AGG, 5'GAA/3'AAG, and 5'AAG/3'AGG. The structural information is compared with predictions made with the MC-Sym program.
Collapse
Affiliation(s)
- Yelena V. Lerman
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Neelaabh Shankar
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Marc Parisien
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Francois Major
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
85
|
Comparative analysis of RNA/protein dynamics for the arginine-rich-binding motif and zinc-finger-binding motif proteins encoded by HIV-1. Biophys J 2011; 99:3454-62. [PMID: 21081095 DOI: 10.1016/j.bpj.2010.09.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 11/24/2022] Open
Abstract
We report a comparative study in which a single-molecule fluorescence resonance energy transfer approach was used to examine how the binding of two families of HIV-1 viral proteins to viral RNA hairpins locally changes the RNA secondary structures. The single-molecule fluorescence resonance energy transfer results indicate that the zinc finger protein (nucleocapsid) locally melts the TAR RNA and RRE-IIB RNA hairpins, whereas arginine-rich motif proteins (Tat and Rev) may strengthen the hairpin structures through specific binding interactions. Competition experiments show that Tat and Rev can effectively inhibit the nucleocapsid-chaperoned annealing of complementary DNA oligonucleotides to the TAR and RRE-IIB RNA hairpins, respectively. The competition binding data presented here suggest that the specific nucleic acid binding interactions of Tat and Rev can effectively compete with the general nucleic acid binding/chaperone functions of the nucleocapsid protein, and thus may in principle help regulate critical events during the HIV life cycle.
Collapse
|
86
|
Vercruysse T, Pawar S, De Borggraeve W, Pardon E, Pavlakis GN, Pannecouque C, Steyaert J, Balzarini J, Daelemans D. Measuring cooperative Rev protein-protein interactions on Rev responsive RNA by fluorescence resonance energy transfer. RNA Biol 2011; 8:316-24. [PMID: 21358282 DOI: 10.4161/rna.8.2.13782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The export of viral RNA from the nucleus to the cytoplasm of the cellular host is a crucial step in the life cycle of HIV-1 that is mediated by the viral Rev protein. One aspect of the Rev function, its multimerization, is still unexplored as a target for antiviral therapy. This is partly due to the lack of a fast and solid system to measure Rev multimerization. We have developed a high throughput in vitro Rev multimerization assay based on fluorescence resonance energy transfer (FRET) in which real-time Rev-Rev interactions can be measured both in the absence and the presence of Rev specific RRE RNA. Well-characterized Rev multimerization deficient mutants showed reduced FRET as well as unlabeled Rev molecules were able to inhibit the FRET signal demonstrating the specificity of the assay. Upon multimerization along RRE RNA the FRET signal significantly increased but dropped again at equimolar Rev/RRE ratios suggesting that in this condition most Rev molecules are bound as monomers to the RRE. Furthermore, using this assay, we demonstrate that a previously selected llama heavy-chain only antibody was shown to not only prevent the development of Rev multimers but also disassemble the already formed complexes confirming the dynamic nature of the Rev-Rev interactions. The in vitro FRET based multimerization assay facilitates the further study of the basic mechanism of cooperative Rev multimerization along the RRE and is also widely applicable to study the assembly of other functional complexes involving protein homo-multimerization or cooperative protein-protein interactions on RNA or DNA.
Collapse
Affiliation(s)
- Thomas Vercruysse
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. J Virol 2011; 85:3940-9. [PMID: 21289114 DOI: 10.1128/jvi.02683-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previously we described the identification of two compounds (3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide [103833] and 4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile [104366]) that interfered with HIV replication through the inhibition of Rev function. We now describe resistant viral variants that arose after drug selection, using virus derived from two different HIV proviral clones, NL4-3 and R7/3. With HIV(NL4-3), each compound selected a different single point mutation in the Rev response element (RRE) at the bottom of stem-loop IIC. Either mutation led to the lengthening of the stem-loop IIC stem by an additional base pair, creating an RRE that was more responsive to lower concentrations of Rev than the wild type. Surprisingly, wild-type HIV(R7/3) was also found to be inhibited when tested with these compounds, in spite of the fact this virus already has an RNA stem-loop IIC similar to the one in the resistant NL4-3 variant. When drug resistance was selected in HIV(R7/3), a virus arose with two nucleotide changes that mapped to the envelope region outside the RRE. One of these nucleotide changes was synonymous with respect to env, and one was not. The combination of both nucleotide changes appeared to be necessary for the resistance phenotype as the individual point mutations by themselves did not convey resistance. Thus, although drug-resistant variants can be generated with both viral strains, the underlying mechanism is clearly different. These results highlight that minor nucleotide changes in HIV RNA, outside the primary Rev binding site, can significantly alter the efficiency of the Rev/RRE pathway.
Collapse
|
88
|
Mine A, Hyodo K, Takeda A, Kaido M, Mise K, Okuno T. Interactions between p27 and p88 replicase proteins of Red clover necrotic mosaic virus play an essential role in viral RNA replication and suppression of RNA silencing via the 480-kDa viral replicase complex assembly. Virology 2010; 407:213-24. [PMID: 20828775 DOI: 10.1016/j.virol.2010.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/13/2010] [Accepted: 07/23/2010] [Indexed: 11/16/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV), a positive-sense RNA virus with a bipartite genome, encodes p27 and p88 replicase proteins that are required for viral RNA replication and suppression of RNA silencing. In this study, we identified domains in p27 and p88 responsible for their protein-protein interactions using in vitro pull-down assays with the purified recombinant proteins. Coimmunoprecipitation analysis in combination with blue-native polyacrylamide gel electrophoresis using mutated p27 proteins showed that both p27-p27 and p27-p88 interactions are essential for the formation of the 480-kDa complex, which has RCNMV-specific RNA-dependent RNA polymerase activity. Furthermore, we found a good correlation between the accumulated levels of the 480-kDa complex and replication levels and the suppression of RNA silencing activity. Our results indicate that interactions between RCNMV replicase proteins play an essential role in viral RNA replication and in suppressing RNA silencing via the 480-kDa replicase complex assembly.
Collapse
Affiliation(s)
- Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Daugherty MD, Liu B, Frankel AD. Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Nat Struct Mol Biol 2010; 17:1337-42. [PMID: 20953181 PMCID: PMC2988976 DOI: 10.1038/nsmb.1902] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/06/2010] [Indexed: 12/28/2022]
Abstract
HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the Rev response element (RRE) RNA, to form a highly specific oligomeric ribonucleoprotein (RNP) that binds to the Crm1 host export factor. To understand how protein oligomerization generates cooperativity and specificity for RRE binding, we solved the crystal structure of a Rev dimer at 2.5-Å resolution. The dimer arrangement organizes arginine-rich helices at the ends of a V-shaped assembly to bind adjacent RNA sites and structurally couple dimerization and RNA recognition. A second protein-protein interface arranges higher-order Rev oligomers to act as an adaptor to the host export machinery, with viral RNA bound to one face and Crm1 to another, the oligomers thereby using small, interconnected modules to physically arrange the RNP for efficient export.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Conserved Sequence
- Crystallography, X-Ray
- Dimerization
- HIV-1/physiology
- Karyopherins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Response Elements
- Sequence Alignment
- Virus Replication
- rev Gene Products, Human Immunodeficiency Virus/chemistry
- rev Gene Products, Human Immunodeficiency Virus/metabolism
- rev Gene Products, Human Immunodeficiency Virus/physiology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Matthew D. Daugherty
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco San Francisco, CA 94158
| | - Bella Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco San Francisco, CA 94158
| | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco San Francisco, CA 94158
| |
Collapse
|
90
|
Abstract
HIV-1 transcription is regulated at the level of elongation by the viral Tat protein together with the cellular elongation factor P-TEFb, which is composed of cyclin T1 and Cdk9 subunits. The crystal structure of a Tat:P-TEFb complex (Tahirov, T.H.; Babayeva, N.D.; Varzavand, K.; Cooper, J.J.; Sedore, S.C.; and Price, D.H. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature2010, 465, 747–751.) reveals molecular details of Tat and its interactions that have eluded investigators for more than two decades and provides provocative insights into the mechanism of Tat activation.
Collapse
|
91
|
Rev-derived peptides inhibit HIV-1 replication by antagonism of Rev and a co-receptor, CXCR4. Int J Biochem Cell Biol 2010; 42:1482-8. [DOI: 10.1016/j.biocel.2010.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/23/2010] [Accepted: 05/11/2010] [Indexed: 11/17/2022]
|
92
|
HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes. Proc Natl Acad Sci U S A 2010; 107:12481-6. [PMID: 20616058 DOI: 10.1073/pnas.1007022107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RNA is a crucial structural component of many ribonucleoprotein (RNP) complexes, including the ribosome, spliceosome, and signal recognition particle, but the role of RNA in guiding complex formation is only beginning to be explored. In the case of HIV, viral replication requires assembly of an RNP composed of the Rev protein homooligomer and the Rev response element (RRE) RNA to mediate nuclear export of unspliced viral mRNAs. Assembly of the functional Rev-RRE complex proceeds by cooperative oligomerization of Rev on the RRE scaffold and utilizes both protein-protein and protein-RNA interactions to organize complexes with high specificity. The structures of the Rev protein and a peptide-RNA complex are known, but the complete RNP is not, making it unclear to what extent RNA defines the composition and architecture of Rev-RNA complexes. Here we show that the RRE controls the oligomeric state and solubility of Rev and guides its assembly into discrete Rev-RNA complexes. SAXS and EM data were used to derive a structural model of a Rev dimer bound to an essential RRE hairpin and to visualize the complete Rev-RRE RNP, demonstrating that RRE binding drives assembly of Rev homooligomers into asymmetric particles, reminiscent of the role of RNA in organizing more complex RNP machines, such as the ribosome, composed of many different protein subunits. Thus, the RRE is not simply a passive scaffold onto which proteins bind but instead actively defines the protein composition and organization of the RNP.
Collapse
|
93
|
Vercruysse T, Pardon E, Vanstreels E, Steyaert J, Daelemans D. An intrabody based on a llama single-domain antibody targeting the N-terminal alpha-helical multimerization domain of HIV-1 rev prevents viral production. J Biol Chem 2010; 285:21768-80. [PMID: 20406803 DOI: 10.1074/jbc.m110.112490] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus, type 1 (HIV-1)-encoded Rev protein is essential for the expression of late viral mRNAs. Rev forms a large organized multimeric protein-protein complex on the Rev response element of these viral mRNA species and transports them from the nucleus to the cytoplasm, exploiting the CRM1-mediated cellular machinery. Here we report the selection of a nanobody, derived from a llama heavy-chain only antibody, that efficiently blocks the assembly of Rev multimers. The nanobody inhibits HIV-1 replication in cells and specifically suppresses the Rev-dependent expression of partially spliced and unspliced HIV-1 RNA. In HIV-susceptible cells, this nanobody thus has potential as an effective anti-HIV agent using genetic immunization strategies. Its binding site was mapped to Rev residues Lys-20 and Tyr-23 located in the N-terminal alpha-helical multimerization domain. In the presence of this nanobody, we observed an accumulation of dimeric Rev species, supporting a head-to-head/tail-to-tail molecular model for Rev assembly. The results indicate that the oligomeric assembly of Rev follows an ordered stepwise process and identify a new epitope within Rev that could guide strategies for the development of novel HIV inhibitors.
Collapse
Affiliation(s)
- Thomas Vercruysse
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
94
|
Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. Proc Natl Acad Sci U S A 2010; 107:5810-4. [PMID: 20231488 DOI: 10.1073/pnas.0914946107] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Rev is a small regulatory protein that mediates the nuclear export of viral mRNAs, an essential step in the HIV replication cycle. In this process Rev oligomerizes in association with a highly structured RNA motif, the Rev response element. Crystallographic studies of Rev have been hampered by the protein's tendency to aggregate, but Rev has now been found to form a stable soluble equimolar complex with a specifically engineered monoclonal Fab fragment. We have determined the structure of this complex at 3.2 A resolution. It reveals a molecular dimer of Rev, bound on either side by a Fab, where the ordered portion of each Rev monomer (residues 9-65) contains two coplanar alpha-helices arranged in hairpin fashion. Subunits dimerize through overlapping of the hairpin prongs. Mating of hydrophobic patches on the outer surface of the dimer is likely to promote higher order interactions, suggesting a model for Rev oligomerization onto the viral RNA.
Collapse
|